Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This coordinates the per-module state used while generating code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenModule.h"
     15 #include "CGDebugInfo.h"
     16 #include "CodeGenFunction.h"
     17 #include "CodeGenTBAA.h"
     18 #include "CGCall.h"
     19 #include "CGCUDARuntime.h"
     20 #include "CGCXXABI.h"
     21 #include "CGObjCRuntime.h"
     22 #include "CGOpenCLRuntime.h"
     23 #include "TargetInfo.h"
     24 #include "clang/Frontend/CodeGenOptions.h"
     25 #include "clang/AST/ASTContext.h"
     26 #include "clang/AST/CharUnits.h"
     27 #include "clang/AST/DeclObjC.h"
     28 #include "clang/AST/DeclCXX.h"
     29 #include "clang/AST/DeclTemplate.h"
     30 #include "clang/AST/Mangle.h"
     31 #include "clang/AST/RecordLayout.h"
     32 #include "clang/AST/RecursiveASTVisitor.h"
     33 #include "clang/Basic/Builtins.h"
     34 #include "clang/Basic/Diagnostic.h"
     35 #include "clang/Basic/SourceManager.h"
     36 #include "clang/Basic/TargetInfo.h"
     37 #include "clang/Basic/ConvertUTF.h"
     38 #include "llvm/CallingConv.h"
     39 #include "llvm/Module.h"
     40 #include "llvm/Intrinsics.h"
     41 #include "llvm/LLVMContext.h"
     42 #include "llvm/ADT/APSInt.h"
     43 #include "llvm/ADT/Triple.h"
     44 #include "llvm/Target/Mangler.h"
     45 #include "llvm/Target/TargetData.h"
     46 #include "llvm/Support/CallSite.h"
     47 #include "llvm/Support/ErrorHandling.h"
     48 using namespace clang;
     49 using namespace CodeGen;
     50 
     51 static const char AnnotationSection[] = "llvm.metadata";
     52 
     53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
     54   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
     55   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
     56   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
     57   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
     58   }
     59 
     60   llvm_unreachable("invalid C++ ABI kind");
     61 }
     62 
     63 
     64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
     65                              llvm::Module &M, const llvm::TargetData &TD,
     66                              DiagnosticsEngine &diags)
     67   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
     68     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
     69     ABI(createCXXABI(*this)),
     70     Types(*this),
     71     TBAA(0),
     72     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
     73     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
     74     RRData(0), CFConstantStringClassRef(0),
     75     ConstantStringClassRef(0), NSConstantStringType(0),
     76     VMContext(M.getContext()),
     77     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
     78     BlockObjectAssign(0), BlockObjectDispose(0),
     79     BlockDescriptorType(0), GenericBlockLiteralType(0) {
     80 
     81   // Initialize the type cache.
     82   llvm::LLVMContext &LLVMContext = M.getContext();
     83   VoidTy = llvm::Type::getVoidTy(LLVMContext);
     84   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
     85   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
     86   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
     87   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
     88   FloatTy = llvm::Type::getFloatTy(LLVMContext);
     89   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
     90   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
     91   PointerAlignInBytes =
     92   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
     93   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
     94   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
     95   Int8PtrTy = Int8Ty->getPointerTo(0);
     96   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
     97 
     98   if (LangOpts.ObjC1)
     99     createObjCRuntime();
    100   if (LangOpts.OpenCL)
    101     createOpenCLRuntime();
    102   if (LangOpts.CUDA)
    103     createCUDARuntime();
    104 
    105   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
    106   if (LangOpts.ThreadSanitizer ||
    107       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
    108     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
    109                            ABI.getMangleContext());
    110 
    111   // If debug info or coverage generation is enabled, create the CGDebugInfo
    112   // object.
    113   if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo ||
    114       CodeGenOpts.EmitGcovArcs ||
    115       CodeGenOpts.EmitGcovNotes)
    116     DebugInfo = new CGDebugInfo(*this);
    117 
    118   Block.GlobalUniqueCount = 0;
    119 
    120   if (C.getLangOpts().ObjCAutoRefCount)
    121     ARCData = new ARCEntrypoints();
    122   RRData = new RREntrypoints();
    123 }
    124 
    125 CodeGenModule::~CodeGenModule() {
    126   delete ObjCRuntime;
    127   delete OpenCLRuntime;
    128   delete CUDARuntime;
    129   delete TheTargetCodeGenInfo;
    130   delete &ABI;
    131   delete TBAA;
    132   delete DebugInfo;
    133   delete ARCData;
    134   delete RRData;
    135 }
    136 
    137 void CodeGenModule::createObjCRuntime() {
    138   // This is just isGNUFamily(), but we want to force implementors of
    139   // new ABIs to decide how best to do this.
    140   switch (LangOpts.ObjCRuntime.getKind()) {
    141   case ObjCRuntime::GNUstep:
    142   case ObjCRuntime::GCC:
    143   case ObjCRuntime::ObjFW:
    144     ObjCRuntime = CreateGNUObjCRuntime(*this);
    145     return;
    146 
    147   case ObjCRuntime::FragileMacOSX:
    148   case ObjCRuntime::MacOSX:
    149   case ObjCRuntime::iOS:
    150     ObjCRuntime = CreateMacObjCRuntime(*this);
    151     return;
    152   }
    153   llvm_unreachable("bad runtime kind");
    154 }
    155 
    156 void CodeGenModule::createOpenCLRuntime() {
    157   OpenCLRuntime = new CGOpenCLRuntime(*this);
    158 }
    159 
    160 void CodeGenModule::createCUDARuntime() {
    161   CUDARuntime = CreateNVCUDARuntime(*this);
    162 }
    163 
    164 void CodeGenModule::Release() {
    165   EmitDeferred();
    166   EmitCXXGlobalInitFunc();
    167   EmitCXXGlobalDtorFunc();
    168   if (ObjCRuntime)
    169     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
    170       AddGlobalCtor(ObjCInitFunction);
    171   EmitCtorList(GlobalCtors, "llvm.global_ctors");
    172   EmitCtorList(GlobalDtors, "llvm.global_dtors");
    173   EmitGlobalAnnotations();
    174   EmitLLVMUsed();
    175 
    176   SimplifyPersonality();
    177 
    178   if (getCodeGenOpts().EmitDeclMetadata)
    179     EmitDeclMetadata();
    180 
    181   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
    182     EmitCoverageFile();
    183 
    184   if (DebugInfo)
    185     DebugInfo->finalize();
    186 }
    187 
    188 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
    189   // Make sure that this type is translated.
    190   Types.UpdateCompletedType(TD);
    191 }
    192 
    193 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
    194   if (!TBAA)
    195     return 0;
    196   return TBAA->getTBAAInfo(QTy);
    197 }
    198 
    199 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
    200   if (!TBAA)
    201     return 0;
    202   return TBAA->getTBAAInfoForVTablePtr();
    203 }
    204 
    205 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
    206                                         llvm::MDNode *TBAAInfo) {
    207   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
    208 }
    209 
    210 bool CodeGenModule::isTargetDarwin() const {
    211   return getContext().getTargetInfo().getTriple().isOSDarwin();
    212 }
    213 
    214 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
    215   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
    216   getDiags().Report(Context.getFullLoc(loc), diagID);
    217 }
    218 
    219 /// ErrorUnsupported - Print out an error that codegen doesn't support the
    220 /// specified stmt yet.
    221 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
    222                                      bool OmitOnError) {
    223   if (OmitOnError && getDiags().hasErrorOccurred())
    224     return;
    225   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
    226                                                "cannot compile this %0 yet");
    227   std::string Msg = Type;
    228   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
    229     << Msg << S->getSourceRange();
    230 }
    231 
    232 /// ErrorUnsupported - Print out an error that codegen doesn't support the
    233 /// specified decl yet.
    234 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
    235                                      bool OmitOnError) {
    236   if (OmitOnError && getDiags().hasErrorOccurred())
    237     return;
    238   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
    239                                                "cannot compile this %0 yet");
    240   std::string Msg = Type;
    241   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
    242 }
    243 
    244 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
    245   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
    246 }
    247 
    248 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
    249                                         const NamedDecl *D) const {
    250   // Internal definitions always have default visibility.
    251   if (GV->hasLocalLinkage()) {
    252     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
    253     return;
    254   }
    255 
    256   // Set visibility for definitions.
    257   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
    258   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
    259     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
    260 }
    261 
    262 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
    263   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
    264       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
    265       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
    266       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
    267       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
    268 }
    269 
    270 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
    271     CodeGenOptions::TLSModel M) {
    272   switch (M) {
    273   case CodeGenOptions::GeneralDynamicTLSModel:
    274     return llvm::GlobalVariable::GeneralDynamicTLSModel;
    275   case CodeGenOptions::LocalDynamicTLSModel:
    276     return llvm::GlobalVariable::LocalDynamicTLSModel;
    277   case CodeGenOptions::InitialExecTLSModel:
    278     return llvm::GlobalVariable::InitialExecTLSModel;
    279   case CodeGenOptions::LocalExecTLSModel:
    280     return llvm::GlobalVariable::LocalExecTLSModel;
    281   }
    282   llvm_unreachable("Invalid TLS model!");
    283 }
    284 
    285 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
    286                                const VarDecl &D) const {
    287   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
    288 
    289   llvm::GlobalVariable::ThreadLocalMode TLM;
    290   TLM = GetLLVMTLSModel(CodeGenOpts.DefaultTLSModel);
    291 
    292   // Override the TLS model if it is explicitly specified.
    293   if (D.hasAttr<TLSModelAttr>()) {
    294     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
    295     TLM = GetLLVMTLSModel(Attr->getModel());
    296   }
    297 
    298   GV->setThreadLocalMode(TLM);
    299 }
    300 
    301 /// Set the symbol visibility of type information (vtable and RTTI)
    302 /// associated with the given type.
    303 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
    304                                       const CXXRecordDecl *RD,
    305                                       TypeVisibilityKind TVK) const {
    306   setGlobalVisibility(GV, RD);
    307 
    308   if (!CodeGenOpts.HiddenWeakVTables)
    309     return;
    310 
    311   // We never want to drop the visibility for RTTI names.
    312   if (TVK == TVK_ForRTTIName)
    313     return;
    314 
    315   // We want to drop the visibility to hidden for weak type symbols.
    316   // This isn't possible if there might be unresolved references
    317   // elsewhere that rely on this symbol being visible.
    318 
    319   // This should be kept roughly in sync with setThunkVisibility
    320   // in CGVTables.cpp.
    321 
    322   // Preconditions.
    323   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
    324       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
    325     return;
    326 
    327   // Don't override an explicit visibility attribute.
    328   if (RD->getExplicitVisibility())
    329     return;
    330 
    331   switch (RD->getTemplateSpecializationKind()) {
    332   // We have to disable the optimization if this is an EI definition
    333   // because there might be EI declarations in other shared objects.
    334   case TSK_ExplicitInstantiationDefinition:
    335   case TSK_ExplicitInstantiationDeclaration:
    336     return;
    337 
    338   // Every use of a non-template class's type information has to emit it.
    339   case TSK_Undeclared:
    340     break;
    341 
    342   // In theory, implicit instantiations can ignore the possibility of
    343   // an explicit instantiation declaration because there necessarily
    344   // must be an EI definition somewhere with default visibility.  In
    345   // practice, it's possible to have an explicit instantiation for
    346   // an arbitrary template class, and linkers aren't necessarily able
    347   // to deal with mixed-visibility symbols.
    348   case TSK_ExplicitSpecialization:
    349   case TSK_ImplicitInstantiation:
    350     if (!CodeGenOpts.HiddenWeakTemplateVTables)
    351       return;
    352     break;
    353   }
    354 
    355   // If there's a key function, there may be translation units
    356   // that don't have the key function's definition.  But ignore
    357   // this if we're emitting RTTI under -fno-rtti.
    358   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
    359     if (Context.getKeyFunction(RD))
    360       return;
    361   }
    362 
    363   // Otherwise, drop the visibility to hidden.
    364   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
    365   GV->setUnnamedAddr(true);
    366 }
    367 
    368 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
    369   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
    370 
    371   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
    372   if (!Str.empty())
    373     return Str;
    374 
    375   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
    376     IdentifierInfo *II = ND->getIdentifier();
    377     assert(II && "Attempt to mangle unnamed decl.");
    378 
    379     Str = II->getName();
    380     return Str;
    381   }
    382 
    383   SmallString<256> Buffer;
    384   llvm::raw_svector_ostream Out(Buffer);
    385   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
    386     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
    387   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
    388     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
    389   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
    390     getCXXABI().getMangleContext().mangleBlock(BD, Out,
    391       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
    392   else
    393     getCXXABI().getMangleContext().mangleName(ND, Out);
    394 
    395   // Allocate space for the mangled name.
    396   Out.flush();
    397   size_t Length = Buffer.size();
    398   char *Name = MangledNamesAllocator.Allocate<char>(Length);
    399   std::copy(Buffer.begin(), Buffer.end(), Name);
    400 
    401   Str = StringRef(Name, Length);
    402 
    403   return Str;
    404 }
    405 
    406 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
    407                                         const BlockDecl *BD) {
    408   MangleContext &MangleCtx = getCXXABI().getMangleContext();
    409   const Decl *D = GD.getDecl();
    410   llvm::raw_svector_ostream Out(Buffer.getBuffer());
    411   if (D == 0)
    412     MangleCtx.mangleGlobalBlock(BD,
    413       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
    414   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
    415     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
    416   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
    417     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
    418   else
    419     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
    420 }
    421 
    422 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
    423   return getModule().getNamedValue(Name);
    424 }
    425 
    426 /// AddGlobalCtor - Add a function to the list that will be called before
    427 /// main() runs.
    428 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
    429   // FIXME: Type coercion of void()* types.
    430   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
    431 }
    432 
    433 /// AddGlobalDtor - Add a function to the list that will be called
    434 /// when the module is unloaded.
    435 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
    436   // FIXME: Type coercion of void()* types.
    437   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
    438 }
    439 
    440 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
    441   // Ctor function type is void()*.
    442   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
    443   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
    444 
    445   // Get the type of a ctor entry, { i32, void ()* }.
    446   llvm::StructType *CtorStructTy =
    447     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
    448 
    449   // Construct the constructor and destructor arrays.
    450   SmallVector<llvm::Constant*, 8> Ctors;
    451   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
    452     llvm::Constant *S[] = {
    453       llvm::ConstantInt::get(Int32Ty, I->second, false),
    454       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
    455     };
    456     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
    457   }
    458 
    459   if (!Ctors.empty()) {
    460     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
    461     new llvm::GlobalVariable(TheModule, AT, false,
    462                              llvm::GlobalValue::AppendingLinkage,
    463                              llvm::ConstantArray::get(AT, Ctors),
    464                              GlobalName);
    465   }
    466 }
    467 
    468 llvm::GlobalValue::LinkageTypes
    469 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
    470   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
    471 
    472   if (Linkage == GVA_Internal)
    473     return llvm::Function::InternalLinkage;
    474 
    475   if (D->hasAttr<DLLExportAttr>())
    476     return llvm::Function::DLLExportLinkage;
    477 
    478   if (D->hasAttr<WeakAttr>())
    479     return llvm::Function::WeakAnyLinkage;
    480 
    481   // In C99 mode, 'inline' functions are guaranteed to have a strong
    482   // definition somewhere else, so we can use available_externally linkage.
    483   if (Linkage == GVA_C99Inline)
    484     return llvm::Function::AvailableExternallyLinkage;
    485 
    486   // Note that Apple's kernel linker doesn't support symbol
    487   // coalescing, so we need to avoid linkonce and weak linkages there.
    488   // Normally, this means we just map to internal, but for explicit
    489   // instantiations we'll map to external.
    490 
    491   // In C++, the compiler has to emit a definition in every translation unit
    492   // that references the function.  We should use linkonce_odr because
    493   // a) if all references in this translation unit are optimized away, we
    494   // don't need to codegen it.  b) if the function persists, it needs to be
    495   // merged with other definitions. c) C++ has the ODR, so we know the
    496   // definition is dependable.
    497   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
    498     return !Context.getLangOpts().AppleKext
    499              ? llvm::Function::LinkOnceODRLinkage
    500              : llvm::Function::InternalLinkage;
    501 
    502   // An explicit instantiation of a template has weak linkage, since
    503   // explicit instantiations can occur in multiple translation units
    504   // and must all be equivalent. However, we are not allowed to
    505   // throw away these explicit instantiations.
    506   if (Linkage == GVA_ExplicitTemplateInstantiation)
    507     return !Context.getLangOpts().AppleKext
    508              ? llvm::Function::WeakODRLinkage
    509              : llvm::Function::ExternalLinkage;
    510 
    511   // Otherwise, we have strong external linkage.
    512   assert(Linkage == GVA_StrongExternal);
    513   return llvm::Function::ExternalLinkage;
    514 }
    515 
    516 
    517 /// SetFunctionDefinitionAttributes - Set attributes for a global.
    518 ///
    519 /// FIXME: This is currently only done for aliases and functions, but not for
    520 /// variables (these details are set in EmitGlobalVarDefinition for variables).
    521 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
    522                                                     llvm::GlobalValue *GV) {
    523   SetCommonAttributes(D, GV);
    524 }
    525 
    526 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
    527                                               const CGFunctionInfo &Info,
    528                                               llvm::Function *F) {
    529   unsigned CallingConv;
    530   AttributeListType AttributeList;
    531   ConstructAttributeList(Info, D, AttributeList, CallingConv);
    532   F->setAttributes(llvm::AttrListPtr::get(AttributeList));
    533   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
    534 }
    535 
    536 /// Determines whether the language options require us to model
    537 /// unwind exceptions.  We treat -fexceptions as mandating this
    538 /// except under the fragile ObjC ABI with only ObjC exceptions
    539 /// enabled.  This means, for example, that C with -fexceptions
    540 /// enables this.
    541 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
    542   // If exceptions are completely disabled, obviously this is false.
    543   if (!LangOpts.Exceptions) return false;
    544 
    545   // If C++ exceptions are enabled, this is true.
    546   if (LangOpts.CXXExceptions) return true;
    547 
    548   // If ObjC exceptions are enabled, this depends on the ABI.
    549   if (LangOpts.ObjCExceptions) {
    550     return LangOpts.ObjCRuntime.hasUnwindExceptions();
    551   }
    552 
    553   return true;
    554 }
    555 
    556 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
    557                                                            llvm::Function *F) {
    558   if (CodeGenOpts.UnwindTables)
    559     F->setHasUWTable();
    560 
    561   if (!hasUnwindExceptions(LangOpts))
    562     F->addFnAttr(llvm::Attribute::NoUnwind);
    563 
    564   if (D->hasAttr<NakedAttr>()) {
    565     // Naked implies noinline: we should not be inlining such functions.
    566     F->addFnAttr(llvm::Attribute::Naked);
    567     F->addFnAttr(llvm::Attribute::NoInline);
    568   }
    569 
    570   if (D->hasAttr<NoInlineAttr>())
    571     F->addFnAttr(llvm::Attribute::NoInline);
    572 
    573   // (noinline wins over always_inline, and we can't specify both in IR)
    574   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
    575       !F->hasFnAttr(llvm::Attribute::NoInline))
    576     F->addFnAttr(llvm::Attribute::AlwaysInline);
    577 
    578   // FIXME: Communicate hot and cold attributes to LLVM more directly.
    579   if (D->hasAttr<ColdAttr>())
    580     F->addFnAttr(llvm::Attribute::OptimizeForSize);
    581 
    582   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
    583     F->setUnnamedAddr(true);
    584 
    585   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
    586     F->addFnAttr(llvm::Attribute::StackProtect);
    587   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
    588     F->addFnAttr(llvm::Attribute::StackProtectReq);
    589 
    590   if (LangOpts.AddressSanitizer) {
    591     // When AddressSanitizer is enabled, set AddressSafety attribute
    592     // unless __attribute__((no_address_safety_analysis)) is used.
    593     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
    594       F->addFnAttr(llvm::Attribute::AddressSafety);
    595   }
    596 
    597   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
    598   if (alignment)
    599     F->setAlignment(alignment);
    600 
    601   // C++ ABI requires 2-byte alignment for member functions.
    602   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
    603     F->setAlignment(2);
    604 }
    605 
    606 void CodeGenModule::SetCommonAttributes(const Decl *D,
    607                                         llvm::GlobalValue *GV) {
    608   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
    609     setGlobalVisibility(GV, ND);
    610   else
    611     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
    612 
    613   if (D->hasAttr<UsedAttr>())
    614     AddUsedGlobal(GV);
    615 
    616   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
    617     GV->setSection(SA->getName());
    618 
    619   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
    620 }
    621 
    622 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
    623                                                   llvm::Function *F,
    624                                                   const CGFunctionInfo &FI) {
    625   SetLLVMFunctionAttributes(D, FI, F);
    626   SetLLVMFunctionAttributesForDefinition(D, F);
    627 
    628   F->setLinkage(llvm::Function::InternalLinkage);
    629 
    630   SetCommonAttributes(D, F);
    631 }
    632 
    633 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
    634                                           llvm::Function *F,
    635                                           bool IsIncompleteFunction) {
    636   if (unsigned IID = F->getIntrinsicID()) {
    637     // If this is an intrinsic function, set the function's attributes
    638     // to the intrinsic's attributes.
    639     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
    640     return;
    641   }
    642 
    643   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    644 
    645   if (!IsIncompleteFunction)
    646     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
    647 
    648   // Only a few attributes are set on declarations; these may later be
    649   // overridden by a definition.
    650 
    651   if (FD->hasAttr<DLLImportAttr>()) {
    652     F->setLinkage(llvm::Function::DLLImportLinkage);
    653   } else if (FD->hasAttr<WeakAttr>() ||
    654              FD->isWeakImported()) {
    655     // "extern_weak" is overloaded in LLVM; we probably should have
    656     // separate linkage types for this.
    657     F->setLinkage(llvm::Function::ExternalWeakLinkage);
    658   } else {
    659     F->setLinkage(llvm::Function::ExternalLinkage);
    660 
    661     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
    662     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
    663       F->setVisibility(GetLLVMVisibility(LV.visibility()));
    664     }
    665   }
    666 
    667   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
    668     F->setSection(SA->getName());
    669 }
    670 
    671 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
    672   assert(!GV->isDeclaration() &&
    673          "Only globals with definition can force usage.");
    674   LLVMUsed.push_back(GV);
    675 }
    676 
    677 void CodeGenModule::EmitLLVMUsed() {
    678   // Don't create llvm.used if there is no need.
    679   if (LLVMUsed.empty())
    680     return;
    681 
    682   // Convert LLVMUsed to what ConstantArray needs.
    683   SmallVector<llvm::Constant*, 8> UsedArray;
    684   UsedArray.resize(LLVMUsed.size());
    685   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
    686     UsedArray[i] =
    687      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
    688                                     Int8PtrTy);
    689   }
    690 
    691   if (UsedArray.empty())
    692     return;
    693   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
    694 
    695   llvm::GlobalVariable *GV =
    696     new llvm::GlobalVariable(getModule(), ATy, false,
    697                              llvm::GlobalValue::AppendingLinkage,
    698                              llvm::ConstantArray::get(ATy, UsedArray),
    699                              "llvm.used");
    700 
    701   GV->setSection("llvm.metadata");
    702 }
    703 
    704 void CodeGenModule::EmitDeferred() {
    705   // Emit code for any potentially referenced deferred decls.  Since a
    706   // previously unused static decl may become used during the generation of code
    707   // for a static function, iterate until no changes are made.
    708 
    709   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
    710     if (!DeferredVTables.empty()) {
    711       const CXXRecordDecl *RD = DeferredVTables.back();
    712       DeferredVTables.pop_back();
    713       getCXXABI().EmitVTables(RD);
    714       continue;
    715     }
    716 
    717     GlobalDecl D = DeferredDeclsToEmit.back();
    718     DeferredDeclsToEmit.pop_back();
    719 
    720     // Check to see if we've already emitted this.  This is necessary
    721     // for a couple of reasons: first, decls can end up in the
    722     // deferred-decls queue multiple times, and second, decls can end
    723     // up with definitions in unusual ways (e.g. by an extern inline
    724     // function acquiring a strong function redefinition).  Just
    725     // ignore these cases.
    726     //
    727     // TODO: That said, looking this up multiple times is very wasteful.
    728     StringRef Name = getMangledName(D);
    729     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
    730     assert(CGRef && "Deferred decl wasn't referenced?");
    731 
    732     if (!CGRef->isDeclaration())
    733       continue;
    734 
    735     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
    736     // purposes an alias counts as a definition.
    737     if (isa<llvm::GlobalAlias>(CGRef))
    738       continue;
    739 
    740     // Otherwise, emit the definition and move on to the next one.
    741     EmitGlobalDefinition(D);
    742   }
    743 }
    744 
    745 void CodeGenModule::EmitGlobalAnnotations() {
    746   if (Annotations.empty())
    747     return;
    748 
    749   // Create a new global variable for the ConstantStruct in the Module.
    750   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
    751     Annotations[0]->getType(), Annotations.size()), Annotations);
    752   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
    753     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
    754     "llvm.global.annotations");
    755   gv->setSection(AnnotationSection);
    756 }
    757 
    758 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
    759   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
    760   if (i != AnnotationStrings.end())
    761     return i->second;
    762 
    763   // Not found yet, create a new global.
    764   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
    765   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
    766     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
    767   gv->setSection(AnnotationSection);
    768   gv->setUnnamedAddr(true);
    769   AnnotationStrings[Str] = gv;
    770   return gv;
    771 }
    772 
    773 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
    774   SourceManager &SM = getContext().getSourceManager();
    775   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
    776   if (PLoc.isValid())
    777     return EmitAnnotationString(PLoc.getFilename());
    778   return EmitAnnotationString(SM.getBufferName(Loc));
    779 }
    780 
    781 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
    782   SourceManager &SM = getContext().getSourceManager();
    783   PresumedLoc PLoc = SM.getPresumedLoc(L);
    784   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
    785     SM.getExpansionLineNumber(L);
    786   return llvm::ConstantInt::get(Int32Ty, LineNo);
    787 }
    788 
    789 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
    790                                                 const AnnotateAttr *AA,
    791                                                 SourceLocation L) {
    792   // Get the globals for file name, annotation, and the line number.
    793   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
    794                  *UnitGV = EmitAnnotationUnit(L),
    795                  *LineNoCst = EmitAnnotationLineNo(L);
    796 
    797   // Create the ConstantStruct for the global annotation.
    798   llvm::Constant *Fields[4] = {
    799     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
    800     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
    801     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
    802     LineNoCst
    803   };
    804   return llvm::ConstantStruct::getAnon(Fields);
    805 }
    806 
    807 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
    808                                          llvm::GlobalValue *GV) {
    809   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
    810   // Get the struct elements for these annotations.
    811   for (specific_attr_iterator<AnnotateAttr>
    812        ai = D->specific_attr_begin<AnnotateAttr>(),
    813        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
    814     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
    815 }
    816 
    817 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
    818   // Never defer when EmitAllDecls is specified.
    819   if (LangOpts.EmitAllDecls)
    820     return false;
    821 
    822   return !getContext().DeclMustBeEmitted(Global);
    823 }
    824 
    825 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
    826   const AliasAttr *AA = VD->getAttr<AliasAttr>();
    827   assert(AA && "No alias?");
    828 
    829   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
    830 
    831   // See if there is already something with the target's name in the module.
    832   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
    833 
    834   llvm::Constant *Aliasee;
    835   if (isa<llvm::FunctionType>(DeclTy))
    836     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
    837                                       /*ForVTable=*/false);
    838   else
    839     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
    840                                     llvm::PointerType::getUnqual(DeclTy), 0);
    841   if (!Entry) {
    842     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
    843     F->setLinkage(llvm::Function::ExternalWeakLinkage);
    844     WeakRefReferences.insert(F);
    845   }
    846 
    847   return Aliasee;
    848 }
    849 
    850 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
    851   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
    852 
    853   // Weak references don't produce any output by themselves.
    854   if (Global->hasAttr<WeakRefAttr>())
    855     return;
    856 
    857   // If this is an alias definition (which otherwise looks like a declaration)
    858   // emit it now.
    859   if (Global->hasAttr<AliasAttr>())
    860     return EmitAliasDefinition(GD);
    861 
    862   // If this is CUDA, be selective about which declarations we emit.
    863   if (LangOpts.CUDA) {
    864     if (CodeGenOpts.CUDAIsDevice) {
    865       if (!Global->hasAttr<CUDADeviceAttr>() &&
    866           !Global->hasAttr<CUDAGlobalAttr>() &&
    867           !Global->hasAttr<CUDAConstantAttr>() &&
    868           !Global->hasAttr<CUDASharedAttr>())
    869         return;
    870     } else {
    871       if (!Global->hasAttr<CUDAHostAttr>() && (
    872             Global->hasAttr<CUDADeviceAttr>() ||
    873             Global->hasAttr<CUDAConstantAttr>() ||
    874             Global->hasAttr<CUDASharedAttr>()))
    875         return;
    876     }
    877   }
    878 
    879   // Ignore declarations, they will be emitted on their first use.
    880   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
    881     // Forward declarations are emitted lazily on first use.
    882     if (!FD->doesThisDeclarationHaveABody()) {
    883       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
    884         return;
    885 
    886       const FunctionDecl *InlineDefinition = 0;
    887       FD->getBody(InlineDefinition);
    888 
    889       StringRef MangledName = getMangledName(GD);
    890       DeferredDecls.erase(MangledName);
    891       EmitGlobalDefinition(InlineDefinition);
    892       return;
    893     }
    894   } else {
    895     const VarDecl *VD = cast<VarDecl>(Global);
    896     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
    897 
    898     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
    899       return;
    900   }
    901 
    902   // Defer code generation when possible if this is a static definition, inline
    903   // function etc.  These we only want to emit if they are used.
    904   if (!MayDeferGeneration(Global)) {
    905     // Emit the definition if it can't be deferred.
    906     EmitGlobalDefinition(GD);
    907     return;
    908   }
    909 
    910   // If we're deferring emission of a C++ variable with an
    911   // initializer, remember the order in which it appeared in the file.
    912   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
    913       cast<VarDecl>(Global)->hasInit()) {
    914     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
    915     CXXGlobalInits.push_back(0);
    916   }
    917 
    918   // If the value has already been used, add it directly to the
    919   // DeferredDeclsToEmit list.
    920   StringRef MangledName = getMangledName(GD);
    921   if (GetGlobalValue(MangledName))
    922     DeferredDeclsToEmit.push_back(GD);
    923   else {
    924     // Otherwise, remember that we saw a deferred decl with this name.  The
    925     // first use of the mangled name will cause it to move into
    926     // DeferredDeclsToEmit.
    927     DeferredDecls[MangledName] = GD;
    928   }
    929 }
    930 
    931 namespace {
    932   struct FunctionIsDirectlyRecursive :
    933     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
    934     const StringRef Name;
    935     const Builtin::Context &BI;
    936     bool Result;
    937     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
    938       Name(N), BI(C), Result(false) {
    939     }
    940     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
    941 
    942     bool TraverseCallExpr(CallExpr *E) {
    943       const FunctionDecl *FD = E->getDirectCallee();
    944       if (!FD)
    945         return true;
    946       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
    947       if (Attr && Name == Attr->getLabel()) {
    948         Result = true;
    949         return false;
    950       }
    951       unsigned BuiltinID = FD->getBuiltinID();
    952       if (!BuiltinID)
    953         return true;
    954       StringRef BuiltinName = BI.GetName(BuiltinID);
    955       if (BuiltinName.startswith("__builtin_") &&
    956           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
    957         Result = true;
    958         return false;
    959       }
    960       return true;
    961     }
    962   };
    963 }
    964 
    965 // isTriviallyRecursive - Check if this function calls another
    966 // decl that, because of the asm attribute or the other decl being a builtin,
    967 // ends up pointing to itself.
    968 bool
    969 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
    970   StringRef Name;
    971   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
    972     // asm labels are a special kind of mangling we have to support.
    973     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
    974     if (!Attr)
    975       return false;
    976     Name = Attr->getLabel();
    977   } else {
    978     Name = FD->getName();
    979   }
    980 
    981   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
    982   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
    983   return Walker.Result;
    984 }
    985 
    986 bool
    987 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
    988   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
    989     return true;
    990   if (CodeGenOpts.OptimizationLevel == 0 &&
    991       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
    992     return false;
    993   // PR9614. Avoid cases where the source code is lying to us. An available
    994   // externally function should have an equivalent function somewhere else,
    995   // but a function that calls itself is clearly not equivalent to the real
    996   // implementation.
    997   // This happens in glibc's btowc and in some configure checks.
    998   return !isTriviallyRecursive(F);
    999 }
   1000 
   1001 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
   1002   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
   1003 
   1004   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
   1005                                  Context.getSourceManager(),
   1006                                  "Generating code for declaration");
   1007 
   1008   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
   1009     // At -O0, don't generate IR for functions with available_externally
   1010     // linkage.
   1011     if (!shouldEmitFunction(Function))
   1012       return;
   1013 
   1014     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
   1015       // Make sure to emit the definition(s) before we emit the thunks.
   1016       // This is necessary for the generation of certain thunks.
   1017       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
   1018         EmitCXXConstructor(CD, GD.getCtorType());
   1019       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
   1020         EmitCXXDestructor(DD, GD.getDtorType());
   1021       else
   1022         EmitGlobalFunctionDefinition(GD);
   1023 
   1024       if (Method->isVirtual())
   1025         getVTables().EmitThunks(GD);
   1026 
   1027       return;
   1028     }
   1029 
   1030     return EmitGlobalFunctionDefinition(GD);
   1031   }
   1032 
   1033   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
   1034     return EmitGlobalVarDefinition(VD);
   1035 
   1036   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
   1037 }
   1038 
   1039 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
   1040 /// module, create and return an llvm Function with the specified type. If there
   1041 /// is something in the module with the specified name, return it potentially
   1042 /// bitcasted to the right type.
   1043 ///
   1044 /// If D is non-null, it specifies a decl that correspond to this.  This is used
   1045 /// to set the attributes on the function when it is first created.
   1046 llvm::Constant *
   1047 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
   1048                                        llvm::Type *Ty,
   1049                                        GlobalDecl D, bool ForVTable,
   1050                                        llvm::Attributes ExtraAttrs) {
   1051   // Lookup the entry, lazily creating it if necessary.
   1052   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
   1053   if (Entry) {
   1054     if (WeakRefReferences.erase(Entry)) {
   1055       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
   1056       if (FD && !FD->hasAttr<WeakAttr>())
   1057         Entry->setLinkage(llvm::Function::ExternalLinkage);
   1058     }
   1059 
   1060     if (Entry->getType()->getElementType() == Ty)
   1061       return Entry;
   1062 
   1063     // Make sure the result is of the correct type.
   1064     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
   1065   }
   1066 
   1067   // This function doesn't have a complete type (for example, the return
   1068   // type is an incomplete struct). Use a fake type instead, and make
   1069   // sure not to try to set attributes.
   1070   bool IsIncompleteFunction = false;
   1071 
   1072   llvm::FunctionType *FTy;
   1073   if (isa<llvm::FunctionType>(Ty)) {
   1074     FTy = cast<llvm::FunctionType>(Ty);
   1075   } else {
   1076     FTy = llvm::FunctionType::get(VoidTy, false);
   1077     IsIncompleteFunction = true;
   1078   }
   1079 
   1080   llvm::Function *F = llvm::Function::Create(FTy,
   1081                                              llvm::Function::ExternalLinkage,
   1082                                              MangledName, &getModule());
   1083   assert(F->getName() == MangledName && "name was uniqued!");
   1084   if (D.getDecl())
   1085     SetFunctionAttributes(D, F, IsIncompleteFunction);
   1086   if (ExtraAttrs != llvm::Attribute::None)
   1087     F->addFnAttr(ExtraAttrs);
   1088 
   1089   // This is the first use or definition of a mangled name.  If there is a
   1090   // deferred decl with this name, remember that we need to emit it at the end
   1091   // of the file.
   1092   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
   1093   if (DDI != DeferredDecls.end()) {
   1094     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
   1095     // list, and remove it from DeferredDecls (since we don't need it anymore).
   1096     DeferredDeclsToEmit.push_back(DDI->second);
   1097     DeferredDecls.erase(DDI);
   1098 
   1099   // Otherwise, there are cases we have to worry about where we're
   1100   // using a declaration for which we must emit a definition but where
   1101   // we might not find a top-level definition:
   1102   //   - member functions defined inline in their classes
   1103   //   - friend functions defined inline in some class
   1104   //   - special member functions with implicit definitions
   1105   // If we ever change our AST traversal to walk into class methods,
   1106   // this will be unnecessary.
   1107   //
   1108   // We also don't emit a definition for a function if it's going to be an entry
   1109   // in a vtable, unless it's already marked as used.
   1110   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
   1111     // Look for a declaration that's lexically in a record.
   1112     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
   1113     FD = FD->getMostRecentDecl();
   1114     do {
   1115       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
   1116         if (FD->isImplicit() && !ForVTable) {
   1117           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
   1118           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
   1119           break;
   1120         } else if (FD->doesThisDeclarationHaveABody()) {
   1121           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
   1122           break;
   1123         }
   1124       }
   1125       FD = FD->getPreviousDecl();
   1126     } while (FD);
   1127   }
   1128 
   1129   // Make sure the result is of the requested type.
   1130   if (!IsIncompleteFunction) {
   1131     assert(F->getType()->getElementType() == Ty);
   1132     return F;
   1133   }
   1134 
   1135   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
   1136   return llvm::ConstantExpr::getBitCast(F, PTy);
   1137 }
   1138 
   1139 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
   1140 /// non-null, then this function will use the specified type if it has to
   1141 /// create it (this occurs when we see a definition of the function).
   1142 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
   1143                                                  llvm::Type *Ty,
   1144                                                  bool ForVTable) {
   1145   // If there was no specific requested type, just convert it now.
   1146   if (!Ty)
   1147     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
   1148 
   1149   StringRef MangledName = getMangledName(GD);
   1150   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
   1151 }
   1152 
   1153 /// CreateRuntimeFunction - Create a new runtime function with the specified
   1154 /// type and name.
   1155 llvm::Constant *
   1156 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
   1157                                      StringRef Name,
   1158                                      llvm::Attributes ExtraAttrs) {
   1159   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
   1160                                  ExtraAttrs);
   1161 }
   1162 
   1163 /// isTypeConstant - Determine whether an object of this type can be emitted
   1164 /// as a constant.
   1165 ///
   1166 /// If ExcludeCtor is true, the duration when the object's constructor runs
   1167 /// will not be considered. The caller will need to verify that the object is
   1168 /// not written to during its construction.
   1169 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
   1170   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
   1171     return false;
   1172 
   1173   if (Context.getLangOpts().CPlusPlus) {
   1174     if (const CXXRecordDecl *Record
   1175           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
   1176       return ExcludeCtor && !Record->hasMutableFields() &&
   1177              Record->hasTrivialDestructor();
   1178   }
   1179 
   1180   return true;
   1181 }
   1182 
   1183 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
   1184 /// create and return an llvm GlobalVariable with the specified type.  If there
   1185 /// is something in the module with the specified name, return it potentially
   1186 /// bitcasted to the right type.
   1187 ///
   1188 /// If D is non-null, it specifies a decl that correspond to this.  This is used
   1189 /// to set the attributes on the global when it is first created.
   1190 llvm::Constant *
   1191 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
   1192                                      llvm::PointerType *Ty,
   1193                                      const VarDecl *D,
   1194                                      bool UnnamedAddr) {
   1195   // Lookup the entry, lazily creating it if necessary.
   1196   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
   1197   if (Entry) {
   1198     if (WeakRefReferences.erase(Entry)) {
   1199       if (D && !D->hasAttr<WeakAttr>())
   1200         Entry->setLinkage(llvm::Function::ExternalLinkage);
   1201     }
   1202 
   1203     if (UnnamedAddr)
   1204       Entry->setUnnamedAddr(true);
   1205 
   1206     if (Entry->getType() == Ty)
   1207       return Entry;
   1208 
   1209     // Make sure the result is of the correct type.
   1210     return llvm::ConstantExpr::getBitCast(Entry, Ty);
   1211   }
   1212 
   1213   // This is the first use or definition of a mangled name.  If there is a
   1214   // deferred decl with this name, remember that we need to emit it at the end
   1215   // of the file.
   1216   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
   1217   if (DDI != DeferredDecls.end()) {
   1218     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
   1219     // list, and remove it from DeferredDecls (since we don't need it anymore).
   1220     DeferredDeclsToEmit.push_back(DDI->second);
   1221     DeferredDecls.erase(DDI);
   1222   }
   1223 
   1224   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
   1225   llvm::GlobalVariable *GV =
   1226     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
   1227                              llvm::GlobalValue::ExternalLinkage,
   1228                              0, MangledName, 0,
   1229                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
   1230 
   1231   // Handle things which are present even on external declarations.
   1232   if (D) {
   1233     // FIXME: This code is overly simple and should be merged with other global
   1234     // handling.
   1235     GV->setConstant(isTypeConstant(D->getType(), false));
   1236 
   1237     // Set linkage and visibility in case we never see a definition.
   1238     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
   1239     if (LV.linkage() != ExternalLinkage) {
   1240       // Don't set internal linkage on declarations.
   1241     } else {
   1242       if (D->hasAttr<DLLImportAttr>())
   1243         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
   1244       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
   1245         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
   1246 
   1247       // Set visibility on a declaration only if it's explicit.
   1248       if (LV.visibilityExplicit())
   1249         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
   1250     }
   1251 
   1252     if (D->isThreadSpecified())
   1253       setTLSMode(GV, *D);
   1254   }
   1255 
   1256   if (AddrSpace != Ty->getAddressSpace())
   1257     return llvm::ConstantExpr::getBitCast(GV, Ty);
   1258   else
   1259     return GV;
   1260 }
   1261 
   1262 
   1263 llvm::GlobalVariable *
   1264 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
   1265                                       llvm::Type *Ty,
   1266                                       llvm::GlobalValue::LinkageTypes Linkage) {
   1267   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
   1268   llvm::GlobalVariable *OldGV = 0;
   1269 
   1270 
   1271   if (GV) {
   1272     // Check if the variable has the right type.
   1273     if (GV->getType()->getElementType() == Ty)
   1274       return GV;
   1275 
   1276     // Because C++ name mangling, the only way we can end up with an already
   1277     // existing global with the same name is if it has been declared extern "C".
   1278       assert(GV->isDeclaration() && "Declaration has wrong type!");
   1279     OldGV = GV;
   1280   }
   1281 
   1282   // Create a new variable.
   1283   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
   1284                                 Linkage, 0, Name);
   1285 
   1286   if (OldGV) {
   1287     // Replace occurrences of the old variable if needed.
   1288     GV->takeName(OldGV);
   1289 
   1290     if (!OldGV->use_empty()) {
   1291       llvm::Constant *NewPtrForOldDecl =
   1292       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
   1293       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
   1294     }
   1295 
   1296     OldGV->eraseFromParent();
   1297   }
   1298 
   1299   return GV;
   1300 }
   1301 
   1302 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
   1303 /// given global variable.  If Ty is non-null and if the global doesn't exist,
   1304 /// then it will be created with the specified type instead of whatever the
   1305 /// normal requested type would be.
   1306 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
   1307                                                   llvm::Type *Ty) {
   1308   assert(D->hasGlobalStorage() && "Not a global variable");
   1309   QualType ASTTy = D->getType();
   1310   if (Ty == 0)
   1311     Ty = getTypes().ConvertTypeForMem(ASTTy);
   1312 
   1313   llvm::PointerType *PTy =
   1314     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
   1315 
   1316   StringRef MangledName = getMangledName(D);
   1317   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
   1318 }
   1319 
   1320 /// CreateRuntimeVariable - Create a new runtime global variable with the
   1321 /// specified type and name.
   1322 llvm::Constant *
   1323 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
   1324                                      StringRef Name) {
   1325   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
   1326                                true);
   1327 }
   1328 
   1329 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
   1330   assert(!D->getInit() && "Cannot emit definite definitions here!");
   1331 
   1332   if (MayDeferGeneration(D)) {
   1333     // If we have not seen a reference to this variable yet, place it
   1334     // into the deferred declarations table to be emitted if needed
   1335     // later.
   1336     StringRef MangledName = getMangledName(D);
   1337     if (!GetGlobalValue(MangledName)) {
   1338       DeferredDecls[MangledName] = D;
   1339       return;
   1340     }
   1341   }
   1342 
   1343   // The tentative definition is the only definition.
   1344   EmitGlobalVarDefinition(D);
   1345 }
   1346 
   1347 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
   1348   if (DefinitionRequired)
   1349     getCXXABI().EmitVTables(Class);
   1350 }
   1351 
   1352 llvm::GlobalVariable::LinkageTypes
   1353 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
   1354   if (RD->getLinkage() != ExternalLinkage)
   1355     return llvm::GlobalVariable::InternalLinkage;
   1356 
   1357   if (const CXXMethodDecl *KeyFunction
   1358                                     = RD->getASTContext().getKeyFunction(RD)) {
   1359     // If this class has a key function, use that to determine the linkage of
   1360     // the vtable.
   1361     const FunctionDecl *Def = 0;
   1362     if (KeyFunction->hasBody(Def))
   1363       KeyFunction = cast<CXXMethodDecl>(Def);
   1364 
   1365     switch (KeyFunction->getTemplateSpecializationKind()) {
   1366       case TSK_Undeclared:
   1367       case TSK_ExplicitSpecialization:
   1368         // When compiling with optimizations turned on, we emit all vtables,
   1369         // even if the key function is not defined in the current translation
   1370         // unit. If this is the case, use available_externally linkage.
   1371         if (!Def && CodeGenOpts.OptimizationLevel)
   1372           return llvm::GlobalVariable::AvailableExternallyLinkage;
   1373 
   1374         if (KeyFunction->isInlined())
   1375           return !Context.getLangOpts().AppleKext ?
   1376                    llvm::GlobalVariable::LinkOnceODRLinkage :
   1377                    llvm::Function::InternalLinkage;
   1378 
   1379         return llvm::GlobalVariable::ExternalLinkage;
   1380 
   1381       case TSK_ImplicitInstantiation:
   1382         return !Context.getLangOpts().AppleKext ?
   1383                  llvm::GlobalVariable::LinkOnceODRLinkage :
   1384                  llvm::Function::InternalLinkage;
   1385 
   1386       case TSK_ExplicitInstantiationDefinition:
   1387         return !Context.getLangOpts().AppleKext ?
   1388                  llvm::GlobalVariable::WeakODRLinkage :
   1389                  llvm::Function::InternalLinkage;
   1390 
   1391       case TSK_ExplicitInstantiationDeclaration:
   1392         // FIXME: Use available_externally linkage. However, this currently
   1393         // breaks LLVM's build due to undefined symbols.
   1394         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
   1395         return !Context.getLangOpts().AppleKext ?
   1396                  llvm::GlobalVariable::LinkOnceODRLinkage :
   1397                  llvm::Function::InternalLinkage;
   1398     }
   1399   }
   1400 
   1401   if (Context.getLangOpts().AppleKext)
   1402     return llvm::Function::InternalLinkage;
   1403 
   1404   switch (RD->getTemplateSpecializationKind()) {
   1405   case TSK_Undeclared:
   1406   case TSK_ExplicitSpecialization:
   1407   case TSK_ImplicitInstantiation:
   1408     // FIXME: Use available_externally linkage. However, this currently
   1409     // breaks LLVM's build due to undefined symbols.
   1410     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
   1411   case TSK_ExplicitInstantiationDeclaration:
   1412     return llvm::GlobalVariable::LinkOnceODRLinkage;
   1413 
   1414   case TSK_ExplicitInstantiationDefinition:
   1415       return llvm::GlobalVariable::WeakODRLinkage;
   1416   }
   1417 
   1418   llvm_unreachable("Invalid TemplateSpecializationKind!");
   1419 }
   1420 
   1421 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
   1422     return Context.toCharUnitsFromBits(
   1423       TheTargetData.getTypeStoreSizeInBits(Ty));
   1424 }
   1425 
   1426 llvm::Constant *
   1427 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
   1428                                                        const Expr *rawInit) {
   1429   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
   1430   if (const ExprWithCleanups *withCleanups =
   1431           dyn_cast<ExprWithCleanups>(rawInit)) {
   1432     cleanups = withCleanups->getObjects();
   1433     rawInit = withCleanups->getSubExpr();
   1434   }
   1435 
   1436   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
   1437   if (!init || !init->initializesStdInitializerList() ||
   1438       init->getNumInits() == 0)
   1439     return 0;
   1440 
   1441   ASTContext &ctx = getContext();
   1442   unsigned numInits = init->getNumInits();
   1443   // FIXME: This check is here because we would otherwise silently miscompile
   1444   // nested global std::initializer_lists. Better would be to have a real
   1445   // implementation.
   1446   for (unsigned i = 0; i < numInits; ++i) {
   1447     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
   1448     if (inner && inner->initializesStdInitializerList()) {
   1449       ErrorUnsupported(inner, "nested global std::initializer_list");
   1450       return 0;
   1451     }
   1452   }
   1453 
   1454   // Synthesize a fake VarDecl for the array and initialize that.
   1455   QualType elementType = init->getInit(0)->getType();
   1456   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
   1457   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
   1458                                                 ArrayType::Normal, 0);
   1459 
   1460   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
   1461   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
   1462                                               arrayType, D->getLocation());
   1463   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
   1464                                                           D->getDeclContext()),
   1465                                           D->getLocStart(), D->getLocation(),
   1466                                           name, arrayType, sourceInfo,
   1467                                           SC_Static, SC_Static);
   1468 
   1469   // Now clone the InitListExpr to initialize the array instead.
   1470   // Incredible hack: we want to use the existing InitListExpr here, so we need
   1471   // to tell it that it no longer initializes a std::initializer_list.
   1472   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
   1473                         init->getNumInits());
   1474   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
   1475                                            init->getRBraceLoc());
   1476   arrayInit->setType(arrayType);
   1477 
   1478   if (!cleanups.empty())
   1479     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
   1480 
   1481   backingArray->setInit(arrayInit);
   1482 
   1483   // Emit the definition of the array.
   1484   EmitGlobalVarDefinition(backingArray);
   1485 
   1486   // Inspect the initializer list to validate it and determine its type.
   1487   // FIXME: doing this every time is probably inefficient; caching would be nice
   1488   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
   1489   RecordDecl::field_iterator field = record->field_begin();
   1490   if (field == record->field_end()) {
   1491     ErrorUnsupported(D, "weird std::initializer_list");
   1492     return 0;
   1493   }
   1494   QualType elementPtr = ctx.getPointerType(elementType.withConst());
   1495   // Start pointer.
   1496   if (!ctx.hasSameType(field->getType(), elementPtr)) {
   1497     ErrorUnsupported(D, "weird std::initializer_list");
   1498     return 0;
   1499   }
   1500   ++field;
   1501   if (field == record->field_end()) {
   1502     ErrorUnsupported(D, "weird std::initializer_list");
   1503     return 0;
   1504   }
   1505   bool isStartEnd = false;
   1506   if (ctx.hasSameType(field->getType(), elementPtr)) {
   1507     // End pointer.
   1508     isStartEnd = true;
   1509   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
   1510     ErrorUnsupported(D, "weird std::initializer_list");
   1511     return 0;
   1512   }
   1513 
   1514   // Now build an APValue representing the std::initializer_list.
   1515   APValue initListValue(APValue::UninitStruct(), 0, 2);
   1516   APValue &startField = initListValue.getStructField(0);
   1517   APValue::LValuePathEntry startOffsetPathEntry;
   1518   startOffsetPathEntry.ArrayIndex = 0;
   1519   startField = APValue(APValue::LValueBase(backingArray),
   1520                        CharUnits::fromQuantity(0),
   1521                        llvm::makeArrayRef(startOffsetPathEntry),
   1522                        /*IsOnePastTheEnd=*/false, 0);
   1523 
   1524   if (isStartEnd) {
   1525     APValue &endField = initListValue.getStructField(1);
   1526     APValue::LValuePathEntry endOffsetPathEntry;
   1527     endOffsetPathEntry.ArrayIndex = numInits;
   1528     endField = APValue(APValue::LValueBase(backingArray),
   1529                        ctx.getTypeSizeInChars(elementType) * numInits,
   1530                        llvm::makeArrayRef(endOffsetPathEntry),
   1531                        /*IsOnePastTheEnd=*/true, 0);
   1532   } else {
   1533     APValue &sizeField = initListValue.getStructField(1);
   1534     sizeField = APValue(llvm::APSInt(numElements));
   1535   }
   1536 
   1537   // Emit the constant for the initializer_list.
   1538   llvm::Constant *llvmInit =
   1539       EmitConstantValueForMemory(initListValue, D->getType());
   1540   assert(llvmInit && "failed to initialize as constant");
   1541   return llvmInit;
   1542 }
   1543 
   1544 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
   1545                                                  unsigned AddrSpace) {
   1546   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
   1547     if (D->hasAttr<CUDAConstantAttr>())
   1548       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
   1549     else if (D->hasAttr<CUDASharedAttr>())
   1550       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
   1551     else
   1552       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
   1553   }
   1554 
   1555   return AddrSpace;
   1556 }
   1557 
   1558 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
   1559   llvm::Constant *Init = 0;
   1560   QualType ASTTy = D->getType();
   1561   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
   1562   bool NeedsGlobalCtor = false;
   1563   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
   1564 
   1565   const VarDecl *InitDecl;
   1566   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
   1567 
   1568   if (!InitExpr) {
   1569     // This is a tentative definition; tentative definitions are
   1570     // implicitly initialized with { 0 }.
   1571     //
   1572     // Note that tentative definitions are only emitted at the end of
   1573     // a translation unit, so they should never have incomplete
   1574     // type. In addition, EmitTentativeDefinition makes sure that we
   1575     // never attempt to emit a tentative definition if a real one
   1576     // exists. A use may still exists, however, so we still may need
   1577     // to do a RAUW.
   1578     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
   1579     Init = EmitNullConstant(D->getType());
   1580   } else {
   1581     // If this is a std::initializer_list, emit the special initializer.
   1582     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
   1583     // An empty init list will perform zero-initialization, which happens
   1584     // to be exactly what we want.
   1585     // FIXME: It does so in a global constructor, which is *not* what we
   1586     // want.
   1587 
   1588     if (!Init) {
   1589       initializedGlobalDecl = GlobalDecl(D);
   1590       Init = EmitConstantInit(*InitDecl);
   1591     }
   1592     if (!Init) {
   1593       QualType T = InitExpr->getType();
   1594       if (D->getType()->isReferenceType())
   1595         T = D->getType();
   1596 
   1597       if (getLangOpts().CPlusPlus) {
   1598         Init = EmitNullConstant(T);
   1599         NeedsGlobalCtor = true;
   1600       } else {
   1601         ErrorUnsupported(D, "static initializer");
   1602         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
   1603       }
   1604     } else {
   1605       // We don't need an initializer, so remove the entry for the delayed
   1606       // initializer position (just in case this entry was delayed) if we
   1607       // also don't need to register a destructor.
   1608       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
   1609         DelayedCXXInitPosition.erase(D);
   1610     }
   1611   }
   1612 
   1613   llvm::Type* InitType = Init->getType();
   1614   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
   1615 
   1616   // Strip off a bitcast if we got one back.
   1617   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
   1618     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
   1619            // all zero index gep.
   1620            CE->getOpcode() == llvm::Instruction::GetElementPtr);
   1621     Entry = CE->getOperand(0);
   1622   }
   1623 
   1624   // Entry is now either a Function or GlobalVariable.
   1625   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
   1626 
   1627   // We have a definition after a declaration with the wrong type.
   1628   // We must make a new GlobalVariable* and update everything that used OldGV
   1629   // (a declaration or tentative definition) with the new GlobalVariable*
   1630   // (which will be a definition).
   1631   //
   1632   // This happens if there is a prototype for a global (e.g.
   1633   // "extern int x[];") and then a definition of a different type (e.g.
   1634   // "int x[10];"). This also happens when an initializer has a different type
   1635   // from the type of the global (this happens with unions).
   1636   if (GV == 0 ||
   1637       GV->getType()->getElementType() != InitType ||
   1638       GV->getType()->getAddressSpace() !=
   1639        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
   1640 
   1641     // Move the old entry aside so that we'll create a new one.
   1642     Entry->setName(StringRef());
   1643 
   1644     // Make a new global with the correct type, this is now guaranteed to work.
   1645     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
   1646 
   1647     // Replace all uses of the old global with the new global
   1648     llvm::Constant *NewPtrForOldDecl =
   1649         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
   1650     Entry->replaceAllUsesWith(NewPtrForOldDecl);
   1651 
   1652     // Erase the old global, since it is no longer used.
   1653     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
   1654   }
   1655 
   1656   if (D->hasAttr<AnnotateAttr>())
   1657     AddGlobalAnnotations(D, GV);
   1658 
   1659   GV->setInitializer(Init);
   1660 
   1661   // If it is safe to mark the global 'constant', do so now.
   1662   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
   1663                   isTypeConstant(D->getType(), true));
   1664 
   1665   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
   1666 
   1667   // Set the llvm linkage type as appropriate.
   1668   llvm::GlobalValue::LinkageTypes Linkage =
   1669     GetLLVMLinkageVarDefinition(D, GV);
   1670   GV->setLinkage(Linkage);
   1671   if (Linkage == llvm::GlobalVariable::CommonLinkage)
   1672     // common vars aren't constant even if declared const.
   1673     GV->setConstant(false);
   1674 
   1675   SetCommonAttributes(D, GV);
   1676 
   1677   // Emit the initializer function if necessary.
   1678   if (NeedsGlobalCtor || NeedsGlobalDtor)
   1679     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
   1680 
   1681   // If we are compiling with ASan, add metadata indicating dynamically
   1682   // initialized globals.
   1683   if (LangOpts.AddressSanitizer && NeedsGlobalCtor) {
   1684     llvm::Module &M = getModule();
   1685 
   1686     llvm::NamedMDNode *DynamicInitializers =
   1687         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
   1688     llvm::Value *GlobalToAdd[] = { GV };
   1689     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
   1690     DynamicInitializers->addOperand(ThisGlobal);
   1691   }
   1692 
   1693   // Emit global variable debug information.
   1694   if (CGDebugInfo *DI = getModuleDebugInfo())
   1695     if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo)
   1696       DI->EmitGlobalVariable(GV, D);
   1697 }
   1698 
   1699 llvm::GlobalValue::LinkageTypes
   1700 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
   1701                                            llvm::GlobalVariable *GV) {
   1702   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
   1703   if (Linkage == GVA_Internal)
   1704     return llvm::Function::InternalLinkage;
   1705   else if (D->hasAttr<DLLImportAttr>())
   1706     return llvm::Function::DLLImportLinkage;
   1707   else if (D->hasAttr<DLLExportAttr>())
   1708     return llvm::Function::DLLExportLinkage;
   1709   else if (D->hasAttr<WeakAttr>()) {
   1710     if (GV->isConstant())
   1711       return llvm::GlobalVariable::WeakODRLinkage;
   1712     else
   1713       return llvm::GlobalVariable::WeakAnyLinkage;
   1714   } else if (Linkage == GVA_TemplateInstantiation ||
   1715              Linkage == GVA_ExplicitTemplateInstantiation)
   1716     return llvm::GlobalVariable::WeakODRLinkage;
   1717   else if (!getLangOpts().CPlusPlus &&
   1718            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
   1719              D->getAttr<CommonAttr>()) &&
   1720            !D->hasExternalStorage() && !D->getInit() &&
   1721            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
   1722            !D->getAttr<WeakImportAttr>()) {
   1723     // Thread local vars aren't considered common linkage.
   1724     return llvm::GlobalVariable::CommonLinkage;
   1725   }
   1726   return llvm::GlobalVariable::ExternalLinkage;
   1727 }
   1728 
   1729 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
   1730 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
   1731 /// existing call uses of the old function in the module, this adjusts them to
   1732 /// call the new function directly.
   1733 ///
   1734 /// This is not just a cleanup: the always_inline pass requires direct calls to
   1735 /// functions to be able to inline them.  If there is a bitcast in the way, it
   1736 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
   1737 /// run at -O0.
   1738 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
   1739                                                       llvm::Function *NewFn) {
   1740   // If we're redefining a global as a function, don't transform it.
   1741   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
   1742   if (OldFn == 0) return;
   1743 
   1744   llvm::Type *NewRetTy = NewFn->getReturnType();
   1745   SmallVector<llvm::Value*, 4> ArgList;
   1746 
   1747   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
   1748        UI != E; ) {
   1749     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
   1750     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
   1751     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
   1752     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
   1753     llvm::CallSite CS(CI);
   1754     if (!CI || !CS.isCallee(I)) continue;
   1755 
   1756     // If the return types don't match exactly, and if the call isn't dead, then
   1757     // we can't transform this call.
   1758     if (CI->getType() != NewRetTy && !CI->use_empty())
   1759       continue;
   1760 
   1761     // Get the attribute list.
   1762     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
   1763     llvm::AttrListPtr AttrList = CI->getAttributes();
   1764 
   1765     // Get any return attributes.
   1766     llvm::Attributes RAttrs = AttrList.getRetAttributes();
   1767 
   1768     // Add the return attributes.
   1769     if (RAttrs)
   1770       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
   1771 
   1772     // If the function was passed too few arguments, don't transform.  If extra
   1773     // arguments were passed, we silently drop them.  If any of the types
   1774     // mismatch, we don't transform.
   1775     unsigned ArgNo = 0;
   1776     bool DontTransform = false;
   1777     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
   1778          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
   1779       if (CS.arg_size() == ArgNo ||
   1780           CS.getArgument(ArgNo)->getType() != AI->getType()) {
   1781         DontTransform = true;
   1782         break;
   1783       }
   1784 
   1785       // Add any parameter attributes.
   1786       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
   1787         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
   1788     }
   1789     if (DontTransform)
   1790       continue;
   1791 
   1792     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
   1793       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
   1794 
   1795     // Okay, we can transform this.  Create the new call instruction and copy
   1796     // over the required information.
   1797     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
   1798     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
   1799     ArgList.clear();
   1800     if (!NewCall->getType()->isVoidTy())
   1801       NewCall->takeName(CI);
   1802     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec));
   1803     NewCall->setCallingConv(CI->getCallingConv());
   1804 
   1805     // Finally, remove the old call, replacing any uses with the new one.
   1806     if (!CI->use_empty())
   1807       CI->replaceAllUsesWith(NewCall);
   1808 
   1809     // Copy debug location attached to CI.
   1810     if (!CI->getDebugLoc().isUnknown())
   1811       NewCall->setDebugLoc(CI->getDebugLoc());
   1812     CI->eraseFromParent();
   1813   }
   1814 }
   1815 
   1816 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
   1817   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
   1818   // If we have a definition, this might be a deferred decl. If the
   1819   // instantiation is explicit, make sure we emit it at the end.
   1820   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
   1821     GetAddrOfGlobalVar(VD);
   1822 }
   1823 
   1824 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
   1825   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
   1826 
   1827   // Compute the function info and LLVM type.
   1828   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
   1829   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
   1830 
   1831   // Get or create the prototype for the function.
   1832   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
   1833 
   1834   // Strip off a bitcast if we got one back.
   1835   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
   1836     assert(CE->getOpcode() == llvm::Instruction::BitCast);
   1837     Entry = CE->getOperand(0);
   1838   }
   1839 
   1840 
   1841   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
   1842     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
   1843 
   1844     // If the types mismatch then we have to rewrite the definition.
   1845     assert(OldFn->isDeclaration() &&
   1846            "Shouldn't replace non-declaration");
   1847 
   1848     // F is the Function* for the one with the wrong type, we must make a new
   1849     // Function* and update everything that used F (a declaration) with the new
   1850     // Function* (which will be a definition).
   1851     //
   1852     // This happens if there is a prototype for a function
   1853     // (e.g. "int f()") and then a definition of a different type
   1854     // (e.g. "int f(int x)").  Move the old function aside so that it
   1855     // doesn't interfere with GetAddrOfFunction.
   1856     OldFn->setName(StringRef());
   1857     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
   1858 
   1859     // If this is an implementation of a function without a prototype, try to
   1860     // replace any existing uses of the function (which may be calls) with uses
   1861     // of the new function
   1862     if (D->getType()->isFunctionNoProtoType()) {
   1863       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
   1864       OldFn->removeDeadConstantUsers();
   1865     }
   1866 
   1867     // Replace uses of F with the Function we will endow with a body.
   1868     if (!Entry->use_empty()) {
   1869       llvm::Constant *NewPtrForOldDecl =
   1870         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
   1871       Entry->replaceAllUsesWith(NewPtrForOldDecl);
   1872     }
   1873 
   1874     // Ok, delete the old function now, which is dead.
   1875     OldFn->eraseFromParent();
   1876 
   1877     Entry = NewFn;
   1878   }
   1879 
   1880   // We need to set linkage and visibility on the function before
   1881   // generating code for it because various parts of IR generation
   1882   // want to propagate this information down (e.g. to local static
   1883   // declarations).
   1884   llvm::Function *Fn = cast<llvm::Function>(Entry);
   1885   setFunctionLinkage(D, Fn);
   1886 
   1887   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
   1888   setGlobalVisibility(Fn, D);
   1889 
   1890   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
   1891 
   1892   SetFunctionDefinitionAttributes(D, Fn);
   1893   SetLLVMFunctionAttributesForDefinition(D, Fn);
   1894 
   1895   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
   1896     AddGlobalCtor(Fn, CA->getPriority());
   1897   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
   1898     AddGlobalDtor(Fn, DA->getPriority());
   1899   if (D->hasAttr<AnnotateAttr>())
   1900     AddGlobalAnnotations(D, Fn);
   1901 }
   1902 
   1903 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
   1904   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
   1905   const AliasAttr *AA = D->getAttr<AliasAttr>();
   1906   assert(AA && "Not an alias?");
   1907 
   1908   StringRef MangledName = getMangledName(GD);
   1909 
   1910   // If there is a definition in the module, then it wins over the alias.
   1911   // This is dubious, but allow it to be safe.  Just ignore the alias.
   1912   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
   1913   if (Entry && !Entry->isDeclaration())
   1914     return;
   1915 
   1916   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
   1917 
   1918   // Create a reference to the named value.  This ensures that it is emitted
   1919   // if a deferred decl.
   1920   llvm::Constant *Aliasee;
   1921   if (isa<llvm::FunctionType>(DeclTy))
   1922     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
   1923                                       /*ForVTable=*/false);
   1924   else
   1925     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
   1926                                     llvm::PointerType::getUnqual(DeclTy), 0);
   1927 
   1928   // Create the new alias itself, but don't set a name yet.
   1929   llvm::GlobalValue *GA =
   1930     new llvm::GlobalAlias(Aliasee->getType(),
   1931                           llvm::Function::ExternalLinkage,
   1932                           "", Aliasee, &getModule());
   1933 
   1934   if (Entry) {
   1935     assert(Entry->isDeclaration());
   1936 
   1937     // If there is a declaration in the module, then we had an extern followed
   1938     // by the alias, as in:
   1939     //   extern int test6();
   1940     //   ...
   1941     //   int test6() __attribute__((alias("test7")));
   1942     //
   1943     // Remove it and replace uses of it with the alias.
   1944     GA->takeName(Entry);
   1945 
   1946     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
   1947                                                           Entry->getType()));
   1948     Entry->eraseFromParent();
   1949   } else {
   1950     GA->setName(MangledName);
   1951   }
   1952 
   1953   // Set attributes which are particular to an alias; this is a
   1954   // specialization of the attributes which may be set on a global
   1955   // variable/function.
   1956   if (D->hasAttr<DLLExportAttr>()) {
   1957     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1958       // The dllexport attribute is ignored for undefined symbols.
   1959       if (FD->hasBody())
   1960         GA->setLinkage(llvm::Function::DLLExportLinkage);
   1961     } else {
   1962       GA->setLinkage(llvm::Function::DLLExportLinkage);
   1963     }
   1964   } else if (D->hasAttr<WeakAttr>() ||
   1965              D->hasAttr<WeakRefAttr>() ||
   1966              D->isWeakImported()) {
   1967     GA->setLinkage(llvm::Function::WeakAnyLinkage);
   1968   }
   1969 
   1970   SetCommonAttributes(D, GA);
   1971 }
   1972 
   1973 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
   1974                                             ArrayRef<llvm::Type*> Tys) {
   1975   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
   1976                                          Tys);
   1977 }
   1978 
   1979 static llvm::StringMapEntry<llvm::Constant*> &
   1980 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
   1981                          const StringLiteral *Literal,
   1982                          bool TargetIsLSB,
   1983                          bool &IsUTF16,
   1984                          unsigned &StringLength) {
   1985   StringRef String = Literal->getString();
   1986   unsigned NumBytes = String.size();
   1987 
   1988   // Check for simple case.
   1989   if (!Literal->containsNonAsciiOrNull()) {
   1990     StringLength = NumBytes;
   1991     return Map.GetOrCreateValue(String);
   1992   }
   1993 
   1994   // Otherwise, convert the UTF8 literals into a string of shorts.
   1995   IsUTF16 = true;
   1996 
   1997   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
   1998   const UTF8 *FromPtr = (const UTF8 *)String.data();
   1999   UTF16 *ToPtr = &ToBuf[0];
   2000 
   2001   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
   2002                            &ToPtr, ToPtr + NumBytes,
   2003                            strictConversion);
   2004 
   2005   // ConvertUTF8toUTF16 returns the length in ToPtr.
   2006   StringLength = ToPtr - &ToBuf[0];
   2007 
   2008   // Add an explicit null.
   2009   *ToPtr = 0;
   2010   return Map.
   2011     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
   2012                                (StringLength + 1) * 2));
   2013 }
   2014 
   2015 static llvm::StringMapEntry<llvm::Constant*> &
   2016 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
   2017                        const StringLiteral *Literal,
   2018                        unsigned &StringLength) {
   2019   StringRef String = Literal->getString();
   2020   StringLength = String.size();
   2021   return Map.GetOrCreateValue(String);
   2022 }
   2023 
   2024 llvm::Constant *
   2025 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
   2026   unsigned StringLength = 0;
   2027   bool isUTF16 = false;
   2028   llvm::StringMapEntry<llvm::Constant*> &Entry =
   2029     GetConstantCFStringEntry(CFConstantStringMap, Literal,
   2030                              getTargetData().isLittleEndian(),
   2031                              isUTF16, StringLength);
   2032 
   2033   if (llvm::Constant *C = Entry.getValue())
   2034     return C;
   2035 
   2036   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
   2037   llvm::Constant *Zeros[] = { Zero, Zero };
   2038 
   2039   // If we don't already have it, get __CFConstantStringClassReference.
   2040   if (!CFConstantStringClassRef) {
   2041     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
   2042     Ty = llvm::ArrayType::get(Ty, 0);
   2043     llvm::Constant *GV = CreateRuntimeVariable(Ty,
   2044                                            "__CFConstantStringClassReference");
   2045     // Decay array -> ptr
   2046     CFConstantStringClassRef =
   2047       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
   2048   }
   2049 
   2050   QualType CFTy = getContext().getCFConstantStringType();
   2051 
   2052   llvm::StructType *STy =
   2053     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
   2054 
   2055   llvm::Constant *Fields[4];
   2056 
   2057   // Class pointer.
   2058   Fields[0] = CFConstantStringClassRef;
   2059 
   2060   // Flags.
   2061   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
   2062   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
   2063     llvm::ConstantInt::get(Ty, 0x07C8);
   2064 
   2065   // String pointer.
   2066   llvm::Constant *C = 0;
   2067   if (isUTF16) {
   2068     ArrayRef<uint16_t> Arr =
   2069       llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
   2070                                    Entry.getKey().size() / 2);
   2071     C = llvm::ConstantDataArray::get(VMContext, Arr);
   2072   } else {
   2073     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
   2074   }
   2075 
   2076   llvm::GlobalValue::LinkageTypes Linkage;
   2077   if (isUTF16)
   2078     // FIXME: why do utf strings get "_" labels instead of "L" labels?
   2079     Linkage = llvm::GlobalValue::InternalLinkage;
   2080   else
   2081     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
   2082     // when using private linkage. It is not clear if this is a bug in ld
   2083     // or a reasonable new restriction.
   2084     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
   2085 
   2086   // Note: -fwritable-strings doesn't make the backing store strings of
   2087   // CFStrings writable. (See <rdar://problem/10657500>)
   2088   llvm::GlobalVariable *GV =
   2089     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
   2090                              Linkage, C, ".str");
   2091   GV->setUnnamedAddr(true);
   2092   if (isUTF16) {
   2093     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
   2094     GV->setAlignment(Align.getQuantity());
   2095   } else {
   2096     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
   2097     GV->setAlignment(Align.getQuantity());
   2098   }
   2099 
   2100   // String.
   2101   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
   2102 
   2103   if (isUTF16)
   2104     // Cast the UTF16 string to the correct type.
   2105     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
   2106 
   2107   // String length.
   2108   Ty = getTypes().ConvertType(getContext().LongTy);
   2109   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
   2110 
   2111   // The struct.
   2112   C = llvm::ConstantStruct::get(STy, Fields);
   2113   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
   2114                                 llvm::GlobalVariable::PrivateLinkage, C,
   2115                                 "_unnamed_cfstring_");
   2116   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
   2117     GV->setSection(Sect);
   2118   Entry.setValue(GV);
   2119 
   2120   return GV;
   2121 }
   2122 
   2123 static RecordDecl *
   2124 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
   2125                  DeclContext *DC, IdentifierInfo *Id) {
   2126   SourceLocation Loc;
   2127   if (Ctx.getLangOpts().CPlusPlus)
   2128     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
   2129   else
   2130     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
   2131 }
   2132 
   2133 llvm::Constant *
   2134 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
   2135   unsigned StringLength = 0;
   2136   llvm::StringMapEntry<llvm::Constant*> &Entry =
   2137     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
   2138 
   2139   if (llvm::Constant *C = Entry.getValue())
   2140     return C;
   2141 
   2142   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
   2143   llvm::Constant *Zeros[] = { Zero, Zero };
   2144 
   2145   // If we don't already have it, get _NSConstantStringClassReference.
   2146   if (!ConstantStringClassRef) {
   2147     std::string StringClass(getLangOpts().ObjCConstantStringClass);
   2148     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
   2149     llvm::Constant *GV;
   2150     if (LangOpts.ObjCRuntime.isNonFragile()) {
   2151       std::string str =
   2152         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
   2153                             : "OBJC_CLASS_$_" + StringClass;
   2154       GV = getObjCRuntime().GetClassGlobal(str);
   2155       // Make sure the result is of the correct type.
   2156       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
   2157       ConstantStringClassRef =
   2158         llvm::ConstantExpr::getBitCast(GV, PTy);
   2159     } else {
   2160       std::string str =
   2161         StringClass.empty() ? "_NSConstantStringClassReference"
   2162                             : "_" + StringClass + "ClassReference";
   2163       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
   2164       GV = CreateRuntimeVariable(PTy, str);
   2165       // Decay array -> ptr
   2166       ConstantStringClassRef =
   2167         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
   2168     }
   2169   }
   2170 
   2171   if (!NSConstantStringType) {
   2172     // Construct the type for a constant NSString.
   2173     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
   2174                                      Context.getTranslationUnitDecl(),
   2175                                    &Context.Idents.get("__builtin_NSString"));
   2176     D->startDefinition();
   2177 
   2178     QualType FieldTypes[3];
   2179 
   2180     // const int *isa;
   2181     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
   2182     // const char *str;
   2183     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
   2184     // unsigned int length;
   2185     FieldTypes[2] = Context.UnsignedIntTy;
   2186 
   2187     // Create fields
   2188     for (unsigned i = 0; i < 3; ++i) {
   2189       FieldDecl *Field = FieldDecl::Create(Context, D,
   2190                                            SourceLocation(),
   2191                                            SourceLocation(), 0,
   2192                                            FieldTypes[i], /*TInfo=*/0,
   2193                                            /*BitWidth=*/0,
   2194                                            /*Mutable=*/false,
   2195                                            ICIS_NoInit);
   2196       Field->setAccess(AS_public);
   2197       D->addDecl(Field);
   2198     }
   2199 
   2200     D->completeDefinition();
   2201     QualType NSTy = Context.getTagDeclType(D);
   2202     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
   2203   }
   2204 
   2205   llvm::Constant *Fields[3];
   2206 
   2207   // Class pointer.
   2208   Fields[0] = ConstantStringClassRef;
   2209 
   2210   // String pointer.
   2211   llvm::Constant *C =
   2212     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
   2213 
   2214   llvm::GlobalValue::LinkageTypes Linkage;
   2215   bool isConstant;
   2216   Linkage = llvm::GlobalValue::PrivateLinkage;
   2217   isConstant = !LangOpts.WritableStrings;
   2218 
   2219   llvm::GlobalVariable *GV =
   2220   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
   2221                            ".str");
   2222   GV->setUnnamedAddr(true);
   2223   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
   2224   GV->setAlignment(Align.getQuantity());
   2225   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
   2226 
   2227   // String length.
   2228   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
   2229   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
   2230 
   2231   // The struct.
   2232   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
   2233   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
   2234                                 llvm::GlobalVariable::PrivateLinkage, C,
   2235                                 "_unnamed_nsstring_");
   2236   // FIXME. Fix section.
   2237   if (const char *Sect =
   2238         LangOpts.ObjCRuntime.isNonFragile()
   2239           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
   2240           : getContext().getTargetInfo().getNSStringSection())
   2241     GV->setSection(Sect);
   2242   Entry.setValue(GV);
   2243 
   2244   return GV;
   2245 }
   2246 
   2247 QualType CodeGenModule::getObjCFastEnumerationStateType() {
   2248   if (ObjCFastEnumerationStateType.isNull()) {
   2249     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
   2250                                      Context.getTranslationUnitDecl(),
   2251                       &Context.Idents.get("__objcFastEnumerationState"));
   2252     D->startDefinition();
   2253 
   2254     QualType FieldTypes[] = {
   2255       Context.UnsignedLongTy,
   2256       Context.getPointerType(Context.getObjCIdType()),
   2257       Context.getPointerType(Context.UnsignedLongTy),
   2258       Context.getConstantArrayType(Context.UnsignedLongTy,
   2259                            llvm::APInt(32, 5), ArrayType::Normal, 0)
   2260     };
   2261 
   2262     for (size_t i = 0; i < 4; ++i) {
   2263       FieldDecl *Field = FieldDecl::Create(Context,
   2264                                            D,
   2265                                            SourceLocation(),
   2266                                            SourceLocation(), 0,
   2267                                            FieldTypes[i], /*TInfo=*/0,
   2268                                            /*BitWidth=*/0,
   2269                                            /*Mutable=*/false,
   2270                                            ICIS_NoInit);
   2271       Field->setAccess(AS_public);
   2272       D->addDecl(Field);
   2273     }
   2274 
   2275     D->completeDefinition();
   2276     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
   2277   }
   2278 
   2279   return ObjCFastEnumerationStateType;
   2280 }
   2281 
   2282 llvm::Constant *
   2283 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
   2284   assert(!E->getType()->isPointerType() && "Strings are always arrays");
   2285 
   2286   // Don't emit it as the address of the string, emit the string data itself
   2287   // as an inline array.
   2288   if (E->getCharByteWidth() == 1) {
   2289     SmallString<64> Str(E->getString());
   2290 
   2291     // Resize the string to the right size, which is indicated by its type.
   2292     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
   2293     Str.resize(CAT->getSize().getZExtValue());
   2294     return llvm::ConstantDataArray::getString(VMContext, Str, false);
   2295   }
   2296 
   2297   llvm::ArrayType *AType =
   2298     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
   2299   llvm::Type *ElemTy = AType->getElementType();
   2300   unsigned NumElements = AType->getNumElements();
   2301 
   2302   // Wide strings have either 2-byte or 4-byte elements.
   2303   if (ElemTy->getPrimitiveSizeInBits() == 16) {
   2304     SmallVector<uint16_t, 32> Elements;
   2305     Elements.reserve(NumElements);
   2306 
   2307     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
   2308       Elements.push_back(E->getCodeUnit(i));
   2309     Elements.resize(NumElements);
   2310     return llvm::ConstantDataArray::get(VMContext, Elements);
   2311   }
   2312 
   2313   assert(ElemTy->getPrimitiveSizeInBits() == 32);
   2314   SmallVector<uint32_t, 32> Elements;
   2315   Elements.reserve(NumElements);
   2316 
   2317   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
   2318     Elements.push_back(E->getCodeUnit(i));
   2319   Elements.resize(NumElements);
   2320   return llvm::ConstantDataArray::get(VMContext, Elements);
   2321 }
   2322 
   2323 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
   2324 /// constant array for the given string literal.
   2325 llvm::Constant *
   2326 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
   2327   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
   2328   if (S->isAscii() || S->isUTF8()) {
   2329     SmallString<64> Str(S->getString());
   2330 
   2331     // Resize the string to the right size, which is indicated by its type.
   2332     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
   2333     Str.resize(CAT->getSize().getZExtValue());
   2334     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
   2335   }
   2336 
   2337   // FIXME: the following does not memoize wide strings.
   2338   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
   2339   llvm::GlobalVariable *GV =
   2340     new llvm::GlobalVariable(getModule(),C->getType(),
   2341                              !LangOpts.WritableStrings,
   2342                              llvm::GlobalValue::PrivateLinkage,
   2343                              C,".str");
   2344 
   2345   GV->setAlignment(Align.getQuantity());
   2346   GV->setUnnamedAddr(true);
   2347   return GV;
   2348 }
   2349 
   2350 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
   2351 /// array for the given ObjCEncodeExpr node.
   2352 llvm::Constant *
   2353 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
   2354   std::string Str;
   2355   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
   2356 
   2357   return GetAddrOfConstantCString(Str);
   2358 }
   2359 
   2360 
   2361 /// GenerateWritableString -- Creates storage for a string literal.
   2362 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
   2363                                              bool constant,
   2364                                              CodeGenModule &CGM,
   2365                                              const char *GlobalName,
   2366                                              unsigned Alignment) {
   2367   // Create Constant for this string literal. Don't add a '\0'.
   2368   llvm::Constant *C =
   2369       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
   2370 
   2371   // Create a global variable for this string
   2372   llvm::GlobalVariable *GV =
   2373     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
   2374                              llvm::GlobalValue::PrivateLinkage,
   2375                              C, GlobalName);
   2376   GV->setAlignment(Alignment);
   2377   GV->setUnnamedAddr(true);
   2378   return GV;
   2379 }
   2380 
   2381 /// GetAddrOfConstantString - Returns a pointer to a character array
   2382 /// containing the literal. This contents are exactly that of the
   2383 /// given string, i.e. it will not be null terminated automatically;
   2384 /// see GetAddrOfConstantCString. Note that whether the result is
   2385 /// actually a pointer to an LLVM constant depends on
   2386 /// Feature.WriteableStrings.
   2387 ///
   2388 /// The result has pointer to array type.
   2389 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
   2390                                                        const char *GlobalName,
   2391                                                        unsigned Alignment) {
   2392   // Get the default prefix if a name wasn't specified.
   2393   if (!GlobalName)
   2394     GlobalName = ".str";
   2395 
   2396   // Don't share any string literals if strings aren't constant.
   2397   if (LangOpts.WritableStrings)
   2398     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
   2399 
   2400   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
   2401     ConstantStringMap.GetOrCreateValue(Str);
   2402 
   2403   if (llvm::GlobalVariable *GV = Entry.getValue()) {
   2404     if (Alignment > GV->getAlignment()) {
   2405       GV->setAlignment(Alignment);
   2406     }
   2407     return GV;
   2408   }
   2409 
   2410   // Create a global variable for this.
   2411   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
   2412                                                    Alignment);
   2413   Entry.setValue(GV);
   2414   return GV;
   2415 }
   2416 
   2417 /// GetAddrOfConstantCString - Returns a pointer to a character
   2418 /// array containing the literal and a terminating '\0'
   2419 /// character. The result has pointer to array type.
   2420 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
   2421                                                         const char *GlobalName,
   2422                                                         unsigned Alignment) {
   2423   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
   2424   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
   2425 }
   2426 
   2427 /// EmitObjCPropertyImplementations - Emit information for synthesized
   2428 /// properties for an implementation.
   2429 void CodeGenModule::EmitObjCPropertyImplementations(const
   2430                                                     ObjCImplementationDecl *D) {
   2431   for (ObjCImplementationDecl::propimpl_iterator
   2432          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
   2433     ObjCPropertyImplDecl *PID = *i;
   2434 
   2435     // Dynamic is just for type-checking.
   2436     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
   2437       ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2438 
   2439       // Determine which methods need to be implemented, some may have
   2440       // been overridden. Note that ::isSynthesized is not the method
   2441       // we want, that just indicates if the decl came from a
   2442       // property. What we want to know is if the method is defined in
   2443       // this implementation.
   2444       if (!D->getInstanceMethod(PD->getGetterName()))
   2445         CodeGenFunction(*this).GenerateObjCGetter(
   2446                                  const_cast<ObjCImplementationDecl *>(D), PID);
   2447       if (!PD->isReadOnly() &&
   2448           !D->getInstanceMethod(PD->getSetterName()))
   2449         CodeGenFunction(*this).GenerateObjCSetter(
   2450                                  const_cast<ObjCImplementationDecl *>(D), PID);
   2451     }
   2452   }
   2453 }
   2454 
   2455 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
   2456   const ObjCInterfaceDecl *iface = impl->getClassInterface();
   2457   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
   2458        ivar; ivar = ivar->getNextIvar())
   2459     if (ivar->getType().isDestructedType())
   2460       return true;
   2461 
   2462   return false;
   2463 }
   2464 
   2465 /// EmitObjCIvarInitializations - Emit information for ivar initialization
   2466 /// for an implementation.
   2467 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
   2468   // We might need a .cxx_destruct even if we don't have any ivar initializers.
   2469   if (needsDestructMethod(D)) {
   2470     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
   2471     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
   2472     ObjCMethodDecl *DTORMethod =
   2473       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
   2474                              cxxSelector, getContext().VoidTy, 0, D,
   2475                              /*isInstance=*/true, /*isVariadic=*/false,
   2476                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
   2477                              /*isDefined=*/false, ObjCMethodDecl::Required);
   2478     D->addInstanceMethod(DTORMethod);
   2479     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
   2480     D->setHasCXXStructors(true);
   2481   }
   2482 
   2483   // If the implementation doesn't have any ivar initializers, we don't need
   2484   // a .cxx_construct.
   2485   if (D->getNumIvarInitializers() == 0)
   2486     return;
   2487 
   2488   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
   2489   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
   2490   // The constructor returns 'self'.
   2491   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
   2492                                                 D->getLocation(),
   2493                                                 D->getLocation(),
   2494                                                 cxxSelector,
   2495                                                 getContext().getObjCIdType(), 0,
   2496                                                 D, /*isInstance=*/true,
   2497                                                 /*isVariadic=*/false,
   2498                                                 /*isSynthesized=*/true,
   2499                                                 /*isImplicitlyDeclared=*/true,
   2500                                                 /*isDefined=*/false,
   2501                                                 ObjCMethodDecl::Required);
   2502   D->addInstanceMethod(CTORMethod);
   2503   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
   2504   D->setHasCXXStructors(true);
   2505 }
   2506 
   2507 /// EmitNamespace - Emit all declarations in a namespace.
   2508 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
   2509   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
   2510        I != E; ++I)
   2511     EmitTopLevelDecl(*I);
   2512 }
   2513 
   2514 // EmitLinkageSpec - Emit all declarations in a linkage spec.
   2515 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
   2516   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
   2517       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
   2518     ErrorUnsupported(LSD, "linkage spec");
   2519     return;
   2520   }
   2521 
   2522   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
   2523        I != E; ++I)
   2524     EmitTopLevelDecl(*I);
   2525 }
   2526 
   2527 /// EmitTopLevelDecl - Emit code for a single top level declaration.
   2528 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
   2529   // If an error has occurred, stop code generation, but continue
   2530   // parsing and semantic analysis (to ensure all warnings and errors
   2531   // are emitted).
   2532   if (Diags.hasErrorOccurred())
   2533     return;
   2534 
   2535   // Ignore dependent declarations.
   2536   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
   2537     return;
   2538 
   2539   switch (D->getKind()) {
   2540   case Decl::CXXConversion:
   2541   case Decl::CXXMethod:
   2542   case Decl::Function:
   2543     // Skip function templates
   2544     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
   2545         cast<FunctionDecl>(D)->isLateTemplateParsed())
   2546       return;
   2547 
   2548     EmitGlobal(cast<FunctionDecl>(D));
   2549     break;
   2550 
   2551   case Decl::Var:
   2552     EmitGlobal(cast<VarDecl>(D));
   2553     break;
   2554 
   2555   // Indirect fields from global anonymous structs and unions can be
   2556   // ignored; only the actual variable requires IR gen support.
   2557   case Decl::IndirectField:
   2558     break;
   2559 
   2560   // C++ Decls
   2561   case Decl::Namespace:
   2562     EmitNamespace(cast<NamespaceDecl>(D));
   2563     break;
   2564     // No code generation needed.
   2565   case Decl::UsingShadow:
   2566   case Decl::Using:
   2567   case Decl::UsingDirective:
   2568   case Decl::ClassTemplate:
   2569   case Decl::FunctionTemplate:
   2570   case Decl::TypeAliasTemplate:
   2571   case Decl::NamespaceAlias:
   2572   case Decl::Block:
   2573   case Decl::Import:
   2574     break;
   2575   case Decl::CXXConstructor:
   2576     // Skip function templates
   2577     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
   2578         cast<FunctionDecl>(D)->isLateTemplateParsed())
   2579       return;
   2580 
   2581     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
   2582     break;
   2583   case Decl::CXXDestructor:
   2584     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
   2585       return;
   2586     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
   2587     break;
   2588 
   2589   case Decl::StaticAssert:
   2590     // Nothing to do.
   2591     break;
   2592 
   2593   // Objective-C Decls
   2594 
   2595   // Forward declarations, no (immediate) code generation.
   2596   case Decl::ObjCInterface:
   2597   case Decl::ObjCCategory:
   2598     break;
   2599 
   2600   case Decl::ObjCProtocol: {
   2601     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
   2602     if (Proto->isThisDeclarationADefinition())
   2603       ObjCRuntime->GenerateProtocol(Proto);
   2604     break;
   2605   }
   2606 
   2607   case Decl::ObjCCategoryImpl:
   2608     // Categories have properties but don't support synthesize so we
   2609     // can ignore them here.
   2610     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
   2611     break;
   2612 
   2613   case Decl::ObjCImplementation: {
   2614     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
   2615     EmitObjCPropertyImplementations(OMD);
   2616     EmitObjCIvarInitializations(OMD);
   2617     ObjCRuntime->GenerateClass(OMD);
   2618     // Emit global variable debug information.
   2619     if (CGDebugInfo *DI = getModuleDebugInfo())
   2620       DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
   2621 				   OMD->getLocation());
   2622 
   2623     break;
   2624   }
   2625   case Decl::ObjCMethod: {
   2626     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
   2627     // If this is not a prototype, emit the body.
   2628     if (OMD->getBody())
   2629       CodeGenFunction(*this).GenerateObjCMethod(OMD);
   2630     break;
   2631   }
   2632   case Decl::ObjCCompatibleAlias:
   2633     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
   2634     break;
   2635 
   2636   case Decl::LinkageSpec:
   2637     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
   2638     break;
   2639 
   2640   case Decl::FileScopeAsm: {
   2641     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
   2642     StringRef AsmString = AD->getAsmString()->getString();
   2643 
   2644     const std::string &S = getModule().getModuleInlineAsm();
   2645     if (S.empty())
   2646       getModule().setModuleInlineAsm(AsmString);
   2647     else if (S.end()[-1] == '\n')
   2648       getModule().setModuleInlineAsm(S + AsmString.str());
   2649     else
   2650       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
   2651     break;
   2652   }
   2653 
   2654   default:
   2655     // Make sure we handled everything we should, every other kind is a
   2656     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
   2657     // function. Need to recode Decl::Kind to do that easily.
   2658     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
   2659   }
   2660 }
   2661 
   2662 /// Turns the given pointer into a constant.
   2663 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
   2664                                           const void *Ptr) {
   2665   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
   2666   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
   2667   return llvm::ConstantInt::get(i64, PtrInt);
   2668 }
   2669 
   2670 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
   2671                                    llvm::NamedMDNode *&GlobalMetadata,
   2672                                    GlobalDecl D,
   2673                                    llvm::GlobalValue *Addr) {
   2674   if (!GlobalMetadata)
   2675     GlobalMetadata =
   2676       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
   2677 
   2678   // TODO: should we report variant information for ctors/dtors?
   2679   llvm::Value *Ops[] = {
   2680     Addr,
   2681     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
   2682   };
   2683   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
   2684 }
   2685 
   2686 /// Emits metadata nodes associating all the global values in the
   2687 /// current module with the Decls they came from.  This is useful for
   2688 /// projects using IR gen as a subroutine.
   2689 ///
   2690 /// Since there's currently no way to associate an MDNode directly
   2691 /// with an llvm::GlobalValue, we create a global named metadata
   2692 /// with the name 'clang.global.decl.ptrs'.
   2693 void CodeGenModule::EmitDeclMetadata() {
   2694   llvm::NamedMDNode *GlobalMetadata = 0;
   2695 
   2696   // StaticLocalDeclMap
   2697   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
   2698          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
   2699        I != E; ++I) {
   2700     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
   2701     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
   2702   }
   2703 }
   2704 
   2705 /// Emits metadata nodes for all the local variables in the current
   2706 /// function.
   2707 void CodeGenFunction::EmitDeclMetadata() {
   2708   if (LocalDeclMap.empty()) return;
   2709 
   2710   llvm::LLVMContext &Context = getLLVMContext();
   2711 
   2712   // Find the unique metadata ID for this name.
   2713   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
   2714 
   2715   llvm::NamedMDNode *GlobalMetadata = 0;
   2716 
   2717   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
   2718          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
   2719     const Decl *D = I->first;
   2720     llvm::Value *Addr = I->second;
   2721 
   2722     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
   2723       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
   2724       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
   2725     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
   2726       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
   2727       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
   2728     }
   2729   }
   2730 }
   2731 
   2732 void CodeGenModule::EmitCoverageFile() {
   2733   if (!getCodeGenOpts().CoverageFile.empty()) {
   2734     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
   2735       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
   2736       llvm::LLVMContext &Ctx = TheModule.getContext();
   2737       llvm::MDString *CoverageFile =
   2738           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
   2739       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
   2740         llvm::MDNode *CU = CUNode->getOperand(i);
   2741         llvm::Value *node[] = { CoverageFile, CU };
   2742         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
   2743         GCov->addOperand(N);
   2744       }
   2745     }
   2746   }
   2747 }
   2748