Home | History | Annotate | Download | only in AST
      1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements the ASTContext interface.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/ASTContext.h"
     15 #include "clang/AST/CharUnits.h"
     16 #include "clang/AST/CommentCommandTraits.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/TypeLoc.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/ExternalASTSource.h"
     24 #include "clang/AST/ASTMutationListener.h"
     25 #include "clang/AST/RecordLayout.h"
     26 #include "clang/AST/Mangle.h"
     27 #include "clang/Basic/Builtins.h"
     28 #include "clang/Basic/SourceManager.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "llvm/ADT/SmallString.h"
     31 #include "llvm/ADT/StringExtras.h"
     32 #include "llvm/Support/MathExtras.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include "llvm/Support/Capacity.h"
     35 #include "CXXABI.h"
     36 #include <map>
     37 
     38 using namespace clang;
     39 
     40 unsigned ASTContext::NumImplicitDefaultConstructors;
     41 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
     42 unsigned ASTContext::NumImplicitCopyConstructors;
     43 unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
     44 unsigned ASTContext::NumImplicitMoveConstructors;
     45 unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
     46 unsigned ASTContext::NumImplicitCopyAssignmentOperators;
     47 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
     48 unsigned ASTContext::NumImplicitMoveAssignmentOperators;
     49 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
     50 unsigned ASTContext::NumImplicitDestructors;
     51 unsigned ASTContext::NumImplicitDestructorsDeclared;
     52 
     53 enum FloatingRank {
     54   HalfRank, FloatRank, DoubleRank, LongDoubleRank
     55 };
     56 
     57 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
     58   if (!CommentsLoaded && ExternalSource) {
     59     ExternalSource->ReadComments();
     60     CommentsLoaded = true;
     61   }
     62 
     63   assert(D);
     64 
     65   // User can not attach documentation to implicit declarations.
     66   if (D->isImplicit())
     67     return NULL;
     68 
     69   // User can not attach documentation to implicit instantiations.
     70   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     71     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     72       return NULL;
     73   }
     74 
     75   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
     76     if (VD->isStaticDataMember() &&
     77         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     78       return NULL;
     79   }
     80 
     81   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
     82     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     83       return NULL;
     84   }
     85 
     86   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
     87     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     88       return NULL;
     89   }
     90 
     91   // TODO: handle comments for function parameters properly.
     92   if (isa<ParmVarDecl>(D))
     93     return NULL;
     94 
     95   // TODO: we could look up template parameter documentation in the template
     96   // documentation.
     97   if (isa<TemplateTypeParmDecl>(D) ||
     98       isa<NonTypeTemplateParmDecl>(D) ||
     99       isa<TemplateTemplateParmDecl>(D))
    100     return NULL;
    101 
    102   ArrayRef<RawComment *> RawComments = Comments.getComments();
    103 
    104   // If there are no comments anywhere, we won't find anything.
    105   if (RawComments.empty())
    106     return NULL;
    107 
    108   // Find declaration location.
    109   // For Objective-C declarations we generally don't expect to have multiple
    110   // declarators, thus use declaration starting location as the "declaration
    111   // location".
    112   // For all other declarations multiple declarators are used quite frequently,
    113   // so we use the location of the identifier as the "declaration location".
    114   SourceLocation DeclLoc;
    115   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
    116       isa<ObjCPropertyDecl>(D) ||
    117       isa<RedeclarableTemplateDecl>(D) ||
    118       isa<ClassTemplateSpecializationDecl>(D))
    119     DeclLoc = D->getLocStart();
    120   else
    121     DeclLoc = D->getLocation();
    122 
    123   // If the declaration doesn't map directly to a location in a file, we
    124   // can't find the comment.
    125   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
    126     return NULL;
    127 
    128   // Find the comment that occurs just after this declaration.
    129   ArrayRef<RawComment *>::iterator Comment;
    130   {
    131     // When searching for comments during parsing, the comment we are looking
    132     // for is usually among the last two comments we parsed -- check them
    133     // first.
    134     RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
    135     BeforeThanCompare<RawComment> Compare(SourceMgr);
    136     ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
    137     bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
    138     if (!Found && RawComments.size() >= 2) {
    139       MaybeBeforeDecl--;
    140       Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
    141     }
    142 
    143     if (Found) {
    144       Comment = MaybeBeforeDecl + 1;
    145       assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
    146                                          &CommentAtDeclLoc, Compare));
    147     } else {
    148       // Slow path.
    149       Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
    150                                  &CommentAtDeclLoc, Compare);
    151     }
    152   }
    153 
    154   // Decompose the location for the declaration and find the beginning of the
    155   // file buffer.
    156   std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
    157 
    158   // First check whether we have a trailing comment.
    159   if (Comment != RawComments.end() &&
    160       (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
    161       (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
    162     std::pair<FileID, unsigned> CommentBeginDecomp
    163       = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
    164     // Check that Doxygen trailing comment comes after the declaration, starts
    165     // on the same line and in the same file as the declaration.
    166     if (DeclLocDecomp.first == CommentBeginDecomp.first &&
    167         SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
    168           == SourceMgr.getLineNumber(CommentBeginDecomp.first,
    169                                      CommentBeginDecomp.second)) {
    170       return *Comment;
    171     }
    172   }
    173 
    174   // The comment just after the declaration was not a trailing comment.
    175   // Let's look at the previous comment.
    176   if (Comment == RawComments.begin())
    177     return NULL;
    178   --Comment;
    179 
    180   // Check that we actually have a non-member Doxygen comment.
    181   if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
    182     return NULL;
    183 
    184   // Decompose the end of the comment.
    185   std::pair<FileID, unsigned> CommentEndDecomp
    186     = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
    187 
    188   // If the comment and the declaration aren't in the same file, then they
    189   // aren't related.
    190   if (DeclLocDecomp.first != CommentEndDecomp.first)
    191     return NULL;
    192 
    193   // Get the corresponding buffer.
    194   bool Invalid = false;
    195   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
    196                                                &Invalid).data();
    197   if (Invalid)
    198     return NULL;
    199 
    200   // Extract text between the comment and declaration.
    201   StringRef Text(Buffer + CommentEndDecomp.second,
    202                  DeclLocDecomp.second - CommentEndDecomp.second);
    203 
    204   // There should be no other declarations or preprocessor directives between
    205   // comment and declaration.
    206   if (Text.find_first_of(",;{}#@") != StringRef::npos)
    207     return NULL;
    208 
    209   return *Comment;
    210 }
    211 
    212 namespace {
    213 /// If we have a 'templated' declaration for a template, adjust 'D' to
    214 /// refer to the actual template.
    215 /// If we have an implicit instantiation, adjust 'D' to refer to template.
    216 const Decl *adjustDeclToTemplate(const Decl *D) {
    217   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    218     // Is this function declaration part of a function template?
    219     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
    220       return FTD;
    221 
    222     // Nothing to do if function is not an implicit instantiation.
    223     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
    224       return D;
    225 
    226     // Function is an implicit instantiation of a function template?
    227     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
    228       return FTD;
    229 
    230     // Function is instantiated from a member definition of a class template?
    231     if (const FunctionDecl *MemberDecl =
    232             FD->getInstantiatedFromMemberFunction())
    233       return MemberDecl;
    234 
    235     return D;
    236   }
    237   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    238     // Static data member is instantiated from a member definition of a class
    239     // template?
    240     if (VD->isStaticDataMember())
    241       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
    242         return MemberDecl;
    243 
    244     return D;
    245   }
    246   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
    247     // Is this class declaration part of a class template?
    248     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
    249       return CTD;
    250 
    251     // Class is an implicit instantiation of a class template or partial
    252     // specialization?
    253     if (const ClassTemplateSpecializationDecl *CTSD =
    254             dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
    255       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
    256         return D;
    257       llvm::PointerUnion<ClassTemplateDecl *,
    258                          ClassTemplatePartialSpecializationDecl *>
    259           PU = CTSD->getSpecializedTemplateOrPartial();
    260       return PU.is<ClassTemplateDecl*>() ?
    261           static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
    262           static_cast<const Decl*>(
    263               PU.get<ClassTemplatePartialSpecializationDecl *>());
    264     }
    265 
    266     // Class is instantiated from a member definition of a class template?
    267     if (const MemberSpecializationInfo *Info =
    268                    CRD->getMemberSpecializationInfo())
    269       return Info->getInstantiatedFrom();
    270 
    271     return D;
    272   }
    273   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
    274     // Enum is instantiated from a member definition of a class template?
    275     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
    276       return MemberDecl;
    277 
    278     return D;
    279   }
    280   // FIXME: Adjust alias templates?
    281   return D;
    282 }
    283 } // unnamed namespace
    284 
    285 const RawComment *ASTContext::getRawCommentForAnyRedecl(
    286                                                 const Decl *D,
    287                                                 const Decl **OriginalDecl) const {
    288   D = adjustDeclToTemplate(D);
    289 
    290   // Check whether we have cached a comment for this declaration already.
    291   {
    292     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
    293         RedeclComments.find(D);
    294     if (Pos != RedeclComments.end()) {
    295       const RawCommentAndCacheFlags &Raw = Pos->second;
    296       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
    297         if (OriginalDecl)
    298           *OriginalDecl = Raw.getOriginalDecl();
    299         return Raw.getRaw();
    300       }
    301     }
    302   }
    303 
    304   // Search for comments attached to declarations in the redeclaration chain.
    305   const RawComment *RC = NULL;
    306   const Decl *OriginalDeclForRC = NULL;
    307   for (Decl::redecl_iterator I = D->redecls_begin(),
    308                              E = D->redecls_end();
    309        I != E; ++I) {
    310     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
    311         RedeclComments.find(*I);
    312     if (Pos != RedeclComments.end()) {
    313       const RawCommentAndCacheFlags &Raw = Pos->second;
    314       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
    315         RC = Raw.getRaw();
    316         OriginalDeclForRC = Raw.getOriginalDecl();
    317         break;
    318       }
    319     } else {
    320       RC = getRawCommentForDeclNoCache(*I);
    321       OriginalDeclForRC = *I;
    322       RawCommentAndCacheFlags Raw;
    323       if (RC) {
    324         Raw.setRaw(RC);
    325         Raw.setKind(RawCommentAndCacheFlags::FromDecl);
    326       } else
    327         Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
    328       Raw.setOriginalDecl(*I);
    329       RedeclComments[*I] = Raw;
    330       if (RC)
    331         break;
    332     }
    333   }
    334 
    335   // If we found a comment, it should be a documentation comment.
    336   assert(!RC || RC->isDocumentation());
    337 
    338   if (OriginalDecl)
    339     *OriginalDecl = OriginalDeclForRC;
    340 
    341   // Update cache for every declaration in the redeclaration chain.
    342   RawCommentAndCacheFlags Raw;
    343   Raw.setRaw(RC);
    344   Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
    345   Raw.setOriginalDecl(OriginalDeclForRC);
    346 
    347   for (Decl::redecl_iterator I = D->redecls_begin(),
    348                              E = D->redecls_end();
    349        I != E; ++I) {
    350     RawCommentAndCacheFlags &R = RedeclComments[*I];
    351     if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
    352       R = Raw;
    353   }
    354 
    355   return RC;
    356 }
    357 
    358 comments::FullComment *ASTContext::getCommentForDecl(const Decl *D) const {
    359   D = adjustDeclToTemplate(D);
    360   const Decl *Canonical = D->getCanonicalDecl();
    361   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
    362       ParsedComments.find(Canonical);
    363   if (Pos != ParsedComments.end())
    364     return Pos->second;
    365 
    366   const Decl *OriginalDecl;
    367   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
    368   if (!RC)
    369     return NULL;
    370 
    371   // If the RawComment was attached to other redeclaration of this Decl, we
    372   // should parse the comment in context of that other Decl.  This is important
    373   // because comments can contain references to parameter names which can be
    374   // different across redeclarations.
    375   if (D != OriginalDecl)
    376     return getCommentForDecl(OriginalDecl);
    377 
    378   comments::FullComment *FC = RC->parse(*this, D);
    379   ParsedComments[Canonical] = FC;
    380   return FC;
    381 }
    382 
    383 void
    384 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
    385                                                TemplateTemplateParmDecl *Parm) {
    386   ID.AddInteger(Parm->getDepth());
    387   ID.AddInteger(Parm->getPosition());
    388   ID.AddBoolean(Parm->isParameterPack());
    389 
    390   TemplateParameterList *Params = Parm->getTemplateParameters();
    391   ID.AddInteger(Params->size());
    392   for (TemplateParameterList::const_iterator P = Params->begin(),
    393                                           PEnd = Params->end();
    394        P != PEnd; ++P) {
    395     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
    396       ID.AddInteger(0);
    397       ID.AddBoolean(TTP->isParameterPack());
    398       continue;
    399     }
    400 
    401     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
    402       ID.AddInteger(1);
    403       ID.AddBoolean(NTTP->isParameterPack());
    404       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
    405       if (NTTP->isExpandedParameterPack()) {
    406         ID.AddBoolean(true);
    407         ID.AddInteger(NTTP->getNumExpansionTypes());
    408         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
    409           QualType T = NTTP->getExpansionType(I);
    410           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
    411         }
    412       } else
    413         ID.AddBoolean(false);
    414       continue;
    415     }
    416 
    417     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
    418     ID.AddInteger(2);
    419     Profile(ID, TTP);
    420   }
    421 }
    422 
    423 TemplateTemplateParmDecl *
    424 ASTContext::getCanonicalTemplateTemplateParmDecl(
    425                                           TemplateTemplateParmDecl *TTP) const {
    426   // Check if we already have a canonical template template parameter.
    427   llvm::FoldingSetNodeID ID;
    428   CanonicalTemplateTemplateParm::Profile(ID, TTP);
    429   void *InsertPos = 0;
    430   CanonicalTemplateTemplateParm *Canonical
    431     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
    432   if (Canonical)
    433     return Canonical->getParam();
    434 
    435   // Build a canonical template parameter list.
    436   TemplateParameterList *Params = TTP->getTemplateParameters();
    437   SmallVector<NamedDecl *, 4> CanonParams;
    438   CanonParams.reserve(Params->size());
    439   for (TemplateParameterList::const_iterator P = Params->begin(),
    440                                           PEnd = Params->end();
    441        P != PEnd; ++P) {
    442     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
    443       CanonParams.push_back(
    444                   TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
    445                                                SourceLocation(),
    446                                                SourceLocation(),
    447                                                TTP->getDepth(),
    448                                                TTP->getIndex(), 0, false,
    449                                                TTP->isParameterPack()));
    450     else if (NonTypeTemplateParmDecl *NTTP
    451              = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
    452       QualType T = getCanonicalType(NTTP->getType());
    453       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
    454       NonTypeTemplateParmDecl *Param;
    455       if (NTTP->isExpandedParameterPack()) {
    456         SmallVector<QualType, 2> ExpandedTypes;
    457         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
    458         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
    459           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
    460           ExpandedTInfos.push_back(
    461                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
    462         }
    463 
    464         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    465                                                 SourceLocation(),
    466                                                 SourceLocation(),
    467                                                 NTTP->getDepth(),
    468                                                 NTTP->getPosition(), 0,
    469                                                 T,
    470                                                 TInfo,
    471                                                 ExpandedTypes.data(),
    472                                                 ExpandedTypes.size(),
    473                                                 ExpandedTInfos.data());
    474       } else {
    475         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    476                                                 SourceLocation(),
    477                                                 SourceLocation(),
    478                                                 NTTP->getDepth(),
    479                                                 NTTP->getPosition(), 0,
    480                                                 T,
    481                                                 NTTP->isParameterPack(),
    482                                                 TInfo);
    483       }
    484       CanonParams.push_back(Param);
    485 
    486     } else
    487       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
    488                                            cast<TemplateTemplateParmDecl>(*P)));
    489   }
    490 
    491   TemplateTemplateParmDecl *CanonTTP
    492     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    493                                        SourceLocation(), TTP->getDepth(),
    494                                        TTP->getPosition(),
    495                                        TTP->isParameterPack(),
    496                                        0,
    497                          TemplateParameterList::Create(*this, SourceLocation(),
    498                                                        SourceLocation(),
    499                                                        CanonParams.data(),
    500                                                        CanonParams.size(),
    501                                                        SourceLocation()));
    502 
    503   // Get the new insert position for the node we care about.
    504   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
    505   assert(Canonical == 0 && "Shouldn't be in the map!");
    506   (void)Canonical;
    507 
    508   // Create the canonical template template parameter entry.
    509   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
    510   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
    511   return CanonTTP;
    512 }
    513 
    514 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
    515   if (!LangOpts.CPlusPlus) return 0;
    516 
    517   switch (T.getCXXABI()) {
    518   case CXXABI_ARM:
    519     return CreateARMCXXABI(*this);
    520   case CXXABI_Itanium:
    521     return CreateItaniumCXXABI(*this);
    522   case CXXABI_Microsoft:
    523     return CreateMicrosoftCXXABI(*this);
    524   }
    525   llvm_unreachable("Invalid CXXABI type!");
    526 }
    527 
    528 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
    529                                              const LangOptions &LOpts) {
    530   if (LOpts.FakeAddressSpaceMap) {
    531     // The fake address space map must have a distinct entry for each
    532     // language-specific address space.
    533     static const unsigned FakeAddrSpaceMap[] = {
    534       1, // opencl_global
    535       2, // opencl_local
    536       3, // opencl_constant
    537       4, // cuda_device
    538       5, // cuda_constant
    539       6  // cuda_shared
    540     };
    541     return &FakeAddrSpaceMap;
    542   } else {
    543     return &T.getAddressSpaceMap();
    544   }
    545 }
    546 
    547 ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
    548                        const TargetInfo *t,
    549                        IdentifierTable &idents, SelectorTable &sels,
    550                        Builtin::Context &builtins,
    551                        unsigned size_reserve,
    552                        bool DelayInitialization)
    553   : FunctionProtoTypes(this_()),
    554     TemplateSpecializationTypes(this_()),
    555     DependentTemplateSpecializationTypes(this_()),
    556     SubstTemplateTemplateParmPacks(this_()),
    557     GlobalNestedNameSpecifier(0),
    558     Int128Decl(0), UInt128Decl(0),
    559     BuiltinVaListDecl(0),
    560     ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
    561     BOOLDecl(0),
    562     CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
    563     FILEDecl(0),
    564     jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
    565     BlockDescriptorType(0), BlockDescriptorExtendedType(0),
    566     cudaConfigureCallDecl(0),
    567     NullTypeSourceInfo(QualType()),
    568     FirstLocalImport(), LastLocalImport(),
    569     SourceMgr(SM), LangOpts(LOpts),
    570     AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
    571     Idents(idents), Selectors(sels),
    572     BuiltinInfo(builtins),
    573     DeclarationNames(*this),
    574     ExternalSource(0), Listener(0),
    575     Comments(SM), CommentsLoaded(false),
    576     CommentCommandTraits(BumpAlloc),
    577     LastSDM(0, 0),
    578     UniqueBlockByRefTypeID(0)
    579 {
    580   if (size_reserve > 0) Types.reserve(size_reserve);
    581   TUDecl = TranslationUnitDecl::Create(*this);
    582 
    583   if (!DelayInitialization) {
    584     assert(t && "No target supplied for ASTContext initialization");
    585     InitBuiltinTypes(*t);
    586   }
    587 }
    588 
    589 ASTContext::~ASTContext() {
    590   // Release the DenseMaps associated with DeclContext objects.
    591   // FIXME: Is this the ideal solution?
    592   ReleaseDeclContextMaps();
    593 
    594   // Call all of the deallocation functions.
    595   for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
    596     Deallocations[I].first(Deallocations[I].second);
    597 
    598   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
    599   // because they can contain DenseMaps.
    600   for (llvm::DenseMap<const ObjCContainerDecl*,
    601        const ASTRecordLayout*>::iterator
    602        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
    603     // Increment in loop to prevent using deallocated memory.
    604     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
    605       R->Destroy(*this);
    606 
    607   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
    608        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
    609     // Increment in loop to prevent using deallocated memory.
    610     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
    611       R->Destroy(*this);
    612   }
    613 
    614   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
    615                                                     AEnd = DeclAttrs.end();
    616        A != AEnd; ++A)
    617     A->second->~AttrVec();
    618 }
    619 
    620 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
    621   Deallocations.push_back(std::make_pair(Callback, Data));
    622 }
    623 
    624 void
    625 ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
    626   ExternalSource.reset(Source.take());
    627 }
    628 
    629 void ASTContext::PrintStats() const {
    630   llvm::errs() << "\n*** AST Context Stats:\n";
    631   llvm::errs() << "  " << Types.size() << " types total.\n";
    632 
    633   unsigned counts[] = {
    634 #define TYPE(Name, Parent) 0,
    635 #define ABSTRACT_TYPE(Name, Parent)
    636 #include "clang/AST/TypeNodes.def"
    637     0 // Extra
    638   };
    639 
    640   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
    641     Type *T = Types[i];
    642     counts[(unsigned)T->getTypeClass()]++;
    643   }
    644 
    645   unsigned Idx = 0;
    646   unsigned TotalBytes = 0;
    647 #define TYPE(Name, Parent)                                              \
    648   if (counts[Idx])                                                      \
    649     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
    650                  << " types\n";                                         \
    651   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
    652   ++Idx;
    653 #define ABSTRACT_TYPE(Name, Parent)
    654 #include "clang/AST/TypeNodes.def"
    655 
    656   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
    657 
    658   // Implicit special member functions.
    659   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
    660                << NumImplicitDefaultConstructors
    661                << " implicit default constructors created\n";
    662   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
    663                << NumImplicitCopyConstructors
    664                << " implicit copy constructors created\n";
    665   if (getLangOpts().CPlusPlus)
    666     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
    667                  << NumImplicitMoveConstructors
    668                  << " implicit move constructors created\n";
    669   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
    670                << NumImplicitCopyAssignmentOperators
    671                << " implicit copy assignment operators created\n";
    672   if (getLangOpts().CPlusPlus)
    673     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
    674                  << NumImplicitMoveAssignmentOperators
    675                  << " implicit move assignment operators created\n";
    676   llvm::errs() << NumImplicitDestructorsDeclared << "/"
    677                << NumImplicitDestructors
    678                << " implicit destructors created\n";
    679 
    680   if (ExternalSource.get()) {
    681     llvm::errs() << "\n";
    682     ExternalSource->PrintStats();
    683   }
    684 
    685   BumpAlloc.PrintStats();
    686 }
    687 
    688 TypedefDecl *ASTContext::getInt128Decl() const {
    689   if (!Int128Decl) {
    690     TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
    691     Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
    692                                      getTranslationUnitDecl(),
    693                                      SourceLocation(),
    694                                      SourceLocation(),
    695                                      &Idents.get("__int128_t"),
    696                                      TInfo);
    697   }
    698 
    699   return Int128Decl;
    700 }
    701 
    702 TypedefDecl *ASTContext::getUInt128Decl() const {
    703   if (!UInt128Decl) {
    704     TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
    705     UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
    706                                      getTranslationUnitDecl(),
    707                                      SourceLocation(),
    708                                      SourceLocation(),
    709                                      &Idents.get("__uint128_t"),
    710                                      TInfo);
    711   }
    712 
    713   return UInt128Decl;
    714 }
    715 
    716 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
    717   BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
    718   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
    719   Types.push_back(Ty);
    720 }
    721 
    722 void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
    723   assert((!this->Target || this->Target == &Target) &&
    724          "Incorrect target reinitialization");
    725   assert(VoidTy.isNull() && "Context reinitialized?");
    726 
    727   this->Target = &Target;
    728 
    729   ABI.reset(createCXXABI(Target));
    730   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
    731 
    732   // C99 6.2.5p19.
    733   InitBuiltinType(VoidTy,              BuiltinType::Void);
    734 
    735   // C99 6.2.5p2.
    736   InitBuiltinType(BoolTy,              BuiltinType::Bool);
    737   // C99 6.2.5p3.
    738   if (LangOpts.CharIsSigned)
    739     InitBuiltinType(CharTy,            BuiltinType::Char_S);
    740   else
    741     InitBuiltinType(CharTy,            BuiltinType::Char_U);
    742   // C99 6.2.5p4.
    743   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
    744   InitBuiltinType(ShortTy,             BuiltinType::Short);
    745   InitBuiltinType(IntTy,               BuiltinType::Int);
    746   InitBuiltinType(LongTy,              BuiltinType::Long);
    747   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
    748 
    749   // C99 6.2.5p6.
    750   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
    751   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
    752   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
    753   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
    754   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
    755 
    756   // C99 6.2.5p10.
    757   InitBuiltinType(FloatTy,             BuiltinType::Float);
    758   InitBuiltinType(DoubleTy,            BuiltinType::Double);
    759   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
    760 
    761   // GNU extension, 128-bit integers.
    762   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
    763   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
    764 
    765   if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
    766     if (TargetInfo::isTypeSigned(Target.getWCharType()))
    767       InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
    768     else  // -fshort-wchar makes wchar_t be unsigned.
    769       InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
    770   } else // C99 (or C++ using -fno-wchar)
    771     WCharTy = getFromTargetType(Target.getWCharType());
    772 
    773   WIntTy = getFromTargetType(Target.getWIntType());
    774 
    775   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
    776     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
    777   else // C99
    778     Char16Ty = getFromTargetType(Target.getChar16Type());
    779 
    780   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
    781     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
    782   else // C99
    783     Char32Ty = getFromTargetType(Target.getChar32Type());
    784 
    785   // Placeholder type for type-dependent expressions whose type is
    786   // completely unknown. No code should ever check a type against
    787   // DependentTy and users should never see it; however, it is here to
    788   // help diagnose failures to properly check for type-dependent
    789   // expressions.
    790   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
    791 
    792   // Placeholder type for functions.
    793   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
    794 
    795   // Placeholder type for bound members.
    796   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
    797 
    798   // Placeholder type for pseudo-objects.
    799   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
    800 
    801   // "any" type; useful for debugger-like clients.
    802   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
    803 
    804   // Placeholder type for unbridged ARC casts.
    805   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
    806 
    807   // Placeholder type for builtin functions.
    808   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
    809 
    810   // C99 6.2.5p11.
    811   FloatComplexTy      = getComplexType(FloatTy);
    812   DoubleComplexTy     = getComplexType(DoubleTy);
    813   LongDoubleComplexTy = getComplexType(LongDoubleTy);
    814 
    815   // Builtin types for 'id', 'Class', and 'SEL'.
    816   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
    817   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
    818   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
    819 
    820   // Builtin type for __objc_yes and __objc_no
    821   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
    822                        SignedCharTy : BoolTy);
    823 
    824   ObjCConstantStringType = QualType();
    825 
    826   // void * type
    827   VoidPtrTy = getPointerType(VoidTy);
    828 
    829   // nullptr type (C++0x 2.14.7)
    830   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
    831 
    832   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
    833   InitBuiltinType(HalfTy, BuiltinType::Half);
    834 
    835   // Builtin type used to help define __builtin_va_list.
    836   VaListTagTy = QualType();
    837 }
    838 
    839 DiagnosticsEngine &ASTContext::getDiagnostics() const {
    840   return SourceMgr.getDiagnostics();
    841 }
    842 
    843 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
    844   AttrVec *&Result = DeclAttrs[D];
    845   if (!Result) {
    846     void *Mem = Allocate(sizeof(AttrVec));
    847     Result = new (Mem) AttrVec;
    848   }
    849 
    850   return *Result;
    851 }
    852 
    853 /// \brief Erase the attributes corresponding to the given declaration.
    854 void ASTContext::eraseDeclAttrs(const Decl *D) {
    855   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
    856   if (Pos != DeclAttrs.end()) {
    857     Pos->second->~AttrVec();
    858     DeclAttrs.erase(Pos);
    859   }
    860 }
    861 
    862 MemberSpecializationInfo *
    863 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
    864   assert(Var->isStaticDataMember() && "Not a static data member");
    865   llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
    866     = InstantiatedFromStaticDataMember.find(Var);
    867   if (Pos == InstantiatedFromStaticDataMember.end())
    868     return 0;
    869 
    870   return Pos->second;
    871 }
    872 
    873 void
    874 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
    875                                                 TemplateSpecializationKind TSK,
    876                                           SourceLocation PointOfInstantiation) {
    877   assert(Inst->isStaticDataMember() && "Not a static data member");
    878   assert(Tmpl->isStaticDataMember() && "Not a static data member");
    879   assert(!InstantiatedFromStaticDataMember[Inst] &&
    880          "Already noted what static data member was instantiated from");
    881   InstantiatedFromStaticDataMember[Inst]
    882     = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
    883 }
    884 
    885 FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
    886                                                      const FunctionDecl *FD){
    887   assert(FD && "Specialization is 0");
    888   llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
    889     = ClassScopeSpecializationPattern.find(FD);
    890   if (Pos == ClassScopeSpecializationPattern.end())
    891     return 0;
    892 
    893   return Pos->second;
    894 }
    895 
    896 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
    897                                         FunctionDecl *Pattern) {
    898   assert(FD && "Specialization is 0");
    899   assert(Pattern && "Class scope specialization pattern is 0");
    900   ClassScopeSpecializationPattern[FD] = Pattern;
    901 }
    902 
    903 NamedDecl *
    904 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
    905   llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
    906     = InstantiatedFromUsingDecl.find(UUD);
    907   if (Pos == InstantiatedFromUsingDecl.end())
    908     return 0;
    909 
    910   return Pos->second;
    911 }
    912 
    913 void
    914 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
    915   assert((isa<UsingDecl>(Pattern) ||
    916           isa<UnresolvedUsingValueDecl>(Pattern) ||
    917           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
    918          "pattern decl is not a using decl");
    919   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
    920   InstantiatedFromUsingDecl[Inst] = Pattern;
    921 }
    922 
    923 UsingShadowDecl *
    924 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
    925   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
    926     = InstantiatedFromUsingShadowDecl.find(Inst);
    927   if (Pos == InstantiatedFromUsingShadowDecl.end())
    928     return 0;
    929 
    930   return Pos->second;
    931 }
    932 
    933 void
    934 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
    935                                                UsingShadowDecl *Pattern) {
    936   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
    937   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
    938 }
    939 
    940 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
    941   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
    942     = InstantiatedFromUnnamedFieldDecl.find(Field);
    943   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
    944     return 0;
    945 
    946   return Pos->second;
    947 }
    948 
    949 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
    950                                                      FieldDecl *Tmpl) {
    951   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
    952   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
    953   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
    954          "Already noted what unnamed field was instantiated from");
    955 
    956   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
    957 }
    958 
    959 bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
    960                                     const FieldDecl *LastFD) const {
    961   return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
    962           FD->getBitWidthValue(*this) == 0);
    963 }
    964 
    965 bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
    966                                              const FieldDecl *LastFD) const {
    967   return (FD->isBitField() && LastFD && LastFD->isBitField() &&
    968           FD->getBitWidthValue(*this) == 0 &&
    969           LastFD->getBitWidthValue(*this) != 0);
    970 }
    971 
    972 bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
    973                                          const FieldDecl *LastFD) const {
    974   return (FD->isBitField() && LastFD && LastFD->isBitField() &&
    975           FD->getBitWidthValue(*this) &&
    976           LastFD->getBitWidthValue(*this));
    977 }
    978 
    979 bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
    980                                          const FieldDecl *LastFD) const {
    981   return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
    982           LastFD->getBitWidthValue(*this));
    983 }
    984 
    985 bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
    986                                              const FieldDecl *LastFD) const {
    987   return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
    988           FD->getBitWidthValue(*this));
    989 }
    990 
    991 ASTContext::overridden_cxx_method_iterator
    992 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
    993   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
    994     = OverriddenMethods.find(Method);
    995   if (Pos == OverriddenMethods.end())
    996     return 0;
    997 
    998   return Pos->second.begin();
    999 }
   1000 
   1001 ASTContext::overridden_cxx_method_iterator
   1002 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
   1003   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1004     = OverriddenMethods.find(Method);
   1005   if (Pos == OverriddenMethods.end())
   1006     return 0;
   1007 
   1008   return Pos->second.end();
   1009 }
   1010 
   1011 unsigned
   1012 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
   1013   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1014     = OverriddenMethods.find(Method);
   1015   if (Pos == OverriddenMethods.end())
   1016     return 0;
   1017 
   1018   return Pos->second.size();
   1019 }
   1020 
   1021 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
   1022                                      const CXXMethodDecl *Overridden) {
   1023   OverriddenMethods[Method].push_back(Overridden);
   1024 }
   1025 
   1026 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
   1027   assert(!Import->NextLocalImport && "Import declaration already in the chain");
   1028   assert(!Import->isFromASTFile() && "Non-local import declaration");
   1029   if (!FirstLocalImport) {
   1030     FirstLocalImport = Import;
   1031     LastLocalImport = Import;
   1032     return;
   1033   }
   1034 
   1035   LastLocalImport->NextLocalImport = Import;
   1036   LastLocalImport = Import;
   1037 }
   1038 
   1039 //===----------------------------------------------------------------------===//
   1040 //                         Type Sizing and Analysis
   1041 //===----------------------------------------------------------------------===//
   1042 
   1043 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
   1044 /// scalar floating point type.
   1045 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
   1046   const BuiltinType *BT = T->getAs<BuiltinType>();
   1047   assert(BT && "Not a floating point type!");
   1048   switch (BT->getKind()) {
   1049   default: llvm_unreachable("Not a floating point type!");
   1050   case BuiltinType::Half:       return Target->getHalfFormat();
   1051   case BuiltinType::Float:      return Target->getFloatFormat();
   1052   case BuiltinType::Double:     return Target->getDoubleFormat();
   1053   case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
   1054   }
   1055 }
   1056 
   1057 /// getDeclAlign - Return a conservative estimate of the alignment of the
   1058 /// specified decl.  Note that bitfields do not have a valid alignment, so
   1059 /// this method will assert on them.
   1060 /// If @p RefAsPointee, references are treated like their underlying type
   1061 /// (for alignof), else they're treated like pointers (for CodeGen).
   1062 CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
   1063   unsigned Align = Target->getCharWidth();
   1064 
   1065   bool UseAlignAttrOnly = false;
   1066   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
   1067     Align = AlignFromAttr;
   1068 
   1069     // __attribute__((aligned)) can increase or decrease alignment
   1070     // *except* on a struct or struct member, where it only increases
   1071     // alignment unless 'packed' is also specified.
   1072     //
   1073     // It is an error for alignas to decrease alignment, so we can
   1074     // ignore that possibility;  Sema should diagnose it.
   1075     if (isa<FieldDecl>(D)) {
   1076       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
   1077         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
   1078     } else {
   1079       UseAlignAttrOnly = true;
   1080     }
   1081   }
   1082   else if (isa<FieldDecl>(D))
   1083       UseAlignAttrOnly =
   1084         D->hasAttr<PackedAttr>() ||
   1085         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
   1086 
   1087   // If we're using the align attribute only, just ignore everything
   1088   // else about the declaration and its type.
   1089   if (UseAlignAttrOnly) {
   1090     // do nothing
   1091 
   1092   } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
   1093     QualType T = VD->getType();
   1094     if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
   1095       if (RefAsPointee)
   1096         T = RT->getPointeeType();
   1097       else
   1098         T = getPointerType(RT->getPointeeType());
   1099     }
   1100     if (!T->isIncompleteType() && !T->isFunctionType()) {
   1101       // Adjust alignments of declarations with array type by the
   1102       // large-array alignment on the target.
   1103       unsigned MinWidth = Target->getLargeArrayMinWidth();
   1104       const ArrayType *arrayType;
   1105       if (MinWidth && (arrayType = getAsArrayType(T))) {
   1106         if (isa<VariableArrayType>(arrayType))
   1107           Align = std::max(Align, Target->getLargeArrayAlign());
   1108         else if (isa<ConstantArrayType>(arrayType) &&
   1109                  MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
   1110           Align = std::max(Align, Target->getLargeArrayAlign());
   1111 
   1112         // Walk through any array types while we're at it.
   1113         T = getBaseElementType(arrayType);
   1114       }
   1115       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
   1116     }
   1117 
   1118     // Fields can be subject to extra alignment constraints, like if
   1119     // the field is packed, the struct is packed, or the struct has a
   1120     // a max-field-alignment constraint (#pragma pack).  So calculate
   1121     // the actual alignment of the field within the struct, and then
   1122     // (as we're expected to) constrain that by the alignment of the type.
   1123     if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
   1124       // So calculate the alignment of the field.
   1125       const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
   1126 
   1127       // Start with the record's overall alignment.
   1128       unsigned fieldAlign = toBits(layout.getAlignment());
   1129 
   1130       // Use the GCD of that and the offset within the record.
   1131       uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
   1132       if (offset > 0) {
   1133         // Alignment is always a power of 2, so the GCD will be a power of 2,
   1134         // which means we get to do this crazy thing instead of Euclid's.
   1135         uint64_t lowBitOfOffset = offset & (~offset + 1);
   1136         if (lowBitOfOffset < fieldAlign)
   1137           fieldAlign = static_cast<unsigned>(lowBitOfOffset);
   1138       }
   1139 
   1140       Align = std::min(Align, fieldAlign);
   1141     }
   1142   }
   1143 
   1144   return toCharUnitsFromBits(Align);
   1145 }
   1146 
   1147 // getTypeInfoDataSizeInChars - Return the size of a type, in
   1148 // chars. If the type is a record, its data size is returned.  This is
   1149 // the size of the memcpy that's performed when assigning this type
   1150 // using a trivial copy/move assignment operator.
   1151 std::pair<CharUnits, CharUnits>
   1152 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
   1153   std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
   1154 
   1155   // In C++, objects can sometimes be allocated into the tail padding
   1156   // of a base-class subobject.  We decide whether that's possible
   1157   // during class layout, so here we can just trust the layout results.
   1158   if (getLangOpts().CPlusPlus) {
   1159     if (const RecordType *RT = T->getAs<RecordType>()) {
   1160       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
   1161       sizeAndAlign.first = layout.getDataSize();
   1162     }
   1163   }
   1164 
   1165   return sizeAndAlign;
   1166 }
   1167 
   1168 std::pair<CharUnits, CharUnits>
   1169 ASTContext::getTypeInfoInChars(const Type *T) const {
   1170   std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
   1171   return std::make_pair(toCharUnitsFromBits(Info.first),
   1172                         toCharUnitsFromBits(Info.second));
   1173 }
   1174 
   1175 std::pair<CharUnits, CharUnits>
   1176 ASTContext::getTypeInfoInChars(QualType T) const {
   1177   return getTypeInfoInChars(T.getTypePtr());
   1178 }
   1179 
   1180 std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
   1181   TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
   1182   if (it != MemoizedTypeInfo.end())
   1183     return it->second;
   1184 
   1185   std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
   1186   MemoizedTypeInfo.insert(std::make_pair(T, Info));
   1187   return Info;
   1188 }
   1189 
   1190 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
   1191 /// method does not work on incomplete types.
   1192 ///
   1193 /// FIXME: Pointers into different addr spaces could have different sizes and
   1194 /// alignment requirements: getPointerInfo should take an AddrSpace, this
   1195 /// should take a QualType, &c.
   1196 std::pair<uint64_t, unsigned>
   1197 ASTContext::getTypeInfoImpl(const Type *T) const {
   1198   uint64_t Width=0;
   1199   unsigned Align=8;
   1200   switch (T->getTypeClass()) {
   1201 #define TYPE(Class, Base)
   1202 #define ABSTRACT_TYPE(Class, Base)
   1203 #define NON_CANONICAL_TYPE(Class, Base)
   1204 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   1205 #include "clang/AST/TypeNodes.def"
   1206     llvm_unreachable("Should not see dependent types");
   1207 
   1208   case Type::FunctionNoProto:
   1209   case Type::FunctionProto:
   1210     // GCC extension: alignof(function) = 32 bits
   1211     Width = 0;
   1212     Align = 32;
   1213     break;
   1214 
   1215   case Type::IncompleteArray:
   1216   case Type::VariableArray:
   1217     Width = 0;
   1218     Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
   1219     break;
   1220 
   1221   case Type::ConstantArray: {
   1222     const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
   1223 
   1224     std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
   1225     uint64_t Size = CAT->getSize().getZExtValue();
   1226     assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
   1227            "Overflow in array type bit size evaluation");
   1228     Width = EltInfo.first*Size;
   1229     Align = EltInfo.second;
   1230     Width = llvm::RoundUpToAlignment(Width, Align);
   1231     break;
   1232   }
   1233   case Type::ExtVector:
   1234   case Type::Vector: {
   1235     const VectorType *VT = cast<VectorType>(T);
   1236     std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
   1237     Width = EltInfo.first*VT->getNumElements();
   1238     Align = Width;
   1239     // If the alignment is not a power of 2, round up to the next power of 2.
   1240     // This happens for non-power-of-2 length vectors.
   1241     if (Align & (Align-1)) {
   1242       Align = llvm::NextPowerOf2(Align);
   1243       Width = llvm::RoundUpToAlignment(Width, Align);
   1244     }
   1245     // Adjust the alignment based on the target max.
   1246     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
   1247     if (TargetVectorAlign && TargetVectorAlign < Align)
   1248       Align = TargetVectorAlign;
   1249     break;
   1250   }
   1251 
   1252   case Type::Builtin:
   1253     switch (cast<BuiltinType>(T)->getKind()) {
   1254     default: llvm_unreachable("Unknown builtin type!");
   1255     case BuiltinType::Void:
   1256       // GCC extension: alignof(void) = 8 bits.
   1257       Width = 0;
   1258       Align = 8;
   1259       break;
   1260 
   1261     case BuiltinType::Bool:
   1262       Width = Target->getBoolWidth();
   1263       Align = Target->getBoolAlign();
   1264       break;
   1265     case BuiltinType::Char_S:
   1266     case BuiltinType::Char_U:
   1267     case BuiltinType::UChar:
   1268     case BuiltinType::SChar:
   1269       Width = Target->getCharWidth();
   1270       Align = Target->getCharAlign();
   1271       break;
   1272     case BuiltinType::WChar_S:
   1273     case BuiltinType::WChar_U:
   1274       Width = Target->getWCharWidth();
   1275       Align = Target->getWCharAlign();
   1276       break;
   1277     case BuiltinType::Char16:
   1278       Width = Target->getChar16Width();
   1279       Align = Target->getChar16Align();
   1280       break;
   1281     case BuiltinType::Char32:
   1282       Width = Target->getChar32Width();
   1283       Align = Target->getChar32Align();
   1284       break;
   1285     case BuiltinType::UShort:
   1286     case BuiltinType::Short:
   1287       Width = Target->getShortWidth();
   1288       Align = Target->getShortAlign();
   1289       break;
   1290     case BuiltinType::UInt:
   1291     case BuiltinType::Int:
   1292       Width = Target->getIntWidth();
   1293       Align = Target->getIntAlign();
   1294       break;
   1295     case BuiltinType::ULong:
   1296     case BuiltinType::Long:
   1297       Width = Target->getLongWidth();
   1298       Align = Target->getLongAlign();
   1299       break;
   1300     case BuiltinType::ULongLong:
   1301     case BuiltinType::LongLong:
   1302       Width = Target->getLongLongWidth();
   1303       Align = Target->getLongLongAlign();
   1304       break;
   1305     case BuiltinType::Int128:
   1306     case BuiltinType::UInt128:
   1307       Width = 128;
   1308       Align = 128; // int128_t is 128-bit aligned on all targets.
   1309       break;
   1310     case BuiltinType::Half:
   1311       Width = Target->getHalfWidth();
   1312       Align = Target->getHalfAlign();
   1313       break;
   1314     case BuiltinType::Float:
   1315       Width = Target->getFloatWidth();
   1316       Align = Target->getFloatAlign();
   1317       break;
   1318     case BuiltinType::Double:
   1319       Width = Target->getDoubleWidth();
   1320       Align = Target->getDoubleAlign();
   1321       break;
   1322     case BuiltinType::LongDouble:
   1323       Width = Target->getLongDoubleWidth();
   1324       Align = Target->getLongDoubleAlign();
   1325       break;
   1326     case BuiltinType::NullPtr:
   1327       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
   1328       Align = Target->getPointerAlign(0); //   == sizeof(void*)
   1329       break;
   1330     case BuiltinType::ObjCId:
   1331     case BuiltinType::ObjCClass:
   1332     case BuiltinType::ObjCSel:
   1333       Width = Target->getPointerWidth(0);
   1334       Align = Target->getPointerAlign(0);
   1335       break;
   1336     }
   1337     break;
   1338   case Type::ObjCObjectPointer:
   1339     Width = Target->getPointerWidth(0);
   1340     Align = Target->getPointerAlign(0);
   1341     break;
   1342   case Type::BlockPointer: {
   1343     unsigned AS = getTargetAddressSpace(
   1344         cast<BlockPointerType>(T)->getPointeeType());
   1345     Width = Target->getPointerWidth(AS);
   1346     Align = Target->getPointerAlign(AS);
   1347     break;
   1348   }
   1349   case Type::LValueReference:
   1350   case Type::RValueReference: {
   1351     // alignof and sizeof should never enter this code path here, so we go
   1352     // the pointer route.
   1353     unsigned AS = getTargetAddressSpace(
   1354         cast<ReferenceType>(T)->getPointeeType());
   1355     Width = Target->getPointerWidth(AS);
   1356     Align = Target->getPointerAlign(AS);
   1357     break;
   1358   }
   1359   case Type::Pointer: {
   1360     unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
   1361     Width = Target->getPointerWidth(AS);
   1362     Align = Target->getPointerAlign(AS);
   1363     break;
   1364   }
   1365   case Type::MemberPointer: {
   1366     const MemberPointerType *MPT = cast<MemberPointerType>(T);
   1367     std::pair<uint64_t, unsigned> PtrDiffInfo =
   1368       getTypeInfo(getPointerDiffType());
   1369     Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
   1370     Align = PtrDiffInfo.second;
   1371     break;
   1372   }
   1373   case Type::Complex: {
   1374     // Complex types have the same alignment as their elements, but twice the
   1375     // size.
   1376     std::pair<uint64_t, unsigned> EltInfo =
   1377       getTypeInfo(cast<ComplexType>(T)->getElementType());
   1378     Width = EltInfo.first*2;
   1379     Align = EltInfo.second;
   1380     break;
   1381   }
   1382   case Type::ObjCObject:
   1383     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
   1384   case Type::ObjCInterface: {
   1385     const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
   1386     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
   1387     Width = toBits(Layout.getSize());
   1388     Align = toBits(Layout.getAlignment());
   1389     break;
   1390   }
   1391   case Type::Record:
   1392   case Type::Enum: {
   1393     const TagType *TT = cast<TagType>(T);
   1394 
   1395     if (TT->getDecl()->isInvalidDecl()) {
   1396       Width = 8;
   1397       Align = 8;
   1398       break;
   1399     }
   1400 
   1401     if (const EnumType *ET = dyn_cast<EnumType>(TT))
   1402       return getTypeInfo(ET->getDecl()->getIntegerType());
   1403 
   1404     const RecordType *RT = cast<RecordType>(TT);
   1405     const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
   1406     Width = toBits(Layout.getSize());
   1407     Align = toBits(Layout.getAlignment());
   1408     break;
   1409   }
   1410 
   1411   case Type::SubstTemplateTypeParm:
   1412     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
   1413                        getReplacementType().getTypePtr());
   1414 
   1415   case Type::Auto: {
   1416     const AutoType *A = cast<AutoType>(T);
   1417     assert(A->isDeduced() && "Cannot request the size of a dependent type");
   1418     return getTypeInfo(A->getDeducedType().getTypePtr());
   1419   }
   1420 
   1421   case Type::Paren:
   1422     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
   1423 
   1424   case Type::Typedef: {
   1425     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
   1426     std::pair<uint64_t, unsigned> Info
   1427       = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
   1428     // If the typedef has an aligned attribute on it, it overrides any computed
   1429     // alignment we have.  This violates the GCC documentation (which says that
   1430     // attribute(aligned) can only round up) but matches its implementation.
   1431     if (unsigned AttrAlign = Typedef->getMaxAlignment())
   1432       Align = AttrAlign;
   1433     else
   1434       Align = Info.second;
   1435     Width = Info.first;
   1436     break;
   1437   }
   1438 
   1439   case Type::TypeOfExpr:
   1440     return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
   1441                          .getTypePtr());
   1442 
   1443   case Type::TypeOf:
   1444     return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
   1445 
   1446   case Type::Decltype:
   1447     return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
   1448                         .getTypePtr());
   1449 
   1450   case Type::UnaryTransform:
   1451     return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
   1452 
   1453   case Type::Elaborated:
   1454     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
   1455 
   1456   case Type::Attributed:
   1457     return getTypeInfo(
   1458                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
   1459 
   1460   case Type::TemplateSpecialization: {
   1461     assert(getCanonicalType(T) != T &&
   1462            "Cannot request the size of a dependent type");
   1463     const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
   1464     // A type alias template specialization may refer to a typedef with the
   1465     // aligned attribute on it.
   1466     if (TST->isTypeAlias())
   1467       return getTypeInfo(TST->getAliasedType().getTypePtr());
   1468     else
   1469       return getTypeInfo(getCanonicalType(T));
   1470   }
   1471 
   1472   case Type::Atomic: {
   1473     std::pair<uint64_t, unsigned> Info
   1474       = getTypeInfo(cast<AtomicType>(T)->getValueType());
   1475     Width = Info.first;
   1476     Align = Info.second;
   1477     if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
   1478         llvm::isPowerOf2_64(Width)) {
   1479       // We can potentially perform lock-free atomic operations for this
   1480       // type; promote the alignment appropriately.
   1481       // FIXME: We could potentially promote the width here as well...
   1482       // is that worthwhile?  (Non-struct atomic types generally have
   1483       // power-of-two size anyway, but structs might not.  Requires a bit
   1484       // of implementation work to make sure we zero out the extra bits.)
   1485       Align = static_cast<unsigned>(Width);
   1486     }
   1487   }
   1488 
   1489   }
   1490 
   1491   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
   1492   return std::make_pair(Width, Align);
   1493 }
   1494 
   1495 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
   1496 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
   1497   return CharUnits::fromQuantity(BitSize / getCharWidth());
   1498 }
   1499 
   1500 /// toBits - Convert a size in characters to a size in characters.
   1501 int64_t ASTContext::toBits(CharUnits CharSize) const {
   1502   return CharSize.getQuantity() * getCharWidth();
   1503 }
   1504 
   1505 /// getTypeSizeInChars - Return the size of the specified type, in characters.
   1506 /// This method does not work on incomplete types.
   1507 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
   1508   return toCharUnitsFromBits(getTypeSize(T));
   1509 }
   1510 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
   1511   return toCharUnitsFromBits(getTypeSize(T));
   1512 }
   1513 
   1514 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
   1515 /// characters. This method does not work on incomplete types.
   1516 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
   1517   return toCharUnitsFromBits(getTypeAlign(T));
   1518 }
   1519 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
   1520   return toCharUnitsFromBits(getTypeAlign(T));
   1521 }
   1522 
   1523 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
   1524 /// type for the current target in bits.  This can be different than the ABI
   1525 /// alignment in cases where it is beneficial for performance to overalign
   1526 /// a data type.
   1527 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
   1528   unsigned ABIAlign = getTypeAlign(T);
   1529 
   1530   // Double and long long should be naturally aligned if possible.
   1531   if (const ComplexType* CT = T->getAs<ComplexType>())
   1532     T = CT->getElementType().getTypePtr();
   1533   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
   1534       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
   1535       T->isSpecificBuiltinType(BuiltinType::ULongLong))
   1536     return std::max(ABIAlign, (unsigned)getTypeSize(T));
   1537 
   1538   return ABIAlign;
   1539 }
   1540 
   1541 /// DeepCollectObjCIvars -
   1542 /// This routine first collects all declared, but not synthesized, ivars in
   1543 /// super class and then collects all ivars, including those synthesized for
   1544 /// current class. This routine is used for implementation of current class
   1545 /// when all ivars, declared and synthesized are known.
   1546 ///
   1547 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
   1548                                       bool leafClass,
   1549                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
   1550   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
   1551     DeepCollectObjCIvars(SuperClass, false, Ivars);
   1552   if (!leafClass) {
   1553     for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
   1554          E = OI->ivar_end(); I != E; ++I)
   1555       Ivars.push_back(*I);
   1556   } else {
   1557     ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
   1558     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
   1559          Iv= Iv->getNextIvar())
   1560       Ivars.push_back(Iv);
   1561   }
   1562 }
   1563 
   1564 /// CollectInheritedProtocols - Collect all protocols in current class and
   1565 /// those inherited by it.
   1566 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
   1567                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
   1568   if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
   1569     // We can use protocol_iterator here instead of
   1570     // all_referenced_protocol_iterator since we are walking all categories.
   1571     for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
   1572          PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
   1573       ObjCProtocolDecl *Proto = (*P);
   1574       Protocols.insert(Proto->getCanonicalDecl());
   1575       for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
   1576            PE = Proto->protocol_end(); P != PE; ++P) {
   1577         Protocols.insert((*P)->getCanonicalDecl());
   1578         CollectInheritedProtocols(*P, Protocols);
   1579       }
   1580     }
   1581 
   1582     // Categories of this Interface.
   1583     for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
   1584          CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
   1585       CollectInheritedProtocols(CDeclChain, Protocols);
   1586     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
   1587       while (SD) {
   1588         CollectInheritedProtocols(SD, Protocols);
   1589         SD = SD->getSuperClass();
   1590       }
   1591   } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   1592     for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
   1593          PE = OC->protocol_end(); P != PE; ++P) {
   1594       ObjCProtocolDecl *Proto = (*P);
   1595       Protocols.insert(Proto->getCanonicalDecl());
   1596       for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
   1597            PE = Proto->protocol_end(); P != PE; ++P)
   1598         CollectInheritedProtocols(*P, Protocols);
   1599     }
   1600   } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
   1601     for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
   1602          PE = OP->protocol_end(); P != PE; ++P) {
   1603       ObjCProtocolDecl *Proto = (*P);
   1604       Protocols.insert(Proto->getCanonicalDecl());
   1605       for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
   1606            PE = Proto->protocol_end(); P != PE; ++P)
   1607         CollectInheritedProtocols(*P, Protocols);
   1608     }
   1609   }
   1610 }
   1611 
   1612 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
   1613   unsigned count = 0;
   1614   // Count ivars declared in class extension.
   1615   for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
   1616        CDecl = CDecl->getNextClassExtension())
   1617     count += CDecl->ivar_size();
   1618 
   1619   // Count ivar defined in this class's implementation.  This
   1620   // includes synthesized ivars.
   1621   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
   1622     count += ImplDecl->ivar_size();
   1623 
   1624   return count;
   1625 }
   1626 
   1627 bool ASTContext::isSentinelNullExpr(const Expr *E) {
   1628   if (!E)
   1629     return false;
   1630 
   1631   // nullptr_t is always treated as null.
   1632   if (E->getType()->isNullPtrType()) return true;
   1633 
   1634   if (E->getType()->isAnyPointerType() &&
   1635       E->IgnoreParenCasts()->isNullPointerConstant(*this,
   1636                                                 Expr::NPC_ValueDependentIsNull))
   1637     return true;
   1638 
   1639   // Unfortunately, __null has type 'int'.
   1640   if (isa<GNUNullExpr>(E)) return true;
   1641 
   1642   return false;
   1643 }
   1644 
   1645 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
   1646 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
   1647   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
   1648     I = ObjCImpls.find(D);
   1649   if (I != ObjCImpls.end())
   1650     return cast<ObjCImplementationDecl>(I->second);
   1651   return 0;
   1652 }
   1653 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
   1654 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
   1655   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
   1656     I = ObjCImpls.find(D);
   1657   if (I != ObjCImpls.end())
   1658     return cast<ObjCCategoryImplDecl>(I->second);
   1659   return 0;
   1660 }
   1661 
   1662 /// \brief Set the implementation of ObjCInterfaceDecl.
   1663 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
   1664                            ObjCImplementationDecl *ImplD) {
   1665   assert(IFaceD && ImplD && "Passed null params");
   1666   ObjCImpls[IFaceD] = ImplD;
   1667 }
   1668 /// \brief Set the implementation of ObjCCategoryDecl.
   1669 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
   1670                            ObjCCategoryImplDecl *ImplD) {
   1671   assert(CatD && ImplD && "Passed null params");
   1672   ObjCImpls[CatD] = ImplD;
   1673 }
   1674 
   1675 ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
   1676   if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
   1677     return ID;
   1678   if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
   1679     return CD->getClassInterface();
   1680   if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
   1681     return IMD->getClassInterface();
   1682 
   1683   return 0;
   1684 }
   1685 
   1686 /// \brief Get the copy initialization expression of VarDecl,or NULL if
   1687 /// none exists.
   1688 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
   1689   assert(VD && "Passed null params");
   1690   assert(VD->hasAttr<BlocksAttr>() &&
   1691          "getBlockVarCopyInits - not __block var");
   1692   llvm::DenseMap<const VarDecl*, Expr*>::iterator
   1693     I = BlockVarCopyInits.find(VD);
   1694   return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
   1695 }
   1696 
   1697 /// \brief Set the copy inialization expression of a block var decl.
   1698 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
   1699   assert(VD && Init && "Passed null params");
   1700   assert(VD->hasAttr<BlocksAttr>() &&
   1701          "setBlockVarCopyInits - not __block var");
   1702   BlockVarCopyInits[VD] = Init;
   1703 }
   1704 
   1705 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
   1706                                                  unsigned DataSize) const {
   1707   if (!DataSize)
   1708     DataSize = TypeLoc::getFullDataSizeForType(T);
   1709   else
   1710     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
   1711            "incorrect data size provided to CreateTypeSourceInfo!");
   1712 
   1713   TypeSourceInfo *TInfo =
   1714     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
   1715   new (TInfo) TypeSourceInfo(T);
   1716   return TInfo;
   1717 }
   1718 
   1719 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
   1720                                                      SourceLocation L) const {
   1721   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
   1722   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
   1723   return DI;
   1724 }
   1725 
   1726 const ASTRecordLayout &
   1727 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
   1728   return getObjCLayout(D, 0);
   1729 }
   1730 
   1731 const ASTRecordLayout &
   1732 ASTContext::getASTObjCImplementationLayout(
   1733                                         const ObjCImplementationDecl *D) const {
   1734   return getObjCLayout(D->getClassInterface(), D);
   1735 }
   1736 
   1737 //===----------------------------------------------------------------------===//
   1738 //                   Type creation/memoization methods
   1739 //===----------------------------------------------------------------------===//
   1740 
   1741 QualType
   1742 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
   1743   unsigned fastQuals = quals.getFastQualifiers();
   1744   quals.removeFastQualifiers();
   1745 
   1746   // Check if we've already instantiated this type.
   1747   llvm::FoldingSetNodeID ID;
   1748   ExtQuals::Profile(ID, baseType, quals);
   1749   void *insertPos = 0;
   1750   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
   1751     assert(eq->getQualifiers() == quals);
   1752     return QualType(eq, fastQuals);
   1753   }
   1754 
   1755   // If the base type is not canonical, make the appropriate canonical type.
   1756   QualType canon;
   1757   if (!baseType->isCanonicalUnqualified()) {
   1758     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
   1759     canonSplit.Quals.addConsistentQualifiers(quals);
   1760     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
   1761 
   1762     // Re-find the insert position.
   1763     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
   1764   }
   1765 
   1766   ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
   1767   ExtQualNodes.InsertNode(eq, insertPos);
   1768   return QualType(eq, fastQuals);
   1769 }
   1770 
   1771 QualType
   1772 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
   1773   QualType CanT = getCanonicalType(T);
   1774   if (CanT.getAddressSpace() == AddressSpace)
   1775     return T;
   1776 
   1777   // If we are composing extended qualifiers together, merge together
   1778   // into one ExtQuals node.
   1779   QualifierCollector Quals;
   1780   const Type *TypeNode = Quals.strip(T);
   1781 
   1782   // If this type already has an address space specified, it cannot get
   1783   // another one.
   1784   assert(!Quals.hasAddressSpace() &&
   1785          "Type cannot be in multiple addr spaces!");
   1786   Quals.addAddressSpace(AddressSpace);
   1787 
   1788   return getExtQualType(TypeNode, Quals);
   1789 }
   1790 
   1791 QualType ASTContext::getObjCGCQualType(QualType T,
   1792                                        Qualifiers::GC GCAttr) const {
   1793   QualType CanT = getCanonicalType(T);
   1794   if (CanT.getObjCGCAttr() == GCAttr)
   1795     return T;
   1796 
   1797   if (const PointerType *ptr = T->getAs<PointerType>()) {
   1798     QualType Pointee = ptr->getPointeeType();
   1799     if (Pointee->isAnyPointerType()) {
   1800       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
   1801       return getPointerType(ResultType);
   1802     }
   1803   }
   1804 
   1805   // If we are composing extended qualifiers together, merge together
   1806   // into one ExtQuals node.
   1807   QualifierCollector Quals;
   1808   const Type *TypeNode = Quals.strip(T);
   1809 
   1810   // If this type already has an ObjCGC specified, it cannot get
   1811   // another one.
   1812   assert(!Quals.hasObjCGCAttr() &&
   1813          "Type cannot have multiple ObjCGCs!");
   1814   Quals.addObjCGCAttr(GCAttr);
   1815 
   1816   return getExtQualType(TypeNode, Quals);
   1817 }
   1818 
   1819 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
   1820                                                    FunctionType::ExtInfo Info) {
   1821   if (T->getExtInfo() == Info)
   1822     return T;
   1823 
   1824   QualType Result;
   1825   if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
   1826     Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
   1827   } else {
   1828     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
   1829     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   1830     EPI.ExtInfo = Info;
   1831     Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
   1832                              FPT->getNumArgs(), EPI);
   1833   }
   1834 
   1835   return cast<FunctionType>(Result.getTypePtr());
   1836 }
   1837 
   1838 /// getComplexType - Return the uniqued reference to the type for a complex
   1839 /// number with the specified element type.
   1840 QualType ASTContext::getComplexType(QualType T) const {
   1841   // Unique pointers, to guarantee there is only one pointer of a particular
   1842   // structure.
   1843   llvm::FoldingSetNodeID ID;
   1844   ComplexType::Profile(ID, T);
   1845 
   1846   void *InsertPos = 0;
   1847   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
   1848     return QualType(CT, 0);
   1849 
   1850   // If the pointee type isn't canonical, this won't be a canonical type either,
   1851   // so fill in the canonical type field.
   1852   QualType Canonical;
   1853   if (!T.isCanonical()) {
   1854     Canonical = getComplexType(getCanonicalType(T));
   1855 
   1856     // Get the new insert position for the node we care about.
   1857     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
   1858     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   1859   }
   1860   ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
   1861   Types.push_back(New);
   1862   ComplexTypes.InsertNode(New, InsertPos);
   1863   return QualType(New, 0);
   1864 }
   1865 
   1866 /// getPointerType - Return the uniqued reference to the type for a pointer to
   1867 /// the specified type.
   1868 QualType ASTContext::getPointerType(QualType T) const {
   1869   // Unique pointers, to guarantee there is only one pointer of a particular
   1870   // structure.
   1871   llvm::FoldingSetNodeID ID;
   1872   PointerType::Profile(ID, T);
   1873 
   1874   void *InsertPos = 0;
   1875   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   1876     return QualType(PT, 0);
   1877 
   1878   // If the pointee type isn't canonical, this won't be a canonical type either,
   1879   // so fill in the canonical type field.
   1880   QualType Canonical;
   1881   if (!T.isCanonical()) {
   1882     Canonical = getPointerType(getCanonicalType(T));
   1883 
   1884     // Get the new insert position for the node we care about.
   1885     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   1886     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   1887   }
   1888   PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
   1889   Types.push_back(New);
   1890   PointerTypes.InsertNode(New, InsertPos);
   1891   return QualType(New, 0);
   1892 }
   1893 
   1894 /// getBlockPointerType - Return the uniqued reference to the type for
   1895 /// a pointer to the specified block.
   1896 QualType ASTContext::getBlockPointerType(QualType T) const {
   1897   assert(T->isFunctionType() && "block of function types only");
   1898   // Unique pointers, to guarantee there is only one block of a particular
   1899   // structure.
   1900   llvm::FoldingSetNodeID ID;
   1901   BlockPointerType::Profile(ID, T);
   1902 
   1903   void *InsertPos = 0;
   1904   if (BlockPointerType *PT =
   1905         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   1906     return QualType(PT, 0);
   1907 
   1908   // If the block pointee type isn't canonical, this won't be a canonical
   1909   // type either so fill in the canonical type field.
   1910   QualType Canonical;
   1911   if (!T.isCanonical()) {
   1912     Canonical = getBlockPointerType(getCanonicalType(T));
   1913 
   1914     // Get the new insert position for the node we care about.
   1915     BlockPointerType *NewIP =
   1916       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   1917     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   1918   }
   1919   BlockPointerType *New
   1920     = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
   1921   Types.push_back(New);
   1922   BlockPointerTypes.InsertNode(New, InsertPos);
   1923   return QualType(New, 0);
   1924 }
   1925 
   1926 /// getLValueReferenceType - Return the uniqued reference to the type for an
   1927 /// lvalue reference to the specified type.
   1928 QualType
   1929 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
   1930   assert(getCanonicalType(T) != OverloadTy &&
   1931          "Unresolved overloaded function type");
   1932 
   1933   // Unique pointers, to guarantee there is only one pointer of a particular
   1934   // structure.
   1935   llvm::FoldingSetNodeID ID;
   1936   ReferenceType::Profile(ID, T, SpelledAsLValue);
   1937 
   1938   void *InsertPos = 0;
   1939   if (LValueReferenceType *RT =
   1940         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
   1941     return QualType(RT, 0);
   1942 
   1943   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
   1944 
   1945   // If the referencee type isn't canonical, this won't be a canonical type
   1946   // either, so fill in the canonical type field.
   1947   QualType Canonical;
   1948   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
   1949     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
   1950     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
   1951 
   1952     // Get the new insert position for the node we care about.
   1953     LValueReferenceType *NewIP =
   1954       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
   1955     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   1956   }
   1957 
   1958   LValueReferenceType *New
   1959     = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
   1960                                                      SpelledAsLValue);
   1961   Types.push_back(New);
   1962   LValueReferenceTypes.InsertNode(New, InsertPos);
   1963 
   1964   return QualType(New, 0);
   1965 }
   1966 
   1967 /// getRValueReferenceType - Return the uniqued reference to the type for an
   1968 /// rvalue reference to the specified type.
   1969 QualType ASTContext::getRValueReferenceType(QualType T) const {
   1970   // Unique pointers, to guarantee there is only one pointer of a particular
   1971   // structure.
   1972   llvm::FoldingSetNodeID ID;
   1973   ReferenceType::Profile(ID, T, false);
   1974 
   1975   void *InsertPos = 0;
   1976   if (RValueReferenceType *RT =
   1977         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
   1978     return QualType(RT, 0);
   1979 
   1980   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
   1981 
   1982   // If the referencee type isn't canonical, this won't be a canonical type
   1983   // either, so fill in the canonical type field.
   1984   QualType Canonical;
   1985   if (InnerRef || !T.isCanonical()) {
   1986     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
   1987     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
   1988 
   1989     // Get the new insert position for the node we care about.
   1990     RValueReferenceType *NewIP =
   1991       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
   1992     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   1993   }
   1994 
   1995   RValueReferenceType *New
   1996     = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
   1997   Types.push_back(New);
   1998   RValueReferenceTypes.InsertNode(New, InsertPos);
   1999   return QualType(New, 0);
   2000 }
   2001 
   2002 /// getMemberPointerType - Return the uniqued reference to the type for a
   2003 /// member pointer to the specified type, in the specified class.
   2004 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
   2005   // Unique pointers, to guarantee there is only one pointer of a particular
   2006   // structure.
   2007   llvm::FoldingSetNodeID ID;
   2008   MemberPointerType::Profile(ID, T, Cls);
   2009 
   2010   void *InsertPos = 0;
   2011   if (MemberPointerType *PT =
   2012       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   2013     return QualType(PT, 0);
   2014 
   2015   // If the pointee or class type isn't canonical, this won't be a canonical
   2016   // type either, so fill in the canonical type field.
   2017   QualType Canonical;
   2018   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
   2019     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
   2020 
   2021     // Get the new insert position for the node we care about.
   2022     MemberPointerType *NewIP =
   2023       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   2024     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2025   }
   2026   MemberPointerType *New
   2027     = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
   2028   Types.push_back(New);
   2029   MemberPointerTypes.InsertNode(New, InsertPos);
   2030   return QualType(New, 0);
   2031 }
   2032 
   2033 /// getConstantArrayType - Return the unique reference to the type for an
   2034 /// array of the specified element type.
   2035 QualType ASTContext::getConstantArrayType(QualType EltTy,
   2036                                           const llvm::APInt &ArySizeIn,
   2037                                           ArrayType::ArraySizeModifier ASM,
   2038                                           unsigned IndexTypeQuals) const {
   2039   assert((EltTy->isDependentType() ||
   2040           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
   2041          "Constant array of VLAs is illegal!");
   2042 
   2043   // Convert the array size into a canonical width matching the pointer size for
   2044   // the target.
   2045   llvm::APInt ArySize(ArySizeIn);
   2046   ArySize =
   2047     ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
   2048 
   2049   llvm::FoldingSetNodeID ID;
   2050   ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
   2051 
   2052   void *InsertPos = 0;
   2053   if (ConstantArrayType *ATP =
   2054       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
   2055     return QualType(ATP, 0);
   2056 
   2057   // If the element type isn't canonical or has qualifiers, this won't
   2058   // be a canonical type either, so fill in the canonical type field.
   2059   QualType Canon;
   2060   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
   2061     SplitQualType canonSplit = getCanonicalType(EltTy).split();
   2062     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
   2063                                  ASM, IndexTypeQuals);
   2064     Canon = getQualifiedType(Canon, canonSplit.Quals);
   2065 
   2066     // Get the new insert position for the node we care about.
   2067     ConstantArrayType *NewIP =
   2068       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
   2069     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2070   }
   2071 
   2072   ConstantArrayType *New = new(*this,TypeAlignment)
   2073     ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
   2074   ConstantArrayTypes.InsertNode(New, InsertPos);
   2075   Types.push_back(New);
   2076   return QualType(New, 0);
   2077 }
   2078 
   2079 /// getVariableArrayDecayedType - Turns the given type, which may be
   2080 /// variably-modified, into the corresponding type with all the known
   2081 /// sizes replaced with [*].
   2082 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
   2083   // Vastly most common case.
   2084   if (!type->isVariablyModifiedType()) return type;
   2085 
   2086   QualType result;
   2087 
   2088   SplitQualType split = type.getSplitDesugaredType();
   2089   const Type *ty = split.Ty;
   2090   switch (ty->getTypeClass()) {
   2091 #define TYPE(Class, Base)
   2092 #define ABSTRACT_TYPE(Class, Base)
   2093 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   2094 #include "clang/AST/TypeNodes.def"
   2095     llvm_unreachable("didn't desugar past all non-canonical types?");
   2096 
   2097   // These types should never be variably-modified.
   2098   case Type::Builtin:
   2099   case Type::Complex:
   2100   case Type::Vector:
   2101   case Type::ExtVector:
   2102   case Type::DependentSizedExtVector:
   2103   case Type::ObjCObject:
   2104   case Type::ObjCInterface:
   2105   case Type::ObjCObjectPointer:
   2106   case Type::Record:
   2107   case Type::Enum:
   2108   case Type::UnresolvedUsing:
   2109   case Type::TypeOfExpr:
   2110   case Type::TypeOf:
   2111   case Type::Decltype:
   2112   case Type::UnaryTransform:
   2113   case Type::DependentName:
   2114   case Type::InjectedClassName:
   2115   case Type::TemplateSpecialization:
   2116   case Type::DependentTemplateSpecialization:
   2117   case Type::TemplateTypeParm:
   2118   case Type::SubstTemplateTypeParmPack:
   2119   case Type::Auto:
   2120   case Type::PackExpansion:
   2121     llvm_unreachable("type should never be variably-modified");
   2122 
   2123   // These types can be variably-modified but should never need to
   2124   // further decay.
   2125   case Type::FunctionNoProto:
   2126   case Type::FunctionProto:
   2127   case Type::BlockPointer:
   2128   case Type::MemberPointer:
   2129     return type;
   2130 
   2131   // These types can be variably-modified.  All these modifications
   2132   // preserve structure except as noted by comments.
   2133   // TODO: if we ever care about optimizing VLAs, there are no-op
   2134   // optimizations available here.
   2135   case Type::Pointer:
   2136     result = getPointerType(getVariableArrayDecayedType(
   2137                               cast<PointerType>(ty)->getPointeeType()));
   2138     break;
   2139 
   2140   case Type::LValueReference: {
   2141     const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
   2142     result = getLValueReferenceType(
   2143                  getVariableArrayDecayedType(lv->getPointeeType()),
   2144                                     lv->isSpelledAsLValue());
   2145     break;
   2146   }
   2147 
   2148   case Type::RValueReference: {
   2149     const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
   2150     result = getRValueReferenceType(
   2151                  getVariableArrayDecayedType(lv->getPointeeType()));
   2152     break;
   2153   }
   2154 
   2155   case Type::Atomic: {
   2156     const AtomicType *at = cast<AtomicType>(ty);
   2157     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
   2158     break;
   2159   }
   2160 
   2161   case Type::ConstantArray: {
   2162     const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
   2163     result = getConstantArrayType(
   2164                  getVariableArrayDecayedType(cat->getElementType()),
   2165                                   cat->getSize(),
   2166                                   cat->getSizeModifier(),
   2167                                   cat->getIndexTypeCVRQualifiers());
   2168     break;
   2169   }
   2170 
   2171   case Type::DependentSizedArray: {
   2172     const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
   2173     result = getDependentSizedArrayType(
   2174                  getVariableArrayDecayedType(dat->getElementType()),
   2175                                         dat->getSizeExpr(),
   2176                                         dat->getSizeModifier(),
   2177                                         dat->getIndexTypeCVRQualifiers(),
   2178                                         dat->getBracketsRange());
   2179     break;
   2180   }
   2181 
   2182   // Turn incomplete types into [*] types.
   2183   case Type::IncompleteArray: {
   2184     const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
   2185     result = getVariableArrayType(
   2186                  getVariableArrayDecayedType(iat->getElementType()),
   2187                                   /*size*/ 0,
   2188                                   ArrayType::Normal,
   2189                                   iat->getIndexTypeCVRQualifiers(),
   2190                                   SourceRange());
   2191     break;
   2192   }
   2193 
   2194   // Turn VLA types into [*] types.
   2195   case Type::VariableArray: {
   2196     const VariableArrayType *vat = cast<VariableArrayType>(ty);
   2197     result = getVariableArrayType(
   2198                  getVariableArrayDecayedType(vat->getElementType()),
   2199                                   /*size*/ 0,
   2200                                   ArrayType::Star,
   2201                                   vat->getIndexTypeCVRQualifiers(),
   2202                                   vat->getBracketsRange());
   2203     break;
   2204   }
   2205   }
   2206 
   2207   // Apply the top-level qualifiers from the original.
   2208   return getQualifiedType(result, split.Quals);
   2209 }
   2210 
   2211 /// getVariableArrayType - Returns a non-unique reference to the type for a
   2212 /// variable array of the specified element type.
   2213 QualType ASTContext::getVariableArrayType(QualType EltTy,
   2214                                           Expr *NumElts,
   2215                                           ArrayType::ArraySizeModifier ASM,
   2216                                           unsigned IndexTypeQuals,
   2217                                           SourceRange Brackets) const {
   2218   // Since we don't unique expressions, it isn't possible to unique VLA's
   2219   // that have an expression provided for their size.
   2220   QualType Canon;
   2221 
   2222   // Be sure to pull qualifiers off the element type.
   2223   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
   2224     SplitQualType canonSplit = getCanonicalType(EltTy).split();
   2225     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
   2226                                  IndexTypeQuals, Brackets);
   2227     Canon = getQualifiedType(Canon, canonSplit.Quals);
   2228   }
   2229 
   2230   VariableArrayType *New = new(*this, TypeAlignment)
   2231     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
   2232 
   2233   VariableArrayTypes.push_back(New);
   2234   Types.push_back(New);
   2235   return QualType(New, 0);
   2236 }
   2237 
   2238 /// getDependentSizedArrayType - Returns a non-unique reference to
   2239 /// the type for a dependently-sized array of the specified element
   2240 /// type.
   2241 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
   2242                                                 Expr *numElements,
   2243                                                 ArrayType::ArraySizeModifier ASM,
   2244                                                 unsigned elementTypeQuals,
   2245                                                 SourceRange brackets) const {
   2246   assert((!numElements || numElements->isTypeDependent() ||
   2247           numElements->isValueDependent()) &&
   2248          "Size must be type- or value-dependent!");
   2249 
   2250   // Dependently-sized array types that do not have a specified number
   2251   // of elements will have their sizes deduced from a dependent
   2252   // initializer.  We do no canonicalization here at all, which is okay
   2253   // because they can't be used in most locations.
   2254   if (!numElements) {
   2255     DependentSizedArrayType *newType
   2256       = new (*this, TypeAlignment)
   2257           DependentSizedArrayType(*this, elementType, QualType(),
   2258                                   numElements, ASM, elementTypeQuals,
   2259                                   brackets);
   2260     Types.push_back(newType);
   2261     return QualType(newType, 0);
   2262   }
   2263 
   2264   // Otherwise, we actually build a new type every time, but we
   2265   // also build a canonical type.
   2266 
   2267   SplitQualType canonElementType = getCanonicalType(elementType).split();
   2268 
   2269   void *insertPos = 0;
   2270   llvm::FoldingSetNodeID ID;
   2271   DependentSizedArrayType::Profile(ID, *this,
   2272                                    QualType(canonElementType.Ty, 0),
   2273                                    ASM, elementTypeQuals, numElements);
   2274 
   2275   // Look for an existing type with these properties.
   2276   DependentSizedArrayType *canonTy =
   2277     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
   2278 
   2279   // If we don't have one, build one.
   2280   if (!canonTy) {
   2281     canonTy = new (*this, TypeAlignment)
   2282       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
   2283                               QualType(), numElements, ASM, elementTypeQuals,
   2284                               brackets);
   2285     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
   2286     Types.push_back(canonTy);
   2287   }
   2288 
   2289   // Apply qualifiers from the element type to the array.
   2290   QualType canon = getQualifiedType(QualType(canonTy,0),
   2291                                     canonElementType.Quals);
   2292 
   2293   // If we didn't need extra canonicalization for the element type,
   2294   // then just use that as our result.
   2295   if (QualType(canonElementType.Ty, 0) == elementType)
   2296     return canon;
   2297 
   2298   // Otherwise, we need to build a type which follows the spelling
   2299   // of the element type.
   2300   DependentSizedArrayType *sugaredType
   2301     = new (*this, TypeAlignment)
   2302         DependentSizedArrayType(*this, elementType, canon, numElements,
   2303                                 ASM, elementTypeQuals, brackets);
   2304   Types.push_back(sugaredType);
   2305   return QualType(sugaredType, 0);
   2306 }
   2307 
   2308 QualType ASTContext::getIncompleteArrayType(QualType elementType,
   2309                                             ArrayType::ArraySizeModifier ASM,
   2310                                             unsigned elementTypeQuals) const {
   2311   llvm::FoldingSetNodeID ID;
   2312   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
   2313 
   2314   void *insertPos = 0;
   2315   if (IncompleteArrayType *iat =
   2316        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
   2317     return QualType(iat, 0);
   2318 
   2319   // If the element type isn't canonical, this won't be a canonical type
   2320   // either, so fill in the canonical type field.  We also have to pull
   2321   // qualifiers off the element type.
   2322   QualType canon;
   2323 
   2324   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
   2325     SplitQualType canonSplit = getCanonicalType(elementType).split();
   2326     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
   2327                                    ASM, elementTypeQuals);
   2328     canon = getQualifiedType(canon, canonSplit.Quals);
   2329 
   2330     // Get the new insert position for the node we care about.
   2331     IncompleteArrayType *existing =
   2332       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
   2333     assert(!existing && "Shouldn't be in the map!"); (void) existing;
   2334   }
   2335 
   2336   IncompleteArrayType *newType = new (*this, TypeAlignment)
   2337     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
   2338 
   2339   IncompleteArrayTypes.InsertNode(newType, insertPos);
   2340   Types.push_back(newType);
   2341   return QualType(newType, 0);
   2342 }
   2343 
   2344 /// getVectorType - Return the unique reference to a vector type of
   2345 /// the specified element type and size. VectorType must be a built-in type.
   2346 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
   2347                                    VectorType::VectorKind VecKind) const {
   2348   assert(vecType->isBuiltinType());
   2349 
   2350   // Check if we've already instantiated a vector of this type.
   2351   llvm::FoldingSetNodeID ID;
   2352   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
   2353 
   2354   void *InsertPos = 0;
   2355   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
   2356     return QualType(VTP, 0);
   2357 
   2358   // If the element type isn't canonical, this won't be a canonical type either,
   2359   // so fill in the canonical type field.
   2360   QualType Canonical;
   2361   if (!vecType.isCanonical()) {
   2362     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
   2363 
   2364     // Get the new insert position for the node we care about.
   2365     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2366     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2367   }
   2368   VectorType *New = new (*this, TypeAlignment)
   2369     VectorType(vecType, NumElts, Canonical, VecKind);
   2370   VectorTypes.InsertNode(New, InsertPos);
   2371   Types.push_back(New);
   2372   return QualType(New, 0);
   2373 }
   2374 
   2375 /// getExtVectorType - Return the unique reference to an extended vector type of
   2376 /// the specified element type and size. VectorType must be a built-in type.
   2377 QualType
   2378 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
   2379   assert(vecType->isBuiltinType() || vecType->isDependentType());
   2380 
   2381   // Check if we've already instantiated a vector of this type.
   2382   llvm::FoldingSetNodeID ID;
   2383   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
   2384                       VectorType::GenericVector);
   2385   void *InsertPos = 0;
   2386   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
   2387     return QualType(VTP, 0);
   2388 
   2389   // If the element type isn't canonical, this won't be a canonical type either,
   2390   // so fill in the canonical type field.
   2391   QualType Canonical;
   2392   if (!vecType.isCanonical()) {
   2393     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
   2394 
   2395     // Get the new insert position for the node we care about.
   2396     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2397     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2398   }
   2399   ExtVectorType *New = new (*this, TypeAlignment)
   2400     ExtVectorType(vecType, NumElts, Canonical);
   2401   VectorTypes.InsertNode(New, InsertPos);
   2402   Types.push_back(New);
   2403   return QualType(New, 0);
   2404 }
   2405 
   2406 QualType
   2407 ASTContext::getDependentSizedExtVectorType(QualType vecType,
   2408                                            Expr *SizeExpr,
   2409                                            SourceLocation AttrLoc) const {
   2410   llvm::FoldingSetNodeID ID;
   2411   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
   2412                                        SizeExpr);
   2413 
   2414   void *InsertPos = 0;
   2415   DependentSizedExtVectorType *Canon
   2416     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2417   DependentSizedExtVectorType *New;
   2418   if (Canon) {
   2419     // We already have a canonical version of this array type; use it as
   2420     // the canonical type for a newly-built type.
   2421     New = new (*this, TypeAlignment)
   2422       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
   2423                                   SizeExpr, AttrLoc);
   2424   } else {
   2425     QualType CanonVecTy = getCanonicalType(vecType);
   2426     if (CanonVecTy == vecType) {
   2427       New = new (*this, TypeAlignment)
   2428         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
   2429                                     AttrLoc);
   2430 
   2431       DependentSizedExtVectorType *CanonCheck
   2432         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2433       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
   2434       (void)CanonCheck;
   2435       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
   2436     } else {
   2437       QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
   2438                                                       SourceLocation());
   2439       New = new (*this, TypeAlignment)
   2440         DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
   2441     }
   2442   }
   2443 
   2444   Types.push_back(New);
   2445   return QualType(New, 0);
   2446 }
   2447 
   2448 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
   2449 ///
   2450 QualType
   2451 ASTContext::getFunctionNoProtoType(QualType ResultTy,
   2452                                    const FunctionType::ExtInfo &Info) const {
   2453   const CallingConv DefaultCC = Info.getCC();
   2454   const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
   2455                                CC_X86StdCall : DefaultCC;
   2456   // Unique functions, to guarantee there is only one function of a particular
   2457   // structure.
   2458   llvm::FoldingSetNodeID ID;
   2459   FunctionNoProtoType::Profile(ID, ResultTy, Info);
   2460 
   2461   void *InsertPos = 0;
   2462   if (FunctionNoProtoType *FT =
   2463         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
   2464     return QualType(FT, 0);
   2465 
   2466   QualType Canonical;
   2467   if (!ResultTy.isCanonical() ||
   2468       getCanonicalCallConv(CallConv) != CallConv) {
   2469     Canonical =
   2470       getFunctionNoProtoType(getCanonicalType(ResultTy),
   2471                      Info.withCallingConv(getCanonicalCallConv(CallConv)));
   2472 
   2473     // Get the new insert position for the node we care about.
   2474     FunctionNoProtoType *NewIP =
   2475       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
   2476     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2477   }
   2478 
   2479   FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
   2480   FunctionNoProtoType *New = new (*this, TypeAlignment)
   2481     FunctionNoProtoType(ResultTy, Canonical, newInfo);
   2482   Types.push_back(New);
   2483   FunctionNoProtoTypes.InsertNode(New, InsertPos);
   2484   return QualType(New, 0);
   2485 }
   2486 
   2487 /// getFunctionType - Return a normal function type with a typed argument
   2488 /// list.  isVariadic indicates whether the argument list includes '...'.
   2489 QualType
   2490 ASTContext::getFunctionType(QualType ResultTy,
   2491                             const QualType *ArgArray, unsigned NumArgs,
   2492                             const FunctionProtoType::ExtProtoInfo &EPI) const {
   2493   // Unique functions, to guarantee there is only one function of a particular
   2494   // structure.
   2495   llvm::FoldingSetNodeID ID;
   2496   FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
   2497 
   2498   void *InsertPos = 0;
   2499   if (FunctionProtoType *FTP =
   2500         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
   2501     return QualType(FTP, 0);
   2502 
   2503   // Determine whether the type being created is already canonical or not.
   2504   bool isCanonical =
   2505     EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
   2506     !EPI.HasTrailingReturn;
   2507   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
   2508     if (!ArgArray[i].isCanonicalAsParam())
   2509       isCanonical = false;
   2510 
   2511   const CallingConv DefaultCC = EPI.ExtInfo.getCC();
   2512   const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
   2513                                CC_X86StdCall : DefaultCC;
   2514 
   2515   // If this type isn't canonical, get the canonical version of it.
   2516   // The exception spec is not part of the canonical type.
   2517   QualType Canonical;
   2518   if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
   2519     SmallVector<QualType, 16> CanonicalArgs;
   2520     CanonicalArgs.reserve(NumArgs);
   2521     for (unsigned i = 0; i != NumArgs; ++i)
   2522       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
   2523 
   2524     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
   2525     CanonicalEPI.HasTrailingReturn = false;
   2526     CanonicalEPI.ExceptionSpecType = EST_None;
   2527     CanonicalEPI.NumExceptions = 0;
   2528     CanonicalEPI.ExtInfo
   2529       = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
   2530 
   2531     Canonical = getFunctionType(getCanonicalType(ResultTy),
   2532                                 CanonicalArgs.data(), NumArgs,
   2533                                 CanonicalEPI);
   2534 
   2535     // Get the new insert position for the node we care about.
   2536     FunctionProtoType *NewIP =
   2537       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
   2538     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   2539   }
   2540 
   2541   // FunctionProtoType objects are allocated with extra bytes after
   2542   // them for three variable size arrays at the end:
   2543   //  - parameter types
   2544   //  - exception types
   2545   //  - consumed-arguments flags
   2546   // Instead of the exception types, there could be a noexcept
   2547   // expression, or information used to resolve the exception
   2548   // specification.
   2549   size_t Size = sizeof(FunctionProtoType) +
   2550                 NumArgs * sizeof(QualType);
   2551   if (EPI.ExceptionSpecType == EST_Dynamic) {
   2552     Size += EPI.NumExceptions * sizeof(QualType);
   2553   } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
   2554     Size += sizeof(Expr*);
   2555   } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
   2556     Size += 2 * sizeof(FunctionDecl*);
   2557   } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
   2558     Size += sizeof(FunctionDecl*);
   2559   }
   2560   if (EPI.ConsumedArguments)
   2561     Size += NumArgs * sizeof(bool);
   2562 
   2563   FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
   2564   FunctionProtoType::ExtProtoInfo newEPI = EPI;
   2565   newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
   2566   new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
   2567   Types.push_back(FTP);
   2568   FunctionProtoTypes.InsertNode(FTP, InsertPos);
   2569   return QualType(FTP, 0);
   2570 }
   2571 
   2572 #ifndef NDEBUG
   2573 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
   2574   if (!isa<CXXRecordDecl>(D)) return false;
   2575   const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
   2576   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
   2577     return true;
   2578   if (RD->getDescribedClassTemplate() &&
   2579       !isa<ClassTemplateSpecializationDecl>(RD))
   2580     return true;
   2581   return false;
   2582 }
   2583 #endif
   2584 
   2585 /// getInjectedClassNameType - Return the unique reference to the
   2586 /// injected class name type for the specified templated declaration.
   2587 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
   2588                                               QualType TST) const {
   2589   assert(NeedsInjectedClassNameType(Decl));
   2590   if (Decl->TypeForDecl) {
   2591     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
   2592   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
   2593     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
   2594     Decl->TypeForDecl = PrevDecl->TypeForDecl;
   2595     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
   2596   } else {
   2597     Type *newType =
   2598       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
   2599     Decl->TypeForDecl = newType;
   2600     Types.push_back(newType);
   2601   }
   2602   return QualType(Decl->TypeForDecl, 0);
   2603 }
   2604 
   2605 /// getTypeDeclType - Return the unique reference to the type for the
   2606 /// specified type declaration.
   2607 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
   2608   assert(Decl && "Passed null for Decl param");
   2609   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
   2610 
   2611   if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
   2612     return getTypedefType(Typedef);
   2613 
   2614   assert(!isa<TemplateTypeParmDecl>(Decl) &&
   2615          "Template type parameter types are always available.");
   2616 
   2617   if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
   2618     assert(!Record->getPreviousDecl() &&
   2619            "struct/union has previous declaration");
   2620     assert(!NeedsInjectedClassNameType(Record));
   2621     return getRecordType(Record);
   2622   } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
   2623     assert(!Enum->getPreviousDecl() &&
   2624            "enum has previous declaration");
   2625     return getEnumType(Enum);
   2626   } else if (const UnresolvedUsingTypenameDecl *Using =
   2627                dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
   2628     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
   2629     Decl->TypeForDecl = newType;
   2630     Types.push_back(newType);
   2631   } else
   2632     llvm_unreachable("TypeDecl without a type?");
   2633 
   2634   return QualType(Decl->TypeForDecl, 0);
   2635 }
   2636 
   2637 /// getTypedefType - Return the unique reference to the type for the
   2638 /// specified typedef name decl.
   2639 QualType
   2640 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
   2641                            QualType Canonical) const {
   2642   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   2643 
   2644   if (Canonical.isNull())
   2645     Canonical = getCanonicalType(Decl->getUnderlyingType());
   2646   TypedefType *newType = new(*this, TypeAlignment)
   2647     TypedefType(Type::Typedef, Decl, Canonical);
   2648   Decl->TypeForDecl = newType;
   2649   Types.push_back(newType);
   2650   return QualType(newType, 0);
   2651 }
   2652 
   2653 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
   2654   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   2655 
   2656   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
   2657     if (PrevDecl->TypeForDecl)
   2658       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
   2659 
   2660   RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
   2661   Decl->TypeForDecl = newType;
   2662   Types.push_back(newType);
   2663   return QualType(newType, 0);
   2664 }
   2665 
   2666 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
   2667   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   2668 
   2669   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
   2670     if (PrevDecl->TypeForDecl)
   2671       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
   2672 
   2673   EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
   2674   Decl->TypeForDecl = newType;
   2675   Types.push_back(newType);
   2676   return QualType(newType, 0);
   2677 }
   2678 
   2679 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
   2680                                        QualType modifiedType,
   2681                                        QualType equivalentType) {
   2682   llvm::FoldingSetNodeID id;
   2683   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
   2684 
   2685   void *insertPos = 0;
   2686   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
   2687   if (type) return QualType(type, 0);
   2688 
   2689   QualType canon = getCanonicalType(equivalentType);
   2690   type = new (*this, TypeAlignment)
   2691            AttributedType(canon, attrKind, modifiedType, equivalentType);
   2692 
   2693   Types.push_back(type);
   2694   AttributedTypes.InsertNode(type, insertPos);
   2695 
   2696   return QualType(type, 0);
   2697 }
   2698 
   2699 
   2700 /// \brief Retrieve a substitution-result type.
   2701 QualType
   2702 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
   2703                                          QualType Replacement) const {
   2704   assert(Replacement.isCanonical()
   2705          && "replacement types must always be canonical");
   2706 
   2707   llvm::FoldingSetNodeID ID;
   2708   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
   2709   void *InsertPos = 0;
   2710   SubstTemplateTypeParmType *SubstParm
   2711     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   2712 
   2713   if (!SubstParm) {
   2714     SubstParm = new (*this, TypeAlignment)
   2715       SubstTemplateTypeParmType(Parm, Replacement);
   2716     Types.push_back(SubstParm);
   2717     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
   2718   }
   2719 
   2720   return QualType(SubstParm, 0);
   2721 }
   2722 
   2723 /// \brief Retrieve a
   2724 QualType ASTContext::getSubstTemplateTypeParmPackType(
   2725                                           const TemplateTypeParmType *Parm,
   2726                                               const TemplateArgument &ArgPack) {
   2727 #ifndef NDEBUG
   2728   for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
   2729                                     PEnd = ArgPack.pack_end();
   2730        P != PEnd; ++P) {
   2731     assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
   2732     assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
   2733   }
   2734 #endif
   2735 
   2736   llvm::FoldingSetNodeID ID;
   2737   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
   2738   void *InsertPos = 0;
   2739   if (SubstTemplateTypeParmPackType *SubstParm
   2740         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
   2741     return QualType(SubstParm, 0);
   2742 
   2743   QualType Canon;
   2744   if (!Parm->isCanonicalUnqualified()) {
   2745     Canon = getCanonicalType(QualType(Parm, 0));
   2746     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
   2747                                              ArgPack);
   2748     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
   2749   }
   2750 
   2751   SubstTemplateTypeParmPackType *SubstParm
   2752     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
   2753                                                                ArgPack);
   2754   Types.push_back(SubstParm);
   2755   SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
   2756   return QualType(SubstParm, 0);
   2757 }
   2758 
   2759 /// \brief Retrieve the template type parameter type for a template
   2760 /// parameter or parameter pack with the given depth, index, and (optionally)
   2761 /// name.
   2762 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
   2763                                              bool ParameterPack,
   2764                                              TemplateTypeParmDecl *TTPDecl) const {
   2765   llvm::FoldingSetNodeID ID;
   2766   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
   2767   void *InsertPos = 0;
   2768   TemplateTypeParmType *TypeParm
   2769     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   2770 
   2771   if (TypeParm)
   2772     return QualType(TypeParm, 0);
   2773 
   2774   if (TTPDecl) {
   2775     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
   2776     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
   2777 
   2778     TemplateTypeParmType *TypeCheck
   2779       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   2780     assert(!TypeCheck && "Template type parameter canonical type broken");
   2781     (void)TypeCheck;
   2782   } else
   2783     TypeParm = new (*this, TypeAlignment)
   2784       TemplateTypeParmType(Depth, Index, ParameterPack);
   2785 
   2786   Types.push_back(TypeParm);
   2787   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
   2788 
   2789   return QualType(TypeParm, 0);
   2790 }
   2791 
   2792 TypeSourceInfo *
   2793 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
   2794                                               SourceLocation NameLoc,
   2795                                         const TemplateArgumentListInfo &Args,
   2796                                               QualType Underlying) const {
   2797   assert(!Name.getAsDependentTemplateName() &&
   2798          "No dependent template names here!");
   2799   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
   2800 
   2801   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
   2802   TemplateSpecializationTypeLoc TL
   2803     = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
   2804   TL.setTemplateKeywordLoc(SourceLocation());
   2805   TL.setTemplateNameLoc(NameLoc);
   2806   TL.setLAngleLoc(Args.getLAngleLoc());
   2807   TL.setRAngleLoc(Args.getRAngleLoc());
   2808   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
   2809     TL.setArgLocInfo(i, Args[i].getLocInfo());
   2810   return DI;
   2811 }
   2812 
   2813 QualType
   2814 ASTContext::getTemplateSpecializationType(TemplateName Template,
   2815                                           const TemplateArgumentListInfo &Args,
   2816                                           QualType Underlying) const {
   2817   assert(!Template.getAsDependentTemplateName() &&
   2818          "No dependent template names here!");
   2819 
   2820   unsigned NumArgs = Args.size();
   2821 
   2822   SmallVector<TemplateArgument, 4> ArgVec;
   2823   ArgVec.reserve(NumArgs);
   2824   for (unsigned i = 0; i != NumArgs; ++i)
   2825     ArgVec.push_back(Args[i].getArgument());
   2826 
   2827   return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
   2828                                        Underlying);
   2829 }
   2830 
   2831 #ifndef NDEBUG
   2832 static bool hasAnyPackExpansions(const TemplateArgument *Args,
   2833                                  unsigned NumArgs) {
   2834   for (unsigned I = 0; I != NumArgs; ++I)
   2835     if (Args[I].isPackExpansion())
   2836       return true;
   2837 
   2838   return true;
   2839 }
   2840 #endif
   2841 
   2842 QualType
   2843 ASTContext::getTemplateSpecializationType(TemplateName Template,
   2844                                           const TemplateArgument *Args,
   2845                                           unsigned NumArgs,
   2846                                           QualType Underlying) const {
   2847   assert(!Template.getAsDependentTemplateName() &&
   2848          "No dependent template names here!");
   2849   // Look through qualified template names.
   2850   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   2851     Template = TemplateName(QTN->getTemplateDecl());
   2852 
   2853   bool IsTypeAlias =
   2854     Template.getAsTemplateDecl() &&
   2855     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
   2856   QualType CanonType;
   2857   if (!Underlying.isNull())
   2858     CanonType = getCanonicalType(Underlying);
   2859   else {
   2860     // We can get here with an alias template when the specialization contains
   2861     // a pack expansion that does not match up with a parameter pack.
   2862     assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
   2863            "Caller must compute aliased type");
   2864     IsTypeAlias = false;
   2865     CanonType = getCanonicalTemplateSpecializationType(Template, Args,
   2866                                                        NumArgs);
   2867   }
   2868 
   2869   // Allocate the (non-canonical) template specialization type, but don't
   2870   // try to unique it: these types typically have location information that
   2871   // we don't unique and don't want to lose.
   2872   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
   2873                        sizeof(TemplateArgument) * NumArgs +
   2874                        (IsTypeAlias? sizeof(QualType) : 0),
   2875                        TypeAlignment);
   2876   TemplateSpecializationType *Spec
   2877     = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
   2878                                          IsTypeAlias ? Underlying : QualType());
   2879 
   2880   Types.push_back(Spec);
   2881   return QualType(Spec, 0);
   2882 }
   2883 
   2884 QualType
   2885 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
   2886                                                    const TemplateArgument *Args,
   2887                                                    unsigned NumArgs) const {
   2888   assert(!Template.getAsDependentTemplateName() &&
   2889          "No dependent template names here!");
   2890 
   2891   // Look through qualified template names.
   2892   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   2893     Template = TemplateName(QTN->getTemplateDecl());
   2894 
   2895   // Build the canonical template specialization type.
   2896   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
   2897   SmallVector<TemplateArgument, 4> CanonArgs;
   2898   CanonArgs.reserve(NumArgs);
   2899   for (unsigned I = 0; I != NumArgs; ++I)
   2900     CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
   2901 
   2902   // Determine whether this canonical template specialization type already
   2903   // exists.
   2904   llvm::FoldingSetNodeID ID;
   2905   TemplateSpecializationType::Profile(ID, CanonTemplate,
   2906                                       CanonArgs.data(), NumArgs, *this);
   2907 
   2908   void *InsertPos = 0;
   2909   TemplateSpecializationType *Spec
   2910     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   2911 
   2912   if (!Spec) {
   2913     // Allocate a new canonical template specialization type.
   2914     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
   2915                           sizeof(TemplateArgument) * NumArgs),
   2916                          TypeAlignment);
   2917     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
   2918                                                 CanonArgs.data(), NumArgs,
   2919                                                 QualType(), QualType());
   2920     Types.push_back(Spec);
   2921     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
   2922   }
   2923 
   2924   assert(Spec->isDependentType() &&
   2925          "Non-dependent template-id type must have a canonical type");
   2926   return QualType(Spec, 0);
   2927 }
   2928 
   2929 QualType
   2930 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
   2931                               NestedNameSpecifier *NNS,
   2932                               QualType NamedType) const {
   2933   llvm::FoldingSetNodeID ID;
   2934   ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
   2935 
   2936   void *InsertPos = 0;
   2937   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2938   if (T)
   2939     return QualType(T, 0);
   2940 
   2941   QualType Canon = NamedType;
   2942   if (!Canon.isCanonical()) {
   2943     Canon = getCanonicalType(NamedType);
   2944     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2945     assert(!CheckT && "Elaborated canonical type broken");
   2946     (void)CheckT;
   2947   }
   2948 
   2949   T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
   2950   Types.push_back(T);
   2951   ElaboratedTypes.InsertNode(T, InsertPos);
   2952   return QualType(T, 0);
   2953 }
   2954 
   2955 QualType
   2956 ASTContext::getParenType(QualType InnerType) const {
   2957   llvm::FoldingSetNodeID ID;
   2958   ParenType::Profile(ID, InnerType);
   2959 
   2960   void *InsertPos = 0;
   2961   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
   2962   if (T)
   2963     return QualType(T, 0);
   2964 
   2965   QualType Canon = InnerType;
   2966   if (!Canon.isCanonical()) {
   2967     Canon = getCanonicalType(InnerType);
   2968     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
   2969     assert(!CheckT && "Paren canonical type broken");
   2970     (void)CheckT;
   2971   }
   2972 
   2973   T = new (*this) ParenType(InnerType, Canon);
   2974   Types.push_back(T);
   2975   ParenTypes.InsertNode(T, InsertPos);
   2976   return QualType(T, 0);
   2977 }
   2978 
   2979 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
   2980                                           NestedNameSpecifier *NNS,
   2981                                           const IdentifierInfo *Name,
   2982                                           QualType Canon) const {
   2983   assert(NNS->isDependent() && "nested-name-specifier must be dependent");
   2984 
   2985   if (Canon.isNull()) {
   2986     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   2987     ElaboratedTypeKeyword CanonKeyword = Keyword;
   2988     if (Keyword == ETK_None)
   2989       CanonKeyword = ETK_Typename;
   2990 
   2991     if (CanonNNS != NNS || CanonKeyword != Keyword)
   2992       Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
   2993   }
   2994 
   2995   llvm::FoldingSetNodeID ID;
   2996   DependentNameType::Profile(ID, Keyword, NNS, Name);
   2997 
   2998   void *InsertPos = 0;
   2999   DependentNameType *T
   3000     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
   3001   if (T)
   3002     return QualType(T, 0);
   3003 
   3004   T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
   3005   Types.push_back(T);
   3006   DependentNameTypes.InsertNode(T, InsertPos);
   3007   return QualType(T, 0);
   3008 }
   3009 
   3010 QualType
   3011 ASTContext::getDependentTemplateSpecializationType(
   3012                                  ElaboratedTypeKeyword Keyword,
   3013                                  NestedNameSpecifier *NNS,
   3014                                  const IdentifierInfo *Name,
   3015                                  const TemplateArgumentListInfo &Args) const {
   3016   // TODO: avoid this copy
   3017   SmallVector<TemplateArgument, 16> ArgCopy;
   3018   for (unsigned I = 0, E = Args.size(); I != E; ++I)
   3019     ArgCopy.push_back(Args[I].getArgument());
   3020   return getDependentTemplateSpecializationType(Keyword, NNS, Name,
   3021                                                 ArgCopy.size(),
   3022                                                 ArgCopy.data());
   3023 }
   3024 
   3025 QualType
   3026 ASTContext::getDependentTemplateSpecializationType(
   3027                                  ElaboratedTypeKeyword Keyword,
   3028                                  NestedNameSpecifier *NNS,
   3029                                  const IdentifierInfo *Name,
   3030                                  unsigned NumArgs,
   3031                                  const TemplateArgument *Args) const {
   3032   assert((!NNS || NNS->isDependent()) &&
   3033          "nested-name-specifier must be dependent");
   3034 
   3035   llvm::FoldingSetNodeID ID;
   3036   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
   3037                                                Name, NumArgs, Args);
   3038 
   3039   void *InsertPos = 0;
   3040   DependentTemplateSpecializationType *T
   3041     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3042   if (T)
   3043     return QualType(T, 0);
   3044 
   3045   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   3046 
   3047   ElaboratedTypeKeyword CanonKeyword = Keyword;
   3048   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
   3049 
   3050   bool AnyNonCanonArgs = false;
   3051   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
   3052   for (unsigned I = 0; I != NumArgs; ++I) {
   3053     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
   3054     if (!CanonArgs[I].structurallyEquals(Args[I]))
   3055       AnyNonCanonArgs = true;
   3056   }
   3057 
   3058   QualType Canon;
   3059   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
   3060     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
   3061                                                    Name, NumArgs,
   3062                                                    CanonArgs.data());
   3063 
   3064     // Find the insert position again.
   3065     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3066   }
   3067 
   3068   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
   3069                         sizeof(TemplateArgument) * NumArgs),
   3070                        TypeAlignment);
   3071   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
   3072                                                     Name, NumArgs, Args, Canon);
   3073   Types.push_back(T);
   3074   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
   3075   return QualType(T, 0);
   3076 }
   3077 
   3078 QualType ASTContext::getPackExpansionType(QualType Pattern,
   3079                                       llvm::Optional<unsigned> NumExpansions) {
   3080   llvm::FoldingSetNodeID ID;
   3081   PackExpansionType::Profile(ID, Pattern, NumExpansions);
   3082 
   3083   assert(Pattern->containsUnexpandedParameterPack() &&
   3084          "Pack expansions must expand one or more parameter packs");
   3085   void *InsertPos = 0;
   3086   PackExpansionType *T
   3087     = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
   3088   if (T)
   3089     return QualType(T, 0);
   3090 
   3091   QualType Canon;
   3092   if (!Pattern.isCanonical()) {
   3093     Canon = getCanonicalType(Pattern);
   3094     // The canonical type might not contain an unexpanded parameter pack, if it
   3095     // contains an alias template specialization which ignores one of its
   3096     // parameters.
   3097     if (Canon->containsUnexpandedParameterPack()) {
   3098       Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
   3099 
   3100       // Find the insert position again, in case we inserted an element into
   3101       // PackExpansionTypes and invalidated our insert position.
   3102       PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
   3103     }
   3104   }
   3105 
   3106   T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
   3107   Types.push_back(T);
   3108   PackExpansionTypes.InsertNode(T, InsertPos);
   3109   return QualType(T, 0);
   3110 }
   3111 
   3112 /// CmpProtocolNames - Comparison predicate for sorting protocols
   3113 /// alphabetically.
   3114 static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
   3115                             const ObjCProtocolDecl *RHS) {
   3116   return LHS->getDeclName() < RHS->getDeclName();
   3117 }
   3118 
   3119 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
   3120                                 unsigned NumProtocols) {
   3121   if (NumProtocols == 0) return true;
   3122 
   3123   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
   3124     return false;
   3125 
   3126   for (unsigned i = 1; i != NumProtocols; ++i)
   3127     if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
   3128         Protocols[i]->getCanonicalDecl() != Protocols[i])
   3129       return false;
   3130   return true;
   3131 }
   3132 
   3133 static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
   3134                                    unsigned &NumProtocols) {
   3135   ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
   3136 
   3137   // Sort protocols, keyed by name.
   3138   std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
   3139 
   3140   // Canonicalize.
   3141   for (unsigned I = 0, N = NumProtocols; I != N; ++I)
   3142     Protocols[I] = Protocols[I]->getCanonicalDecl();
   3143 
   3144   // Remove duplicates.
   3145   ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
   3146   NumProtocols = ProtocolsEnd-Protocols;
   3147 }
   3148 
   3149 QualType ASTContext::getObjCObjectType(QualType BaseType,
   3150                                        ObjCProtocolDecl * const *Protocols,
   3151                                        unsigned NumProtocols) const {
   3152   // If the base type is an interface and there aren't any protocols
   3153   // to add, then the interface type will do just fine.
   3154   if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
   3155     return BaseType;
   3156 
   3157   // Look in the folding set for an existing type.
   3158   llvm::FoldingSetNodeID ID;
   3159   ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
   3160   void *InsertPos = 0;
   3161   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
   3162     return QualType(QT, 0);
   3163 
   3164   // Build the canonical type, which has the canonical base type and
   3165   // a sorted-and-uniqued list of protocols.
   3166   QualType Canonical;
   3167   bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
   3168   if (!ProtocolsSorted || !BaseType.isCanonical()) {
   3169     if (!ProtocolsSorted) {
   3170       SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
   3171                                                      Protocols + NumProtocols);
   3172       unsigned UniqueCount = NumProtocols;
   3173 
   3174       SortAndUniqueProtocols(&Sorted[0], UniqueCount);
   3175       Canonical = getObjCObjectType(getCanonicalType(BaseType),
   3176                                     &Sorted[0], UniqueCount);
   3177     } else {
   3178       Canonical = getObjCObjectType(getCanonicalType(BaseType),
   3179                                     Protocols, NumProtocols);
   3180     }
   3181 
   3182     // Regenerate InsertPos.
   3183     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
   3184   }
   3185 
   3186   unsigned Size = sizeof(ObjCObjectTypeImpl);
   3187   Size += NumProtocols * sizeof(ObjCProtocolDecl *);
   3188   void *Mem = Allocate(Size, TypeAlignment);
   3189   ObjCObjectTypeImpl *T =
   3190     new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
   3191 
   3192   Types.push_back(T);
   3193   ObjCObjectTypes.InsertNode(T, InsertPos);
   3194   return QualType(T, 0);
   3195 }
   3196 
   3197 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
   3198 /// the given object type.
   3199 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
   3200   llvm::FoldingSetNodeID ID;
   3201   ObjCObjectPointerType::Profile(ID, ObjectT);
   3202 
   3203   void *InsertPos = 0;
   3204   if (ObjCObjectPointerType *QT =
   3205               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   3206     return QualType(QT, 0);
   3207 
   3208   // Find the canonical object type.
   3209   QualType Canonical;
   3210   if (!ObjectT.isCanonical()) {
   3211     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
   3212 
   3213     // Regenerate InsertPos.
   3214     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   3215   }
   3216 
   3217   // No match.
   3218   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
   3219   ObjCObjectPointerType *QType =
   3220     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
   3221 
   3222   Types.push_back(QType);
   3223   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
   3224   return QualType(QType, 0);
   3225 }
   3226 
   3227 /// getObjCInterfaceType - Return the unique reference to the type for the
   3228 /// specified ObjC interface decl. The list of protocols is optional.
   3229 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
   3230                                           ObjCInterfaceDecl *PrevDecl) const {
   3231   if (Decl->TypeForDecl)
   3232     return QualType(Decl->TypeForDecl, 0);
   3233 
   3234   if (PrevDecl) {
   3235     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
   3236     Decl->TypeForDecl = PrevDecl->TypeForDecl;
   3237     return QualType(PrevDecl->TypeForDecl, 0);
   3238   }
   3239 
   3240   // Prefer the definition, if there is one.
   3241   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
   3242     Decl = Def;
   3243 
   3244   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
   3245   ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
   3246   Decl->TypeForDecl = T;
   3247   Types.push_back(T);
   3248   return QualType(T, 0);
   3249 }
   3250 
   3251 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
   3252 /// TypeOfExprType AST's (since expression's are never shared). For example,
   3253 /// multiple declarations that refer to "typeof(x)" all contain different
   3254 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
   3255 /// on canonical type's (which are always unique).
   3256 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
   3257   TypeOfExprType *toe;
   3258   if (tofExpr->isTypeDependent()) {
   3259     llvm::FoldingSetNodeID ID;
   3260     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
   3261 
   3262     void *InsertPos = 0;
   3263     DependentTypeOfExprType *Canon
   3264       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
   3265     if (Canon) {
   3266       // We already have a "canonical" version of an identical, dependent
   3267       // typeof(expr) type. Use that as our canonical type.
   3268       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
   3269                                           QualType((TypeOfExprType*)Canon, 0));
   3270     } else {
   3271       // Build a new, canonical typeof(expr) type.
   3272       Canon
   3273         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
   3274       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
   3275       toe = Canon;
   3276     }
   3277   } else {
   3278     QualType Canonical = getCanonicalType(tofExpr->getType());
   3279     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
   3280   }
   3281   Types.push_back(toe);
   3282   return QualType(toe, 0);
   3283 }
   3284 
   3285 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
   3286 /// TypeOfType AST's. The only motivation to unique these nodes would be
   3287 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
   3288 /// an issue. This doesn't effect the type checker, since it operates
   3289 /// on canonical type's (which are always unique).
   3290 QualType ASTContext::getTypeOfType(QualType tofType) const {
   3291   QualType Canonical = getCanonicalType(tofType);
   3292   TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
   3293   Types.push_back(tot);
   3294   return QualType(tot, 0);
   3295 }
   3296 
   3297 
   3298 /// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
   3299 /// DecltypeType AST's. The only motivation to unique these nodes would be
   3300 /// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
   3301 /// an issue. This doesn't effect the type checker, since it operates
   3302 /// on canonical types (which are always unique).
   3303 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
   3304   DecltypeType *dt;
   3305 
   3306   // C++0x [temp.type]p2:
   3307   //   If an expression e involves a template parameter, decltype(e) denotes a
   3308   //   unique dependent type. Two such decltype-specifiers refer to the same
   3309   //   type only if their expressions are equivalent (14.5.6.1).
   3310   if (e->isInstantiationDependent()) {
   3311     llvm::FoldingSetNodeID ID;
   3312     DependentDecltypeType::Profile(ID, *this, e);
   3313 
   3314     void *InsertPos = 0;
   3315     DependentDecltypeType *Canon
   3316       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
   3317     if (Canon) {
   3318       // We already have a "canonical" version of an equivalent, dependent
   3319       // decltype type. Use that as our canonical type.
   3320       dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
   3321                                        QualType((DecltypeType*)Canon, 0));
   3322     } else {
   3323       // Build a new, canonical typeof(expr) type.
   3324       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
   3325       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
   3326       dt = Canon;
   3327     }
   3328   } else {
   3329     dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
   3330                                       getCanonicalType(UnderlyingType));
   3331   }
   3332   Types.push_back(dt);
   3333   return QualType(dt, 0);
   3334 }
   3335 
   3336 /// getUnaryTransformationType - We don't unique these, since the memory
   3337 /// savings are minimal and these are rare.
   3338 QualType ASTContext::getUnaryTransformType(QualType BaseType,
   3339                                            QualType UnderlyingType,
   3340                                            UnaryTransformType::UTTKind Kind)
   3341     const {
   3342   UnaryTransformType *Ty =
   3343     new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
   3344                                                    Kind,
   3345                                  UnderlyingType->isDependentType() ?
   3346                                  QualType() : getCanonicalType(UnderlyingType));
   3347   Types.push_back(Ty);
   3348   return QualType(Ty, 0);
   3349 }
   3350 
   3351 /// getAutoType - We only unique auto types after they've been deduced.
   3352 QualType ASTContext::getAutoType(QualType DeducedType) const {
   3353   void *InsertPos = 0;
   3354   if (!DeducedType.isNull()) {
   3355     // Look in the folding set for an existing type.
   3356     llvm::FoldingSetNodeID ID;
   3357     AutoType::Profile(ID, DeducedType);
   3358     if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
   3359       return QualType(AT, 0);
   3360   }
   3361 
   3362   AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
   3363   Types.push_back(AT);
   3364   if (InsertPos)
   3365     AutoTypes.InsertNode(AT, InsertPos);
   3366   return QualType(AT, 0);
   3367 }
   3368 
   3369 /// getAtomicType - Return the uniqued reference to the atomic type for
   3370 /// the given value type.
   3371 QualType ASTContext::getAtomicType(QualType T) const {
   3372   // Unique pointers, to guarantee there is only one pointer of a particular
   3373   // structure.
   3374   llvm::FoldingSetNodeID ID;
   3375   AtomicType::Profile(ID, T);
   3376 
   3377   void *InsertPos = 0;
   3378   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
   3379     return QualType(AT, 0);
   3380 
   3381   // If the atomic value type isn't canonical, this won't be a canonical type
   3382   // either, so fill in the canonical type field.
   3383   QualType Canonical;
   3384   if (!T.isCanonical()) {
   3385     Canonical = getAtomicType(getCanonicalType(T));
   3386 
   3387     // Get the new insert position for the node we care about.
   3388     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
   3389     assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
   3390   }
   3391   AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
   3392   Types.push_back(New);
   3393   AtomicTypes.InsertNode(New, InsertPos);
   3394   return QualType(New, 0);
   3395 }
   3396 
   3397 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
   3398 QualType ASTContext::getAutoDeductType() const {
   3399   if (AutoDeductTy.isNull())
   3400     AutoDeductTy = getAutoType(QualType());
   3401   assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
   3402   return AutoDeductTy;
   3403 }
   3404 
   3405 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
   3406 QualType ASTContext::getAutoRRefDeductType() const {
   3407   if (AutoRRefDeductTy.isNull())
   3408     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
   3409   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
   3410   return AutoRRefDeductTy;
   3411 }
   3412 
   3413 /// getTagDeclType - Return the unique reference to the type for the
   3414 /// specified TagDecl (struct/union/class/enum) decl.
   3415 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
   3416   assert (Decl);
   3417   // FIXME: What is the design on getTagDeclType when it requires casting
   3418   // away const?  mutable?
   3419   return getTypeDeclType(const_cast<TagDecl*>(Decl));
   3420 }
   3421 
   3422 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
   3423 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
   3424 /// needs to agree with the definition in <stddef.h>.
   3425 CanQualType ASTContext::getSizeType() const {
   3426   return getFromTargetType(Target->getSizeType());
   3427 }
   3428 
   3429 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
   3430 CanQualType ASTContext::getIntMaxType() const {
   3431   return getFromTargetType(Target->getIntMaxType());
   3432 }
   3433 
   3434 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
   3435 CanQualType ASTContext::getUIntMaxType() const {
   3436   return getFromTargetType(Target->getUIntMaxType());
   3437 }
   3438 
   3439 /// getSignedWCharType - Return the type of "signed wchar_t".
   3440 /// Used when in C++, as a GCC extension.
   3441 QualType ASTContext::getSignedWCharType() const {
   3442   // FIXME: derive from "Target" ?
   3443   return WCharTy;
   3444 }
   3445 
   3446 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
   3447 /// Used when in C++, as a GCC extension.
   3448 QualType ASTContext::getUnsignedWCharType() const {
   3449   // FIXME: derive from "Target" ?
   3450   return UnsignedIntTy;
   3451 }
   3452 
   3453 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
   3454 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
   3455 QualType ASTContext::getPointerDiffType() const {
   3456   return getFromTargetType(Target->getPtrDiffType(0));
   3457 }
   3458 
   3459 //===----------------------------------------------------------------------===//
   3460 //                              Type Operators
   3461 //===----------------------------------------------------------------------===//
   3462 
   3463 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
   3464   // Push qualifiers into arrays, and then discard any remaining
   3465   // qualifiers.
   3466   T = getCanonicalType(T);
   3467   T = getVariableArrayDecayedType(T);
   3468   const Type *Ty = T.getTypePtr();
   3469   QualType Result;
   3470   if (isa<ArrayType>(Ty)) {
   3471     Result = getArrayDecayedType(QualType(Ty,0));
   3472   } else if (isa<FunctionType>(Ty)) {
   3473     Result = getPointerType(QualType(Ty, 0));
   3474   } else {
   3475     Result = QualType(Ty, 0);
   3476   }
   3477 
   3478   return CanQualType::CreateUnsafe(Result);
   3479 }
   3480 
   3481 QualType ASTContext::getUnqualifiedArrayType(QualType type,
   3482                                              Qualifiers &quals) {
   3483   SplitQualType splitType = type.getSplitUnqualifiedType();
   3484 
   3485   // FIXME: getSplitUnqualifiedType() actually walks all the way to
   3486   // the unqualified desugared type and then drops it on the floor.
   3487   // We then have to strip that sugar back off with
   3488   // getUnqualifiedDesugaredType(), which is silly.
   3489   const ArrayType *AT =
   3490     dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
   3491 
   3492   // If we don't have an array, just use the results in splitType.
   3493   if (!AT) {
   3494     quals = splitType.Quals;
   3495     return QualType(splitType.Ty, 0);
   3496   }
   3497 
   3498   // Otherwise, recurse on the array's element type.
   3499   QualType elementType = AT->getElementType();
   3500   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
   3501 
   3502   // If that didn't change the element type, AT has no qualifiers, so we
   3503   // can just use the results in splitType.
   3504   if (elementType == unqualElementType) {
   3505     assert(quals.empty()); // from the recursive call
   3506     quals = splitType.Quals;
   3507     return QualType(splitType.Ty, 0);
   3508   }
   3509 
   3510   // Otherwise, add in the qualifiers from the outermost type, then
   3511   // build the type back up.
   3512   quals.addConsistentQualifiers(splitType.Quals);
   3513 
   3514   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
   3515     return getConstantArrayType(unqualElementType, CAT->getSize(),
   3516                                 CAT->getSizeModifier(), 0);
   3517   }
   3518 
   3519   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
   3520     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
   3521   }
   3522 
   3523   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
   3524     return getVariableArrayType(unqualElementType,
   3525                                 VAT->getSizeExpr(),
   3526                                 VAT->getSizeModifier(),
   3527                                 VAT->getIndexTypeCVRQualifiers(),
   3528                                 VAT->getBracketsRange());
   3529   }
   3530 
   3531   const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
   3532   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
   3533                                     DSAT->getSizeModifier(), 0,
   3534                                     SourceRange());
   3535 }
   3536 
   3537 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
   3538 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
   3539 /// they point to and return true. If T1 and T2 aren't pointer types
   3540 /// or pointer-to-member types, or if they are not similar at this
   3541 /// level, returns false and leaves T1 and T2 unchanged. Top-level
   3542 /// qualifiers on T1 and T2 are ignored. This function will typically
   3543 /// be called in a loop that successively "unwraps" pointer and
   3544 /// pointer-to-member types to compare them at each level.
   3545 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
   3546   const PointerType *T1PtrType = T1->getAs<PointerType>(),
   3547                     *T2PtrType = T2->getAs<PointerType>();
   3548   if (T1PtrType && T2PtrType) {
   3549     T1 = T1PtrType->getPointeeType();
   3550     T2 = T2PtrType->getPointeeType();
   3551     return true;
   3552   }
   3553 
   3554   const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
   3555                           *T2MPType = T2->getAs<MemberPointerType>();
   3556   if (T1MPType && T2MPType &&
   3557       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
   3558                              QualType(T2MPType->getClass(), 0))) {
   3559     T1 = T1MPType->getPointeeType();
   3560     T2 = T2MPType->getPointeeType();
   3561     return true;
   3562   }
   3563 
   3564   if (getLangOpts().ObjC1) {
   3565     const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
   3566                                 *T2OPType = T2->getAs<ObjCObjectPointerType>();
   3567     if (T1OPType && T2OPType) {
   3568       T1 = T1OPType->getPointeeType();
   3569       T2 = T2OPType->getPointeeType();
   3570       return true;
   3571     }
   3572   }
   3573 
   3574   // FIXME: Block pointers, too?
   3575 
   3576   return false;
   3577 }
   3578 
   3579 DeclarationNameInfo
   3580 ASTContext::getNameForTemplate(TemplateName Name,
   3581                                SourceLocation NameLoc) const {
   3582   switch (Name.getKind()) {
   3583   case TemplateName::QualifiedTemplate:
   3584   case TemplateName::Template:
   3585     // DNInfo work in progress: CHECKME: what about DNLoc?
   3586     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
   3587                                NameLoc);
   3588 
   3589   case TemplateName::OverloadedTemplate: {
   3590     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
   3591     // DNInfo work in progress: CHECKME: what about DNLoc?
   3592     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
   3593   }
   3594 
   3595   case TemplateName::DependentTemplate: {
   3596     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
   3597     DeclarationName DName;
   3598     if (DTN->isIdentifier()) {
   3599       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
   3600       return DeclarationNameInfo(DName, NameLoc);
   3601     } else {
   3602       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
   3603       // DNInfo work in progress: FIXME: source locations?
   3604       DeclarationNameLoc DNLoc;
   3605       DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
   3606       DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
   3607       return DeclarationNameInfo(DName, NameLoc, DNLoc);
   3608     }
   3609   }
   3610 
   3611   case TemplateName::SubstTemplateTemplateParm: {
   3612     SubstTemplateTemplateParmStorage *subst
   3613       = Name.getAsSubstTemplateTemplateParm();
   3614     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
   3615                                NameLoc);
   3616   }
   3617 
   3618   case TemplateName::SubstTemplateTemplateParmPack: {
   3619     SubstTemplateTemplateParmPackStorage *subst
   3620       = Name.getAsSubstTemplateTemplateParmPack();
   3621     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
   3622                                NameLoc);
   3623   }
   3624   }
   3625 
   3626   llvm_unreachable("bad template name kind!");
   3627 }
   3628 
   3629 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
   3630   switch (Name.getKind()) {
   3631   case TemplateName::QualifiedTemplate:
   3632   case TemplateName::Template: {
   3633     TemplateDecl *Template = Name.getAsTemplateDecl();
   3634     if (TemplateTemplateParmDecl *TTP
   3635           = dyn_cast<TemplateTemplateParmDecl>(Template))
   3636       Template = getCanonicalTemplateTemplateParmDecl(TTP);
   3637 
   3638     // The canonical template name is the canonical template declaration.
   3639     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
   3640   }
   3641 
   3642   case TemplateName::OverloadedTemplate:
   3643     llvm_unreachable("cannot canonicalize overloaded template");
   3644 
   3645   case TemplateName::DependentTemplate: {
   3646     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
   3647     assert(DTN && "Non-dependent template names must refer to template decls.");
   3648     return DTN->CanonicalTemplateName;
   3649   }
   3650 
   3651   case TemplateName::SubstTemplateTemplateParm: {
   3652     SubstTemplateTemplateParmStorage *subst
   3653       = Name.getAsSubstTemplateTemplateParm();
   3654     return getCanonicalTemplateName(subst->getReplacement());
   3655   }
   3656 
   3657   case TemplateName::SubstTemplateTemplateParmPack: {
   3658     SubstTemplateTemplateParmPackStorage *subst
   3659                                   = Name.getAsSubstTemplateTemplateParmPack();
   3660     TemplateTemplateParmDecl *canonParameter
   3661       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
   3662     TemplateArgument canonArgPack
   3663       = getCanonicalTemplateArgument(subst->getArgumentPack());
   3664     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
   3665   }
   3666   }
   3667 
   3668   llvm_unreachable("bad template name!");
   3669 }
   3670 
   3671 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
   3672   X = getCanonicalTemplateName(X);
   3673   Y = getCanonicalTemplateName(Y);
   3674   return X.getAsVoidPointer() == Y.getAsVoidPointer();
   3675 }
   3676 
   3677 TemplateArgument
   3678 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
   3679   switch (Arg.getKind()) {
   3680     case TemplateArgument::Null:
   3681       return Arg;
   3682 
   3683     case TemplateArgument::Expression:
   3684       return Arg;
   3685 
   3686     case TemplateArgument::Declaration: {
   3687       if (Decl *D = Arg.getAsDecl())
   3688           return TemplateArgument(D->getCanonicalDecl());
   3689       return TemplateArgument((Decl*)0);
   3690     }
   3691 
   3692     case TemplateArgument::Template:
   3693       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
   3694 
   3695     case TemplateArgument::TemplateExpansion:
   3696       return TemplateArgument(getCanonicalTemplateName(
   3697                                          Arg.getAsTemplateOrTemplatePattern()),
   3698                               Arg.getNumTemplateExpansions());
   3699 
   3700     case TemplateArgument::Integral:
   3701       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
   3702 
   3703     case TemplateArgument::Type:
   3704       return TemplateArgument(getCanonicalType(Arg.getAsType()));
   3705 
   3706     case TemplateArgument::Pack: {
   3707       if (Arg.pack_size() == 0)
   3708         return Arg;
   3709 
   3710       TemplateArgument *CanonArgs
   3711         = new (*this) TemplateArgument[Arg.pack_size()];
   3712       unsigned Idx = 0;
   3713       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
   3714                                         AEnd = Arg.pack_end();
   3715            A != AEnd; (void)++A, ++Idx)
   3716         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
   3717 
   3718       return TemplateArgument(CanonArgs, Arg.pack_size());
   3719     }
   3720   }
   3721 
   3722   // Silence GCC warning
   3723   llvm_unreachable("Unhandled template argument kind");
   3724 }
   3725 
   3726 NestedNameSpecifier *
   3727 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
   3728   if (!NNS)
   3729     return 0;
   3730 
   3731   switch (NNS->getKind()) {
   3732   case NestedNameSpecifier::Identifier:
   3733     // Canonicalize the prefix but keep the identifier the same.
   3734     return NestedNameSpecifier::Create(*this,
   3735                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
   3736                                        NNS->getAsIdentifier());
   3737 
   3738   case NestedNameSpecifier::Namespace:
   3739     // A namespace is canonical; build a nested-name-specifier with
   3740     // this namespace and no prefix.
   3741     return NestedNameSpecifier::Create(*this, 0,
   3742                                  NNS->getAsNamespace()->getOriginalNamespace());
   3743 
   3744   case NestedNameSpecifier::NamespaceAlias:
   3745     // A namespace is canonical; build a nested-name-specifier with
   3746     // this namespace and no prefix.
   3747     return NestedNameSpecifier::Create(*this, 0,
   3748                                     NNS->getAsNamespaceAlias()->getNamespace()
   3749                                                       ->getOriginalNamespace());
   3750 
   3751   case NestedNameSpecifier::TypeSpec:
   3752   case NestedNameSpecifier::TypeSpecWithTemplate: {
   3753     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
   3754 
   3755     // If we have some kind of dependent-named type (e.g., "typename T::type"),
   3756     // break it apart into its prefix and identifier, then reconsititute those
   3757     // as the canonical nested-name-specifier. This is required to canonicalize
   3758     // a dependent nested-name-specifier involving typedefs of dependent-name
   3759     // types, e.g.,
   3760     //   typedef typename T::type T1;
   3761     //   typedef typename T1::type T2;
   3762     if (const DependentNameType *DNT = T->getAs<DependentNameType>())
   3763       return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
   3764                            const_cast<IdentifierInfo *>(DNT->getIdentifier()));
   3765 
   3766     // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
   3767     // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
   3768     // first place?
   3769     return NestedNameSpecifier::Create(*this, 0, false,
   3770                                        const_cast<Type*>(T.getTypePtr()));
   3771   }
   3772 
   3773   case NestedNameSpecifier::Global:
   3774     // The global specifier is canonical and unique.
   3775     return NNS;
   3776   }
   3777 
   3778   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
   3779 }
   3780 
   3781 
   3782 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
   3783   // Handle the non-qualified case efficiently.
   3784   if (!T.hasLocalQualifiers()) {
   3785     // Handle the common positive case fast.
   3786     if (const ArrayType *AT = dyn_cast<ArrayType>(T))
   3787       return AT;
   3788   }
   3789 
   3790   // Handle the common negative case fast.
   3791   if (!isa<ArrayType>(T.getCanonicalType()))
   3792     return 0;
   3793 
   3794   // Apply any qualifiers from the array type to the element type.  This
   3795   // implements C99 6.7.3p8: "If the specification of an array type includes
   3796   // any type qualifiers, the element type is so qualified, not the array type."
   3797 
   3798   // If we get here, we either have type qualifiers on the type, or we have
   3799   // sugar such as a typedef in the way.  If we have type qualifiers on the type
   3800   // we must propagate them down into the element type.
   3801 
   3802   SplitQualType split = T.getSplitDesugaredType();
   3803   Qualifiers qs = split.Quals;
   3804 
   3805   // If we have a simple case, just return now.
   3806   const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
   3807   if (ATy == 0 || qs.empty())
   3808     return ATy;
   3809 
   3810   // Otherwise, we have an array and we have qualifiers on it.  Push the
   3811   // qualifiers into the array element type and return a new array type.
   3812   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
   3813 
   3814   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
   3815     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
   3816                                                 CAT->getSizeModifier(),
   3817                                            CAT->getIndexTypeCVRQualifiers()));
   3818   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
   3819     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
   3820                                                   IAT->getSizeModifier(),
   3821                                            IAT->getIndexTypeCVRQualifiers()));
   3822 
   3823   if (const DependentSizedArrayType *DSAT
   3824         = dyn_cast<DependentSizedArrayType>(ATy))
   3825     return cast<ArrayType>(
   3826                      getDependentSizedArrayType(NewEltTy,
   3827                                                 DSAT->getSizeExpr(),
   3828                                                 DSAT->getSizeModifier(),
   3829                                               DSAT->getIndexTypeCVRQualifiers(),
   3830                                                 DSAT->getBracketsRange()));
   3831 
   3832   const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
   3833   return cast<ArrayType>(getVariableArrayType(NewEltTy,
   3834                                               VAT->getSizeExpr(),
   3835                                               VAT->getSizeModifier(),
   3836                                               VAT->getIndexTypeCVRQualifiers(),
   3837                                               VAT->getBracketsRange()));
   3838 }
   3839 
   3840 QualType ASTContext::getAdjustedParameterType(QualType T) const {
   3841   // C99 6.7.5.3p7:
   3842   //   A declaration of a parameter as "array of type" shall be
   3843   //   adjusted to "qualified pointer to type", where the type
   3844   //   qualifiers (if any) are those specified within the [ and ] of
   3845   //   the array type derivation.
   3846   if (T->isArrayType())
   3847     return getArrayDecayedType(T);
   3848 
   3849   // C99 6.7.5.3p8:
   3850   //   A declaration of a parameter as "function returning type"
   3851   //   shall be adjusted to "pointer to function returning type", as
   3852   //   in 6.3.2.1.
   3853   if (T->isFunctionType())
   3854     return getPointerType(T);
   3855 
   3856   return T;
   3857 }
   3858 
   3859 QualType ASTContext::getSignatureParameterType(QualType T) const {
   3860   T = getVariableArrayDecayedType(T);
   3861   T = getAdjustedParameterType(T);
   3862   return T.getUnqualifiedType();
   3863 }
   3864 
   3865 /// getArrayDecayedType - Return the properly qualified result of decaying the
   3866 /// specified array type to a pointer.  This operation is non-trivial when
   3867 /// handling typedefs etc.  The canonical type of "T" must be an array type,
   3868 /// this returns a pointer to a properly qualified element of the array.
   3869 ///
   3870 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
   3871 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
   3872   // Get the element type with 'getAsArrayType' so that we don't lose any
   3873   // typedefs in the element type of the array.  This also handles propagation
   3874   // of type qualifiers from the array type into the element type if present
   3875   // (C99 6.7.3p8).
   3876   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
   3877   assert(PrettyArrayType && "Not an array type!");
   3878 
   3879   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
   3880 
   3881   // int x[restrict 4] ->  int *restrict
   3882   return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
   3883 }
   3884 
   3885 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
   3886   return getBaseElementType(array->getElementType());
   3887 }
   3888 
   3889 QualType ASTContext::getBaseElementType(QualType type) const {
   3890   Qualifiers qs;
   3891   while (true) {
   3892     SplitQualType split = type.getSplitDesugaredType();
   3893     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
   3894     if (!array) break;
   3895 
   3896     type = array->getElementType();
   3897     qs.addConsistentQualifiers(split.Quals);
   3898   }
   3899 
   3900   return getQualifiedType(type, qs);
   3901 }
   3902 
   3903 /// getConstantArrayElementCount - Returns number of constant array elements.
   3904 uint64_t
   3905 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
   3906   uint64_t ElementCount = 1;
   3907   do {
   3908     ElementCount *= CA->getSize().getZExtValue();
   3909     CA = dyn_cast<ConstantArrayType>(CA->getElementType());
   3910   } while (CA);
   3911   return ElementCount;
   3912 }
   3913 
   3914 /// getFloatingRank - Return a relative rank for floating point types.
   3915 /// This routine will assert if passed a built-in type that isn't a float.
   3916 static FloatingRank getFloatingRank(QualType T) {
   3917   if (const ComplexType *CT = T->getAs<ComplexType>())
   3918     return getFloatingRank(CT->getElementType());
   3919 
   3920   assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
   3921   switch (T->getAs<BuiltinType>()->getKind()) {
   3922   default: llvm_unreachable("getFloatingRank(): not a floating type");
   3923   case BuiltinType::Half:       return HalfRank;
   3924   case BuiltinType::Float:      return FloatRank;
   3925   case BuiltinType::Double:     return DoubleRank;
   3926   case BuiltinType::LongDouble: return LongDoubleRank;
   3927   }
   3928 }
   3929 
   3930 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
   3931 /// point or a complex type (based on typeDomain/typeSize).
   3932 /// 'typeDomain' is a real floating point or complex type.
   3933 /// 'typeSize' is a real floating point or complex type.
   3934 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
   3935                                                        QualType Domain) const {
   3936   FloatingRank EltRank = getFloatingRank(Size);
   3937   if (Domain->isComplexType()) {
   3938     switch (EltRank) {
   3939     case HalfRank: llvm_unreachable("Complex half is not supported");
   3940     case FloatRank:      return FloatComplexTy;
   3941     case DoubleRank:     return DoubleComplexTy;
   3942     case LongDoubleRank: return LongDoubleComplexTy;
   3943     }
   3944   }
   3945 
   3946   assert(Domain->isRealFloatingType() && "Unknown domain!");
   3947   switch (EltRank) {
   3948   case HalfRank: llvm_unreachable("Half ranks are not valid here");
   3949   case FloatRank:      return FloatTy;
   3950   case DoubleRank:     return DoubleTy;
   3951   case LongDoubleRank: return LongDoubleTy;
   3952   }
   3953   llvm_unreachable("getFloatingRank(): illegal value for rank");
   3954 }
   3955 
   3956 /// getFloatingTypeOrder - Compare the rank of the two specified floating
   3957 /// point types, ignoring the domain of the type (i.e. 'double' ==
   3958 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
   3959 /// LHS < RHS, return -1.
   3960 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
   3961   FloatingRank LHSR = getFloatingRank(LHS);
   3962   FloatingRank RHSR = getFloatingRank(RHS);
   3963 
   3964   if (LHSR == RHSR)
   3965     return 0;
   3966   if (LHSR > RHSR)
   3967     return 1;
   3968   return -1;
   3969 }
   3970 
   3971 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
   3972 /// routine will assert if passed a built-in type that isn't an integer or enum,
   3973 /// or if it is not canonicalized.
   3974 unsigned ASTContext::getIntegerRank(const Type *T) const {
   3975   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
   3976 
   3977   switch (cast<BuiltinType>(T)->getKind()) {
   3978   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
   3979   case BuiltinType::Bool:
   3980     return 1 + (getIntWidth(BoolTy) << 3);
   3981   case BuiltinType::Char_S:
   3982   case BuiltinType::Char_U:
   3983   case BuiltinType::SChar:
   3984   case BuiltinType::UChar:
   3985     return 2 + (getIntWidth(CharTy) << 3);
   3986   case BuiltinType::Short:
   3987   case BuiltinType::UShort:
   3988     return 3 + (getIntWidth(ShortTy) << 3);
   3989   case BuiltinType::Int:
   3990   case BuiltinType::UInt:
   3991     return 4 + (getIntWidth(IntTy) << 3);
   3992   case BuiltinType::Long:
   3993   case BuiltinType::ULong:
   3994     return 5 + (getIntWidth(LongTy) << 3);
   3995   case BuiltinType::LongLong:
   3996   case BuiltinType::ULongLong:
   3997     return 6 + (getIntWidth(LongLongTy) << 3);
   3998   case BuiltinType::Int128:
   3999   case BuiltinType::UInt128:
   4000     return 7 + (getIntWidth(Int128Ty) << 3);
   4001   }
   4002 }
   4003 
   4004 /// \brief Whether this is a promotable bitfield reference according
   4005 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
   4006 ///
   4007 /// \returns the type this bit-field will promote to, or NULL if no
   4008 /// promotion occurs.
   4009 QualType ASTContext::isPromotableBitField(Expr *E) const {
   4010   if (E->isTypeDependent() || E->isValueDependent())
   4011     return QualType();
   4012 
   4013   FieldDecl *Field = E->getBitField();
   4014   if (!Field)
   4015     return QualType();
   4016 
   4017   QualType FT = Field->getType();
   4018 
   4019   uint64_t BitWidth = Field->getBitWidthValue(*this);
   4020   uint64_t IntSize = getTypeSize(IntTy);
   4021   // GCC extension compatibility: if the bit-field size is less than or equal
   4022   // to the size of int, it gets promoted no matter what its type is.
   4023   // For instance, unsigned long bf : 4 gets promoted to signed int.
   4024   if (BitWidth < IntSize)
   4025     return IntTy;
   4026 
   4027   if (BitWidth == IntSize)
   4028     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
   4029 
   4030   // Types bigger than int are not subject to promotions, and therefore act
   4031   // like the base type.
   4032   // FIXME: This doesn't quite match what gcc does, but what gcc does here
   4033   // is ridiculous.
   4034   return QualType();
   4035 }
   4036 
   4037 /// getPromotedIntegerType - Returns the type that Promotable will
   4038 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
   4039 /// integer type.
   4040 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
   4041   assert(!Promotable.isNull());
   4042   assert(Promotable->isPromotableIntegerType());
   4043   if (const EnumType *ET = Promotable->getAs<EnumType>())
   4044     return ET->getDecl()->getPromotionType();
   4045 
   4046   if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
   4047     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
   4048     // (3.9.1) can be converted to a prvalue of the first of the following
   4049     // types that can represent all the values of its underlying type:
   4050     // int, unsigned int, long int, unsigned long int, long long int, or
   4051     // unsigned long long int [...]
   4052     // FIXME: Is there some better way to compute this?
   4053     if (BT->getKind() == BuiltinType::WChar_S ||
   4054         BT->getKind() == BuiltinType::WChar_U ||
   4055         BT->getKind() == BuiltinType::Char16 ||
   4056         BT->getKind() == BuiltinType::Char32) {
   4057       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
   4058       uint64_t FromSize = getTypeSize(BT);
   4059       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
   4060                                   LongLongTy, UnsignedLongLongTy };
   4061       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
   4062         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
   4063         if (FromSize < ToSize ||
   4064             (FromSize == ToSize &&
   4065              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
   4066           return PromoteTypes[Idx];
   4067       }
   4068       llvm_unreachable("char type should fit into long long");
   4069     }
   4070   }
   4071 
   4072   // At this point, we should have a signed or unsigned integer type.
   4073   if (Promotable->isSignedIntegerType())
   4074     return IntTy;
   4075   uint64_t PromotableSize = getTypeSize(Promotable);
   4076   uint64_t IntSize = getTypeSize(IntTy);
   4077   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
   4078   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
   4079 }
   4080 
   4081 /// \brief Recurses in pointer/array types until it finds an objc retainable
   4082 /// type and returns its ownership.
   4083 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
   4084   while (!T.isNull()) {
   4085     if (T.getObjCLifetime() != Qualifiers::OCL_None)
   4086       return T.getObjCLifetime();
   4087     if (T->isArrayType())
   4088       T = getBaseElementType(T);
   4089     else if (const PointerType *PT = T->getAs<PointerType>())
   4090       T = PT->getPointeeType();
   4091     else if (const ReferenceType *RT = T->getAs<ReferenceType>())
   4092       T = RT->getPointeeType();
   4093     else
   4094       break;
   4095   }
   4096 
   4097   return Qualifiers::OCL_None;
   4098 }
   4099 
   4100 /// getIntegerTypeOrder - Returns the highest ranked integer type:
   4101 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
   4102 /// LHS < RHS, return -1.
   4103 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
   4104   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
   4105   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
   4106   if (LHSC == RHSC) return 0;
   4107 
   4108   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
   4109   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
   4110 
   4111   unsigned LHSRank = getIntegerRank(LHSC);
   4112   unsigned RHSRank = getIntegerRank(RHSC);
   4113 
   4114   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
   4115     if (LHSRank == RHSRank) return 0;
   4116     return LHSRank > RHSRank ? 1 : -1;
   4117   }
   4118 
   4119   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
   4120   if (LHSUnsigned) {
   4121     // If the unsigned [LHS] type is larger, return it.
   4122     if (LHSRank >= RHSRank)
   4123       return 1;
   4124 
   4125     // If the signed type can represent all values of the unsigned type, it
   4126     // wins.  Because we are dealing with 2's complement and types that are
   4127     // powers of two larger than each other, this is always safe.
   4128     return -1;
   4129   }
   4130 
   4131   // If the unsigned [RHS] type is larger, return it.
   4132   if (RHSRank >= LHSRank)
   4133     return -1;
   4134 
   4135   // If the signed type can represent all values of the unsigned type, it
   4136   // wins.  Because we are dealing with 2's complement and types that are
   4137   // powers of two larger than each other, this is always safe.
   4138   return 1;
   4139 }
   4140 
   4141 static RecordDecl *
   4142 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
   4143                  DeclContext *DC, IdentifierInfo *Id) {
   4144   SourceLocation Loc;
   4145   if (Ctx.getLangOpts().CPlusPlus)
   4146     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
   4147   else
   4148     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
   4149 }
   4150 
   4151 // getCFConstantStringType - Return the type used for constant CFStrings.
   4152 QualType ASTContext::getCFConstantStringType() const {
   4153   if (!CFConstantStringTypeDecl) {
   4154     CFConstantStringTypeDecl =
   4155       CreateRecordDecl(*this, TTK_Struct, TUDecl,
   4156                        &Idents.get("NSConstantString"));
   4157     CFConstantStringTypeDecl->startDefinition();
   4158 
   4159     QualType FieldTypes[4];
   4160 
   4161     // const int *isa;
   4162     FieldTypes[0] = getPointerType(IntTy.withConst());
   4163     // int flags;
   4164     FieldTypes[1] = IntTy;
   4165     // const char *str;
   4166     FieldTypes[2] = getPointerType(CharTy.withConst());
   4167     // long length;
   4168     FieldTypes[3] = LongTy;
   4169 
   4170     // Create fields
   4171     for (unsigned i = 0; i < 4; ++i) {
   4172       FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
   4173                                            SourceLocation(),
   4174                                            SourceLocation(), 0,
   4175                                            FieldTypes[i], /*TInfo=*/0,
   4176                                            /*BitWidth=*/0,
   4177                                            /*Mutable=*/false,
   4178                                            ICIS_NoInit);
   4179       Field->setAccess(AS_public);
   4180       CFConstantStringTypeDecl->addDecl(Field);
   4181     }
   4182 
   4183     CFConstantStringTypeDecl->completeDefinition();
   4184   }
   4185 
   4186   return getTagDeclType(CFConstantStringTypeDecl);
   4187 }
   4188 
   4189 void ASTContext::setCFConstantStringType(QualType T) {
   4190   const RecordType *Rec = T->getAs<RecordType>();
   4191   assert(Rec && "Invalid CFConstantStringType");
   4192   CFConstantStringTypeDecl = Rec->getDecl();
   4193 }
   4194 
   4195 QualType ASTContext::getBlockDescriptorType() const {
   4196   if (BlockDescriptorType)
   4197     return getTagDeclType(BlockDescriptorType);
   4198 
   4199   RecordDecl *T;
   4200   // FIXME: Needs the FlagAppleBlock bit.
   4201   T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
   4202                        &Idents.get("__block_descriptor"));
   4203   T->startDefinition();
   4204 
   4205   QualType FieldTypes[] = {
   4206     UnsignedLongTy,
   4207     UnsignedLongTy,
   4208   };
   4209 
   4210   const char *FieldNames[] = {
   4211     "reserved",
   4212     "Size"
   4213   };
   4214 
   4215   for (size_t i = 0; i < 2; ++i) {
   4216     FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
   4217                                          SourceLocation(),
   4218                                          &Idents.get(FieldNames[i]),
   4219                                          FieldTypes[i], /*TInfo=*/0,
   4220                                          /*BitWidth=*/0,
   4221                                          /*Mutable=*/false,
   4222                                          ICIS_NoInit);
   4223     Field->setAccess(AS_public);
   4224     T->addDecl(Field);
   4225   }
   4226 
   4227   T->completeDefinition();
   4228 
   4229   BlockDescriptorType = T;
   4230 
   4231   return getTagDeclType(BlockDescriptorType);
   4232 }
   4233 
   4234 QualType ASTContext::getBlockDescriptorExtendedType() const {
   4235   if (BlockDescriptorExtendedType)
   4236     return getTagDeclType(BlockDescriptorExtendedType);
   4237 
   4238   RecordDecl *T;
   4239   // FIXME: Needs the FlagAppleBlock bit.
   4240   T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
   4241                        &Idents.get("__block_descriptor_withcopydispose"));
   4242   T->startDefinition();
   4243 
   4244   QualType FieldTypes[] = {
   4245     UnsignedLongTy,
   4246     UnsignedLongTy,
   4247     getPointerType(VoidPtrTy),
   4248     getPointerType(VoidPtrTy)
   4249   };
   4250 
   4251   const char *FieldNames[] = {
   4252     "reserved",
   4253     "Size",
   4254     "CopyFuncPtr",
   4255     "DestroyFuncPtr"
   4256   };
   4257 
   4258   for (size_t i = 0; i < 4; ++i) {
   4259     FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
   4260                                          SourceLocation(),
   4261                                          &Idents.get(FieldNames[i]),
   4262                                          FieldTypes[i], /*TInfo=*/0,
   4263                                          /*BitWidth=*/0,
   4264                                          /*Mutable=*/false,
   4265                                          ICIS_NoInit);
   4266     Field->setAccess(AS_public);
   4267     T->addDecl(Field);
   4268   }
   4269 
   4270   T->completeDefinition();
   4271 
   4272   BlockDescriptorExtendedType = T;
   4273 
   4274   return getTagDeclType(BlockDescriptorExtendedType);
   4275 }
   4276 
   4277 bool ASTContext::BlockRequiresCopying(QualType Ty) const {
   4278   if (Ty->isObjCRetainableType())
   4279     return true;
   4280   if (getLangOpts().CPlusPlus) {
   4281     if (const RecordType *RT = Ty->getAs<RecordType>()) {
   4282       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   4283       return RD->hasConstCopyConstructor();
   4284 
   4285     }
   4286   }
   4287   return false;
   4288 }
   4289 
   4290 QualType
   4291 ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
   4292   //  type = struct __Block_byref_1_X {
   4293   //    void *__isa;
   4294   //    struct __Block_byref_1_X *__forwarding;
   4295   //    unsigned int __flags;
   4296   //    unsigned int __size;
   4297   //    void *__copy_helper;            // as needed
   4298   //    void *__destroy_help            // as needed
   4299   //    int X;
   4300   //  } *
   4301 
   4302   bool HasCopyAndDispose = BlockRequiresCopying(Ty);
   4303 
   4304   // FIXME: Move up
   4305   SmallString<36> Name;
   4306   llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
   4307                                   ++UniqueBlockByRefTypeID << '_' << DeclName;
   4308   RecordDecl *T;
   4309   T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
   4310   T->startDefinition();
   4311   QualType Int32Ty = IntTy;
   4312   assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
   4313   QualType FieldTypes[] = {
   4314     getPointerType(VoidPtrTy),
   4315     getPointerType(getTagDeclType(T)),
   4316     Int32Ty,
   4317     Int32Ty,
   4318     getPointerType(VoidPtrTy),
   4319     getPointerType(VoidPtrTy),
   4320     Ty
   4321   };
   4322 
   4323   StringRef FieldNames[] = {
   4324     "__isa",
   4325     "__forwarding",
   4326     "__flags",
   4327     "__size",
   4328     "__copy_helper",
   4329     "__destroy_helper",
   4330     DeclName,
   4331   };
   4332 
   4333   for (size_t i = 0; i < 7; ++i) {
   4334     if (!HasCopyAndDispose && i >=4 && i <= 5)
   4335       continue;
   4336     FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
   4337                                          SourceLocation(),
   4338                                          &Idents.get(FieldNames[i]),
   4339                                          FieldTypes[i], /*TInfo=*/0,
   4340                                          /*BitWidth=*/0, /*Mutable=*/false,
   4341                                          ICIS_NoInit);
   4342     Field->setAccess(AS_public);
   4343     T->addDecl(Field);
   4344   }
   4345 
   4346   T->completeDefinition();
   4347 
   4348   return getPointerType(getTagDeclType(T));
   4349 }
   4350 
   4351 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
   4352   if (!ObjCInstanceTypeDecl)
   4353     ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
   4354                                                getTranslationUnitDecl(),
   4355                                                SourceLocation(),
   4356                                                SourceLocation(),
   4357                                                &Idents.get("instancetype"),
   4358                                      getTrivialTypeSourceInfo(getObjCIdType()));
   4359   return ObjCInstanceTypeDecl;
   4360 }
   4361 
   4362 // This returns true if a type has been typedefed to BOOL:
   4363 // typedef <type> BOOL;
   4364 static bool isTypeTypedefedAsBOOL(QualType T) {
   4365   if (const TypedefType *TT = dyn_cast<TypedefType>(T))
   4366     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
   4367       return II->isStr("BOOL");
   4368 
   4369   return false;
   4370 }
   4371 
   4372 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
   4373 /// purpose.
   4374 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
   4375   if (!type->isIncompleteArrayType() && type->isIncompleteType())
   4376     return CharUnits::Zero();
   4377 
   4378   CharUnits sz = getTypeSizeInChars(type);
   4379 
   4380   // Make all integer and enum types at least as large as an int
   4381   if (sz.isPositive() && type->isIntegralOrEnumerationType())
   4382     sz = std::max(sz, getTypeSizeInChars(IntTy));
   4383   // Treat arrays as pointers, since that's how they're passed in.
   4384   else if (type->isArrayType())
   4385     sz = getTypeSizeInChars(VoidPtrTy);
   4386   return sz;
   4387 }
   4388 
   4389 static inline
   4390 std::string charUnitsToString(const CharUnits &CU) {
   4391   return llvm::itostr(CU.getQuantity());
   4392 }
   4393 
   4394 /// getObjCEncodingForBlock - Return the encoded type for this block
   4395 /// declaration.
   4396 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
   4397   std::string S;
   4398 
   4399   const BlockDecl *Decl = Expr->getBlockDecl();
   4400   QualType BlockTy =
   4401       Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
   4402   // Encode result type.
   4403   getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
   4404   // Compute size of all parameters.
   4405   // Start with computing size of a pointer in number of bytes.
   4406   // FIXME: There might(should) be a better way of doing this computation!
   4407   SourceLocation Loc;
   4408   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
   4409   CharUnits ParmOffset = PtrSize;
   4410   for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
   4411        E = Decl->param_end(); PI != E; ++PI) {
   4412     QualType PType = (*PI)->getType();
   4413     CharUnits sz = getObjCEncodingTypeSize(PType);
   4414     if (sz.isZero())
   4415       continue;
   4416     assert (sz.isPositive() && "BlockExpr - Incomplete param type");
   4417     ParmOffset += sz;
   4418   }
   4419   // Size of the argument frame
   4420   S += charUnitsToString(ParmOffset);
   4421   // Block pointer and offset.
   4422   S += "@?0";
   4423 
   4424   // Argument types.
   4425   ParmOffset = PtrSize;
   4426   for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
   4427        Decl->param_end(); PI != E; ++PI) {
   4428     ParmVarDecl *PVDecl = *PI;
   4429     QualType PType = PVDecl->getOriginalType();
   4430     if (const ArrayType *AT =
   4431           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
   4432       // Use array's original type only if it has known number of
   4433       // elements.
   4434       if (!isa<ConstantArrayType>(AT))
   4435         PType = PVDecl->getType();
   4436     } else if (PType->isFunctionType())
   4437       PType = PVDecl->getType();
   4438     getObjCEncodingForType(PType, S);
   4439     S += charUnitsToString(ParmOffset);
   4440     ParmOffset += getObjCEncodingTypeSize(PType);
   4441   }
   4442 
   4443   return S;
   4444 }
   4445 
   4446 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
   4447                                                 std::string& S) {
   4448   // Encode result type.
   4449   getObjCEncodingForType(Decl->getResultType(), S);
   4450   CharUnits ParmOffset;
   4451   // Compute size of all parameters.
   4452   for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
   4453        E = Decl->param_end(); PI != E; ++PI) {
   4454     QualType PType = (*PI)->getType();
   4455     CharUnits sz = getObjCEncodingTypeSize(PType);
   4456     if (sz.isZero())
   4457       continue;
   4458 
   4459     assert (sz.isPositive() &&
   4460         "getObjCEncodingForFunctionDecl - Incomplete param type");
   4461     ParmOffset += sz;
   4462   }
   4463   S += charUnitsToString(ParmOffset);
   4464   ParmOffset = CharUnits::Zero();
   4465 
   4466   // Argument types.
   4467   for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
   4468        E = Decl->param_end(); PI != E; ++PI) {
   4469     ParmVarDecl *PVDecl = *PI;
   4470     QualType PType = PVDecl->getOriginalType();
   4471     if (const ArrayType *AT =
   4472           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
   4473       // Use array's original type only if it has known number of
   4474       // elements.
   4475       if (!isa<ConstantArrayType>(AT))
   4476         PType = PVDecl->getType();
   4477     } else if (PType->isFunctionType())
   4478       PType = PVDecl->getType();
   4479     getObjCEncodingForType(PType, S);
   4480     S += charUnitsToString(ParmOffset);
   4481     ParmOffset += getObjCEncodingTypeSize(PType);
   4482   }
   4483 
   4484   return false;
   4485 }
   4486 
   4487 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
   4488 /// method parameter or return type. If Extended, include class names and
   4489 /// block object types.
   4490 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
   4491                                                    QualType T, std::string& S,
   4492                                                    bool Extended) const {
   4493   // Encode type qualifer, 'in', 'inout', etc. for the parameter.
   4494   getObjCEncodingForTypeQualifier(QT, S);
   4495   // Encode parameter type.
   4496   getObjCEncodingForTypeImpl(T, S, true, true, 0,
   4497                              true     /*OutermostType*/,
   4498                              false    /*EncodingProperty*/,
   4499                              false    /*StructField*/,
   4500                              Extended /*EncodeBlockParameters*/,
   4501                              Extended /*EncodeClassNames*/);
   4502 }
   4503 
   4504 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
   4505 /// declaration.
   4506 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
   4507                                               std::string& S,
   4508                                               bool Extended) const {
   4509   // FIXME: This is not very efficient.
   4510   // Encode return type.
   4511   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
   4512                                     Decl->getResultType(), S, Extended);
   4513   // Compute size of all parameters.
   4514   // Start with computing size of a pointer in number of bytes.
   4515   // FIXME: There might(should) be a better way of doing this computation!
   4516   SourceLocation Loc;
   4517   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
   4518   // The first two arguments (self and _cmd) are pointers; account for
   4519   // their size.
   4520   CharUnits ParmOffset = 2 * PtrSize;
   4521   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
   4522        E = Decl->sel_param_end(); PI != E; ++PI) {
   4523     QualType PType = (*PI)->getType();
   4524     CharUnits sz = getObjCEncodingTypeSize(PType);
   4525     if (sz.isZero())
   4526       continue;
   4527 
   4528     assert (sz.isPositive() &&
   4529         "getObjCEncodingForMethodDecl - Incomplete param type");
   4530     ParmOffset += sz;
   4531   }
   4532   S += charUnitsToString(ParmOffset);
   4533   S += "@0:";
   4534   S += charUnitsToString(PtrSize);
   4535 
   4536   // Argument types.
   4537   ParmOffset = 2 * PtrSize;
   4538   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
   4539        E = Decl->sel_param_end(); PI != E; ++PI) {
   4540     const ParmVarDecl *PVDecl = *PI;
   4541     QualType PType = PVDecl->getOriginalType();
   4542     if (const ArrayType *AT =
   4543           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
   4544       // Use array's original type only if it has known number of
   4545       // elements.
   4546       if (!isa<ConstantArrayType>(AT))
   4547         PType = PVDecl->getType();
   4548     } else if (PType->isFunctionType())
   4549       PType = PVDecl->getType();
   4550     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
   4551                                       PType, S, Extended);
   4552     S += charUnitsToString(ParmOffset);
   4553     ParmOffset += getObjCEncodingTypeSize(PType);
   4554   }
   4555 
   4556   return false;
   4557 }
   4558 
   4559 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
   4560 /// property declaration. If non-NULL, Container must be either an
   4561 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
   4562 /// NULL when getting encodings for protocol properties.
   4563 /// Property attributes are stored as a comma-delimited C string. The simple
   4564 /// attributes readonly and bycopy are encoded as single characters. The
   4565 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
   4566 /// encoded as single characters, followed by an identifier. Property types
   4567 /// are also encoded as a parametrized attribute. The characters used to encode
   4568 /// these attributes are defined by the following enumeration:
   4569 /// @code
   4570 /// enum PropertyAttributes {
   4571 /// kPropertyReadOnly = 'R',   // property is read-only.
   4572 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
   4573 /// kPropertyByref = '&',  // property is a reference to the value last assigned
   4574 /// kPropertyDynamic = 'D',    // property is dynamic
   4575 /// kPropertyGetter = 'G',     // followed by getter selector name
   4576 /// kPropertySetter = 'S',     // followed by setter selector name
   4577 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
   4578 /// kPropertyType = 'T'              // followed by old-style type encoding.
   4579 /// kPropertyWeak = 'W'              // 'weak' property
   4580 /// kPropertyStrong = 'P'            // property GC'able
   4581 /// kPropertyNonAtomic = 'N'         // property non-atomic
   4582 /// };
   4583 /// @endcode
   4584 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
   4585                                                 const Decl *Container,
   4586                                                 std::string& S) const {
   4587   // Collect information from the property implementation decl(s).
   4588   bool Dynamic = false;
   4589   ObjCPropertyImplDecl *SynthesizePID = 0;
   4590 
   4591   // FIXME: Duplicated code due to poor abstraction.
   4592   if (Container) {
   4593     if (const ObjCCategoryImplDecl *CID =
   4594         dyn_cast<ObjCCategoryImplDecl>(Container)) {
   4595       for (ObjCCategoryImplDecl::propimpl_iterator
   4596              i = CID->propimpl_begin(), e = CID->propimpl_end();
   4597            i != e; ++i) {
   4598         ObjCPropertyImplDecl *PID = *i;
   4599         if (PID->getPropertyDecl() == PD) {
   4600           if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
   4601             Dynamic = true;
   4602           } else {
   4603             SynthesizePID = PID;
   4604           }
   4605         }
   4606       }
   4607     } else {
   4608       const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
   4609       for (ObjCCategoryImplDecl::propimpl_iterator
   4610              i = OID->propimpl_begin(), e = OID->propimpl_end();
   4611            i != e; ++i) {
   4612         ObjCPropertyImplDecl *PID = *i;
   4613         if (PID->getPropertyDecl() == PD) {
   4614           if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
   4615             Dynamic = true;
   4616           } else {
   4617             SynthesizePID = PID;
   4618           }
   4619         }
   4620       }
   4621     }
   4622   }
   4623 
   4624   // FIXME: This is not very efficient.
   4625   S = "T";
   4626 
   4627   // Encode result type.
   4628   // GCC has some special rules regarding encoding of properties which
   4629   // closely resembles encoding of ivars.
   4630   getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
   4631                              true /* outermost type */,
   4632                              true /* encoding for property */);
   4633 
   4634   if (PD->isReadOnly()) {
   4635     S += ",R";
   4636   } else {
   4637     switch (PD->getSetterKind()) {
   4638     case ObjCPropertyDecl::Assign: break;
   4639     case ObjCPropertyDecl::Copy:   S += ",C"; break;
   4640     case ObjCPropertyDecl::Retain: S += ",&"; break;
   4641     case ObjCPropertyDecl::Weak:   S += ",W"; break;
   4642     }
   4643   }
   4644 
   4645   // It really isn't clear at all what this means, since properties
   4646   // are "dynamic by default".
   4647   if (Dynamic)
   4648     S += ",D";
   4649 
   4650   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
   4651     S += ",N";
   4652 
   4653   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
   4654     S += ",G";
   4655     S += PD->getGetterName().getAsString();
   4656   }
   4657 
   4658   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
   4659     S += ",S";
   4660     S += PD->getSetterName().getAsString();
   4661   }
   4662 
   4663   if (SynthesizePID) {
   4664     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
   4665     S += ",V";
   4666     S += OID->getNameAsString();
   4667   }
   4668 
   4669   // FIXME: OBJCGC: weak & strong
   4670 }
   4671 
   4672 /// getLegacyIntegralTypeEncoding -
   4673 /// Another legacy compatibility encoding: 32-bit longs are encoded as
   4674 /// 'l' or 'L' , but not always.  For typedefs, we need to use
   4675 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
   4676 ///
   4677 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
   4678   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
   4679     if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
   4680       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
   4681         PointeeTy = UnsignedIntTy;
   4682       else
   4683         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
   4684           PointeeTy = IntTy;
   4685     }
   4686   }
   4687 }
   4688 
   4689 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
   4690                                         const FieldDecl *Field) const {
   4691   // We follow the behavior of gcc, expanding structures which are
   4692   // directly pointed to, and expanding embedded structures. Note that
   4693   // these rules are sufficient to prevent recursive encoding of the
   4694   // same type.
   4695   getObjCEncodingForTypeImpl(T, S, true, true, Field,
   4696                              true /* outermost type */);
   4697 }
   4698 
   4699 static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
   4700     switch (T->getAs<BuiltinType>()->getKind()) {
   4701     default: llvm_unreachable("Unhandled builtin type kind");
   4702     case BuiltinType::Void:       return 'v';
   4703     case BuiltinType::Bool:       return 'B';
   4704     case BuiltinType::Char_U:
   4705     case BuiltinType::UChar:      return 'C';
   4706     case BuiltinType::UShort:     return 'S';
   4707     case BuiltinType::UInt:       return 'I';
   4708     case BuiltinType::ULong:
   4709         return C->getIntWidth(T) == 32 ? 'L' : 'Q';
   4710     case BuiltinType::UInt128:    return 'T';
   4711     case BuiltinType::ULongLong:  return 'Q';
   4712     case BuiltinType::Char_S:
   4713     case BuiltinType::SChar:      return 'c';
   4714     case BuiltinType::Short:      return 's';
   4715     case BuiltinType::WChar_S:
   4716     case BuiltinType::WChar_U:
   4717     case BuiltinType::Int:        return 'i';
   4718     case BuiltinType::Long:
   4719       return C->getIntWidth(T) == 32 ? 'l' : 'q';
   4720     case BuiltinType::LongLong:   return 'q';
   4721     case BuiltinType::Int128:     return 't';
   4722     case BuiltinType::Float:      return 'f';
   4723     case BuiltinType::Double:     return 'd';
   4724     case BuiltinType::LongDouble: return 'D';
   4725     }
   4726 }
   4727 
   4728 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
   4729   EnumDecl *Enum = ET->getDecl();
   4730 
   4731   // The encoding of an non-fixed enum type is always 'i', regardless of size.
   4732   if (!Enum->isFixed())
   4733     return 'i';
   4734 
   4735   // The encoding of a fixed enum type matches its fixed underlying type.
   4736   return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
   4737 }
   4738 
   4739 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
   4740                            QualType T, const FieldDecl *FD) {
   4741   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
   4742   S += 'b';
   4743   // The NeXT runtime encodes bit fields as b followed by the number of bits.
   4744   // The GNU runtime requires more information; bitfields are encoded as b,
   4745   // then the offset (in bits) of the first element, then the type of the
   4746   // bitfield, then the size in bits.  For example, in this structure:
   4747   //
   4748   // struct
   4749   // {
   4750   //    int integer;
   4751   //    int flags:2;
   4752   // };
   4753   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
   4754   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
   4755   // information is not especially sensible, but we're stuck with it for
   4756   // compatibility with GCC, although providing it breaks anything that
   4757   // actually uses runtime introspection and wants to work on both runtimes...
   4758   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
   4759     const RecordDecl *RD = FD->getParent();
   4760     const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
   4761     S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
   4762     if (const EnumType *ET = T->getAs<EnumType>())
   4763       S += ObjCEncodingForEnumType(Ctx, ET);
   4764     else
   4765       S += ObjCEncodingForPrimitiveKind(Ctx, T);
   4766   }
   4767   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
   4768 }
   4769 
   4770 // FIXME: Use SmallString for accumulating string.
   4771 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
   4772                                             bool ExpandPointedToStructures,
   4773                                             bool ExpandStructures,
   4774                                             const FieldDecl *FD,
   4775                                             bool OutermostType,
   4776                                             bool EncodingProperty,
   4777                                             bool StructField,
   4778                                             bool EncodeBlockParameters,
   4779                                             bool EncodeClassNames) const {
   4780   if (T->getAs<BuiltinType>()) {
   4781     if (FD && FD->isBitField())
   4782       return EncodeBitField(this, S, T, FD);
   4783     S += ObjCEncodingForPrimitiveKind(this, T);
   4784     return;
   4785   }
   4786 
   4787   if (const ComplexType *CT = T->getAs<ComplexType>()) {
   4788     S += 'j';
   4789     getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
   4790                                false);
   4791     return;
   4792   }
   4793 
   4794   // encoding for pointer or r3eference types.
   4795   QualType PointeeTy;
   4796   if (const PointerType *PT = T->getAs<PointerType>()) {
   4797     if (PT->isObjCSelType()) {
   4798       S += ':';
   4799       return;
   4800     }
   4801     PointeeTy = PT->getPointeeType();
   4802   }
   4803   else if (const ReferenceType *RT = T->getAs<ReferenceType>())
   4804     PointeeTy = RT->getPointeeType();
   4805   if (!PointeeTy.isNull()) {
   4806     bool isReadOnly = false;
   4807     // For historical/compatibility reasons, the read-only qualifier of the
   4808     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
   4809     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
   4810     // Also, do not emit the 'r' for anything but the outermost type!
   4811     if (isa<TypedefType>(T.getTypePtr())) {
   4812       if (OutermostType && T.isConstQualified()) {
   4813         isReadOnly = true;
   4814         S += 'r';
   4815       }
   4816     } else if (OutermostType) {
   4817       QualType P = PointeeTy;
   4818       while (P->getAs<PointerType>())
   4819         P = P->getAs<PointerType>()->getPointeeType();
   4820       if (P.isConstQualified()) {
   4821         isReadOnly = true;
   4822         S += 'r';
   4823       }
   4824     }
   4825     if (isReadOnly) {
   4826       // Another legacy compatibility encoding. Some ObjC qualifier and type
   4827       // combinations need to be rearranged.
   4828       // Rewrite "in const" from "nr" to "rn"
   4829       if (StringRef(S).endswith("nr"))
   4830         S.replace(S.end()-2, S.end(), "rn");
   4831     }
   4832 
   4833     if (PointeeTy->isCharType()) {
   4834       // char pointer types should be encoded as '*' unless it is a
   4835       // type that has been typedef'd to 'BOOL'.
   4836       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
   4837         S += '*';
   4838         return;
   4839       }
   4840     } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
   4841       // GCC binary compat: Need to convert "struct objc_class *" to "#".
   4842       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
   4843         S += '#';
   4844         return;
   4845       }
   4846       // GCC binary compat: Need to convert "struct objc_object *" to "@".
   4847       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
   4848         S += '@';
   4849         return;
   4850       }
   4851       // fall through...
   4852     }
   4853     S += '^';
   4854     getLegacyIntegralTypeEncoding(PointeeTy);
   4855 
   4856     getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
   4857                                NULL);
   4858     return;
   4859   }
   4860 
   4861   if (const ArrayType *AT =
   4862       // Ignore type qualifiers etc.
   4863         dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
   4864     if (isa<IncompleteArrayType>(AT) && !StructField) {
   4865       // Incomplete arrays are encoded as a pointer to the array element.
   4866       S += '^';
   4867 
   4868       getObjCEncodingForTypeImpl(AT->getElementType(), S,
   4869                                  false, ExpandStructures, FD);
   4870     } else {
   4871       S += '[';
   4872 
   4873       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
   4874         if (getTypeSize(CAT->getElementType()) == 0)
   4875           S += '0';
   4876         else
   4877           S += llvm::utostr(CAT->getSize().getZExtValue());
   4878       } else {
   4879         //Variable length arrays are encoded as a regular array with 0 elements.
   4880         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
   4881                "Unknown array type!");
   4882         S += '0';
   4883       }
   4884 
   4885       getObjCEncodingForTypeImpl(AT->getElementType(), S,
   4886                                  false, ExpandStructures, FD);
   4887       S += ']';
   4888     }
   4889     return;
   4890   }
   4891 
   4892   if (T->getAs<FunctionType>()) {
   4893     S += '?';
   4894     return;
   4895   }
   4896 
   4897   if (const RecordType *RTy = T->getAs<RecordType>()) {
   4898     RecordDecl *RDecl = RTy->getDecl();
   4899     S += RDecl->isUnion() ? '(' : '{';
   4900     // Anonymous structures print as '?'
   4901     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
   4902       S += II->getName();
   4903       if (ClassTemplateSpecializationDecl *Spec
   4904           = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
   4905         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
   4906         std::string TemplateArgsStr
   4907           = TemplateSpecializationType::PrintTemplateArgumentList(
   4908                                             TemplateArgs.data(),
   4909                                             TemplateArgs.size(),
   4910                                             (*this).getPrintingPolicy());
   4911 
   4912         S += TemplateArgsStr;
   4913       }
   4914     } else {
   4915       S += '?';
   4916     }
   4917     if (ExpandStructures) {
   4918       S += '=';
   4919       if (!RDecl->isUnion()) {
   4920         getObjCEncodingForStructureImpl(RDecl, S, FD);
   4921       } else {
   4922         for (RecordDecl::field_iterator Field = RDecl->field_begin(),
   4923                                      FieldEnd = RDecl->field_end();
   4924              Field != FieldEnd; ++Field) {
   4925           if (FD) {
   4926             S += '"';
   4927             S += Field->getNameAsString();
   4928             S += '"';
   4929           }
   4930 
   4931           // Special case bit-fields.
   4932           if (Field->isBitField()) {
   4933             getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
   4934                                        *Field);
   4935           } else {
   4936             QualType qt = Field->getType();
   4937             getLegacyIntegralTypeEncoding(qt);
   4938             getObjCEncodingForTypeImpl(qt, S, false, true,
   4939                                        FD, /*OutermostType*/false,
   4940                                        /*EncodingProperty*/false,
   4941                                        /*StructField*/true);
   4942           }
   4943         }
   4944       }
   4945     }
   4946     S += RDecl->isUnion() ? ')' : '}';
   4947     return;
   4948   }
   4949 
   4950   if (const EnumType *ET = T->getAs<EnumType>()) {
   4951     if (FD && FD->isBitField())
   4952       EncodeBitField(this, S, T, FD);
   4953     else
   4954       S += ObjCEncodingForEnumType(this, ET);
   4955     return;
   4956   }
   4957 
   4958   if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
   4959     S += "@?"; // Unlike a pointer-to-function, which is "^?".
   4960     if (EncodeBlockParameters) {
   4961       const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
   4962 
   4963       S += '<';
   4964       // Block return type
   4965       getObjCEncodingForTypeImpl(FT->getResultType(), S,
   4966                                  ExpandPointedToStructures, ExpandStructures,
   4967                                  FD,
   4968                                  false /* OutermostType */,
   4969                                  EncodingProperty,
   4970                                  false /* StructField */,
   4971                                  EncodeBlockParameters,
   4972                                  EncodeClassNames);
   4973       // Block self
   4974       S += "@?";
   4975       // Block parameters
   4976       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
   4977         for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
   4978                E = FPT->arg_type_end(); I && (I != E); ++I) {
   4979           getObjCEncodingForTypeImpl(*I, S,
   4980                                      ExpandPointedToStructures,
   4981                                      ExpandStructures,
   4982                                      FD,
   4983                                      false /* OutermostType */,
   4984                                      EncodingProperty,
   4985                                      false /* StructField */,
   4986                                      EncodeBlockParameters,
   4987                                      EncodeClassNames);
   4988         }
   4989       }
   4990       S += '>';
   4991     }
   4992     return;
   4993   }
   4994 
   4995   // Ignore protocol qualifiers when mangling at this level.
   4996   if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
   4997     T = OT->getBaseType();
   4998 
   4999   if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
   5000     // @encode(class_name)
   5001     ObjCInterfaceDecl *OI = OIT->getDecl();
   5002     S += '{';
   5003     const IdentifierInfo *II = OI->getIdentifier();
   5004     S += II->getName();
   5005     S += '=';
   5006     SmallVector<const ObjCIvarDecl*, 32> Ivars;
   5007     DeepCollectObjCIvars(OI, true, Ivars);
   5008     for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
   5009       const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
   5010       if (Field->isBitField())
   5011         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
   5012       else
   5013         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
   5014     }
   5015     S += '}';
   5016     return;
   5017   }
   5018 
   5019   if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
   5020     if (OPT->isObjCIdType()) {
   5021       S += '@';
   5022       return;
   5023     }
   5024 
   5025     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
   5026       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
   5027       // Since this is a binary compatibility issue, need to consult with runtime
   5028       // folks. Fortunately, this is a *very* obsure construct.
   5029       S += '#';
   5030       return;
   5031     }
   5032 
   5033     if (OPT->isObjCQualifiedIdType()) {
   5034       getObjCEncodingForTypeImpl(getObjCIdType(), S,
   5035                                  ExpandPointedToStructures,
   5036                                  ExpandStructures, FD);
   5037       if (FD || EncodingProperty || EncodeClassNames) {
   5038         // Note that we do extended encoding of protocol qualifer list
   5039         // Only when doing ivar or property encoding.
   5040         S += '"';
   5041         for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
   5042              E = OPT->qual_end(); I != E; ++I) {
   5043           S += '<';
   5044           S += (*I)->getNameAsString();
   5045           S += '>';
   5046         }
   5047         S += '"';
   5048       }
   5049       return;
   5050     }
   5051 
   5052     QualType PointeeTy = OPT->getPointeeType();
   5053     if (!EncodingProperty &&
   5054         isa<TypedefType>(PointeeTy.getTypePtr())) {
   5055       // Another historical/compatibility reason.
   5056       // We encode the underlying type which comes out as
   5057       // {...};
   5058       S += '^';
   5059       getObjCEncodingForTypeImpl(PointeeTy, S,
   5060                                  false, ExpandPointedToStructures,
   5061                                  NULL);
   5062       return;
   5063     }
   5064 
   5065     S += '@';
   5066     if (OPT->getInterfaceDecl() &&
   5067         (FD || EncodingProperty || EncodeClassNames)) {
   5068       S += '"';
   5069       S += OPT->getInterfaceDecl()->getIdentifier()->getName();
   5070       for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
   5071            E = OPT->qual_end(); I != E; ++I) {
   5072         S += '<';
   5073         S += (*I)->getNameAsString();
   5074         S += '>';
   5075       }
   5076       S += '"';
   5077     }
   5078     return;
   5079   }
   5080 
   5081   // gcc just blithely ignores member pointers.
   5082   // TODO: maybe there should be a mangling for these
   5083   if (T->getAs<MemberPointerType>())
   5084     return;
   5085 
   5086   if (T->isVectorType()) {
   5087     // This matches gcc's encoding, even though technically it is
   5088     // insufficient.
   5089     // FIXME. We should do a better job than gcc.
   5090     return;
   5091   }
   5092 
   5093   llvm_unreachable("@encode for type not implemented!");
   5094 }
   5095 
   5096 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
   5097                                                  std::string &S,
   5098                                                  const FieldDecl *FD,
   5099                                                  bool includeVBases) const {
   5100   assert(RDecl && "Expected non-null RecordDecl");
   5101   assert(!RDecl->isUnion() && "Should not be called for unions");
   5102   if (!RDecl->getDefinition())
   5103     return;
   5104 
   5105   CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
   5106   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
   5107   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
   5108 
   5109   if (CXXRec) {
   5110     for (CXXRecordDecl::base_class_iterator
   5111            BI = CXXRec->bases_begin(),
   5112            BE = CXXRec->bases_end(); BI != BE; ++BI) {
   5113       if (!BI->isVirtual()) {
   5114         CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
   5115         if (base->isEmpty())
   5116           continue;
   5117         uint64_t offs = toBits(layout.getBaseClassOffset(base));
   5118         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
   5119                                   std::make_pair(offs, base));
   5120       }
   5121     }
   5122   }
   5123 
   5124   unsigned i = 0;
   5125   for (RecordDecl::field_iterator Field = RDecl->field_begin(),
   5126                                FieldEnd = RDecl->field_end();
   5127        Field != FieldEnd; ++Field, ++i) {
   5128     uint64_t offs = layout.getFieldOffset(i);
   5129     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
   5130                               std::make_pair(offs, *Field));
   5131   }
   5132 
   5133   if (CXXRec && includeVBases) {
   5134     for (CXXRecordDecl::base_class_iterator
   5135            BI = CXXRec->vbases_begin(),
   5136            BE = CXXRec->vbases_end(); BI != BE; ++BI) {
   5137       CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
   5138       if (base->isEmpty())
   5139         continue;
   5140       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
   5141       if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
   5142         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
   5143                                   std::make_pair(offs, base));
   5144     }
   5145   }
   5146 
   5147   CharUnits size;
   5148   if (CXXRec) {
   5149     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
   5150   } else {
   5151     size = layout.getSize();
   5152   }
   5153 
   5154   uint64_t CurOffs = 0;
   5155   std::multimap<uint64_t, NamedDecl *>::iterator
   5156     CurLayObj = FieldOrBaseOffsets.begin();
   5157 
   5158   if (CXXRec && CXXRec->isDynamicClass() &&
   5159       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
   5160     if (FD) {
   5161       S += "\"_vptr$";
   5162       std::string recname = CXXRec->getNameAsString();
   5163       if (recname.empty()) recname = "?";
   5164       S += recname;
   5165       S += '"';
   5166     }
   5167     S += "^^?";
   5168     CurOffs += getTypeSize(VoidPtrTy);
   5169   }
   5170 
   5171   if (!RDecl->hasFlexibleArrayMember()) {
   5172     // Mark the end of the structure.
   5173     uint64_t offs = toBits(size);
   5174     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
   5175                               std::make_pair(offs, (NamedDecl*)0));
   5176   }
   5177 
   5178   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
   5179     assert(CurOffs <= CurLayObj->first);
   5180 
   5181     if (CurOffs < CurLayObj->first) {
   5182       uint64_t padding = CurLayObj->first - CurOffs;
   5183       // FIXME: There doesn't seem to be a way to indicate in the encoding that
   5184       // packing/alignment of members is different that normal, in which case
   5185       // the encoding will be out-of-sync with the real layout.
   5186       // If the runtime switches to just consider the size of types without
   5187       // taking into account alignment, we could make padding explicit in the
   5188       // encoding (e.g. using arrays of chars). The encoding strings would be
   5189       // longer then though.
   5190       CurOffs += padding;
   5191     }
   5192 
   5193     NamedDecl *dcl = CurLayObj->second;
   5194     if (dcl == 0)
   5195       break; // reached end of structure.
   5196 
   5197     if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
   5198       // We expand the bases without their virtual bases since those are going
   5199       // in the initial structure. Note that this differs from gcc which
   5200       // expands virtual bases each time one is encountered in the hierarchy,
   5201       // making the encoding type bigger than it really is.
   5202       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
   5203       assert(!base->isEmpty());
   5204       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
   5205     } else {
   5206       FieldDecl *field = cast<FieldDecl>(dcl);
   5207       if (FD) {
   5208         S += '"';
   5209         S += field->getNameAsString();
   5210         S += '"';
   5211       }
   5212 
   5213       if (field->isBitField()) {
   5214         EncodeBitField(this, S, field->getType(), field);
   5215         CurOffs += field->getBitWidthValue(*this);
   5216       } else {
   5217         QualType qt = field->getType();
   5218         getLegacyIntegralTypeEncoding(qt);
   5219         getObjCEncodingForTypeImpl(qt, S, false, true, FD,
   5220                                    /*OutermostType*/false,
   5221                                    /*EncodingProperty*/false,
   5222                                    /*StructField*/true);
   5223         CurOffs += getTypeSize(field->getType());
   5224       }
   5225     }
   5226   }
   5227 }
   5228 
   5229 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
   5230                                                  std::string& S) const {
   5231   if (QT & Decl::OBJC_TQ_In)
   5232     S += 'n';
   5233   if (QT & Decl::OBJC_TQ_Inout)
   5234     S += 'N';
   5235   if (QT & Decl::OBJC_TQ_Out)
   5236     S += 'o';
   5237   if (QT & Decl::OBJC_TQ_Bycopy)
   5238     S += 'O';
   5239   if (QT & Decl::OBJC_TQ_Byref)
   5240     S += 'R';
   5241   if (QT & Decl::OBJC_TQ_Oneway)
   5242     S += 'V';
   5243 }
   5244 
   5245 TypedefDecl *ASTContext::getObjCIdDecl() const {
   5246   if (!ObjCIdDecl) {
   5247     QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
   5248     T = getObjCObjectPointerType(T);
   5249     TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
   5250     ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
   5251                                      getTranslationUnitDecl(),
   5252                                      SourceLocation(), SourceLocation(),
   5253                                      &Idents.get("id"), IdInfo);
   5254   }
   5255 
   5256   return ObjCIdDecl;
   5257 }
   5258 
   5259 TypedefDecl *ASTContext::getObjCSelDecl() const {
   5260   if (!ObjCSelDecl) {
   5261     QualType SelT = getPointerType(ObjCBuiltinSelTy);
   5262     TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
   5263     ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
   5264                                       getTranslationUnitDecl(),
   5265                                       SourceLocation(), SourceLocation(),
   5266                                       &Idents.get("SEL"), SelInfo);
   5267   }
   5268   return ObjCSelDecl;
   5269 }
   5270 
   5271 TypedefDecl *ASTContext::getObjCClassDecl() const {
   5272   if (!ObjCClassDecl) {
   5273     QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
   5274     T = getObjCObjectPointerType(T);
   5275     TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
   5276     ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
   5277                                         getTranslationUnitDecl(),
   5278                                         SourceLocation(), SourceLocation(),
   5279                                         &Idents.get("Class"), ClassInfo);
   5280   }
   5281 
   5282   return ObjCClassDecl;
   5283 }
   5284 
   5285 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
   5286   if (!ObjCProtocolClassDecl) {
   5287     ObjCProtocolClassDecl
   5288       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
   5289                                   SourceLocation(),
   5290                                   &Idents.get("Protocol"),
   5291                                   /*PrevDecl=*/0,
   5292                                   SourceLocation(), true);
   5293   }
   5294 
   5295   return ObjCProtocolClassDecl;
   5296 }
   5297 
   5298 //===----------------------------------------------------------------------===//
   5299 // __builtin_va_list Construction Functions
   5300 //===----------------------------------------------------------------------===//
   5301 
   5302 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
   5303   // typedef char* __builtin_va_list;
   5304   QualType CharPtrType = Context->getPointerType(Context->CharTy);
   5305   TypeSourceInfo *TInfo
   5306     = Context->getTrivialTypeSourceInfo(CharPtrType);
   5307 
   5308   TypedefDecl *VaListTypeDecl
   5309     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5310                           Context->getTranslationUnitDecl(),
   5311                           SourceLocation(), SourceLocation(),
   5312                           &Context->Idents.get("__builtin_va_list"),
   5313                           TInfo);
   5314   return VaListTypeDecl;
   5315 }
   5316 
   5317 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
   5318   // typedef void* __builtin_va_list;
   5319   QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
   5320   TypeSourceInfo *TInfo
   5321     = Context->getTrivialTypeSourceInfo(VoidPtrType);
   5322 
   5323   TypedefDecl *VaListTypeDecl
   5324     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5325                           Context->getTranslationUnitDecl(),
   5326                           SourceLocation(), SourceLocation(),
   5327                           &Context->Idents.get("__builtin_va_list"),
   5328                           TInfo);
   5329   return VaListTypeDecl;
   5330 }
   5331 
   5332 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
   5333   // typedef struct __va_list_tag {
   5334   RecordDecl *VaListTagDecl;
   5335 
   5336   VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
   5337                                    Context->getTranslationUnitDecl(),
   5338                                    &Context->Idents.get("__va_list_tag"));
   5339   VaListTagDecl->startDefinition();
   5340 
   5341   const size_t NumFields = 5;
   5342   QualType FieldTypes[NumFields];
   5343   const char *FieldNames[NumFields];
   5344 
   5345   //   unsigned char gpr;
   5346   FieldTypes[0] = Context->UnsignedCharTy;
   5347   FieldNames[0] = "gpr";
   5348 
   5349   //   unsigned char fpr;
   5350   FieldTypes[1] = Context->UnsignedCharTy;
   5351   FieldNames[1] = "fpr";
   5352 
   5353   //   unsigned short reserved;
   5354   FieldTypes[2] = Context->UnsignedShortTy;
   5355   FieldNames[2] = "reserved";
   5356 
   5357   //   void* overflow_arg_area;
   5358   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
   5359   FieldNames[3] = "overflow_arg_area";
   5360 
   5361   //   void* reg_save_area;
   5362   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
   5363   FieldNames[4] = "reg_save_area";
   5364 
   5365   // Create fields
   5366   for (unsigned i = 0; i < NumFields; ++i) {
   5367     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
   5368                                          SourceLocation(),
   5369                                          SourceLocation(),
   5370                                          &Context->Idents.get(FieldNames[i]),
   5371                                          FieldTypes[i], /*TInfo=*/0,
   5372                                          /*BitWidth=*/0,
   5373                                          /*Mutable=*/false,
   5374                                          ICIS_NoInit);
   5375     Field->setAccess(AS_public);
   5376     VaListTagDecl->addDecl(Field);
   5377   }
   5378   VaListTagDecl->completeDefinition();
   5379   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
   5380   Context->VaListTagTy = VaListTagType;
   5381 
   5382   // } __va_list_tag;
   5383   TypedefDecl *VaListTagTypedefDecl
   5384     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5385                           Context->getTranslationUnitDecl(),
   5386                           SourceLocation(), SourceLocation(),
   5387                           &Context->Idents.get("__va_list_tag"),
   5388                           Context->getTrivialTypeSourceInfo(VaListTagType));
   5389   QualType VaListTagTypedefType =
   5390     Context->getTypedefType(VaListTagTypedefDecl);
   5391 
   5392   // typedef __va_list_tag __builtin_va_list[1];
   5393   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
   5394   QualType VaListTagArrayType
   5395     = Context->getConstantArrayType(VaListTagTypedefType,
   5396                                     Size, ArrayType::Normal, 0);
   5397   TypeSourceInfo *TInfo
   5398     = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
   5399   TypedefDecl *VaListTypedefDecl
   5400     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5401                           Context->getTranslationUnitDecl(),
   5402                           SourceLocation(), SourceLocation(),
   5403                           &Context->Idents.get("__builtin_va_list"),
   5404                           TInfo);
   5405 
   5406   return VaListTypedefDecl;
   5407 }
   5408 
   5409 static TypedefDecl *
   5410 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
   5411   // typedef struct __va_list_tag {
   5412   RecordDecl *VaListTagDecl;
   5413   VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
   5414                                    Context->getTranslationUnitDecl(),
   5415                                    &Context->Idents.get("__va_list_tag"));
   5416   VaListTagDecl->startDefinition();
   5417 
   5418   const size_t NumFields = 4;
   5419   QualType FieldTypes[NumFields];
   5420   const char *FieldNames[NumFields];
   5421 
   5422   //   unsigned gp_offset;
   5423   FieldTypes[0] = Context->UnsignedIntTy;
   5424   FieldNames[0] = "gp_offset";
   5425 
   5426   //   unsigned fp_offset;
   5427   FieldTypes[1] = Context->UnsignedIntTy;
   5428   FieldNames[1] = "fp_offset";
   5429 
   5430   //   void* overflow_arg_area;
   5431   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
   5432   FieldNames[2] = "overflow_arg_area";
   5433 
   5434   //   void* reg_save_area;
   5435   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
   5436   FieldNames[3] = "reg_save_area";
   5437 
   5438   // Create fields
   5439   for (unsigned i = 0; i < NumFields; ++i) {
   5440     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
   5441                                          VaListTagDecl,
   5442                                          SourceLocation(),
   5443                                          SourceLocation(),
   5444                                          &Context->Idents.get(FieldNames[i]),
   5445                                          FieldTypes[i], /*TInfo=*/0,
   5446                                          /*BitWidth=*/0,
   5447                                          /*Mutable=*/false,
   5448                                          ICIS_NoInit);
   5449     Field->setAccess(AS_public);
   5450     VaListTagDecl->addDecl(Field);
   5451   }
   5452   VaListTagDecl->completeDefinition();
   5453   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
   5454   Context->VaListTagTy = VaListTagType;
   5455 
   5456   // } __va_list_tag;
   5457   TypedefDecl *VaListTagTypedefDecl
   5458     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5459                           Context->getTranslationUnitDecl(),
   5460                           SourceLocation(), SourceLocation(),
   5461                           &Context->Idents.get("__va_list_tag"),
   5462                           Context->getTrivialTypeSourceInfo(VaListTagType));
   5463   QualType VaListTagTypedefType =
   5464     Context->getTypedefType(VaListTagTypedefDecl);
   5465 
   5466   // typedef __va_list_tag __builtin_va_list[1];
   5467   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
   5468   QualType VaListTagArrayType
   5469     = Context->getConstantArrayType(VaListTagTypedefType,
   5470                                       Size, ArrayType::Normal,0);
   5471   TypeSourceInfo *TInfo
   5472     = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
   5473   TypedefDecl *VaListTypedefDecl
   5474     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5475                           Context->getTranslationUnitDecl(),
   5476                           SourceLocation(), SourceLocation(),
   5477                           &Context->Idents.get("__builtin_va_list"),
   5478                           TInfo);
   5479 
   5480   return VaListTypedefDecl;
   5481 }
   5482 
   5483 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
   5484   // typedef int __builtin_va_list[4];
   5485   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
   5486   QualType IntArrayType
   5487     = Context->getConstantArrayType(Context->IntTy,
   5488 				    Size, ArrayType::Normal, 0);
   5489   TypedefDecl *VaListTypedefDecl
   5490     = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
   5491                           Context->getTranslationUnitDecl(),
   5492                           SourceLocation(), SourceLocation(),
   5493                           &Context->Idents.get("__builtin_va_list"),
   5494                           Context->getTrivialTypeSourceInfo(IntArrayType));
   5495 
   5496   return VaListTypedefDecl;
   5497 }
   5498 
   5499 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
   5500                                      TargetInfo::BuiltinVaListKind Kind) {
   5501   switch (Kind) {
   5502   case TargetInfo::CharPtrBuiltinVaList:
   5503     return CreateCharPtrBuiltinVaListDecl(Context);
   5504   case TargetInfo::VoidPtrBuiltinVaList:
   5505     return CreateVoidPtrBuiltinVaListDecl(Context);
   5506   case TargetInfo::PowerABIBuiltinVaList:
   5507     return CreatePowerABIBuiltinVaListDecl(Context);
   5508   case TargetInfo::X86_64ABIBuiltinVaList:
   5509     return CreateX86_64ABIBuiltinVaListDecl(Context);
   5510   case TargetInfo::PNaClABIBuiltinVaList:
   5511     return CreatePNaClABIBuiltinVaListDecl(Context);
   5512   }
   5513 
   5514   llvm_unreachable("Unhandled __builtin_va_list type kind");
   5515 }
   5516 
   5517 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
   5518   if (!BuiltinVaListDecl)
   5519     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
   5520 
   5521   return BuiltinVaListDecl;
   5522 }
   5523 
   5524 QualType ASTContext::getVaListTagType() const {
   5525   // Force the creation of VaListTagTy by building the __builtin_va_list
   5526   // declaration.
   5527   if (VaListTagTy.isNull())
   5528     (void) getBuiltinVaListDecl();
   5529 
   5530   return VaListTagTy;
   5531 }
   5532 
   5533 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
   5534   assert(ObjCConstantStringType.isNull() &&
   5535          "'NSConstantString' type already set!");
   5536 
   5537   ObjCConstantStringType = getObjCInterfaceType(Decl);
   5538 }
   5539 
   5540 /// \brief Retrieve the template name that corresponds to a non-empty
   5541 /// lookup.
   5542 TemplateName
   5543 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
   5544                                       UnresolvedSetIterator End) const {
   5545   unsigned size = End - Begin;
   5546   assert(size > 1 && "set is not overloaded!");
   5547 
   5548   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
   5549                           size * sizeof(FunctionTemplateDecl*));
   5550   OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
   5551 
   5552   NamedDecl **Storage = OT->getStorage();
   5553   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
   5554     NamedDecl *D = *I;
   5555     assert(isa<FunctionTemplateDecl>(D) ||
   5556            (isa<UsingShadowDecl>(D) &&
   5557             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
   5558     *Storage++ = D;
   5559   }
   5560 
   5561   return TemplateName(OT);
   5562 }
   5563 
   5564 /// \brief Retrieve the template name that represents a qualified
   5565 /// template name such as \c std::vector.
   5566 TemplateName
   5567 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
   5568                                      bool TemplateKeyword,
   5569                                      TemplateDecl *Template) const {
   5570   assert(NNS && "Missing nested-name-specifier in qualified template name");
   5571 
   5572   // FIXME: Canonicalization?
   5573   llvm::FoldingSetNodeID ID;
   5574   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
   5575 
   5576   void *InsertPos = 0;
   5577   QualifiedTemplateName *QTN =
   5578     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   5579   if (!QTN) {
   5580     QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
   5581         QualifiedTemplateName(NNS, TemplateKeyword, Template);
   5582     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
   5583   }
   5584 
   5585   return TemplateName(QTN);
   5586 }
   5587 
   5588 /// \brief Retrieve the template name that represents a dependent
   5589 /// template name such as \c MetaFun::template apply.
   5590 TemplateName
   5591 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
   5592                                      const IdentifierInfo *Name) const {
   5593   assert((!NNS || NNS->isDependent()) &&
   5594          "Nested name specifier must be dependent");
   5595 
   5596   llvm::FoldingSetNodeID ID;
   5597   DependentTemplateName::Profile(ID, NNS, Name);
   5598 
   5599   void *InsertPos = 0;
   5600   DependentTemplateName *QTN =
   5601     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   5602 
   5603   if (QTN)
   5604     return TemplateName(QTN);
   5605 
   5606   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   5607   if (CanonNNS == NNS) {
   5608     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   5609         DependentTemplateName(NNS, Name);
   5610   } else {
   5611     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
   5612     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   5613         DependentTemplateName(NNS, Name, Canon);
   5614     DependentTemplateName *CheckQTN =
   5615       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   5616     assert(!CheckQTN && "Dependent type name canonicalization broken");
   5617     (void)CheckQTN;
   5618   }
   5619 
   5620   DependentTemplateNames.InsertNode(QTN, InsertPos);
   5621   return TemplateName(QTN);
   5622 }
   5623 
   5624 /// \brief Retrieve the template name that represents a dependent
   5625 /// template name such as \c MetaFun::template operator+.
   5626 TemplateName
   5627 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
   5628                                      OverloadedOperatorKind Operator) const {
   5629   assert((!NNS || NNS->isDependent()) &&
   5630          "Nested name specifier must be dependent");
   5631 
   5632   llvm::FoldingSetNodeID ID;
   5633   DependentTemplateName::Profile(ID, NNS, Operator);
   5634 
   5635   void *InsertPos = 0;
   5636   DependentTemplateName *QTN
   5637     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   5638 
   5639   if (QTN)
   5640     return TemplateName(QTN);
   5641 
   5642   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   5643   if (CanonNNS == NNS) {
   5644     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   5645         DependentTemplateName(NNS, Operator);
   5646   } else {
   5647     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
   5648     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   5649         DependentTemplateName(NNS, Operator, Canon);
   5650 
   5651     DependentTemplateName *CheckQTN
   5652       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   5653     assert(!CheckQTN && "Dependent template name canonicalization broken");
   5654     (void)CheckQTN;
   5655   }
   5656 
   5657   DependentTemplateNames.InsertNode(QTN, InsertPos);
   5658   return TemplateName(QTN);
   5659 }
   5660 
   5661 TemplateName
   5662 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
   5663                                          TemplateName replacement) const {
   5664   llvm::FoldingSetNodeID ID;
   5665   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
   5666 
   5667   void *insertPos = 0;
   5668   SubstTemplateTemplateParmStorage *subst
   5669     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
   5670 
   5671   if (!subst) {
   5672     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
   5673     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
   5674   }
   5675 
   5676   return TemplateName(subst);
   5677 }
   5678 
   5679 TemplateName
   5680 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
   5681                                        const TemplateArgument &ArgPack) const {
   5682   ASTContext &Self = const_cast<ASTContext &>(*this);
   5683   llvm::FoldingSetNodeID ID;
   5684   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
   5685 
   5686   void *InsertPos = 0;
   5687   SubstTemplateTemplateParmPackStorage *Subst
   5688     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
   5689 
   5690   if (!Subst) {
   5691     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
   5692                                                            ArgPack.pack_size(),
   5693                                                          ArgPack.pack_begin());
   5694     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
   5695   }
   5696 
   5697   return TemplateName(Subst);
   5698 }
   5699 
   5700 /// getFromTargetType - Given one of the integer types provided by
   5701 /// TargetInfo, produce the corresponding type. The unsigned @p Type
   5702 /// is actually a value of type @c TargetInfo::IntType.
   5703 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
   5704   switch (Type) {
   5705   case TargetInfo::NoInt: return CanQualType();
   5706   case TargetInfo::SignedShort: return ShortTy;
   5707   case TargetInfo::UnsignedShort: return UnsignedShortTy;
   5708   case TargetInfo::SignedInt: return IntTy;
   5709   case TargetInfo::UnsignedInt: return UnsignedIntTy;
   5710   case TargetInfo::SignedLong: return LongTy;
   5711   case TargetInfo::UnsignedLong: return UnsignedLongTy;
   5712   case TargetInfo::SignedLongLong: return LongLongTy;
   5713   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
   5714   }
   5715 
   5716   llvm_unreachable("Unhandled TargetInfo::IntType value");
   5717 }
   5718 
   5719 //===----------------------------------------------------------------------===//
   5720 //                        Type Predicates.
   5721 //===----------------------------------------------------------------------===//
   5722 
   5723 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
   5724 /// garbage collection attribute.
   5725 ///
   5726 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
   5727   if (getLangOpts().getGC() == LangOptions::NonGC)
   5728     return Qualifiers::GCNone;
   5729 
   5730   assert(getLangOpts().ObjC1);
   5731   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
   5732 
   5733   // Default behaviour under objective-C's gc is for ObjC pointers
   5734   // (or pointers to them) be treated as though they were declared
   5735   // as __strong.
   5736   if (GCAttrs == Qualifiers::GCNone) {
   5737     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
   5738       return Qualifiers::Strong;
   5739     else if (Ty->isPointerType())
   5740       return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
   5741   } else {
   5742     // It's not valid to set GC attributes on anything that isn't a
   5743     // pointer.
   5744 #ifndef NDEBUG
   5745     QualType CT = Ty->getCanonicalTypeInternal();
   5746     while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
   5747       CT = AT->getElementType();
   5748     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
   5749 #endif
   5750   }
   5751   return GCAttrs;
   5752 }
   5753 
   5754 //===----------------------------------------------------------------------===//
   5755 //                        Type Compatibility Testing
   5756 //===----------------------------------------------------------------------===//
   5757 
   5758 /// areCompatVectorTypes - Return true if the two specified vector types are
   5759 /// compatible.
   5760 static bool areCompatVectorTypes(const VectorType *LHS,
   5761                                  const VectorType *RHS) {
   5762   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
   5763   return LHS->getElementType() == RHS->getElementType() &&
   5764          LHS->getNumElements() == RHS->getNumElements();
   5765 }
   5766 
   5767 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
   5768                                           QualType SecondVec) {
   5769   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
   5770   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
   5771 
   5772   if (hasSameUnqualifiedType(FirstVec, SecondVec))
   5773     return true;
   5774 
   5775   // Treat Neon vector types and most AltiVec vector types as if they are the
   5776   // equivalent GCC vector types.
   5777   const VectorType *First = FirstVec->getAs<VectorType>();
   5778   const VectorType *Second = SecondVec->getAs<VectorType>();
   5779   if (First->getNumElements() == Second->getNumElements() &&
   5780       hasSameType(First->getElementType(), Second->getElementType()) &&
   5781       First->getVectorKind() != VectorType::AltiVecPixel &&
   5782       First->getVectorKind() != VectorType::AltiVecBool &&
   5783       Second->getVectorKind() != VectorType::AltiVecPixel &&
   5784       Second->getVectorKind() != VectorType::AltiVecBool)
   5785     return true;
   5786 
   5787   return false;
   5788 }
   5789 
   5790 //===----------------------------------------------------------------------===//
   5791 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
   5792 //===----------------------------------------------------------------------===//
   5793 
   5794 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
   5795 /// inheritance hierarchy of 'rProto'.
   5796 bool
   5797 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
   5798                                            ObjCProtocolDecl *rProto) const {
   5799   if (declaresSameEntity(lProto, rProto))
   5800     return true;
   5801   for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
   5802        E = rProto->protocol_end(); PI != E; ++PI)
   5803     if (ProtocolCompatibleWithProtocol(lProto, *PI))
   5804       return true;
   5805   return false;
   5806 }
   5807 
   5808 /// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
   5809 /// return true if lhs's protocols conform to rhs's protocol; false
   5810 /// otherwise.
   5811 bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
   5812   if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
   5813     return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
   5814   return false;
   5815 }
   5816 
   5817 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
   5818 /// Class<pr1, ...>.
   5819 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
   5820                                                       QualType rhs) {
   5821   const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
   5822   const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
   5823   assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
   5824 
   5825   for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
   5826        E = lhsQID->qual_end(); I != E; ++I) {
   5827     bool match = false;
   5828     ObjCProtocolDecl *lhsProto = *I;
   5829     for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
   5830          E = rhsOPT->qual_end(); J != E; ++J) {
   5831       ObjCProtocolDecl *rhsProto = *J;
   5832       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
   5833         match = true;
   5834         break;
   5835       }
   5836     }
   5837     if (!match)
   5838       return false;
   5839   }
   5840   return true;
   5841 }
   5842 
   5843 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
   5844 /// ObjCQualifiedIDType.
   5845 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
   5846                                                    bool compare) {
   5847   // Allow id<P..> and an 'id' or void* type in all cases.
   5848   if (lhs->isVoidPointerType() ||
   5849       lhs->isObjCIdType() || lhs->isObjCClassType())
   5850     return true;
   5851   else if (rhs->isVoidPointerType() ||
   5852            rhs->isObjCIdType() || rhs->isObjCClassType())
   5853     return true;
   5854 
   5855   if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
   5856     const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
   5857 
   5858     if (!rhsOPT) return false;
   5859 
   5860     if (rhsOPT->qual_empty()) {
   5861       // If the RHS is a unqualified interface pointer "NSString*",
   5862       // make sure we check the class hierarchy.
   5863       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
   5864         for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
   5865              E = lhsQID->qual_end(); I != E; ++I) {
   5866           // when comparing an id<P> on lhs with a static type on rhs,
   5867           // see if static class implements all of id's protocols, directly or
   5868           // through its super class and categories.
   5869           if (!rhsID->ClassImplementsProtocol(*I, true))
   5870             return false;
   5871         }
   5872       }
   5873       // If there are no qualifiers and no interface, we have an 'id'.
   5874       return true;
   5875     }
   5876     // Both the right and left sides have qualifiers.
   5877     for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
   5878          E = lhsQID->qual_end(); I != E; ++I) {
   5879       ObjCProtocolDecl *lhsProto = *I;
   5880       bool match = false;
   5881 
   5882       // when comparing an id<P> on lhs with a static type on rhs,
   5883       // see if static class implements all of id's protocols, directly or
   5884       // through its super class and categories.
   5885       for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
   5886            E = rhsOPT->qual_end(); J != E; ++J) {
   5887         ObjCProtocolDecl *rhsProto = *J;
   5888         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
   5889             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
   5890           match = true;
   5891           break;
   5892         }
   5893       }
   5894       // If the RHS is a qualified interface pointer "NSString<P>*",
   5895       // make sure we check the class hierarchy.
   5896       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
   5897         for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
   5898              E = lhsQID->qual_end(); I != E; ++I) {
   5899           // when comparing an id<P> on lhs with a static type on rhs,
   5900           // see if static class implements all of id's protocols, directly or
   5901           // through its super class and categories.
   5902           if (rhsID->ClassImplementsProtocol(*I, true)) {
   5903             match = true;
   5904             break;
   5905           }
   5906         }
   5907       }
   5908       if (!match)
   5909         return false;
   5910     }
   5911 
   5912     return true;
   5913   }
   5914 
   5915   const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
   5916   assert(rhsQID && "One of the LHS/RHS should be id<x>");
   5917 
   5918   if (const ObjCObjectPointerType *lhsOPT =
   5919         lhs->getAsObjCInterfacePointerType()) {
   5920     // If both the right and left sides have qualifiers.
   5921     for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
   5922          E = lhsOPT->qual_end(); I != E; ++I) {
   5923       ObjCProtocolDecl *lhsProto = *I;
   5924       bool match = false;
   5925 
   5926       // when comparing an id<P> on rhs with a static type on lhs,
   5927       // see if static class implements all of id's protocols, directly or
   5928       // through its super class and categories.
   5929       // First, lhs protocols in the qualifier list must be found, direct
   5930       // or indirect in rhs's qualifier list or it is a mismatch.
   5931       for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
   5932            E = rhsQID->qual_end(); J != E; ++J) {
   5933         ObjCProtocolDecl *rhsProto = *J;
   5934         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
   5935             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
   5936           match = true;
   5937           break;
   5938         }
   5939       }
   5940       if (!match)
   5941         return false;
   5942     }
   5943 
   5944     // Static class's protocols, or its super class or category protocols
   5945     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
   5946     if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
   5947       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
   5948       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
   5949       // This is rather dubious but matches gcc's behavior. If lhs has
   5950       // no type qualifier and its class has no static protocol(s)
   5951       // assume that it is mismatch.
   5952       if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
   5953         return false;
   5954       for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
   5955            LHSInheritedProtocols.begin(),
   5956            E = LHSInheritedProtocols.end(); I != E; ++I) {
   5957         bool match = false;
   5958         ObjCProtocolDecl *lhsProto = (*I);
   5959         for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
   5960              E = rhsQID->qual_end(); J != E; ++J) {
   5961           ObjCProtocolDecl *rhsProto = *J;
   5962           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
   5963               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
   5964             match = true;
   5965             break;
   5966           }
   5967         }
   5968         if (!match)
   5969           return false;
   5970       }
   5971     }
   5972     return true;
   5973   }
   5974   return false;
   5975 }
   5976 
   5977 /// canAssignObjCInterfaces - Return true if the two interface types are
   5978 /// compatible for assignment from RHS to LHS.  This handles validation of any
   5979 /// protocol qualifiers on the LHS or RHS.
   5980 ///
   5981 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
   5982                                          const ObjCObjectPointerType *RHSOPT) {
   5983   const ObjCObjectType* LHS = LHSOPT->getObjectType();
   5984   const ObjCObjectType* RHS = RHSOPT->getObjectType();
   5985 
   5986   // If either type represents the built-in 'id' or 'Class' types, return true.
   5987   if (LHS->isObjCUnqualifiedIdOrClass() ||
   5988       RHS->isObjCUnqualifiedIdOrClass())
   5989     return true;
   5990 
   5991   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
   5992     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
   5993                                              QualType(RHSOPT,0),
   5994                                              false);
   5995 
   5996   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
   5997     return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
   5998                                                 QualType(RHSOPT,0));
   5999 
   6000   // If we have 2 user-defined types, fall into that path.
   6001   if (LHS->getInterface() && RHS->getInterface())
   6002     return canAssignObjCInterfaces(LHS, RHS);
   6003 
   6004   return false;
   6005 }
   6006 
   6007 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
   6008 /// for providing type-safety for objective-c pointers used to pass/return
   6009 /// arguments in block literals. When passed as arguments, passing 'A*' where
   6010 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
   6011 /// not OK. For the return type, the opposite is not OK.
   6012 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
   6013                                          const ObjCObjectPointerType *LHSOPT,
   6014                                          const ObjCObjectPointerType *RHSOPT,
   6015                                          bool BlockReturnType) {
   6016   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
   6017     return true;
   6018 
   6019   if (LHSOPT->isObjCBuiltinType()) {
   6020     return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
   6021   }
   6022 
   6023   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
   6024     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
   6025                                              QualType(RHSOPT,0),
   6026                                              false);
   6027 
   6028   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
   6029   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
   6030   if (LHS && RHS)  { // We have 2 user-defined types.
   6031     if (LHS != RHS) {
   6032       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
   6033         return BlockReturnType;
   6034       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
   6035         return !BlockReturnType;
   6036     }
   6037     else
   6038       return true;
   6039   }
   6040   return false;
   6041 }
   6042 
   6043 /// getIntersectionOfProtocols - This routine finds the intersection of set
   6044 /// of protocols inherited from two distinct objective-c pointer objects.
   6045 /// It is used to build composite qualifier list of the composite type of
   6046 /// the conditional expression involving two objective-c pointer objects.
   6047 static
   6048 void getIntersectionOfProtocols(ASTContext &Context,
   6049                                 const ObjCObjectPointerType *LHSOPT,
   6050                                 const ObjCObjectPointerType *RHSOPT,
   6051       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
   6052 
   6053   const ObjCObjectType* LHS = LHSOPT->getObjectType();
   6054   const ObjCObjectType* RHS = RHSOPT->getObjectType();
   6055   assert(LHS->getInterface() && "LHS must have an interface base");
   6056   assert(RHS->getInterface() && "RHS must have an interface base");
   6057 
   6058   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
   6059   unsigned LHSNumProtocols = LHS->getNumProtocols();
   6060   if (LHSNumProtocols > 0)
   6061     InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
   6062   else {
   6063     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
   6064     Context.CollectInheritedProtocols(LHS->getInterface(),
   6065                                       LHSInheritedProtocols);
   6066     InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
   6067                                 LHSInheritedProtocols.end());
   6068   }
   6069 
   6070   unsigned RHSNumProtocols = RHS->getNumProtocols();
   6071   if (RHSNumProtocols > 0) {
   6072     ObjCProtocolDecl **RHSProtocols =
   6073       const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
   6074     for (unsigned i = 0; i < RHSNumProtocols; ++i)
   6075       if (InheritedProtocolSet.count(RHSProtocols[i]))
   6076         IntersectionOfProtocols.push_back(RHSProtocols[i]);
   6077   } else {
   6078     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
   6079     Context.CollectInheritedProtocols(RHS->getInterface(),
   6080                                       RHSInheritedProtocols);
   6081     for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
   6082          RHSInheritedProtocols.begin(),
   6083          E = RHSInheritedProtocols.end(); I != E; ++I)
   6084       if (InheritedProtocolSet.count((*I)))
   6085         IntersectionOfProtocols.push_back((*I));
   6086   }
   6087 }
   6088 
   6089 /// areCommonBaseCompatible - Returns common base class of the two classes if
   6090 /// one found. Note that this is O'2 algorithm. But it will be called as the
   6091 /// last type comparison in a ?-exp of ObjC pointer types before a
   6092 /// warning is issued. So, its invokation is extremely rare.
   6093 QualType ASTContext::areCommonBaseCompatible(
   6094                                           const ObjCObjectPointerType *Lptr,
   6095                                           const ObjCObjectPointerType *Rptr) {
   6096   const ObjCObjectType *LHS = Lptr->getObjectType();
   6097   const ObjCObjectType *RHS = Rptr->getObjectType();
   6098   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
   6099   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
   6100   if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
   6101     return QualType();
   6102 
   6103   do {
   6104     LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
   6105     if (canAssignObjCInterfaces(LHS, RHS)) {
   6106       SmallVector<ObjCProtocolDecl *, 8> Protocols;
   6107       getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
   6108 
   6109       QualType Result = QualType(LHS, 0);
   6110       if (!Protocols.empty())
   6111         Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
   6112       Result = getObjCObjectPointerType(Result);
   6113       return Result;
   6114     }
   6115   } while ((LDecl = LDecl->getSuperClass()));
   6116 
   6117   return QualType();
   6118 }
   6119 
   6120 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
   6121                                          const ObjCObjectType *RHS) {
   6122   assert(LHS->getInterface() && "LHS is not an interface type");
   6123   assert(RHS->getInterface() && "RHS is not an interface type");
   6124 
   6125   // Verify that the base decls are compatible: the RHS must be a subclass of
   6126   // the LHS.
   6127   if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
   6128     return false;
   6129 
   6130   // RHS must have a superset of the protocols in the LHS.  If the LHS is not
   6131   // protocol qualified at all, then we are good.
   6132   if (LHS->getNumProtocols() == 0)
   6133     return true;
   6134 
   6135   // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
   6136   // more detailed analysis is required.
   6137   if (RHS->getNumProtocols() == 0) {
   6138     // OK, if LHS is a superclass of RHS *and*
   6139     // this superclass is assignment compatible with LHS.
   6140     // false otherwise.
   6141     bool IsSuperClass =
   6142       LHS->getInterface()->isSuperClassOf(RHS->getInterface());
   6143     if (IsSuperClass) {
   6144       // OK if conversion of LHS to SuperClass results in narrowing of types
   6145       // ; i.e., SuperClass may implement at least one of the protocols
   6146       // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
   6147       // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
   6148       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
   6149       CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
   6150       // If super class has no protocols, it is not a match.
   6151       if (SuperClassInheritedProtocols.empty())
   6152         return false;
   6153 
   6154       for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
   6155            LHSPE = LHS->qual_end();
   6156            LHSPI != LHSPE; LHSPI++) {
   6157         bool SuperImplementsProtocol = false;
   6158         ObjCProtocolDecl *LHSProto = (*LHSPI);
   6159 
   6160         for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
   6161              SuperClassInheritedProtocols.begin(),
   6162              E = SuperClassInheritedProtocols.end(); I != E; ++I) {
   6163           ObjCProtocolDecl *SuperClassProto = (*I);
   6164           if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
   6165             SuperImplementsProtocol = true;
   6166             break;
   6167           }
   6168         }
   6169         if (!SuperImplementsProtocol)
   6170           return false;
   6171       }
   6172       return true;
   6173     }
   6174     return false;
   6175   }
   6176 
   6177   for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
   6178                                      LHSPE = LHS->qual_end();
   6179        LHSPI != LHSPE; LHSPI++) {
   6180     bool RHSImplementsProtocol = false;
   6181 
   6182     // If the RHS doesn't implement the protocol on the left, the types
   6183     // are incompatible.
   6184     for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
   6185                                        RHSPE = RHS->qual_end();
   6186          RHSPI != RHSPE; RHSPI++) {
   6187       if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
   6188         RHSImplementsProtocol = true;
   6189         break;
   6190       }
   6191     }
   6192     // FIXME: For better diagnostics, consider passing back the protocol name.
   6193     if (!RHSImplementsProtocol)
   6194       return false;
   6195   }
   6196   // The RHS implements all protocols listed on the LHS.
   6197   return true;
   6198 }
   6199 
   6200 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
   6201   // get the "pointed to" types
   6202   const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
   6203   const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
   6204 
   6205   if (!LHSOPT || !RHSOPT)
   6206     return false;
   6207 
   6208   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
   6209          canAssignObjCInterfaces(RHSOPT, LHSOPT);
   6210 }
   6211 
   6212 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
   6213   return canAssignObjCInterfaces(
   6214                 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
   6215                 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
   6216 }
   6217 
   6218 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
   6219 /// both shall have the identically qualified version of a compatible type.
   6220 /// C99 6.2.7p1: Two types have compatible types if their types are the
   6221 /// same. See 6.7.[2,3,5] for additional rules.
   6222 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
   6223                                     bool CompareUnqualified) {
   6224   if (getLangOpts().CPlusPlus)
   6225     return hasSameType(LHS, RHS);
   6226 
   6227   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
   6228 }
   6229 
   6230 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
   6231   return typesAreCompatible(LHS, RHS);
   6232 }
   6233 
   6234 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
   6235   return !mergeTypes(LHS, RHS, true).isNull();
   6236 }
   6237 
   6238 /// mergeTransparentUnionType - if T is a transparent union type and a member
   6239 /// of T is compatible with SubType, return the merged type, else return
   6240 /// QualType()
   6241 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
   6242                                                bool OfBlockPointer,
   6243                                                bool Unqualified) {
   6244   if (const RecordType *UT = T->getAsUnionType()) {
   6245     RecordDecl *UD = UT->getDecl();
   6246     if (UD->hasAttr<TransparentUnionAttr>()) {
   6247       for (RecordDecl::field_iterator it = UD->field_begin(),
   6248            itend = UD->field_end(); it != itend; ++it) {
   6249         QualType ET = it->getType().getUnqualifiedType();
   6250         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
   6251         if (!MT.isNull())
   6252           return MT;
   6253       }
   6254     }
   6255   }
   6256 
   6257   return QualType();
   6258 }
   6259 
   6260 /// mergeFunctionArgumentTypes - merge two types which appear as function
   6261 /// argument types
   6262 QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
   6263                                                 bool OfBlockPointer,
   6264                                                 bool Unqualified) {
   6265   // GNU extension: two types are compatible if they appear as a function
   6266   // argument, one of the types is a transparent union type and the other
   6267   // type is compatible with a union member
   6268   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
   6269                                               Unqualified);
   6270   if (!lmerge.isNull())
   6271     return lmerge;
   6272 
   6273   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
   6274                                               Unqualified);
   6275   if (!rmerge.isNull())
   6276     return rmerge;
   6277 
   6278   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
   6279 }
   6280 
   6281 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
   6282                                         bool OfBlockPointer,
   6283                                         bool Unqualified) {
   6284   const FunctionType *lbase = lhs->getAs<FunctionType>();
   6285   const FunctionType *rbase = rhs->getAs<FunctionType>();
   6286   const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
   6287   const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
   6288   bool allLTypes = true;
   6289   bool allRTypes = true;
   6290 
   6291   // Check return type
   6292   QualType retType;
   6293   if (OfBlockPointer) {
   6294     QualType RHS = rbase->getResultType();
   6295     QualType LHS = lbase->getResultType();
   6296     bool UnqualifiedResult = Unqualified;
   6297     if (!UnqualifiedResult)
   6298       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
   6299     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
   6300   }
   6301   else
   6302     retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
   6303                          Unqualified);
   6304   if (retType.isNull()) return QualType();
   6305 
   6306   if (Unqualified)
   6307     retType = retType.getUnqualifiedType();
   6308 
   6309   CanQualType LRetType = getCanonicalType(lbase->getResultType());
   6310   CanQualType RRetType = getCanonicalType(rbase->getResultType());
   6311   if (Unqualified) {
   6312     LRetType = LRetType.getUnqualifiedType();
   6313     RRetType = RRetType.getUnqualifiedType();
   6314   }
   6315 
   6316   if (getCanonicalType(retType) != LRetType)
   6317     allLTypes = false;
   6318   if (getCanonicalType(retType) != RRetType)
   6319     allRTypes = false;
   6320 
   6321   // FIXME: double check this
   6322   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
   6323   //                           rbase->getRegParmAttr() != 0 &&
   6324   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
   6325   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
   6326   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
   6327 
   6328   // Compatible functions must have compatible calling conventions
   6329   if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
   6330     return QualType();
   6331 
   6332   // Regparm is part of the calling convention.
   6333   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
   6334     return QualType();
   6335   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
   6336     return QualType();
   6337 
   6338   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
   6339     return QualType();
   6340 
   6341   // functypes which return are preferred over those that do not.
   6342   if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
   6343     allLTypes = false;
   6344   else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
   6345     allRTypes = false;
   6346   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
   6347   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
   6348 
   6349   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
   6350 
   6351   if (lproto && rproto) { // two C99 style function prototypes
   6352     assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
   6353            "C++ shouldn't be here");
   6354     unsigned lproto_nargs = lproto->getNumArgs();
   6355     unsigned rproto_nargs = rproto->getNumArgs();
   6356 
   6357     // Compatible functions must have the same number of arguments
   6358     if (lproto_nargs != rproto_nargs)
   6359       return QualType();
   6360 
   6361     // Variadic and non-variadic functions aren't compatible
   6362     if (lproto->isVariadic() != rproto->isVariadic())
   6363       return QualType();
   6364 
   6365     if (lproto->getTypeQuals() != rproto->getTypeQuals())
   6366       return QualType();
   6367 
   6368     if (LangOpts.ObjCAutoRefCount &&
   6369         !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
   6370       return QualType();
   6371 
   6372     // Check argument compatibility
   6373     SmallVector<QualType, 10> types;
   6374     for (unsigned i = 0; i < lproto_nargs; i++) {
   6375       QualType largtype = lproto->getArgType(i).getUnqualifiedType();
   6376       QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
   6377       QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
   6378                                                     OfBlockPointer,
   6379                                                     Unqualified);
   6380       if (argtype.isNull()) return QualType();
   6381 
   6382       if (Unqualified)
   6383         argtype = argtype.getUnqualifiedType();
   6384 
   6385       types.push_back(argtype);
   6386       if (Unqualified) {
   6387         largtype = largtype.getUnqualifiedType();
   6388         rargtype = rargtype.getUnqualifiedType();
   6389       }
   6390 
   6391       if (getCanonicalType(argtype) != getCanonicalType(largtype))
   6392         allLTypes = false;
   6393       if (getCanonicalType(argtype) != getCanonicalType(rargtype))
   6394         allRTypes = false;
   6395     }
   6396 
   6397     if (allLTypes) return lhs;
   6398     if (allRTypes) return rhs;
   6399 
   6400     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
   6401     EPI.ExtInfo = einfo;
   6402     return getFunctionType(retType, types.begin(), types.size(), EPI);
   6403   }
   6404 
   6405   if (lproto) allRTypes = false;
   6406   if (rproto) allLTypes = false;
   6407 
   6408   const FunctionProtoType *proto = lproto ? lproto : rproto;
   6409   if (proto) {
   6410     assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
   6411     if (proto->isVariadic()) return QualType();
   6412     // Check that the types are compatible with the types that
   6413     // would result from default argument promotions (C99 6.7.5.3p15).
   6414     // The only types actually affected are promotable integer
   6415     // types and floats, which would be passed as a different
   6416     // type depending on whether the prototype is visible.
   6417     unsigned proto_nargs = proto->getNumArgs();
   6418     for (unsigned i = 0; i < proto_nargs; ++i) {
   6419       QualType argTy = proto->getArgType(i);
   6420 
   6421       // Look at the converted type of enum types, since that is the type used
   6422       // to pass enum values.
   6423       if (const EnumType *Enum = argTy->getAs<EnumType>()) {
   6424         argTy = Enum->getDecl()->getIntegerType();
   6425         if (argTy.isNull())
   6426           return QualType();
   6427       }
   6428 
   6429       if (argTy->isPromotableIntegerType() ||
   6430           getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
   6431         return QualType();
   6432     }
   6433 
   6434     if (allLTypes) return lhs;
   6435     if (allRTypes) return rhs;
   6436 
   6437     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
   6438     EPI.ExtInfo = einfo;
   6439     return getFunctionType(retType, proto->arg_type_begin(),
   6440                            proto->getNumArgs(), EPI);
   6441   }
   6442 
   6443   if (allLTypes) return lhs;
   6444   if (allRTypes) return rhs;
   6445   return getFunctionNoProtoType(retType, einfo);
   6446 }
   6447 
   6448 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
   6449                                 bool OfBlockPointer,
   6450                                 bool Unqualified, bool BlockReturnType) {
   6451   // C++ [expr]: If an expression initially has the type "reference to T", the
   6452   // type is adjusted to "T" prior to any further analysis, the expression
   6453   // designates the object or function denoted by the reference, and the
   6454   // expression is an lvalue unless the reference is an rvalue reference and
   6455   // the expression is a function call (possibly inside parentheses).
   6456   assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
   6457   assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
   6458 
   6459   if (Unqualified) {
   6460     LHS = LHS.getUnqualifiedType();
   6461     RHS = RHS.getUnqualifiedType();
   6462   }
   6463 
   6464   QualType LHSCan = getCanonicalType(LHS),
   6465            RHSCan = getCanonicalType(RHS);
   6466 
   6467   // If two types are identical, they are compatible.
   6468   if (LHSCan == RHSCan)
   6469     return LHS;
   6470 
   6471   // If the qualifiers are different, the types aren't compatible... mostly.
   6472   Qualifiers LQuals = LHSCan.getLocalQualifiers();
   6473   Qualifiers RQuals = RHSCan.getLocalQualifiers();
   6474   if (LQuals != RQuals) {
   6475     // If any of these qualifiers are different, we have a type
   6476     // mismatch.
   6477     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
   6478         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
   6479         LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
   6480       return QualType();
   6481 
   6482     // Exactly one GC qualifier difference is allowed: __strong is
   6483     // okay if the other type has no GC qualifier but is an Objective
   6484     // C object pointer (i.e. implicitly strong by default).  We fix
   6485     // this by pretending that the unqualified type was actually
   6486     // qualified __strong.
   6487     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
   6488     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
   6489     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
   6490 
   6491     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
   6492       return QualType();
   6493 
   6494     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
   6495       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
   6496     }
   6497     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
   6498       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
   6499     }
   6500     return QualType();
   6501   }
   6502 
   6503   // Okay, qualifiers are equal.
   6504 
   6505   Type::TypeClass LHSClass = LHSCan->getTypeClass();
   6506   Type::TypeClass RHSClass = RHSCan->getTypeClass();
   6507 
   6508   // We want to consider the two function types to be the same for these
   6509   // comparisons, just force one to the other.
   6510   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
   6511   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
   6512 
   6513   // Same as above for arrays
   6514   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
   6515     LHSClass = Type::ConstantArray;
   6516   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
   6517     RHSClass = Type::ConstantArray;
   6518 
   6519   // ObjCInterfaces are just specialized ObjCObjects.
   6520   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
   6521   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
   6522 
   6523   // Canonicalize ExtVector -> Vector.
   6524   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
   6525   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
   6526 
   6527   // If the canonical type classes don't match.
   6528   if (LHSClass != RHSClass) {
   6529     // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
   6530     // a signed integer type, or an unsigned integer type.
   6531     // Compatibility is based on the underlying type, not the promotion
   6532     // type.
   6533     if (const EnumType* ETy = LHS->getAs<EnumType>()) {
   6534       QualType TINT = ETy->getDecl()->getIntegerType();
   6535       if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
   6536         return RHS;
   6537     }
   6538     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
   6539       QualType TINT = ETy->getDecl()->getIntegerType();
   6540       if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
   6541         return LHS;
   6542     }
   6543     // allow block pointer type to match an 'id' type.
   6544     if (OfBlockPointer && !BlockReturnType) {
   6545        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
   6546          return LHS;
   6547       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
   6548         return RHS;
   6549     }
   6550 
   6551     return QualType();
   6552   }
   6553 
   6554   // The canonical type classes match.
   6555   switch (LHSClass) {
   6556 #define TYPE(Class, Base)
   6557 #define ABSTRACT_TYPE(Class, Base)
   6558 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
   6559 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   6560 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   6561 #include "clang/AST/TypeNodes.def"
   6562     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
   6563 
   6564   case Type::LValueReference:
   6565   case Type::RValueReference:
   6566   case Type::MemberPointer:
   6567     llvm_unreachable("C++ should never be in mergeTypes");
   6568 
   6569   case Type::ObjCInterface:
   6570   case Type::IncompleteArray:
   6571   case Type::VariableArray:
   6572   case Type::FunctionProto:
   6573   case Type::ExtVector:
   6574     llvm_unreachable("Types are eliminated above");
   6575 
   6576   case Type::Pointer:
   6577   {
   6578     // Merge two pointer types, while trying to preserve typedef info
   6579     QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
   6580     QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
   6581     if (Unqualified) {
   6582       LHSPointee = LHSPointee.getUnqualifiedType();
   6583       RHSPointee = RHSPointee.getUnqualifiedType();
   6584     }
   6585     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
   6586                                      Unqualified);
   6587     if (ResultType.isNull()) return QualType();
   6588     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
   6589       return LHS;
   6590     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
   6591       return RHS;
   6592     return getPointerType(ResultType);
   6593   }
   6594   case Type::BlockPointer:
   6595   {
   6596     // Merge two block pointer types, while trying to preserve typedef info
   6597     QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
   6598     QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
   6599     if (Unqualified) {
   6600       LHSPointee = LHSPointee.getUnqualifiedType();
   6601       RHSPointee = RHSPointee.getUnqualifiedType();
   6602     }
   6603     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
   6604                                      Unqualified);
   6605     if (ResultType.isNull()) return QualType();
   6606     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
   6607       return LHS;
   6608     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
   6609       return RHS;
   6610     return getBlockPointerType(ResultType);
   6611   }
   6612   case Type::Atomic:
   6613   {
   6614     // Merge two pointer types, while trying to preserve typedef info
   6615     QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
   6616     QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
   6617     if (Unqualified) {
   6618       LHSValue = LHSValue.getUnqualifiedType();
   6619       RHSValue = RHSValue.getUnqualifiedType();
   6620     }
   6621     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
   6622                                      Unqualified);
   6623     if (ResultType.isNull()) return QualType();
   6624     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
   6625       return LHS;
   6626     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
   6627       return RHS;
   6628     return getAtomicType(ResultType);
   6629   }
   6630   case Type::ConstantArray:
   6631   {
   6632     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
   6633     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
   6634     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
   6635       return QualType();
   6636 
   6637     QualType LHSElem = getAsArrayType(LHS)->getElementType();
   6638     QualType RHSElem = getAsArrayType(RHS)->getElementType();
   6639     if (Unqualified) {
   6640       LHSElem = LHSElem.getUnqualifiedType();
   6641       RHSElem = RHSElem.getUnqualifiedType();
   6642     }
   6643 
   6644     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
   6645     if (ResultType.isNull()) return QualType();
   6646     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
   6647       return LHS;
   6648     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
   6649       return RHS;
   6650     if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
   6651                                           ArrayType::ArraySizeModifier(), 0);
   6652     if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
   6653                                           ArrayType::ArraySizeModifier(), 0);
   6654     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
   6655     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
   6656     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
   6657       return LHS;
   6658     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
   6659       return RHS;
   6660     if (LVAT) {
   6661       // FIXME: This isn't correct! But tricky to implement because
   6662       // the array's size has to be the size of LHS, but the type
   6663       // has to be different.
   6664       return LHS;
   6665     }
   6666     if (RVAT) {
   6667       // FIXME: This isn't correct! But tricky to implement because
   6668       // the array's size has to be the size of RHS, but the type
   6669       // has to be different.
   6670       return RHS;
   6671     }
   6672     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
   6673     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
   6674     return getIncompleteArrayType(ResultType,
   6675                                   ArrayType::ArraySizeModifier(), 0);
   6676   }
   6677   case Type::FunctionNoProto:
   6678     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
   6679   case Type::Record:
   6680   case Type::Enum:
   6681     return QualType();
   6682   case Type::Builtin:
   6683     // Only exactly equal builtin types are compatible, which is tested above.
   6684     return QualType();
   6685   case Type::Complex:
   6686     // Distinct complex types are incompatible.
   6687     return QualType();
   6688   case Type::Vector:
   6689     // FIXME: The merged type should be an ExtVector!
   6690     if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
   6691                              RHSCan->getAs<VectorType>()))
   6692       return LHS;
   6693     return QualType();
   6694   case Type::ObjCObject: {
   6695     // Check if the types are assignment compatible.
   6696     // FIXME: This should be type compatibility, e.g. whether
   6697     // "LHS x; RHS x;" at global scope is legal.
   6698     const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
   6699     const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
   6700     if (canAssignObjCInterfaces(LHSIface, RHSIface))
   6701       return LHS;
   6702 
   6703     return QualType();
   6704   }
   6705   case Type::ObjCObjectPointer: {
   6706     if (OfBlockPointer) {
   6707       if (canAssignObjCInterfacesInBlockPointer(
   6708                                           LHS->getAs<ObjCObjectPointerType>(),
   6709                                           RHS->getAs<ObjCObjectPointerType>(),
   6710                                           BlockReturnType))
   6711         return LHS;
   6712       return QualType();
   6713     }
   6714     if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
   6715                                 RHS->getAs<ObjCObjectPointerType>()))
   6716       return LHS;
   6717 
   6718     return QualType();
   6719   }
   6720   }
   6721 
   6722   llvm_unreachable("Invalid Type::Class!");
   6723 }
   6724 
   6725 bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
   6726                    const FunctionProtoType *FromFunctionType,
   6727                    const FunctionProtoType *ToFunctionType) {
   6728   if (FromFunctionType->hasAnyConsumedArgs() !=
   6729       ToFunctionType->hasAnyConsumedArgs())
   6730     return false;
   6731   FunctionProtoType::ExtProtoInfo FromEPI =
   6732     FromFunctionType->getExtProtoInfo();
   6733   FunctionProtoType::ExtProtoInfo ToEPI =
   6734     ToFunctionType->getExtProtoInfo();
   6735   if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
   6736     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
   6737          ArgIdx != NumArgs; ++ArgIdx)  {
   6738       if (FromEPI.ConsumedArguments[ArgIdx] !=
   6739           ToEPI.ConsumedArguments[ArgIdx])
   6740         return false;
   6741     }
   6742   return true;
   6743 }
   6744 
   6745 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
   6746 /// 'RHS' attributes and returns the merged version; including for function
   6747 /// return types.
   6748 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
   6749   QualType LHSCan = getCanonicalType(LHS),
   6750   RHSCan = getCanonicalType(RHS);
   6751   // If two types are identical, they are compatible.
   6752   if (LHSCan == RHSCan)
   6753     return LHS;
   6754   if (RHSCan->isFunctionType()) {
   6755     if (!LHSCan->isFunctionType())
   6756       return QualType();
   6757     QualType OldReturnType =
   6758       cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
   6759     QualType NewReturnType =
   6760       cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
   6761     QualType ResReturnType =
   6762       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
   6763     if (ResReturnType.isNull())
   6764       return QualType();
   6765     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
   6766       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
   6767       // In either case, use OldReturnType to build the new function type.
   6768       const FunctionType *F = LHS->getAs<FunctionType>();
   6769       if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
   6770         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   6771         EPI.ExtInfo = getFunctionExtInfo(LHS);
   6772         QualType ResultType
   6773           = getFunctionType(OldReturnType, FPT->arg_type_begin(),
   6774                             FPT->getNumArgs(), EPI);
   6775         return ResultType;
   6776       }
   6777     }
   6778     return QualType();
   6779   }
   6780 
   6781   // If the qualifiers are different, the types can still be merged.
   6782   Qualifiers LQuals = LHSCan.getLocalQualifiers();
   6783   Qualifiers RQuals = RHSCan.getLocalQualifiers();
   6784   if (LQuals != RQuals) {
   6785     // If any of these qualifiers are different, we have a type mismatch.
   6786     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
   6787         LQuals.getAddressSpace() != RQuals.getAddressSpace())
   6788       return QualType();
   6789 
   6790     // Exactly one GC qualifier difference is allowed: __strong is
   6791     // okay if the other type has no GC qualifier but is an Objective
   6792     // C object pointer (i.e. implicitly strong by default).  We fix
   6793     // this by pretending that the unqualified type was actually
   6794     // qualified __strong.
   6795     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
   6796     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
   6797     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
   6798 
   6799     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
   6800       return QualType();
   6801 
   6802     if (GC_L == Qualifiers::Strong)
   6803       return LHS;
   6804     if (GC_R == Qualifiers::Strong)
   6805       return RHS;
   6806     return QualType();
   6807   }
   6808 
   6809   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
   6810     QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
   6811     QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
   6812     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
   6813     if (ResQT == LHSBaseQT)
   6814       return LHS;
   6815     if (ResQT == RHSBaseQT)
   6816       return RHS;
   6817   }
   6818   return QualType();
   6819 }
   6820 
   6821 //===----------------------------------------------------------------------===//
   6822 //                         Integer Predicates
   6823 //===----------------------------------------------------------------------===//
   6824 
   6825 unsigned ASTContext::getIntWidth(QualType T) const {
   6826   if (const EnumType *ET = dyn_cast<EnumType>(T))
   6827     T = ET->getDecl()->getIntegerType();
   6828   if (T->isBooleanType())
   6829     return 1;
   6830   // For builtin types, just use the standard type sizing method
   6831   return (unsigned)getTypeSize(T);
   6832 }
   6833 
   6834 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
   6835   assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
   6836 
   6837   // Turn <4 x signed int> -> <4 x unsigned int>
   6838   if (const VectorType *VTy = T->getAs<VectorType>())
   6839     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
   6840                          VTy->getNumElements(), VTy->getVectorKind());
   6841 
   6842   // For enums, we return the unsigned version of the base type.
   6843   if (const EnumType *ETy = T->getAs<EnumType>())
   6844     T = ETy->getDecl()->getIntegerType();
   6845 
   6846   const BuiltinType *BTy = T->getAs<BuiltinType>();
   6847   assert(BTy && "Unexpected signed integer type");
   6848   switch (BTy->getKind()) {
   6849   case BuiltinType::Char_S:
   6850   case BuiltinType::SChar:
   6851     return UnsignedCharTy;
   6852   case BuiltinType::Short:
   6853     return UnsignedShortTy;
   6854   case BuiltinType::Int:
   6855     return UnsignedIntTy;
   6856   case BuiltinType::Long:
   6857     return UnsignedLongTy;
   6858   case BuiltinType::LongLong:
   6859     return UnsignedLongLongTy;
   6860   case BuiltinType::Int128:
   6861     return UnsignedInt128Ty;
   6862   default:
   6863     llvm_unreachable("Unexpected signed integer type");
   6864   }
   6865 }
   6866 
   6867 ASTMutationListener::~ASTMutationListener() { }
   6868 
   6869 
   6870 //===----------------------------------------------------------------------===//
   6871 //                          Builtin Type Computation
   6872 //===----------------------------------------------------------------------===//
   6873 
   6874 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
   6875 /// pointer over the consumed characters.  This returns the resultant type.  If
   6876 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
   6877 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
   6878 /// a vector of "i*".
   6879 ///
   6880 /// RequiresICE is filled in on return to indicate whether the value is required
   6881 /// to be an Integer Constant Expression.
   6882 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
   6883                                   ASTContext::GetBuiltinTypeError &Error,
   6884                                   bool &RequiresICE,
   6885                                   bool AllowTypeModifiers) {
   6886   // Modifiers.
   6887   int HowLong = 0;
   6888   bool Signed = false, Unsigned = false;
   6889   RequiresICE = false;
   6890 
   6891   // Read the prefixed modifiers first.
   6892   bool Done = false;
   6893   while (!Done) {
   6894     switch (*Str++) {
   6895     default: Done = true; --Str; break;
   6896     case 'I':
   6897       RequiresICE = true;
   6898       break;
   6899     case 'S':
   6900       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
   6901       assert(!Signed && "Can't use 'S' modifier multiple times!");
   6902       Signed = true;
   6903       break;
   6904     case 'U':
   6905       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
   6906       assert(!Unsigned && "Can't use 'S' modifier multiple times!");
   6907       Unsigned = true;
   6908       break;
   6909     case 'L':
   6910       assert(HowLong <= 2 && "Can't have LLLL modifier");
   6911       ++HowLong;
   6912       break;
   6913     }
   6914   }
   6915 
   6916   QualType Type;
   6917 
   6918   // Read the base type.
   6919   switch (*Str++) {
   6920   default: llvm_unreachable("Unknown builtin type letter!");
   6921   case 'v':
   6922     assert(HowLong == 0 && !Signed && !Unsigned &&
   6923            "Bad modifiers used with 'v'!");
   6924     Type = Context.VoidTy;
   6925     break;
   6926   case 'f':
   6927     assert(HowLong == 0 && !Signed && !Unsigned &&
   6928            "Bad modifiers used with 'f'!");
   6929     Type = Context.FloatTy;
   6930     break;
   6931   case 'd':
   6932     assert(HowLong < 2 && !Signed && !Unsigned &&
   6933            "Bad modifiers used with 'd'!");
   6934     if (HowLong)
   6935       Type = Context.LongDoubleTy;
   6936     else
   6937       Type = Context.DoubleTy;
   6938     break;
   6939   case 's':
   6940     assert(HowLong == 0 && "Bad modifiers used with 's'!");
   6941     if (Unsigned)
   6942       Type = Context.UnsignedShortTy;
   6943     else
   6944       Type = Context.ShortTy;
   6945     break;
   6946   case 'i':
   6947     if (HowLong == 3)
   6948       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
   6949     else if (HowLong == 2)
   6950       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
   6951     else if (HowLong == 1)
   6952       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
   6953     else
   6954       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
   6955     break;
   6956   case 'c':
   6957     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
   6958     if (Signed)
   6959       Type = Context.SignedCharTy;
   6960     else if (Unsigned)
   6961       Type = Context.UnsignedCharTy;
   6962     else
   6963       Type = Context.CharTy;
   6964     break;
   6965   case 'b': // boolean
   6966     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
   6967     Type = Context.BoolTy;
   6968     break;
   6969   case 'z':  // size_t.
   6970     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
   6971     Type = Context.getSizeType();
   6972     break;
   6973   case 'F':
   6974     Type = Context.getCFConstantStringType();
   6975     break;
   6976   case 'G':
   6977     Type = Context.getObjCIdType();
   6978     break;
   6979   case 'H':
   6980     Type = Context.getObjCSelType();
   6981     break;
   6982   case 'a':
   6983     Type = Context.getBuiltinVaListType();
   6984     assert(!Type.isNull() && "builtin va list type not initialized!");
   6985     break;
   6986   case 'A':
   6987     // This is a "reference" to a va_list; however, what exactly
   6988     // this means depends on how va_list is defined. There are two
   6989     // different kinds of va_list: ones passed by value, and ones
   6990     // passed by reference.  An example of a by-value va_list is
   6991     // x86, where va_list is a char*. An example of by-ref va_list
   6992     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
   6993     // we want this argument to be a char*&; for x86-64, we want
   6994     // it to be a __va_list_tag*.
   6995     Type = Context.getBuiltinVaListType();
   6996     assert(!Type.isNull() && "builtin va list type not initialized!");
   6997     if (Type->isArrayType())
   6998       Type = Context.getArrayDecayedType(Type);
   6999     else
   7000       Type = Context.getLValueReferenceType(Type);
   7001     break;
   7002   case 'V': {
   7003     char *End;
   7004     unsigned NumElements = strtoul(Str, &End, 10);
   7005     assert(End != Str && "Missing vector size");
   7006     Str = End;
   7007 
   7008     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
   7009                                              RequiresICE, false);
   7010     assert(!RequiresICE && "Can't require vector ICE");
   7011 
   7012     // TODO: No way to make AltiVec vectors in builtins yet.
   7013     Type = Context.getVectorType(ElementType, NumElements,
   7014                                  VectorType::GenericVector);
   7015     break;
   7016   }
   7017   case 'E': {
   7018     char *End;
   7019 
   7020     unsigned NumElements = strtoul(Str, &End, 10);
   7021     assert(End != Str && "Missing vector size");
   7022 
   7023     Str = End;
   7024 
   7025     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
   7026                                              false);
   7027     Type = Context.getExtVectorType(ElementType, NumElements);
   7028     break;
   7029   }
   7030   case 'X': {
   7031     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
   7032                                              false);
   7033     assert(!RequiresICE && "Can't require complex ICE");
   7034     Type = Context.getComplexType(ElementType);
   7035     break;
   7036   }
   7037   case 'Y' : {
   7038     Type = Context.getPointerDiffType();
   7039     break;
   7040   }
   7041   case 'P':
   7042     Type = Context.getFILEType();
   7043     if (Type.isNull()) {
   7044       Error = ASTContext::GE_Missing_stdio;
   7045       return QualType();
   7046     }
   7047     break;
   7048   case 'J':
   7049     if (Signed)
   7050       Type = Context.getsigjmp_bufType();
   7051     else
   7052       Type = Context.getjmp_bufType();
   7053 
   7054     if (Type.isNull()) {
   7055       Error = ASTContext::GE_Missing_setjmp;
   7056       return QualType();
   7057     }
   7058     break;
   7059   case 'K':
   7060     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
   7061     Type = Context.getucontext_tType();
   7062 
   7063     if (Type.isNull()) {
   7064       Error = ASTContext::GE_Missing_ucontext;
   7065       return QualType();
   7066     }
   7067     break;
   7068   }
   7069 
   7070   // If there are modifiers and if we're allowed to parse them, go for it.
   7071   Done = !AllowTypeModifiers;
   7072   while (!Done) {
   7073     switch (char c = *Str++) {
   7074     default: Done = true; --Str; break;
   7075     case '*':
   7076     case '&': {
   7077       // Both pointers and references can have their pointee types
   7078       // qualified with an address space.
   7079       char *End;
   7080       unsigned AddrSpace = strtoul(Str, &End, 10);
   7081       if (End != Str && AddrSpace != 0) {
   7082         Type = Context.getAddrSpaceQualType(Type, AddrSpace);
   7083         Str = End;
   7084       }
   7085       if (c == '*')
   7086         Type = Context.getPointerType(Type);
   7087       else
   7088         Type = Context.getLValueReferenceType(Type);
   7089       break;
   7090     }
   7091     // FIXME: There's no way to have a built-in with an rvalue ref arg.
   7092     case 'C':
   7093       Type = Type.withConst();
   7094       break;
   7095     case 'D':
   7096       Type = Context.getVolatileType(Type);
   7097       break;
   7098     case 'R':
   7099       Type = Type.withRestrict();
   7100       break;
   7101     }
   7102   }
   7103 
   7104   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
   7105          "Integer constant 'I' type must be an integer");
   7106 
   7107   return Type;
   7108 }
   7109 
   7110 /// GetBuiltinType - Return the type for the specified builtin.
   7111 QualType ASTContext::GetBuiltinType(unsigned Id,
   7112                                     GetBuiltinTypeError &Error,
   7113                                     unsigned *IntegerConstantArgs) const {
   7114   const char *TypeStr = BuiltinInfo.GetTypeString(Id);
   7115 
   7116   SmallVector<QualType, 8> ArgTypes;
   7117 
   7118   bool RequiresICE = false;
   7119   Error = GE_None;
   7120   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
   7121                                        RequiresICE, true);
   7122   if (Error != GE_None)
   7123     return QualType();
   7124 
   7125   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
   7126 
   7127   while (TypeStr[0] && TypeStr[0] != '.') {
   7128     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
   7129     if (Error != GE_None)
   7130       return QualType();
   7131 
   7132     // If this argument is required to be an IntegerConstantExpression and the
   7133     // caller cares, fill in the bitmask we return.
   7134     if (RequiresICE && IntegerConstantArgs)
   7135       *IntegerConstantArgs |= 1 << ArgTypes.size();
   7136 
   7137     // Do array -> pointer decay.  The builtin should use the decayed type.
   7138     if (Ty->isArrayType())
   7139       Ty = getArrayDecayedType(Ty);
   7140 
   7141     ArgTypes.push_back(Ty);
   7142   }
   7143 
   7144   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
   7145          "'.' should only occur at end of builtin type list!");
   7146 
   7147   FunctionType::ExtInfo EI;
   7148   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
   7149 
   7150   bool Variadic = (TypeStr[0] == '.');
   7151 
   7152   // We really shouldn't be making a no-proto type here, especially in C++.
   7153   if (ArgTypes.empty() && Variadic)
   7154     return getFunctionNoProtoType(ResType, EI);
   7155 
   7156   FunctionProtoType::ExtProtoInfo EPI;
   7157   EPI.ExtInfo = EI;
   7158   EPI.Variadic = Variadic;
   7159 
   7160   return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
   7161 }
   7162 
   7163 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
   7164   GVALinkage External = GVA_StrongExternal;
   7165 
   7166   Linkage L = FD->getLinkage();
   7167   switch (L) {
   7168   case NoLinkage:
   7169   case InternalLinkage:
   7170   case UniqueExternalLinkage:
   7171     return GVA_Internal;
   7172 
   7173   case ExternalLinkage:
   7174     switch (FD->getTemplateSpecializationKind()) {
   7175     case TSK_Undeclared:
   7176     case TSK_ExplicitSpecialization:
   7177       External = GVA_StrongExternal;
   7178       break;
   7179 
   7180     case TSK_ExplicitInstantiationDefinition:
   7181       return GVA_ExplicitTemplateInstantiation;
   7182 
   7183     case TSK_ExplicitInstantiationDeclaration:
   7184     case TSK_ImplicitInstantiation:
   7185       External = GVA_TemplateInstantiation;
   7186       break;
   7187     }
   7188   }
   7189 
   7190   if (!FD->isInlined())
   7191     return External;
   7192 
   7193   if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
   7194     // GNU or C99 inline semantics. Determine whether this symbol should be
   7195     // externally visible.
   7196     if (FD->isInlineDefinitionExternallyVisible())
   7197       return External;
   7198 
   7199     // C99 inline semantics, where the symbol is not externally visible.
   7200     return GVA_C99Inline;
   7201   }
   7202 
   7203   // C++0x [temp.explicit]p9:
   7204   //   [ Note: The intent is that an inline function that is the subject of
   7205   //   an explicit instantiation declaration will still be implicitly
   7206   //   instantiated when used so that the body can be considered for
   7207   //   inlining, but that no out-of-line copy of the inline function would be
   7208   //   generated in the translation unit. -- end note ]
   7209   if (FD->getTemplateSpecializationKind()
   7210                                        == TSK_ExplicitInstantiationDeclaration)
   7211     return GVA_C99Inline;
   7212 
   7213   return GVA_CXXInline;
   7214 }
   7215 
   7216 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
   7217   // If this is a static data member, compute the kind of template
   7218   // specialization. Otherwise, this variable is not part of a
   7219   // template.
   7220   TemplateSpecializationKind TSK = TSK_Undeclared;
   7221   if (VD->isStaticDataMember())
   7222     TSK = VD->getTemplateSpecializationKind();
   7223 
   7224   Linkage L = VD->getLinkage();
   7225   if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
   7226       VD->getType()->getLinkage() == UniqueExternalLinkage)
   7227     L = UniqueExternalLinkage;
   7228 
   7229   switch (L) {
   7230   case NoLinkage:
   7231   case InternalLinkage:
   7232   case UniqueExternalLinkage:
   7233     return GVA_Internal;
   7234 
   7235   case ExternalLinkage:
   7236     switch (TSK) {
   7237     case TSK_Undeclared:
   7238     case TSK_ExplicitSpecialization:
   7239       return GVA_StrongExternal;
   7240 
   7241     case TSK_ExplicitInstantiationDeclaration:
   7242       llvm_unreachable("Variable should not be instantiated");
   7243       // Fall through to treat this like any other instantiation.
   7244 
   7245     case TSK_ExplicitInstantiationDefinition:
   7246       return GVA_ExplicitTemplateInstantiation;
   7247 
   7248     case TSK_ImplicitInstantiation:
   7249       return GVA_TemplateInstantiation;
   7250     }
   7251   }
   7252 
   7253   llvm_unreachable("Invalid Linkage!");
   7254 }
   7255 
   7256 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
   7257   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   7258     if (!VD->isFileVarDecl())
   7259       return false;
   7260   } else if (!isa<FunctionDecl>(D))
   7261     return false;
   7262 
   7263   // Weak references don't produce any output by themselves.
   7264   if (D->hasAttr<WeakRefAttr>())
   7265     return false;
   7266 
   7267   // Aliases and used decls are required.
   7268   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
   7269     return true;
   7270 
   7271   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   7272     // Forward declarations aren't required.
   7273     if (!FD->doesThisDeclarationHaveABody())
   7274       return FD->doesDeclarationForceExternallyVisibleDefinition();
   7275 
   7276     // Constructors and destructors are required.
   7277     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
   7278       return true;
   7279 
   7280     // The key function for a class is required.
   7281     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   7282       const CXXRecordDecl *RD = MD->getParent();
   7283       if (MD->isOutOfLine() && RD->isDynamicClass()) {
   7284         const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
   7285         if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
   7286           return true;
   7287       }
   7288     }
   7289 
   7290     GVALinkage Linkage = GetGVALinkageForFunction(FD);
   7291 
   7292     // static, static inline, always_inline, and extern inline functions can
   7293     // always be deferred.  Normal inline functions can be deferred in C99/C++.
   7294     // Implicit template instantiations can also be deferred in C++.
   7295     if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
   7296         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
   7297       return false;
   7298     return true;
   7299   }
   7300 
   7301   const VarDecl *VD = cast<VarDecl>(D);
   7302   assert(VD->isFileVarDecl() && "Expected file scoped var");
   7303 
   7304   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
   7305     return false;
   7306 
   7307   // Structs that have non-trivial constructors or destructors are required.
   7308 
   7309   // FIXME: Handle references.
   7310   // FIXME: Be more selective about which constructors we care about.
   7311   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
   7312     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   7313       if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
   7314                                    RD->hasTrivialCopyConstructor() &&
   7315                                    RD->hasTrivialMoveConstructor() &&
   7316                                    RD->hasTrivialDestructor()))
   7317         return true;
   7318     }
   7319   }
   7320 
   7321   GVALinkage L = GetGVALinkageForVariable(VD);
   7322   if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
   7323     if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
   7324       return false;
   7325   }
   7326 
   7327   return true;
   7328 }
   7329 
   7330 CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
   7331   // Pass through to the C++ ABI object
   7332   return ABI->getDefaultMethodCallConv(isVariadic);
   7333 }
   7334 
   7335 CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
   7336   if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
   7337     return CC_Default;
   7338   return CC;
   7339 }
   7340 
   7341 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
   7342   // Pass through to the C++ ABI object
   7343   return ABI->isNearlyEmpty(RD);
   7344 }
   7345 
   7346 MangleContext *ASTContext::createMangleContext() {
   7347   switch (Target->getCXXABI()) {
   7348   case CXXABI_ARM:
   7349   case CXXABI_Itanium:
   7350     return createItaniumMangleContext(*this, getDiagnostics());
   7351   case CXXABI_Microsoft:
   7352     return createMicrosoftMangleContext(*this, getDiagnostics());
   7353   }
   7354   llvm_unreachable("Unsupported ABI");
   7355 }
   7356 
   7357 CXXABI::~CXXABI() {}
   7358 
   7359 size_t ASTContext::getSideTableAllocatedMemory() const {
   7360   return ASTRecordLayouts.getMemorySize()
   7361     + llvm::capacity_in_bytes(ObjCLayouts)
   7362     + llvm::capacity_in_bytes(KeyFunctions)
   7363     + llvm::capacity_in_bytes(ObjCImpls)
   7364     + llvm::capacity_in_bytes(BlockVarCopyInits)
   7365     + llvm::capacity_in_bytes(DeclAttrs)
   7366     + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
   7367     + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
   7368     + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
   7369     + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
   7370     + llvm::capacity_in_bytes(OverriddenMethods)
   7371     + llvm::capacity_in_bytes(Types)
   7372     + llvm::capacity_in_bytes(VariableArrayTypes)
   7373     + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
   7374 }
   7375 
   7376 unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
   7377   CXXRecordDecl *Lambda = CallOperator->getParent();
   7378   return LambdaMangleContexts[Lambda->getDeclContext()]
   7379            .getManglingNumber(CallOperator);
   7380 }
   7381 
   7382 
   7383 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
   7384   ParamIndices[D] = index;
   7385 }
   7386 
   7387 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
   7388   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
   7389   assert(I != ParamIndices.end() &&
   7390          "ParmIndices lacks entry set by ParmVarDecl");
   7391   return I->second;
   7392 }
   7393