Home | History | Annotate | Download | only in AST
      1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Decl subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/Decl.h"
     15 #include "clang/AST/DeclCXX.h"
     16 #include "clang/AST/DeclObjC.h"
     17 #include "clang/AST/DeclTemplate.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/TypeLoc.h"
     20 #include "clang/AST/Stmt.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/PrettyPrinter.h"
     24 #include "clang/AST/ASTMutationListener.h"
     25 #include "clang/Basic/Builtins.h"
     26 #include "clang/Basic/IdentifierTable.h"
     27 #include "clang/Basic/Module.h"
     28 #include "clang/Basic/Specifiers.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 
     32 #include <algorithm>
     33 
     34 using namespace clang;
     35 
     36 //===----------------------------------------------------------------------===//
     37 // NamedDecl Implementation
     38 //===----------------------------------------------------------------------===//
     39 
     40 static llvm::Optional<Visibility> getVisibilityOf(const Decl *D) {
     41   // If this declaration has an explicit visibility attribute, use it.
     42   if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
     43     switch (A->getVisibility()) {
     44     case VisibilityAttr::Default:
     45       return DefaultVisibility;
     46     case VisibilityAttr::Hidden:
     47       return HiddenVisibility;
     48     case VisibilityAttr::Protected:
     49       return ProtectedVisibility;
     50     }
     51   }
     52 
     53   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
     54   // implies visibility(default).
     55   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
     56     for (specific_attr_iterator<AvailabilityAttr>
     57               A = D->specific_attr_begin<AvailabilityAttr>(),
     58            AEnd = D->specific_attr_end<AvailabilityAttr>();
     59          A != AEnd; ++A)
     60       if ((*A)->getPlatform()->getName().equals("macosx"))
     61         return DefaultVisibility;
     62   }
     63 
     64   return llvm::Optional<Visibility>();
     65 }
     66 
     67 typedef NamedDecl::LinkageInfo LinkageInfo;
     68 
     69 static LinkageInfo getLVForType(QualType T) {
     70   std::pair<Linkage,Visibility> P = T->getLinkageAndVisibility();
     71   return LinkageInfo(P.first, P.second, T->isVisibilityExplicit());
     72 }
     73 
     74 /// \brief Get the most restrictive linkage for the types in the given
     75 /// template parameter list.
     76 static LinkageInfo
     77 getLVForTemplateParameterList(const TemplateParameterList *Params) {
     78   LinkageInfo LV(ExternalLinkage, DefaultVisibility, false);
     79   for (TemplateParameterList::const_iterator P = Params->begin(),
     80                                           PEnd = Params->end();
     81        P != PEnd; ++P) {
     82     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
     83       if (NTTP->isExpandedParameterPack()) {
     84         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
     85           QualType T = NTTP->getExpansionType(I);
     86           if (!T->isDependentType())
     87             LV.merge(getLVForType(T));
     88         }
     89         continue;
     90       }
     91 
     92       if (!NTTP->getType()->isDependentType()) {
     93         LV.merge(getLVForType(NTTP->getType()));
     94         continue;
     95       }
     96     }
     97 
     98     if (TemplateTemplateParmDecl *TTP
     99                                    = dyn_cast<TemplateTemplateParmDecl>(*P)) {
    100       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters()));
    101     }
    102   }
    103 
    104   return LV;
    105 }
    106 
    107 /// getLVForDecl - Get the linkage and visibility for the given declaration.
    108 static LinkageInfo getLVForDecl(const NamedDecl *D, bool OnlyTemplate);
    109 
    110 /// \brief Get the most restrictive linkage for the types and
    111 /// declarations in the given template argument list.
    112 static LinkageInfo getLVForTemplateArgumentList(const TemplateArgument *Args,
    113                                                 unsigned NumArgs,
    114                                                 bool OnlyTemplate) {
    115   LinkageInfo LV(ExternalLinkage, DefaultVisibility, false);
    116 
    117   for (unsigned I = 0; I != NumArgs; ++I) {
    118     switch (Args[I].getKind()) {
    119     case TemplateArgument::Null:
    120     case TemplateArgument::Integral:
    121     case TemplateArgument::Expression:
    122       break;
    123 
    124     case TemplateArgument::Type:
    125       LV.mergeWithMin(getLVForType(Args[I].getAsType()));
    126       break;
    127 
    128     case TemplateArgument::Declaration:
    129       // The decl can validly be null as the representation of nullptr
    130       // arguments, valid only in C++0x.
    131       if (Decl *D = Args[I].getAsDecl()) {
    132         if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
    133           LV.mergeWithMin(getLVForDecl(ND, OnlyTemplate));
    134       }
    135       break;
    136 
    137     case TemplateArgument::Template:
    138     case TemplateArgument::TemplateExpansion:
    139       if (TemplateDecl *Template
    140                 = Args[I].getAsTemplateOrTemplatePattern().getAsTemplateDecl())
    141         LV.mergeWithMin(getLVForDecl(Template, OnlyTemplate));
    142       break;
    143 
    144     case TemplateArgument::Pack:
    145       LV.mergeWithMin(getLVForTemplateArgumentList(Args[I].pack_begin(),
    146                                                    Args[I].pack_size(),
    147                                                    OnlyTemplate));
    148       break;
    149     }
    150   }
    151 
    152   return LV;
    153 }
    154 
    155 static LinkageInfo
    156 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
    157                              bool OnlyTemplate) {
    158   return getLVForTemplateArgumentList(TArgs.data(), TArgs.size(), OnlyTemplate);
    159 }
    160 
    161 static bool shouldConsiderTemplateVis(const FunctionDecl *fn,
    162                                const FunctionTemplateSpecializationInfo *spec) {
    163   return !fn->hasAttr<VisibilityAttr>() || spec->isExplicitSpecialization();
    164 }
    165 
    166 static bool
    167 shouldConsiderTemplateVis(const ClassTemplateSpecializationDecl *d) {
    168   return !d->hasAttr<VisibilityAttr>() || d->isExplicitSpecialization();
    169 }
    170 
    171 static bool useInlineVisibilityHidden(const NamedDecl *D) {
    172   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
    173   const LangOptions &Opts = D->getASTContext().getLangOpts();
    174   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
    175     return false;
    176 
    177   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    178   if (!FD)
    179     return false;
    180 
    181   TemplateSpecializationKind TSK = TSK_Undeclared;
    182   if (FunctionTemplateSpecializationInfo *spec
    183       = FD->getTemplateSpecializationInfo()) {
    184     TSK = spec->getTemplateSpecializationKind();
    185   } else if (MemberSpecializationInfo *MSI =
    186              FD->getMemberSpecializationInfo()) {
    187     TSK = MSI->getTemplateSpecializationKind();
    188   }
    189 
    190   const FunctionDecl *Def = 0;
    191   // InlineVisibilityHidden only applies to definitions, and
    192   // isInlined() only gives meaningful answers on definitions
    193   // anyway.
    194   return TSK != TSK_ExplicitInstantiationDeclaration &&
    195     TSK != TSK_ExplicitInstantiationDefinition &&
    196     FD->hasBody(Def) && Def->isInlined();
    197 }
    198 
    199 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
    200                                               bool OnlyTemplate) {
    201   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
    202          "Not a name having namespace scope");
    203   ASTContext &Context = D->getASTContext();
    204 
    205   // C++ [basic.link]p3:
    206   //   A name having namespace scope (3.3.6) has internal linkage if it
    207   //   is the name of
    208   //     - an object, reference, function or function template that is
    209   //       explicitly declared static; or,
    210   // (This bullet corresponds to C99 6.2.2p3.)
    211   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
    212     // Explicitly declared static.
    213     if (Var->getStorageClass() == SC_Static)
    214       return LinkageInfo::internal();
    215 
    216     // - an object or reference that is explicitly declared const
    217     //   and neither explicitly declared extern nor previously
    218     //   declared to have external linkage; or
    219     // (there is no equivalent in C99)
    220     if (Context.getLangOpts().CPlusPlus &&
    221         Var->getType().isConstant(Context) &&
    222         Var->getStorageClass() != SC_Extern &&
    223         Var->getStorageClass() != SC_PrivateExtern) {
    224       bool FoundExtern = false;
    225       for (const VarDecl *PrevVar = Var->getPreviousDecl();
    226            PrevVar && !FoundExtern;
    227            PrevVar = PrevVar->getPreviousDecl())
    228         if (isExternalLinkage(PrevVar->getLinkage()))
    229           FoundExtern = true;
    230 
    231       if (!FoundExtern)
    232         return LinkageInfo::internal();
    233     }
    234     if (Var->getStorageClass() == SC_None) {
    235       const VarDecl *PrevVar = Var->getPreviousDecl();
    236       for (; PrevVar; PrevVar = PrevVar->getPreviousDecl())
    237         if (PrevVar->getStorageClass() == SC_PrivateExtern)
    238           break;
    239         if (PrevVar)
    240           return PrevVar->getLinkageAndVisibility();
    241     }
    242   } else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
    243     // C++ [temp]p4:
    244     //   A non-member function template can have internal linkage; any
    245     //   other template name shall have external linkage.
    246     const FunctionDecl *Function = 0;
    247     if (const FunctionTemplateDecl *FunTmpl
    248                                         = dyn_cast<FunctionTemplateDecl>(D))
    249       Function = FunTmpl->getTemplatedDecl();
    250     else
    251       Function = cast<FunctionDecl>(D);
    252 
    253     // Explicitly declared static.
    254     if (Function->getStorageClass() == SC_Static)
    255       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
    256   } else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
    257     //   - a data member of an anonymous union.
    258     if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
    259       return LinkageInfo::internal();
    260   }
    261 
    262   if (D->isInAnonymousNamespace()) {
    263     const VarDecl *Var = dyn_cast<VarDecl>(D);
    264     const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
    265     if ((!Var || !Var->getDeclContext()->isExternCContext()) &&
    266         (!Func || !Func->getDeclContext()->isExternCContext()))
    267       return LinkageInfo::uniqueExternal();
    268   }
    269 
    270   // Set up the defaults.
    271 
    272   // C99 6.2.2p5:
    273   //   If the declaration of an identifier for an object has file
    274   //   scope and no storage-class specifier, its linkage is
    275   //   external.
    276   LinkageInfo LV;
    277 
    278   if (!OnlyTemplate) {
    279     if (llvm::Optional<Visibility> Vis = D->getExplicitVisibility()) {
    280       LV.mergeVisibility(*Vis, true);
    281     } else {
    282       // If we're declared in a namespace with a visibility attribute,
    283       // use that namespace's visibility, but don't call it explicit.
    284       for (const DeclContext *DC = D->getDeclContext();
    285            !isa<TranslationUnitDecl>(DC);
    286            DC = DC->getParent()) {
    287         const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
    288         if (!ND) continue;
    289         if (llvm::Optional<Visibility> Vis = ND->getExplicitVisibility()) {
    290           LV.mergeVisibility(*Vis, true);
    291           break;
    292         }
    293       }
    294     }
    295   }
    296 
    297   if (!OnlyTemplate) {
    298     LV.mergeVisibility(Context.getLangOpts().getVisibilityMode());
    299     // If we're paying attention to global visibility, apply
    300     // -finline-visibility-hidden if this is an inline method.
    301     if (!LV.visibilityExplicit() && useInlineVisibilityHidden(D))
    302       LV.mergeVisibility(HiddenVisibility, true);
    303   }
    304 
    305   // C++ [basic.link]p4:
    306 
    307   //   A name having namespace scope has external linkage if it is the
    308   //   name of
    309   //
    310   //     - an object or reference, unless it has internal linkage; or
    311   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
    312     // GCC applies the following optimization to variables and static
    313     // data members, but not to functions:
    314     //
    315     // Modify the variable's LV by the LV of its type unless this is
    316     // C or extern "C".  This follows from [basic.link]p9:
    317     //   A type without linkage shall not be used as the type of a
    318     //   variable or function with external linkage unless
    319     //    - the entity has C language linkage, or
    320     //    - the entity is declared within an unnamed namespace, or
    321     //    - the entity is not used or is defined in the same
    322     //      translation unit.
    323     // and [basic.link]p10:
    324     //   ...the types specified by all declarations referring to a
    325     //   given variable or function shall be identical...
    326     // C does not have an equivalent rule.
    327     //
    328     // Ignore this if we've got an explicit attribute;  the user
    329     // probably knows what they're doing.
    330     //
    331     // Note that we don't want to make the variable non-external
    332     // because of this, but unique-external linkage suits us.
    333     if (Context.getLangOpts().CPlusPlus &&
    334         !Var->getDeclContext()->isExternCContext()) {
    335       LinkageInfo TypeLV = getLVForType(Var->getType());
    336       if (TypeLV.linkage() != ExternalLinkage)
    337         return LinkageInfo::uniqueExternal();
    338       LV.mergeVisibility(TypeLV);
    339     }
    340 
    341     if (Var->getStorageClass() == SC_PrivateExtern)
    342       LV.mergeVisibility(HiddenVisibility, true);
    343 
    344     if (!Context.getLangOpts().CPlusPlus &&
    345         (Var->getStorageClass() == SC_Extern ||
    346          Var->getStorageClass() == SC_PrivateExtern)) {
    347 
    348       // C99 6.2.2p4:
    349       //   For an identifier declared with the storage-class specifier
    350       //   extern in a scope in which a prior declaration of that
    351       //   identifier is visible, if the prior declaration specifies
    352       //   internal or external linkage, the linkage of the identifier
    353       //   at the later declaration is the same as the linkage
    354       //   specified at the prior declaration. If no prior declaration
    355       //   is visible, or if the prior declaration specifies no
    356       //   linkage, then the identifier has external linkage.
    357       if (const VarDecl *PrevVar = Var->getPreviousDecl()) {
    358         LinkageInfo PrevLV = getLVForDecl(PrevVar, OnlyTemplate);
    359         if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
    360         LV.mergeVisibility(PrevLV);
    361       }
    362     }
    363 
    364   //     - a function, unless it has internal linkage; or
    365   } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
    366     // In theory, we can modify the function's LV by the LV of its
    367     // type unless it has C linkage (see comment above about variables
    368     // for justification).  In practice, GCC doesn't do this, so it's
    369     // just too painful to make work.
    370 
    371     if (Function->getStorageClass() == SC_PrivateExtern)
    372       LV.mergeVisibility(HiddenVisibility, true);
    373 
    374     // C99 6.2.2p5:
    375     //   If the declaration of an identifier for a function has no
    376     //   storage-class specifier, its linkage is determined exactly
    377     //   as if it were declared with the storage-class specifier
    378     //   extern.
    379     if (!Context.getLangOpts().CPlusPlus &&
    380         (Function->getStorageClass() == SC_Extern ||
    381          Function->getStorageClass() == SC_PrivateExtern ||
    382          Function->getStorageClass() == SC_None)) {
    383       // C99 6.2.2p4:
    384       //   For an identifier declared with the storage-class specifier
    385       //   extern in a scope in which a prior declaration of that
    386       //   identifier is visible, if the prior declaration specifies
    387       //   internal or external linkage, the linkage of the identifier
    388       //   at the later declaration is the same as the linkage
    389       //   specified at the prior declaration. If no prior declaration
    390       //   is visible, or if the prior declaration specifies no
    391       //   linkage, then the identifier has external linkage.
    392       if (const FunctionDecl *PrevFunc = Function->getPreviousDecl()) {
    393         LinkageInfo PrevLV = getLVForDecl(PrevFunc, OnlyTemplate);
    394         if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
    395         LV.mergeVisibility(PrevLV);
    396       }
    397     }
    398 
    399     // In C++, then if the type of the function uses a type with
    400     // unique-external linkage, it's not legally usable from outside
    401     // this translation unit.  However, we should use the C linkage
    402     // rules instead for extern "C" declarations.
    403     if (Context.getLangOpts().CPlusPlus &&
    404         !Function->getDeclContext()->isExternCContext() &&
    405         Function->getType()->getLinkage() == UniqueExternalLinkage)
    406       return LinkageInfo::uniqueExternal();
    407 
    408     // Consider LV from the template and the template arguments unless
    409     // this is an explicit specialization with a visibility attribute.
    410     if (FunctionTemplateSpecializationInfo *specInfo
    411                                = Function->getTemplateSpecializationInfo()) {
    412       LinkageInfo TempLV = getLVForDecl(specInfo->getTemplate(), true);
    413       const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
    414       LinkageInfo ArgsLV = getLVForTemplateArgumentList(templateArgs,
    415                                                         OnlyTemplate);
    416       if (shouldConsiderTemplateVis(Function, specInfo)) {
    417         LV.mergeWithMin(TempLV);
    418         LV.mergeWithMin(ArgsLV);
    419       } else {
    420         LV.mergeLinkage(TempLV);
    421         LV.mergeLinkage(ArgsLV);
    422       }
    423     }
    424 
    425   //     - a named class (Clause 9), or an unnamed class defined in a
    426   //       typedef declaration in which the class has the typedef name
    427   //       for linkage purposes (7.1.3); or
    428   //     - a named enumeration (7.2), or an unnamed enumeration
    429   //       defined in a typedef declaration in which the enumeration
    430   //       has the typedef name for linkage purposes (7.1.3); or
    431   } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
    432     // Unnamed tags have no linkage.
    433     if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl())
    434       return LinkageInfo::none();
    435 
    436     // If this is a class template specialization, consider the
    437     // linkage of the template and template arguments.
    438     if (const ClassTemplateSpecializationDecl *spec
    439           = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
    440       // From the template.
    441       LinkageInfo TempLV = getLVForDecl(spec->getSpecializedTemplate(), true);
    442 
    443       // The arguments at which the template was instantiated.
    444       const TemplateArgumentList &TemplateArgs = spec->getTemplateArgs();
    445       LinkageInfo ArgsLV = getLVForTemplateArgumentList(TemplateArgs,
    446                                                         OnlyTemplate);
    447       if (shouldConsiderTemplateVis(spec)) {
    448         LV.mergeWithMin(TempLV);
    449         LV.mergeWithMin(ArgsLV);
    450       } else {
    451         LV.mergeLinkage(TempLV);
    452         LV.mergeLinkage(ArgsLV);
    453       }
    454     }
    455 
    456   //     - an enumerator belonging to an enumeration with external linkage;
    457   } else if (isa<EnumConstantDecl>(D)) {
    458     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
    459                                       OnlyTemplate);
    460     if (!isExternalLinkage(EnumLV.linkage()))
    461       return LinkageInfo::none();
    462     LV.merge(EnumLV);
    463 
    464   //     - a template, unless it is a function template that has
    465   //       internal linkage (Clause 14);
    466   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
    467     LV.merge(getLVForTemplateParameterList(temp->getTemplateParameters()));
    468   //     - a namespace (7.3), unless it is declared within an unnamed
    469   //       namespace.
    470   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
    471     return LV;
    472 
    473   // By extension, we assign external linkage to Objective-C
    474   // interfaces.
    475   } else if (isa<ObjCInterfaceDecl>(D)) {
    476     // fallout
    477 
    478   // Everything not covered here has no linkage.
    479   } else {
    480     return LinkageInfo::none();
    481   }
    482 
    483   // If we ended up with non-external linkage, visibility should
    484   // always be default.
    485   if (LV.linkage() != ExternalLinkage)
    486     return LinkageInfo(LV.linkage(), DefaultVisibility, false);
    487 
    488   return LV;
    489 }
    490 
    491 static LinkageInfo getLVForClassMember(const NamedDecl *D, bool OnlyTemplate) {
    492   // Only certain class members have linkage.  Note that fields don't
    493   // really have linkage, but it's convenient to say they do for the
    494   // purposes of calculating linkage of pointer-to-data-member
    495   // template arguments.
    496   if (!(isa<CXXMethodDecl>(D) ||
    497         isa<VarDecl>(D) ||
    498         isa<FieldDecl>(D) ||
    499         (isa<TagDecl>(D) &&
    500          (D->getDeclName() || cast<TagDecl>(D)->getTypedefNameForAnonDecl()))))
    501     return LinkageInfo::none();
    502 
    503   LinkageInfo LV;
    504 
    505   // If we have an explicit visibility attribute, merge that in.
    506   if (!OnlyTemplate) {
    507     if (llvm::Optional<Visibility> Vis = D->getExplicitVisibility())
    508       LV.mergeVisibility(*Vis, true);
    509     // If we're paying attention to global visibility, apply
    510     // -finline-visibility-hidden if this is an inline method.
    511     //
    512     // Note that we do this before merging information about
    513     // the class visibility.
    514     if (!LV.visibilityExplicit() && useInlineVisibilityHidden(D))
    515       LV.mergeVisibility(HiddenVisibility, true);
    516   }
    517 
    518   // If this class member has an explicit visibility attribute, the only
    519   // thing that can change its visibility is the template arguments, so
    520   // only look for them when processing the class.
    521   bool ClassOnlyTemplate =  LV.visibilityExplicit() ? true : OnlyTemplate;
    522 
    523   // If this member has an visibility attribute, ClassF will exclude
    524   // attributes on the class or command line options, keeping only information
    525   // about the template instantiation. If the member has no visibility
    526   // attributes, mergeWithMin behaves like merge, so in both cases mergeWithMin
    527   // produces the desired result.
    528   LV.mergeWithMin(getLVForDecl(cast<RecordDecl>(D->getDeclContext()),
    529                                ClassOnlyTemplate));
    530   if (!isExternalLinkage(LV.linkage()))
    531     return LinkageInfo::none();
    532 
    533   // If the class already has unique-external linkage, we can't improve.
    534   if (LV.linkage() == UniqueExternalLinkage)
    535     return LinkageInfo::uniqueExternal();
    536 
    537   if (!OnlyTemplate)
    538     LV.mergeVisibility(D->getASTContext().getLangOpts().getVisibilityMode());
    539 
    540   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
    541     // If the type of the function uses a type with unique-external
    542     // linkage, it's not legally usable from outside this translation unit.
    543     if (MD->getType()->getLinkage() == UniqueExternalLinkage)
    544       return LinkageInfo::uniqueExternal();
    545 
    546     // If this is a method template specialization, use the linkage for
    547     // the template parameters and arguments.
    548     if (FunctionTemplateSpecializationInfo *spec
    549            = MD->getTemplateSpecializationInfo()) {
    550       const TemplateArgumentList &TemplateArgs = *spec->TemplateArguments;
    551       LinkageInfo ArgsLV = getLVForTemplateArgumentList(TemplateArgs,
    552                                                         OnlyTemplate);
    553       TemplateParameterList *TemplateParams =
    554         spec->getTemplate()->getTemplateParameters();
    555       LinkageInfo ParamsLV = getLVForTemplateParameterList(TemplateParams);
    556       if (shouldConsiderTemplateVis(MD, spec)) {
    557         LV.mergeWithMin(ArgsLV);
    558         if (!OnlyTemplate)
    559           LV.mergeWithMin(ParamsLV);
    560       } else {
    561         LV.mergeLinkage(ArgsLV);
    562         if (!OnlyTemplate)
    563           LV.mergeLinkage(ParamsLV);
    564       }
    565     }
    566 
    567     // Note that in contrast to basically every other situation, we
    568     // *do* apply -fvisibility to method declarations.
    569 
    570   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
    571     if (const ClassTemplateSpecializationDecl *spec
    572         = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
    573       // Merge template argument/parameter information for member
    574       // class template specializations.
    575       const TemplateArgumentList &TemplateArgs = spec->getTemplateArgs();
    576       LinkageInfo ArgsLV = getLVForTemplateArgumentList(TemplateArgs,
    577                                                         OnlyTemplate);
    578       TemplateParameterList *TemplateParams =
    579         spec->getSpecializedTemplate()->getTemplateParameters();
    580       LinkageInfo ParamsLV = getLVForTemplateParameterList(TemplateParams);
    581       if (shouldConsiderTemplateVis(spec)) {
    582         LV.mergeWithMin(ArgsLV);
    583         if (!OnlyTemplate)
    584           LV.mergeWithMin(ParamsLV);
    585       } else {
    586         LV.mergeLinkage(ArgsLV);
    587         if (!OnlyTemplate)
    588           LV.mergeLinkage(ParamsLV);
    589       }
    590     }
    591 
    592   // Static data members.
    593   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    594     // Modify the variable's linkage by its type, but ignore the
    595     // type's visibility unless it's a definition.
    596     LinkageInfo TypeLV = getLVForType(VD->getType());
    597     if (TypeLV.linkage() != ExternalLinkage)
    598       LV.mergeLinkage(UniqueExternalLinkage);
    599     LV.mergeVisibility(TypeLV);
    600   }
    601 
    602   return LV;
    603 }
    604 
    605 static void clearLinkageForClass(const CXXRecordDecl *record) {
    606   for (CXXRecordDecl::decl_iterator
    607          i = record->decls_begin(), e = record->decls_end(); i != e; ++i) {
    608     Decl *child = *i;
    609     if (isa<NamedDecl>(child))
    610       cast<NamedDecl>(child)->ClearLinkageCache();
    611   }
    612 }
    613 
    614 void NamedDecl::anchor() { }
    615 
    616 void NamedDecl::ClearLinkageCache() {
    617   // Note that we can't skip clearing the linkage of children just
    618   // because the parent doesn't have cached linkage:  we don't cache
    619   // when computing linkage for parent contexts.
    620 
    621   HasCachedLinkage = 0;
    622 
    623   // If we're changing the linkage of a class, we need to reset the
    624   // linkage of child declarations, too.
    625   if (const CXXRecordDecl *record = dyn_cast<CXXRecordDecl>(this))
    626     clearLinkageForClass(record);
    627 
    628   if (ClassTemplateDecl *temp =
    629         dyn_cast<ClassTemplateDecl>(const_cast<NamedDecl*>(this))) {
    630     // Clear linkage for the template pattern.
    631     CXXRecordDecl *record = temp->getTemplatedDecl();
    632     record->HasCachedLinkage = 0;
    633     clearLinkageForClass(record);
    634 
    635     // We need to clear linkage for specializations, too.
    636     for (ClassTemplateDecl::spec_iterator
    637            i = temp->spec_begin(), e = temp->spec_end(); i != e; ++i)
    638       i->ClearLinkageCache();
    639   }
    640 
    641   // Clear cached linkage for function template decls, too.
    642   if (FunctionTemplateDecl *temp =
    643         dyn_cast<FunctionTemplateDecl>(const_cast<NamedDecl*>(this))) {
    644     temp->getTemplatedDecl()->ClearLinkageCache();
    645     for (FunctionTemplateDecl::spec_iterator
    646            i = temp->spec_begin(), e = temp->spec_end(); i != e; ++i)
    647       i->ClearLinkageCache();
    648   }
    649 
    650 }
    651 
    652 Linkage NamedDecl::getLinkage() const {
    653   if (HasCachedLinkage) {
    654     assert(Linkage(CachedLinkage) ==
    655              getLVForDecl(this, true).linkage());
    656     return Linkage(CachedLinkage);
    657   }
    658 
    659   CachedLinkage = getLVForDecl(this, true).linkage();
    660   HasCachedLinkage = 1;
    661   return Linkage(CachedLinkage);
    662 }
    663 
    664 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
    665   LinkageInfo LI = getLVForDecl(this, false);
    666   assert(!HasCachedLinkage || Linkage(CachedLinkage) == LI.linkage());
    667   HasCachedLinkage = 1;
    668   CachedLinkage = LI.linkage();
    669   return LI;
    670 }
    671 
    672 llvm::Optional<Visibility> NamedDecl::getExplicitVisibility() const {
    673   // Use the most recent declaration of a variable.
    674   if (const VarDecl *Var = dyn_cast<VarDecl>(this)) {
    675     if (llvm::Optional<Visibility> V =
    676         getVisibilityOf(Var->getMostRecentDecl()))
    677       return V;
    678 
    679     if (Var->isStaticDataMember()) {
    680       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
    681       if (InstantiatedFrom)
    682         return getVisibilityOf(InstantiatedFrom);
    683     }
    684 
    685     return llvm::Optional<Visibility>();
    686   }
    687   // Use the most recent declaration of a function, and also handle
    688   // function template specializations.
    689   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) {
    690     if (llvm::Optional<Visibility> V
    691                             = getVisibilityOf(fn->getMostRecentDecl()))
    692       return V;
    693 
    694     // If the function is a specialization of a template with an
    695     // explicit visibility attribute, use that.
    696     if (FunctionTemplateSpecializationInfo *templateInfo
    697           = fn->getTemplateSpecializationInfo())
    698       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl());
    699 
    700     // If the function is a member of a specialization of a class template
    701     // and the corresponding decl has explicit visibility, use that.
    702     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
    703     if (InstantiatedFrom)
    704       return getVisibilityOf(InstantiatedFrom);
    705 
    706     return llvm::Optional<Visibility>();
    707   }
    708 
    709   // Otherwise, just check the declaration itself first.
    710   if (llvm::Optional<Visibility> V = getVisibilityOf(this))
    711     return V;
    712 
    713   // The visibility of a template is stored in the templated decl.
    714   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(this))
    715     return getVisibilityOf(TD->getTemplatedDecl());
    716 
    717   // If there wasn't explicit visibility there, and this is a
    718   // specialization of a class template, check for visibility
    719   // on the pattern.
    720   if (const ClassTemplateSpecializationDecl *spec
    721         = dyn_cast<ClassTemplateSpecializationDecl>(this))
    722     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl());
    723 
    724   // If this is a member class of a specialization of a class template
    725   // and the corresponding decl has explicit visibility, use that.
    726   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(this)) {
    727     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
    728     if (InstantiatedFrom)
    729       return getVisibilityOf(InstantiatedFrom);
    730   }
    731 
    732   return llvm::Optional<Visibility>();
    733 }
    734 
    735 static LinkageInfo getLVForDecl(const NamedDecl *D, bool OnlyTemplate) {
    736   // Objective-C: treat all Objective-C declarations as having external
    737   // linkage.
    738   switch (D->getKind()) {
    739     default:
    740       break;
    741     case Decl::ParmVar:
    742       return LinkageInfo::none();
    743     case Decl::TemplateTemplateParm: // count these as external
    744     case Decl::NonTypeTemplateParm:
    745     case Decl::ObjCAtDefsField:
    746     case Decl::ObjCCategory:
    747     case Decl::ObjCCategoryImpl:
    748     case Decl::ObjCCompatibleAlias:
    749     case Decl::ObjCImplementation:
    750     case Decl::ObjCMethod:
    751     case Decl::ObjCProperty:
    752     case Decl::ObjCPropertyImpl:
    753     case Decl::ObjCProtocol:
    754       return LinkageInfo::external();
    755 
    756     case Decl::CXXRecord: {
    757       const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
    758       if (Record->isLambda()) {
    759         if (!Record->getLambdaManglingNumber()) {
    760           // This lambda has no mangling number, so it's internal.
    761           return LinkageInfo::internal();
    762         }
    763 
    764         // This lambda has its linkage/visibility determined by its owner.
    765         const DeclContext *DC = D->getDeclContext()->getRedeclContext();
    766         if (Decl *ContextDecl = Record->getLambdaContextDecl()) {
    767           if (isa<ParmVarDecl>(ContextDecl))
    768             DC = ContextDecl->getDeclContext()->getRedeclContext();
    769           else
    770             return getLVForDecl(cast<NamedDecl>(ContextDecl),
    771                                 OnlyTemplate);
    772         }
    773 
    774         if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
    775           return getLVForDecl(ND, OnlyTemplate);
    776 
    777         return LinkageInfo::external();
    778       }
    779 
    780       break;
    781     }
    782   }
    783 
    784   // Handle linkage for namespace-scope names.
    785   if (D->getDeclContext()->getRedeclContext()->isFileContext())
    786     return getLVForNamespaceScopeDecl(D, OnlyTemplate);
    787 
    788   // C++ [basic.link]p5:
    789   //   In addition, a member function, static data member, a named
    790   //   class or enumeration of class scope, or an unnamed class or
    791   //   enumeration defined in a class-scope typedef declaration such
    792   //   that the class or enumeration has the typedef name for linkage
    793   //   purposes (7.1.3), has external linkage if the name of the class
    794   //   has external linkage.
    795   if (D->getDeclContext()->isRecord())
    796     return getLVForClassMember(D, OnlyTemplate);
    797 
    798   // C++ [basic.link]p6:
    799   //   The name of a function declared in block scope and the name of
    800   //   an object declared by a block scope extern declaration have
    801   //   linkage. If there is a visible declaration of an entity with
    802   //   linkage having the same name and type, ignoring entities
    803   //   declared outside the innermost enclosing namespace scope, the
    804   //   block scope declaration declares that same entity and receives
    805   //   the linkage of the previous declaration. If there is more than
    806   //   one such matching entity, the program is ill-formed. Otherwise,
    807   //   if no matching entity is found, the block scope entity receives
    808   //   external linkage.
    809   if (D->getLexicalDeclContext()->isFunctionOrMethod()) {
    810     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
    811       if (Function->isInAnonymousNamespace() &&
    812           !Function->getDeclContext()->isExternCContext())
    813         return LinkageInfo::uniqueExternal();
    814 
    815       LinkageInfo LV;
    816       if (!OnlyTemplate) {
    817         if (llvm::Optional<Visibility> Vis = Function->getExplicitVisibility())
    818           LV.mergeVisibility(*Vis, true);
    819       }
    820 
    821       if (const FunctionDecl *Prev = Function->getPreviousDecl()) {
    822         LinkageInfo PrevLV = getLVForDecl(Prev, OnlyTemplate);
    823         if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
    824         LV.mergeVisibility(PrevLV);
    825       }
    826 
    827       return LV;
    828     }
    829 
    830     if (const VarDecl *Var = dyn_cast<VarDecl>(D))
    831       if (Var->getStorageClass() == SC_Extern ||
    832           Var->getStorageClass() == SC_PrivateExtern) {
    833         if (Var->isInAnonymousNamespace() &&
    834             !Var->getDeclContext()->isExternCContext())
    835           return LinkageInfo::uniqueExternal();
    836 
    837         LinkageInfo LV;
    838         if (Var->getStorageClass() == SC_PrivateExtern)
    839           LV.mergeVisibility(HiddenVisibility, true);
    840         else if (!OnlyTemplate) {
    841           if (llvm::Optional<Visibility> Vis = Var->getExplicitVisibility())
    842             LV.mergeVisibility(*Vis, true);
    843         }
    844 
    845         if (const VarDecl *Prev = Var->getPreviousDecl()) {
    846           LinkageInfo PrevLV = getLVForDecl(Prev, OnlyTemplate);
    847           if (PrevLV.linkage()) LV.setLinkage(PrevLV.linkage());
    848           LV.mergeVisibility(PrevLV);
    849         }
    850 
    851         return LV;
    852       }
    853   }
    854 
    855   // C++ [basic.link]p6:
    856   //   Names not covered by these rules have no linkage.
    857   return LinkageInfo::none();
    858 }
    859 
    860 std::string NamedDecl::getQualifiedNameAsString() const {
    861   return getQualifiedNameAsString(getASTContext().getPrintingPolicy());
    862 }
    863 
    864 std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const {
    865   const DeclContext *Ctx = getDeclContext();
    866 
    867   if (Ctx->isFunctionOrMethod())
    868     return getNameAsString();
    869 
    870   typedef SmallVector<const DeclContext *, 8> ContextsTy;
    871   ContextsTy Contexts;
    872 
    873   // Collect contexts.
    874   while (Ctx && isa<NamedDecl>(Ctx)) {
    875     Contexts.push_back(Ctx);
    876     Ctx = Ctx->getParent();
    877   };
    878 
    879   std::string QualName;
    880   llvm::raw_string_ostream OS(QualName);
    881 
    882   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
    883        I != E; ++I) {
    884     if (const ClassTemplateSpecializationDecl *Spec
    885           = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
    886       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
    887       std::string TemplateArgsStr
    888         = TemplateSpecializationType::PrintTemplateArgumentList(
    889                                            TemplateArgs.data(),
    890                                            TemplateArgs.size(),
    891                                            P);
    892       OS << Spec->getName() << TemplateArgsStr;
    893     } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
    894       if (ND->isAnonymousNamespace())
    895         OS << "<anonymous namespace>";
    896       else
    897         OS << *ND;
    898     } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
    899       if (!RD->getIdentifier())
    900         OS << "<anonymous " << RD->getKindName() << '>';
    901       else
    902         OS << *RD;
    903     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
    904       const FunctionProtoType *FT = 0;
    905       if (FD->hasWrittenPrototype())
    906         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
    907 
    908       OS << *FD << '(';
    909       if (FT) {
    910         unsigned NumParams = FD->getNumParams();
    911         for (unsigned i = 0; i < NumParams; ++i) {
    912           if (i)
    913             OS << ", ";
    914           OS << FD->getParamDecl(i)->getType().stream(P);
    915         }
    916 
    917         if (FT->isVariadic()) {
    918           if (NumParams > 0)
    919             OS << ", ";
    920           OS << "...";
    921         }
    922       }
    923       OS << ')';
    924     } else {
    925       OS << *cast<NamedDecl>(*I);
    926     }
    927     OS << "::";
    928   }
    929 
    930   if (getDeclName())
    931     OS << *this;
    932   else
    933     OS << "<anonymous>";
    934 
    935   return OS.str();
    936 }
    937 
    938 bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
    939   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
    940 
    941   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
    942   // We want to keep it, unless it nominates same namespace.
    943   if (getKind() == Decl::UsingDirective) {
    944     return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
    945              ->getOriginalNamespace() ==
    946            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
    947              ->getOriginalNamespace();
    948   }
    949 
    950   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
    951     // For function declarations, we keep track of redeclarations.
    952     return FD->getPreviousDecl() == OldD;
    953 
    954   // For function templates, the underlying function declarations are linked.
    955   if (const FunctionTemplateDecl *FunctionTemplate
    956         = dyn_cast<FunctionTemplateDecl>(this))
    957     if (const FunctionTemplateDecl *OldFunctionTemplate
    958           = dyn_cast<FunctionTemplateDecl>(OldD))
    959       return FunctionTemplate->getTemplatedDecl()
    960                ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
    961 
    962   // For method declarations, we keep track of redeclarations.
    963   if (isa<ObjCMethodDecl>(this))
    964     return false;
    965 
    966   if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
    967     return true;
    968 
    969   if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
    970     return cast<UsingShadowDecl>(this)->getTargetDecl() ==
    971            cast<UsingShadowDecl>(OldD)->getTargetDecl();
    972 
    973   if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
    974     ASTContext &Context = getASTContext();
    975     return Context.getCanonicalNestedNameSpecifier(
    976                                      cast<UsingDecl>(this)->getQualifier()) ==
    977            Context.getCanonicalNestedNameSpecifier(
    978                                         cast<UsingDecl>(OldD)->getQualifier());
    979   }
    980 
    981   // A typedef of an Objective-C class type can replace an Objective-C class
    982   // declaration or definition, and vice versa.
    983   if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
    984       (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
    985     return true;
    986 
    987   // For non-function declarations, if the declarations are of the
    988   // same kind then this must be a redeclaration, or semantic analysis
    989   // would not have given us the new declaration.
    990   return this->getKind() == OldD->getKind();
    991 }
    992 
    993 bool NamedDecl::hasLinkage() const {
    994   return getLinkage() != NoLinkage;
    995 }
    996 
    997 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
    998   NamedDecl *ND = this;
    999   while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
   1000     ND = UD->getTargetDecl();
   1001 
   1002   if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
   1003     return AD->getClassInterface();
   1004 
   1005   return ND;
   1006 }
   1007 
   1008 bool NamedDecl::isCXXInstanceMember() const {
   1009   if (!isCXXClassMember())
   1010     return false;
   1011 
   1012   const NamedDecl *D = this;
   1013   if (isa<UsingShadowDecl>(D))
   1014     D = cast<UsingShadowDecl>(D)->getTargetDecl();
   1015 
   1016   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
   1017     return true;
   1018   if (isa<CXXMethodDecl>(D))
   1019     return cast<CXXMethodDecl>(D)->isInstance();
   1020   if (isa<FunctionTemplateDecl>(D))
   1021     return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D)
   1022                                  ->getTemplatedDecl())->isInstance();
   1023   return false;
   1024 }
   1025 
   1026 //===----------------------------------------------------------------------===//
   1027 // DeclaratorDecl Implementation
   1028 //===----------------------------------------------------------------------===//
   1029 
   1030 template <typename DeclT>
   1031 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
   1032   if (decl->getNumTemplateParameterLists() > 0)
   1033     return decl->getTemplateParameterList(0)->getTemplateLoc();
   1034   else
   1035     return decl->getInnerLocStart();
   1036 }
   1037 
   1038 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
   1039   TypeSourceInfo *TSI = getTypeSourceInfo();
   1040   if (TSI) return TSI->getTypeLoc().getBeginLoc();
   1041   return SourceLocation();
   1042 }
   1043 
   1044 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
   1045   if (QualifierLoc) {
   1046     // Make sure the extended decl info is allocated.
   1047     if (!hasExtInfo()) {
   1048       // Save (non-extended) type source info pointer.
   1049       TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
   1050       // Allocate external info struct.
   1051       DeclInfo = new (getASTContext()) ExtInfo;
   1052       // Restore savedTInfo into (extended) decl info.
   1053       getExtInfo()->TInfo = savedTInfo;
   1054     }
   1055     // Set qualifier info.
   1056     getExtInfo()->QualifierLoc = QualifierLoc;
   1057   } else {
   1058     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
   1059     if (hasExtInfo()) {
   1060       if (getExtInfo()->NumTemplParamLists == 0) {
   1061         // Save type source info pointer.
   1062         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
   1063         // Deallocate the extended decl info.
   1064         getASTContext().Deallocate(getExtInfo());
   1065         // Restore savedTInfo into (non-extended) decl info.
   1066         DeclInfo = savedTInfo;
   1067       }
   1068       else
   1069         getExtInfo()->QualifierLoc = QualifierLoc;
   1070     }
   1071   }
   1072 }
   1073 
   1074 void
   1075 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
   1076                                               unsigned NumTPLists,
   1077                                               TemplateParameterList **TPLists) {
   1078   assert(NumTPLists > 0);
   1079   // Make sure the extended decl info is allocated.
   1080   if (!hasExtInfo()) {
   1081     // Save (non-extended) type source info pointer.
   1082     TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
   1083     // Allocate external info struct.
   1084     DeclInfo = new (getASTContext()) ExtInfo;
   1085     // Restore savedTInfo into (extended) decl info.
   1086     getExtInfo()->TInfo = savedTInfo;
   1087   }
   1088   // Set the template parameter lists info.
   1089   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
   1090 }
   1091 
   1092 SourceLocation DeclaratorDecl::getOuterLocStart() const {
   1093   return getTemplateOrInnerLocStart(this);
   1094 }
   1095 
   1096 namespace {
   1097 
   1098 // Helper function: returns true if QT is or contains a type
   1099 // having a postfix component.
   1100 bool typeIsPostfix(clang::QualType QT) {
   1101   while (true) {
   1102     const Type* T = QT.getTypePtr();
   1103     switch (T->getTypeClass()) {
   1104     default:
   1105       return false;
   1106     case Type::Pointer:
   1107       QT = cast<PointerType>(T)->getPointeeType();
   1108       break;
   1109     case Type::BlockPointer:
   1110       QT = cast<BlockPointerType>(T)->getPointeeType();
   1111       break;
   1112     case Type::MemberPointer:
   1113       QT = cast<MemberPointerType>(T)->getPointeeType();
   1114       break;
   1115     case Type::LValueReference:
   1116     case Type::RValueReference:
   1117       QT = cast<ReferenceType>(T)->getPointeeType();
   1118       break;
   1119     case Type::PackExpansion:
   1120       QT = cast<PackExpansionType>(T)->getPattern();
   1121       break;
   1122     case Type::Paren:
   1123     case Type::ConstantArray:
   1124     case Type::DependentSizedArray:
   1125     case Type::IncompleteArray:
   1126     case Type::VariableArray:
   1127     case Type::FunctionProto:
   1128     case Type::FunctionNoProto:
   1129       return true;
   1130     }
   1131   }
   1132 }
   1133 
   1134 } // namespace
   1135 
   1136 SourceRange DeclaratorDecl::getSourceRange() const {
   1137   SourceLocation RangeEnd = getLocation();
   1138   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
   1139     if (typeIsPostfix(TInfo->getType()))
   1140       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
   1141   }
   1142   return SourceRange(getOuterLocStart(), RangeEnd);
   1143 }
   1144 
   1145 void
   1146 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
   1147                                              unsigned NumTPLists,
   1148                                              TemplateParameterList **TPLists) {
   1149   assert((NumTPLists == 0 || TPLists != 0) &&
   1150          "Empty array of template parameters with positive size!");
   1151 
   1152   // Free previous template parameters (if any).
   1153   if (NumTemplParamLists > 0) {
   1154     Context.Deallocate(TemplParamLists);
   1155     TemplParamLists = 0;
   1156     NumTemplParamLists = 0;
   1157   }
   1158   // Set info on matched template parameter lists (if any).
   1159   if (NumTPLists > 0) {
   1160     TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
   1161     NumTemplParamLists = NumTPLists;
   1162     for (unsigned i = NumTPLists; i-- > 0; )
   1163       TemplParamLists[i] = TPLists[i];
   1164   }
   1165 }
   1166 
   1167 //===----------------------------------------------------------------------===//
   1168 // VarDecl Implementation
   1169 //===----------------------------------------------------------------------===//
   1170 
   1171 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
   1172   switch (SC) {
   1173   case SC_None:                 break;
   1174   case SC_Auto:                 return "auto";
   1175   case SC_Extern:               return "extern";
   1176   case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
   1177   case SC_PrivateExtern:        return "__private_extern__";
   1178   case SC_Register:             return "register";
   1179   case SC_Static:               return "static";
   1180   }
   1181 
   1182   llvm_unreachable("Invalid storage class");
   1183 }
   1184 
   1185 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
   1186                          SourceLocation StartL, SourceLocation IdL,
   1187                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
   1188                          StorageClass S, StorageClass SCAsWritten) {
   1189   return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S, SCAsWritten);
   1190 }
   1191 
   1192 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1193   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl));
   1194   return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0,
   1195                            QualType(), 0, SC_None, SC_None);
   1196 }
   1197 
   1198 void VarDecl::setStorageClass(StorageClass SC) {
   1199   assert(isLegalForVariable(SC));
   1200   if (getStorageClass() != SC)
   1201     ClearLinkageCache();
   1202 
   1203   VarDeclBits.SClass = SC;
   1204 }
   1205 
   1206 SourceRange VarDecl::getSourceRange() const {
   1207   if (getInit())
   1208     return SourceRange(getOuterLocStart(), getInit()->getLocEnd());
   1209   return DeclaratorDecl::getSourceRange();
   1210 }
   1211 
   1212 bool VarDecl::isExternC() const {
   1213   if (getLinkage() != ExternalLinkage)
   1214     return false;
   1215 
   1216   const DeclContext *DC = getDeclContext();
   1217   if (DC->isRecord())
   1218     return false;
   1219 
   1220   ASTContext &Context = getASTContext();
   1221   if (!Context.getLangOpts().CPlusPlus)
   1222     return true;
   1223   return DC->isExternCContext();
   1224 }
   1225 
   1226 VarDecl *VarDecl::getCanonicalDecl() {
   1227   return getFirstDeclaration();
   1228 }
   1229 
   1230 VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
   1231   ASTContext &C) const
   1232 {
   1233   // C++ [basic.def]p2:
   1234   //   A declaration is a definition unless [...] it contains the 'extern'
   1235   //   specifier or a linkage-specification and neither an initializer [...],
   1236   //   it declares a static data member in a class declaration [...].
   1237   // C++ [temp.expl.spec]p15:
   1238   //   An explicit specialization of a static data member of a template is a
   1239   //   definition if the declaration includes an initializer; otherwise, it is
   1240   //   a declaration.
   1241   if (isStaticDataMember()) {
   1242     if (isOutOfLine() && (hasInit() ||
   1243           getTemplateSpecializationKind() != TSK_ExplicitSpecialization))
   1244       return Definition;
   1245     else
   1246       return DeclarationOnly;
   1247   }
   1248   // C99 6.7p5:
   1249   //   A definition of an identifier is a declaration for that identifier that
   1250   //   [...] causes storage to be reserved for that object.
   1251   // Note: that applies for all non-file-scope objects.
   1252   // C99 6.9.2p1:
   1253   //   If the declaration of an identifier for an object has file scope and an
   1254   //   initializer, the declaration is an external definition for the identifier
   1255   if (hasInit())
   1256     return Definition;
   1257   // AST for 'extern "C" int foo;' is annotated with 'extern'.
   1258   if (hasExternalStorage())
   1259     return DeclarationOnly;
   1260 
   1261   if (getStorageClassAsWritten() == SC_Extern ||
   1262        getStorageClassAsWritten() == SC_PrivateExtern) {
   1263     for (const VarDecl *PrevVar = getPreviousDecl();
   1264          PrevVar; PrevVar = PrevVar->getPreviousDecl()) {
   1265       if (PrevVar->getLinkage() == InternalLinkage && PrevVar->hasInit())
   1266         return DeclarationOnly;
   1267     }
   1268   }
   1269   // C99 6.9.2p2:
   1270   //   A declaration of an object that has file scope without an initializer,
   1271   //   and without a storage class specifier or the scs 'static', constitutes
   1272   //   a tentative definition.
   1273   // No such thing in C++.
   1274   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
   1275     return TentativeDefinition;
   1276 
   1277   // What's left is (in C, block-scope) declarations without initializers or
   1278   // external storage. These are definitions.
   1279   return Definition;
   1280 }
   1281 
   1282 VarDecl *VarDecl::getActingDefinition() {
   1283   DefinitionKind Kind = isThisDeclarationADefinition();
   1284   if (Kind != TentativeDefinition)
   1285     return 0;
   1286 
   1287   VarDecl *LastTentative = 0;
   1288   VarDecl *First = getFirstDeclaration();
   1289   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
   1290        I != E; ++I) {
   1291     Kind = (*I)->isThisDeclarationADefinition();
   1292     if (Kind == Definition)
   1293       return 0;
   1294     else if (Kind == TentativeDefinition)
   1295       LastTentative = *I;
   1296   }
   1297   return LastTentative;
   1298 }
   1299 
   1300 bool VarDecl::isTentativeDefinitionNow() const {
   1301   DefinitionKind Kind = isThisDeclarationADefinition();
   1302   if (Kind != TentativeDefinition)
   1303     return false;
   1304 
   1305   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
   1306     if ((*I)->isThisDeclarationADefinition() == Definition)
   1307       return false;
   1308   }
   1309   return true;
   1310 }
   1311 
   1312 VarDecl *VarDecl::getDefinition(ASTContext &C) {
   1313   VarDecl *First = getFirstDeclaration();
   1314   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
   1315        I != E; ++I) {
   1316     if ((*I)->isThisDeclarationADefinition(C) == Definition)
   1317       return *I;
   1318   }
   1319   return 0;
   1320 }
   1321 
   1322 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
   1323   DefinitionKind Kind = DeclarationOnly;
   1324 
   1325   const VarDecl *First = getFirstDeclaration();
   1326   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
   1327        I != E; ++I) {
   1328     Kind = std::max(Kind, (*I)->isThisDeclarationADefinition(C));
   1329     if (Kind == Definition)
   1330       break;
   1331   }
   1332 
   1333   return Kind;
   1334 }
   1335 
   1336 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
   1337   redecl_iterator I = redecls_begin(), E = redecls_end();
   1338   while (I != E && !I->getInit())
   1339     ++I;
   1340 
   1341   if (I != E) {
   1342     D = *I;
   1343     return I->getInit();
   1344   }
   1345   return 0;
   1346 }
   1347 
   1348 bool VarDecl::isOutOfLine() const {
   1349   if (Decl::isOutOfLine())
   1350     return true;
   1351 
   1352   if (!isStaticDataMember())
   1353     return false;
   1354 
   1355   // If this static data member was instantiated from a static data member of
   1356   // a class template, check whether that static data member was defined
   1357   // out-of-line.
   1358   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
   1359     return VD->isOutOfLine();
   1360 
   1361   return false;
   1362 }
   1363 
   1364 VarDecl *VarDecl::getOutOfLineDefinition() {
   1365   if (!isStaticDataMember())
   1366     return 0;
   1367 
   1368   for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end();
   1369        RD != RDEnd; ++RD) {
   1370     if (RD->getLexicalDeclContext()->isFileContext())
   1371       return *RD;
   1372   }
   1373 
   1374   return 0;
   1375 }
   1376 
   1377 void VarDecl::setInit(Expr *I) {
   1378   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
   1379     Eval->~EvaluatedStmt();
   1380     getASTContext().Deallocate(Eval);
   1381   }
   1382 
   1383   Init = I;
   1384 }
   1385 
   1386 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
   1387   const LangOptions &Lang = C.getLangOpts();
   1388 
   1389   if (!Lang.CPlusPlus)
   1390     return false;
   1391 
   1392   // In C++11, any variable of reference type can be used in a constant
   1393   // expression if it is initialized by a constant expression.
   1394   if (Lang.CPlusPlus0x && getType()->isReferenceType())
   1395     return true;
   1396 
   1397   // Only const objects can be used in constant expressions in C++. C++98 does
   1398   // not require the variable to be non-volatile, but we consider this to be a
   1399   // defect.
   1400   if (!getType().isConstQualified() || getType().isVolatileQualified())
   1401     return false;
   1402 
   1403   // In C++, const, non-volatile variables of integral or enumeration types
   1404   // can be used in constant expressions.
   1405   if (getType()->isIntegralOrEnumerationType())
   1406     return true;
   1407 
   1408   // Additionally, in C++11, non-volatile constexpr variables can be used in
   1409   // constant expressions.
   1410   return Lang.CPlusPlus0x && isConstexpr();
   1411 }
   1412 
   1413 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
   1414 /// form, which contains extra information on the evaluated value of the
   1415 /// initializer.
   1416 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
   1417   EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
   1418   if (!Eval) {
   1419     Stmt *S = Init.get<Stmt *>();
   1420     Eval = new (getASTContext()) EvaluatedStmt;
   1421     Eval->Value = S;
   1422     Init = Eval;
   1423   }
   1424   return Eval;
   1425 }
   1426 
   1427 APValue *VarDecl::evaluateValue() const {
   1428   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
   1429   return evaluateValue(Notes);
   1430 }
   1431 
   1432 APValue *VarDecl::evaluateValue(
   1433     llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
   1434   EvaluatedStmt *Eval = ensureEvaluatedStmt();
   1435 
   1436   // We only produce notes indicating why an initializer is non-constant the
   1437   // first time it is evaluated. FIXME: The notes won't always be emitted the
   1438   // first time we try evaluation, so might not be produced at all.
   1439   if (Eval->WasEvaluated)
   1440     return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated;
   1441 
   1442   const Expr *Init = cast<Expr>(Eval->Value);
   1443   assert(!Init->isValueDependent());
   1444 
   1445   if (Eval->IsEvaluating) {
   1446     // FIXME: Produce a diagnostic for self-initialization.
   1447     Eval->CheckedICE = true;
   1448     Eval->IsICE = false;
   1449     return 0;
   1450   }
   1451 
   1452   Eval->IsEvaluating = true;
   1453 
   1454   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
   1455                                             this, Notes);
   1456 
   1457   // Ensure the result is an uninitialized APValue if evaluation fails.
   1458   if (!Result)
   1459     Eval->Evaluated = APValue();
   1460 
   1461   Eval->IsEvaluating = false;
   1462   Eval->WasEvaluated = true;
   1463 
   1464   // In C++11, we have determined whether the initializer was a constant
   1465   // expression as a side-effect.
   1466   if (getASTContext().getLangOpts().CPlusPlus0x && !Eval->CheckedICE) {
   1467     Eval->CheckedICE = true;
   1468     Eval->IsICE = Result && Notes.empty();
   1469   }
   1470 
   1471   return Result ? &Eval->Evaluated : 0;
   1472 }
   1473 
   1474 bool VarDecl::checkInitIsICE() const {
   1475   // Initializers of weak variables are never ICEs.
   1476   if (isWeak())
   1477     return false;
   1478 
   1479   EvaluatedStmt *Eval = ensureEvaluatedStmt();
   1480   if (Eval->CheckedICE)
   1481     // We have already checked whether this subexpression is an
   1482     // integral constant expression.
   1483     return Eval->IsICE;
   1484 
   1485   const Expr *Init = cast<Expr>(Eval->Value);
   1486   assert(!Init->isValueDependent());
   1487 
   1488   // In C++11, evaluate the initializer to check whether it's a constant
   1489   // expression.
   1490   if (getASTContext().getLangOpts().CPlusPlus0x) {
   1491     llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
   1492     evaluateValue(Notes);
   1493     return Eval->IsICE;
   1494   }
   1495 
   1496   // It's an ICE whether or not the definition we found is
   1497   // out-of-line.  See DR 721 and the discussion in Clang PR
   1498   // 6206 for details.
   1499 
   1500   if (Eval->CheckingICE)
   1501     return false;
   1502   Eval->CheckingICE = true;
   1503 
   1504   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
   1505   Eval->CheckingICE = false;
   1506   Eval->CheckedICE = true;
   1507   return Eval->IsICE;
   1508 }
   1509 
   1510 bool VarDecl::extendsLifetimeOfTemporary() const {
   1511   assert(getType()->isReferenceType() &&"Non-references never extend lifetime");
   1512 
   1513   const Expr *E = getInit();
   1514   if (!E)
   1515     return false;
   1516 
   1517   if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(E))
   1518     E = Cleanups->getSubExpr();
   1519 
   1520   return isa<MaterializeTemporaryExpr>(E);
   1521 }
   1522 
   1523 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
   1524   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   1525     return cast<VarDecl>(MSI->getInstantiatedFrom());
   1526 
   1527   return 0;
   1528 }
   1529 
   1530 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
   1531   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   1532     return MSI->getTemplateSpecializationKind();
   1533 
   1534   return TSK_Undeclared;
   1535 }
   1536 
   1537 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
   1538   return getASTContext().getInstantiatedFromStaticDataMember(this);
   1539 }
   1540 
   1541 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
   1542                                          SourceLocation PointOfInstantiation) {
   1543   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
   1544   assert(MSI && "Not an instantiated static data member?");
   1545   MSI->setTemplateSpecializationKind(TSK);
   1546   if (TSK != TSK_ExplicitSpecialization &&
   1547       PointOfInstantiation.isValid() &&
   1548       MSI->getPointOfInstantiation().isInvalid())
   1549     MSI->setPointOfInstantiation(PointOfInstantiation);
   1550 }
   1551 
   1552 //===----------------------------------------------------------------------===//
   1553 // ParmVarDecl Implementation
   1554 //===----------------------------------------------------------------------===//
   1555 
   1556 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
   1557                                  SourceLocation StartLoc,
   1558                                  SourceLocation IdLoc, IdentifierInfo *Id,
   1559                                  QualType T, TypeSourceInfo *TInfo,
   1560                                  StorageClass S, StorageClass SCAsWritten,
   1561                                  Expr *DefArg) {
   1562   return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo,
   1563                              S, SCAsWritten, DefArg);
   1564 }
   1565 
   1566 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1567   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl));
   1568   return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(),
   1569                                0, QualType(), 0, SC_None, SC_None, 0);
   1570 }
   1571 
   1572 SourceRange ParmVarDecl::getSourceRange() const {
   1573   if (!hasInheritedDefaultArg()) {
   1574     SourceRange ArgRange = getDefaultArgRange();
   1575     if (ArgRange.isValid())
   1576       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
   1577   }
   1578 
   1579   return DeclaratorDecl::getSourceRange();
   1580 }
   1581 
   1582 Expr *ParmVarDecl::getDefaultArg() {
   1583   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
   1584   assert(!hasUninstantiatedDefaultArg() &&
   1585          "Default argument is not yet instantiated!");
   1586 
   1587   Expr *Arg = getInit();
   1588   if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
   1589     return E->getSubExpr();
   1590 
   1591   return Arg;
   1592 }
   1593 
   1594 SourceRange ParmVarDecl::getDefaultArgRange() const {
   1595   if (const Expr *E = getInit())
   1596     return E->getSourceRange();
   1597 
   1598   if (hasUninstantiatedDefaultArg())
   1599     return getUninstantiatedDefaultArg()->getSourceRange();
   1600 
   1601   return SourceRange();
   1602 }
   1603 
   1604 bool ParmVarDecl::isParameterPack() const {
   1605   return isa<PackExpansionType>(getType());
   1606 }
   1607 
   1608 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
   1609   getASTContext().setParameterIndex(this, parameterIndex);
   1610   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
   1611 }
   1612 
   1613 unsigned ParmVarDecl::getParameterIndexLarge() const {
   1614   return getASTContext().getParameterIndex(this);
   1615 }
   1616 
   1617 //===----------------------------------------------------------------------===//
   1618 // FunctionDecl Implementation
   1619 //===----------------------------------------------------------------------===//
   1620 
   1621 void FunctionDecl::getNameForDiagnostic(std::string &S,
   1622                                         const PrintingPolicy &Policy,
   1623                                         bool Qualified) const {
   1624   NamedDecl::getNameForDiagnostic(S, Policy, Qualified);
   1625   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
   1626   if (TemplateArgs)
   1627     S += TemplateSpecializationType::PrintTemplateArgumentList(
   1628                                                          TemplateArgs->data(),
   1629                                                          TemplateArgs->size(),
   1630                                                                Policy);
   1631 
   1632 }
   1633 
   1634 bool FunctionDecl::isVariadic() const {
   1635   if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
   1636     return FT->isVariadic();
   1637   return false;
   1638 }
   1639 
   1640 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
   1641   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
   1642     if (I->Body || I->IsLateTemplateParsed) {
   1643       Definition = *I;
   1644       return true;
   1645     }
   1646   }
   1647 
   1648   return false;
   1649 }
   1650 
   1651 bool FunctionDecl::hasTrivialBody() const
   1652 {
   1653   Stmt *S = getBody();
   1654   if (!S) {
   1655     // Since we don't have a body for this function, we don't know if it's
   1656     // trivial or not.
   1657     return false;
   1658   }
   1659 
   1660   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
   1661     return true;
   1662   return false;
   1663 }
   1664 
   1665 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
   1666   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
   1667     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed) {
   1668       Definition = I->IsDeleted ? I->getCanonicalDecl() : *I;
   1669       return true;
   1670     }
   1671   }
   1672 
   1673   return false;
   1674 }
   1675 
   1676 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
   1677   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
   1678     if (I->Body) {
   1679       Definition = *I;
   1680       return I->Body.get(getASTContext().getExternalSource());
   1681     } else if (I->IsLateTemplateParsed) {
   1682       Definition = *I;
   1683       return 0;
   1684     }
   1685   }
   1686 
   1687   return 0;
   1688 }
   1689 
   1690 void FunctionDecl::setBody(Stmt *B) {
   1691   Body = B;
   1692   if (B)
   1693     EndRangeLoc = B->getLocEnd();
   1694 }
   1695 
   1696 void FunctionDecl::setPure(bool P) {
   1697   IsPure = P;
   1698   if (P)
   1699     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
   1700       Parent->markedVirtualFunctionPure();
   1701 }
   1702 
   1703 void FunctionDecl::setConstexpr(bool IC) {
   1704   IsConstexpr = IC;
   1705   CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(this);
   1706   if (IC && CD)
   1707     CD->getParent()->markedConstructorConstexpr(CD);
   1708 }
   1709 
   1710 bool FunctionDecl::isMain() const {
   1711   const TranslationUnitDecl *tunit =
   1712     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
   1713   return tunit &&
   1714          !tunit->getASTContext().getLangOpts().Freestanding &&
   1715          getIdentifier() &&
   1716          getIdentifier()->isStr("main");
   1717 }
   1718 
   1719 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
   1720   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
   1721   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
   1722          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
   1723          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
   1724          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
   1725 
   1726   if (isa<CXXRecordDecl>(getDeclContext())) return false;
   1727   assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
   1728 
   1729   const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
   1730   if (proto->getNumArgs() != 2 || proto->isVariadic()) return false;
   1731 
   1732   ASTContext &Context =
   1733     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
   1734       ->getASTContext();
   1735 
   1736   // The result type and first argument type are constant across all
   1737   // these operators.  The second argument must be exactly void*.
   1738   return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy);
   1739 }
   1740 
   1741 bool FunctionDecl::isExternC() const {
   1742   if (getLinkage() != ExternalLinkage)
   1743     return false;
   1744 
   1745   if (getAttr<OverloadableAttr>())
   1746     return false;
   1747 
   1748   const DeclContext *DC = getDeclContext();
   1749   if (DC->isRecord())
   1750     return false;
   1751 
   1752   ASTContext &Context = getASTContext();
   1753   if (!Context.getLangOpts().CPlusPlus)
   1754     return true;
   1755 
   1756   return isMain() || DC->isExternCContext();
   1757 }
   1758 
   1759 bool FunctionDecl::isGlobal() const {
   1760   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
   1761     return Method->isStatic();
   1762 
   1763   if (getStorageClass() == SC_Static)
   1764     return false;
   1765 
   1766   for (const DeclContext *DC = getDeclContext();
   1767        DC->isNamespace();
   1768        DC = DC->getParent()) {
   1769     if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
   1770       if (!Namespace->getDeclName())
   1771         return false;
   1772       break;
   1773     }
   1774   }
   1775 
   1776   return true;
   1777 }
   1778 
   1779 void
   1780 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
   1781   redeclarable_base::setPreviousDeclaration(PrevDecl);
   1782 
   1783   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
   1784     FunctionTemplateDecl *PrevFunTmpl
   1785       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0;
   1786     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
   1787     FunTmpl->setPreviousDeclaration(PrevFunTmpl);
   1788   }
   1789 
   1790   if (PrevDecl && PrevDecl->IsInline)
   1791     IsInline = true;
   1792 }
   1793 
   1794 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
   1795   return getFirstDeclaration();
   1796 }
   1797 
   1798 FunctionDecl *FunctionDecl::getCanonicalDecl() {
   1799   return getFirstDeclaration();
   1800 }
   1801 
   1802 void FunctionDecl::setStorageClass(StorageClass SC) {
   1803   assert(isLegalForFunction(SC));
   1804   if (getStorageClass() != SC)
   1805     ClearLinkageCache();
   1806 
   1807   SClass = SC;
   1808 }
   1809 
   1810 /// \brief Returns a value indicating whether this function
   1811 /// corresponds to a builtin function.
   1812 ///
   1813 /// The function corresponds to a built-in function if it is
   1814 /// declared at translation scope or within an extern "C" block and
   1815 /// its name matches with the name of a builtin. The returned value
   1816 /// will be 0 for functions that do not correspond to a builtin, a
   1817 /// value of type \c Builtin::ID if in the target-independent range
   1818 /// \c [1,Builtin::First), or a target-specific builtin value.
   1819 unsigned FunctionDecl::getBuiltinID() const {
   1820   if (!getIdentifier())
   1821     return 0;
   1822 
   1823   unsigned BuiltinID = getIdentifier()->getBuiltinID();
   1824   if (!BuiltinID)
   1825     return 0;
   1826 
   1827   ASTContext &Context = getASTContext();
   1828   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
   1829     return BuiltinID;
   1830 
   1831   // This function has the name of a known C library
   1832   // function. Determine whether it actually refers to the C library
   1833   // function or whether it just has the same name.
   1834 
   1835   // If this is a static function, it's not a builtin.
   1836   if (getStorageClass() == SC_Static)
   1837     return 0;
   1838 
   1839   // If this function is at translation-unit scope and we're not in
   1840   // C++, it refers to the C library function.
   1841   if (!Context.getLangOpts().CPlusPlus &&
   1842       getDeclContext()->isTranslationUnit())
   1843     return BuiltinID;
   1844 
   1845   // If the function is in an extern "C" linkage specification and is
   1846   // not marked "overloadable", it's the real function.
   1847   if (isa<LinkageSpecDecl>(getDeclContext()) &&
   1848       cast<LinkageSpecDecl>(getDeclContext())->getLanguage()
   1849         == LinkageSpecDecl::lang_c &&
   1850       !getAttr<OverloadableAttr>())
   1851     return BuiltinID;
   1852 
   1853   // Not a builtin
   1854   return 0;
   1855 }
   1856 
   1857 
   1858 /// getNumParams - Return the number of parameters this function must have
   1859 /// based on its FunctionType.  This is the length of the ParamInfo array
   1860 /// after it has been created.
   1861 unsigned FunctionDecl::getNumParams() const {
   1862   const FunctionType *FT = getType()->castAs<FunctionType>();
   1863   if (isa<FunctionNoProtoType>(FT))
   1864     return 0;
   1865   return cast<FunctionProtoType>(FT)->getNumArgs();
   1866 
   1867 }
   1868 
   1869 void FunctionDecl::setParams(ASTContext &C,
   1870                              llvm::ArrayRef<ParmVarDecl *> NewParamInfo) {
   1871   assert(ParamInfo == 0 && "Already has param info!");
   1872   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
   1873 
   1874   // Zero params -> null pointer.
   1875   if (!NewParamInfo.empty()) {
   1876     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
   1877     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
   1878   }
   1879 }
   1880 
   1881 void FunctionDecl::setDeclsInPrototypeScope(llvm::ArrayRef<NamedDecl *> NewDecls) {
   1882   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
   1883 
   1884   if (!NewDecls.empty()) {
   1885     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
   1886     std::copy(NewDecls.begin(), NewDecls.end(), A);
   1887     DeclsInPrototypeScope = llvm::ArrayRef<NamedDecl*>(A, NewDecls.size());
   1888   }
   1889 }
   1890 
   1891 /// getMinRequiredArguments - Returns the minimum number of arguments
   1892 /// needed to call this function. This may be fewer than the number of
   1893 /// function parameters, if some of the parameters have default
   1894 /// arguments (in C++) or the last parameter is a parameter pack.
   1895 unsigned FunctionDecl::getMinRequiredArguments() const {
   1896   if (!getASTContext().getLangOpts().CPlusPlus)
   1897     return getNumParams();
   1898 
   1899   unsigned NumRequiredArgs = getNumParams();
   1900 
   1901   // If the last parameter is a parameter pack, we don't need an argument for
   1902   // it.
   1903   if (NumRequiredArgs > 0 &&
   1904       getParamDecl(NumRequiredArgs - 1)->isParameterPack())
   1905     --NumRequiredArgs;
   1906 
   1907   // If this parameter has a default argument, we don't need an argument for
   1908   // it.
   1909   while (NumRequiredArgs > 0 &&
   1910          getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
   1911     --NumRequiredArgs;
   1912 
   1913   // We might have parameter packs before the end. These can't be deduced,
   1914   // but they can still handle multiple arguments.
   1915   unsigned ArgIdx = NumRequiredArgs;
   1916   while (ArgIdx > 0) {
   1917     if (getParamDecl(ArgIdx - 1)->isParameterPack())
   1918       NumRequiredArgs = ArgIdx;
   1919 
   1920     --ArgIdx;
   1921   }
   1922 
   1923   return NumRequiredArgs;
   1924 }
   1925 
   1926 bool FunctionDecl::isInlined() const {
   1927   if (IsInline)
   1928     return true;
   1929 
   1930   if (isa<CXXMethodDecl>(this)) {
   1931     if (!isOutOfLine() || getCanonicalDecl()->isInlineSpecified())
   1932       return true;
   1933   }
   1934 
   1935   switch (getTemplateSpecializationKind()) {
   1936   case TSK_Undeclared:
   1937   case TSK_ExplicitSpecialization:
   1938     return false;
   1939 
   1940   case TSK_ImplicitInstantiation:
   1941   case TSK_ExplicitInstantiationDeclaration:
   1942   case TSK_ExplicitInstantiationDefinition:
   1943     // Handle below.
   1944     break;
   1945   }
   1946 
   1947   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
   1948   bool HasPattern = false;
   1949   if (PatternDecl)
   1950     HasPattern = PatternDecl->hasBody(PatternDecl);
   1951 
   1952   if (HasPattern && PatternDecl)
   1953     return PatternDecl->isInlined();
   1954 
   1955   return false;
   1956 }
   1957 
   1958 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
   1959   // Only consider file-scope declarations in this test.
   1960   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
   1961     return false;
   1962 
   1963   // Only consider explicit declarations; the presence of a builtin for a
   1964   // libcall shouldn't affect whether a definition is externally visible.
   1965   if (Redecl->isImplicit())
   1966     return false;
   1967 
   1968   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
   1969     return true; // Not an inline definition
   1970 
   1971   return false;
   1972 }
   1973 
   1974 /// \brief For a function declaration in C or C++, determine whether this
   1975 /// declaration causes the definition to be externally visible.
   1976 ///
   1977 /// Specifically, this determines if adding the current declaration to the set
   1978 /// of redeclarations of the given functions causes
   1979 /// isInlineDefinitionExternallyVisible to change from false to true.
   1980 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
   1981   assert(!doesThisDeclarationHaveABody() &&
   1982          "Must have a declaration without a body.");
   1983 
   1984   ASTContext &Context = getASTContext();
   1985 
   1986   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
   1987     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
   1988     // an externally visible definition.
   1989     //
   1990     // FIXME: What happens if gnu_inline gets added on after the first
   1991     // declaration?
   1992     if (!isInlineSpecified() || getStorageClassAsWritten() == SC_Extern)
   1993       return false;
   1994 
   1995     const FunctionDecl *Prev = this;
   1996     bool FoundBody = false;
   1997     while ((Prev = Prev->getPreviousDecl())) {
   1998       FoundBody |= Prev->Body;
   1999 
   2000       if (Prev->Body) {
   2001         // If it's not the case that both 'inline' and 'extern' are
   2002         // specified on the definition, then it is always externally visible.
   2003         if (!Prev->isInlineSpecified() ||
   2004             Prev->getStorageClassAsWritten() != SC_Extern)
   2005           return false;
   2006       } else if (Prev->isInlineSpecified() &&
   2007                  Prev->getStorageClassAsWritten() != SC_Extern) {
   2008         return false;
   2009       }
   2010     }
   2011     return FoundBody;
   2012   }
   2013 
   2014   if (Context.getLangOpts().CPlusPlus)
   2015     return false;
   2016 
   2017   // C99 6.7.4p6:
   2018   //   [...] If all of the file scope declarations for a function in a
   2019   //   translation unit include the inline function specifier without extern,
   2020   //   then the definition in that translation unit is an inline definition.
   2021   if (isInlineSpecified() && getStorageClass() != SC_Extern)
   2022     return false;
   2023   const FunctionDecl *Prev = this;
   2024   bool FoundBody = false;
   2025   while ((Prev = Prev->getPreviousDecl())) {
   2026     FoundBody |= Prev->Body;
   2027     if (RedeclForcesDefC99(Prev))
   2028       return false;
   2029   }
   2030   return FoundBody;
   2031 }
   2032 
   2033 /// \brief For an inline function definition in C or C++, determine whether the
   2034 /// definition will be externally visible.
   2035 ///
   2036 /// Inline function definitions are always available for inlining optimizations.
   2037 /// However, depending on the language dialect, declaration specifiers, and
   2038 /// attributes, the definition of an inline function may or may not be
   2039 /// "externally" visible to other translation units in the program.
   2040 ///
   2041 /// In C99, inline definitions are not externally visible by default. However,
   2042 /// if even one of the global-scope declarations is marked "extern inline", the
   2043 /// inline definition becomes externally visible (C99 6.7.4p6).
   2044 ///
   2045 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
   2046 /// definition, we use the GNU semantics for inline, which are nearly the
   2047 /// opposite of C99 semantics. In particular, "inline" by itself will create
   2048 /// an externally visible symbol, but "extern inline" will not create an
   2049 /// externally visible symbol.
   2050 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
   2051   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
   2052   assert(isInlined() && "Function must be inline");
   2053   ASTContext &Context = getASTContext();
   2054 
   2055   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
   2056     // Note: If you change the logic here, please change
   2057     // doesDeclarationForceExternallyVisibleDefinition as well.
   2058     //
   2059     // If it's not the case that both 'inline' and 'extern' are
   2060     // specified on the definition, then this inline definition is
   2061     // externally visible.
   2062     if (!(isInlineSpecified() && getStorageClassAsWritten() == SC_Extern))
   2063       return true;
   2064 
   2065     // If any declaration is 'inline' but not 'extern', then this definition
   2066     // is externally visible.
   2067     for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
   2068          Redecl != RedeclEnd;
   2069          ++Redecl) {
   2070       if (Redecl->isInlineSpecified() &&
   2071           Redecl->getStorageClassAsWritten() != SC_Extern)
   2072         return true;
   2073     }
   2074 
   2075     return false;
   2076   }
   2077 
   2078   // C99 6.7.4p6:
   2079   //   [...] If all of the file scope declarations for a function in a
   2080   //   translation unit include the inline function specifier without extern,
   2081   //   then the definition in that translation unit is an inline definition.
   2082   for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
   2083        Redecl != RedeclEnd;
   2084        ++Redecl) {
   2085     if (RedeclForcesDefC99(*Redecl))
   2086       return true;
   2087   }
   2088 
   2089   // C99 6.7.4p6:
   2090   //   An inline definition does not provide an external definition for the
   2091   //   function, and does not forbid an external definition in another
   2092   //   translation unit.
   2093   return false;
   2094 }
   2095 
   2096 /// getOverloadedOperator - Which C++ overloaded operator this
   2097 /// function represents, if any.
   2098 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
   2099   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
   2100     return getDeclName().getCXXOverloadedOperator();
   2101   else
   2102     return OO_None;
   2103 }
   2104 
   2105 /// getLiteralIdentifier - The literal suffix identifier this function
   2106 /// represents, if any.
   2107 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
   2108   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
   2109     return getDeclName().getCXXLiteralIdentifier();
   2110   else
   2111     return 0;
   2112 }
   2113 
   2114 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
   2115   if (TemplateOrSpecialization.isNull())
   2116     return TK_NonTemplate;
   2117   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
   2118     return TK_FunctionTemplate;
   2119   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
   2120     return TK_MemberSpecialization;
   2121   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
   2122     return TK_FunctionTemplateSpecialization;
   2123   if (TemplateOrSpecialization.is
   2124                                <DependentFunctionTemplateSpecializationInfo*>())
   2125     return TK_DependentFunctionTemplateSpecialization;
   2126 
   2127   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
   2128 }
   2129 
   2130 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
   2131   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
   2132     return cast<FunctionDecl>(Info->getInstantiatedFrom());
   2133 
   2134   return 0;
   2135 }
   2136 
   2137 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
   2138   return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
   2139 }
   2140 
   2141 void
   2142 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
   2143                                                FunctionDecl *FD,
   2144                                                TemplateSpecializationKind TSK) {
   2145   assert(TemplateOrSpecialization.isNull() &&
   2146          "Member function is already a specialization");
   2147   MemberSpecializationInfo *Info
   2148     = new (C) MemberSpecializationInfo(FD, TSK);
   2149   TemplateOrSpecialization = Info;
   2150 }
   2151 
   2152 bool FunctionDecl::isImplicitlyInstantiable() const {
   2153   // If the function is invalid, it can't be implicitly instantiated.
   2154   if (isInvalidDecl())
   2155     return false;
   2156 
   2157   switch (getTemplateSpecializationKind()) {
   2158   case TSK_Undeclared:
   2159   case TSK_ExplicitInstantiationDefinition:
   2160     return false;
   2161 
   2162   case TSK_ImplicitInstantiation:
   2163     return true;
   2164 
   2165   // It is possible to instantiate TSK_ExplicitSpecialization kind
   2166   // if the FunctionDecl has a class scope specialization pattern.
   2167   case TSK_ExplicitSpecialization:
   2168     return getClassScopeSpecializationPattern() != 0;
   2169 
   2170   case TSK_ExplicitInstantiationDeclaration:
   2171     // Handled below.
   2172     break;
   2173   }
   2174 
   2175   // Find the actual template from which we will instantiate.
   2176   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
   2177   bool HasPattern = false;
   2178   if (PatternDecl)
   2179     HasPattern = PatternDecl->hasBody(PatternDecl);
   2180 
   2181   // C++0x [temp.explicit]p9:
   2182   //   Except for inline functions, other explicit instantiation declarations
   2183   //   have the effect of suppressing the implicit instantiation of the entity
   2184   //   to which they refer.
   2185   if (!HasPattern || !PatternDecl)
   2186     return true;
   2187 
   2188   return PatternDecl->isInlined();
   2189 }
   2190 
   2191 bool FunctionDecl::isTemplateInstantiation() const {
   2192   switch (getTemplateSpecializationKind()) {
   2193     case TSK_Undeclared:
   2194     case TSK_ExplicitSpecialization:
   2195       return false;
   2196     case TSK_ImplicitInstantiation:
   2197     case TSK_ExplicitInstantiationDeclaration:
   2198     case TSK_ExplicitInstantiationDefinition:
   2199       return true;
   2200   }
   2201   llvm_unreachable("All TSK values handled.");
   2202 }
   2203 
   2204 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
   2205   // Handle class scope explicit specialization special case.
   2206   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
   2207     return getClassScopeSpecializationPattern();
   2208 
   2209   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
   2210     while (Primary->getInstantiatedFromMemberTemplate()) {
   2211       // If we have hit a point where the user provided a specialization of
   2212       // this template, we're done looking.
   2213       if (Primary->isMemberSpecialization())
   2214         break;
   2215 
   2216       Primary = Primary->getInstantiatedFromMemberTemplate();
   2217     }
   2218 
   2219     return Primary->getTemplatedDecl();
   2220   }
   2221 
   2222   return getInstantiatedFromMemberFunction();
   2223 }
   2224 
   2225 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
   2226   if (FunctionTemplateSpecializationInfo *Info
   2227         = TemplateOrSpecialization
   2228             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
   2229     return Info->Template.getPointer();
   2230   }
   2231   return 0;
   2232 }
   2233 
   2234 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
   2235     return getASTContext().getClassScopeSpecializationPattern(this);
   2236 }
   2237 
   2238 const TemplateArgumentList *
   2239 FunctionDecl::getTemplateSpecializationArgs() const {
   2240   if (FunctionTemplateSpecializationInfo *Info
   2241         = TemplateOrSpecialization
   2242             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
   2243     return Info->TemplateArguments;
   2244   }
   2245   return 0;
   2246 }
   2247 
   2248 const ASTTemplateArgumentListInfo *
   2249 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
   2250   if (FunctionTemplateSpecializationInfo *Info
   2251         = TemplateOrSpecialization
   2252             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
   2253     return Info->TemplateArgumentsAsWritten;
   2254   }
   2255   return 0;
   2256 }
   2257 
   2258 void
   2259 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
   2260                                                 FunctionTemplateDecl *Template,
   2261                                      const TemplateArgumentList *TemplateArgs,
   2262                                                 void *InsertPos,
   2263                                                 TemplateSpecializationKind TSK,
   2264                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
   2265                                           SourceLocation PointOfInstantiation) {
   2266   assert(TSK != TSK_Undeclared &&
   2267          "Must specify the type of function template specialization");
   2268   FunctionTemplateSpecializationInfo *Info
   2269     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
   2270   if (!Info)
   2271     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
   2272                                                       TemplateArgs,
   2273                                                       TemplateArgsAsWritten,
   2274                                                       PointOfInstantiation);
   2275   TemplateOrSpecialization = Info;
   2276   Template->addSpecialization(Info, InsertPos);
   2277 }
   2278 
   2279 void
   2280 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
   2281                                     const UnresolvedSetImpl &Templates,
   2282                              const TemplateArgumentListInfo &TemplateArgs) {
   2283   assert(TemplateOrSpecialization.isNull());
   2284   size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
   2285   Size += Templates.size() * sizeof(FunctionTemplateDecl*);
   2286   Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
   2287   void *Buffer = Context.Allocate(Size);
   2288   DependentFunctionTemplateSpecializationInfo *Info =
   2289     new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
   2290                                                              TemplateArgs);
   2291   TemplateOrSpecialization = Info;
   2292 }
   2293 
   2294 DependentFunctionTemplateSpecializationInfo::
   2295 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
   2296                                       const TemplateArgumentListInfo &TArgs)
   2297   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
   2298 
   2299   d.NumTemplates = Ts.size();
   2300   d.NumArgs = TArgs.size();
   2301 
   2302   FunctionTemplateDecl **TsArray =
   2303     const_cast<FunctionTemplateDecl**>(getTemplates());
   2304   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
   2305     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
   2306 
   2307   TemplateArgumentLoc *ArgsArray =
   2308     const_cast<TemplateArgumentLoc*>(getTemplateArgs());
   2309   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
   2310     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
   2311 }
   2312 
   2313 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
   2314   // For a function template specialization, query the specialization
   2315   // information object.
   2316   FunctionTemplateSpecializationInfo *FTSInfo
   2317     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
   2318   if (FTSInfo)
   2319     return FTSInfo->getTemplateSpecializationKind();
   2320 
   2321   MemberSpecializationInfo *MSInfo
   2322     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
   2323   if (MSInfo)
   2324     return MSInfo->getTemplateSpecializationKind();
   2325 
   2326   return TSK_Undeclared;
   2327 }
   2328 
   2329 void
   2330 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
   2331                                           SourceLocation PointOfInstantiation) {
   2332   if (FunctionTemplateSpecializationInfo *FTSInfo
   2333         = TemplateOrSpecialization.dyn_cast<
   2334                                     FunctionTemplateSpecializationInfo*>()) {
   2335     FTSInfo->setTemplateSpecializationKind(TSK);
   2336     if (TSK != TSK_ExplicitSpecialization &&
   2337         PointOfInstantiation.isValid() &&
   2338         FTSInfo->getPointOfInstantiation().isInvalid())
   2339       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
   2340   } else if (MemberSpecializationInfo *MSInfo
   2341              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
   2342     MSInfo->setTemplateSpecializationKind(TSK);
   2343     if (TSK != TSK_ExplicitSpecialization &&
   2344         PointOfInstantiation.isValid() &&
   2345         MSInfo->getPointOfInstantiation().isInvalid())
   2346       MSInfo->setPointOfInstantiation(PointOfInstantiation);
   2347   } else
   2348     llvm_unreachable("Function cannot have a template specialization kind");
   2349 }
   2350 
   2351 SourceLocation FunctionDecl::getPointOfInstantiation() const {
   2352   if (FunctionTemplateSpecializationInfo *FTSInfo
   2353         = TemplateOrSpecialization.dyn_cast<
   2354                                         FunctionTemplateSpecializationInfo*>())
   2355     return FTSInfo->getPointOfInstantiation();
   2356   else if (MemberSpecializationInfo *MSInfo
   2357              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
   2358     return MSInfo->getPointOfInstantiation();
   2359 
   2360   return SourceLocation();
   2361 }
   2362 
   2363 bool FunctionDecl::isOutOfLine() const {
   2364   if (Decl::isOutOfLine())
   2365     return true;
   2366 
   2367   // If this function was instantiated from a member function of a
   2368   // class template, check whether that member function was defined out-of-line.
   2369   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
   2370     const FunctionDecl *Definition;
   2371     if (FD->hasBody(Definition))
   2372       return Definition->isOutOfLine();
   2373   }
   2374 
   2375   // If this function was instantiated from a function template,
   2376   // check whether that function template was defined out-of-line.
   2377   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
   2378     const FunctionDecl *Definition;
   2379     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
   2380       return Definition->isOutOfLine();
   2381   }
   2382 
   2383   return false;
   2384 }
   2385 
   2386 SourceRange FunctionDecl::getSourceRange() const {
   2387   return SourceRange(getOuterLocStart(), EndRangeLoc);
   2388 }
   2389 
   2390 unsigned FunctionDecl::getMemoryFunctionKind() const {
   2391   IdentifierInfo *FnInfo = getIdentifier();
   2392 
   2393   if (!FnInfo)
   2394     return 0;
   2395 
   2396   // Builtin handling.
   2397   switch (getBuiltinID()) {
   2398   case Builtin::BI__builtin_memset:
   2399   case Builtin::BI__builtin___memset_chk:
   2400   case Builtin::BImemset:
   2401     return Builtin::BImemset;
   2402 
   2403   case Builtin::BI__builtin_memcpy:
   2404   case Builtin::BI__builtin___memcpy_chk:
   2405   case Builtin::BImemcpy:
   2406     return Builtin::BImemcpy;
   2407 
   2408   case Builtin::BI__builtin_memmove:
   2409   case Builtin::BI__builtin___memmove_chk:
   2410   case Builtin::BImemmove:
   2411     return Builtin::BImemmove;
   2412 
   2413   case Builtin::BIstrlcpy:
   2414     return Builtin::BIstrlcpy;
   2415   case Builtin::BIstrlcat:
   2416     return Builtin::BIstrlcat;
   2417 
   2418   case Builtin::BI__builtin_memcmp:
   2419   case Builtin::BImemcmp:
   2420     return Builtin::BImemcmp;
   2421 
   2422   case Builtin::BI__builtin_strncpy:
   2423   case Builtin::BI__builtin___strncpy_chk:
   2424   case Builtin::BIstrncpy:
   2425     return Builtin::BIstrncpy;
   2426 
   2427   case Builtin::BI__builtin_strncmp:
   2428   case Builtin::BIstrncmp:
   2429     return Builtin::BIstrncmp;
   2430 
   2431   case Builtin::BI__builtin_strncasecmp:
   2432   case Builtin::BIstrncasecmp:
   2433     return Builtin::BIstrncasecmp;
   2434 
   2435   case Builtin::BI__builtin_strncat:
   2436   case Builtin::BI__builtin___strncat_chk:
   2437   case Builtin::BIstrncat:
   2438     return Builtin::BIstrncat;
   2439 
   2440   case Builtin::BI__builtin_strndup:
   2441   case Builtin::BIstrndup:
   2442     return Builtin::BIstrndup;
   2443 
   2444   case Builtin::BI__builtin_strlen:
   2445   case Builtin::BIstrlen:
   2446     return Builtin::BIstrlen;
   2447 
   2448   default:
   2449     if (isExternC()) {
   2450       if (FnInfo->isStr("memset"))
   2451         return Builtin::BImemset;
   2452       else if (FnInfo->isStr("memcpy"))
   2453         return Builtin::BImemcpy;
   2454       else if (FnInfo->isStr("memmove"))
   2455         return Builtin::BImemmove;
   2456       else if (FnInfo->isStr("memcmp"))
   2457         return Builtin::BImemcmp;
   2458       else if (FnInfo->isStr("strncpy"))
   2459         return Builtin::BIstrncpy;
   2460       else if (FnInfo->isStr("strncmp"))
   2461         return Builtin::BIstrncmp;
   2462       else if (FnInfo->isStr("strncasecmp"))
   2463         return Builtin::BIstrncasecmp;
   2464       else if (FnInfo->isStr("strncat"))
   2465         return Builtin::BIstrncat;
   2466       else if (FnInfo->isStr("strndup"))
   2467         return Builtin::BIstrndup;
   2468       else if (FnInfo->isStr("strlen"))
   2469         return Builtin::BIstrlen;
   2470     }
   2471     break;
   2472   }
   2473   return 0;
   2474 }
   2475 
   2476 //===----------------------------------------------------------------------===//
   2477 // FieldDecl Implementation
   2478 //===----------------------------------------------------------------------===//
   2479 
   2480 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
   2481                              SourceLocation StartLoc, SourceLocation IdLoc,
   2482                              IdentifierInfo *Id, QualType T,
   2483                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
   2484                              InClassInitStyle InitStyle) {
   2485   return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
   2486                            BW, Mutable, InitStyle);
   2487 }
   2488 
   2489 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2490   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl));
   2491   return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(),
   2492                              0, QualType(), 0, 0, false, ICIS_NoInit);
   2493 }
   2494 
   2495 bool FieldDecl::isAnonymousStructOrUnion() const {
   2496   if (!isImplicit() || getDeclName())
   2497     return false;
   2498 
   2499   if (const RecordType *Record = getType()->getAs<RecordType>())
   2500     return Record->getDecl()->isAnonymousStructOrUnion();
   2501 
   2502   return false;
   2503 }
   2504 
   2505 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
   2506   assert(isBitField() && "not a bitfield");
   2507   Expr *BitWidth = InitializerOrBitWidth.getPointer();
   2508   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
   2509 }
   2510 
   2511 unsigned FieldDecl::getFieldIndex() const {
   2512   if (CachedFieldIndex) return CachedFieldIndex - 1;
   2513 
   2514   unsigned Index = 0;
   2515   const RecordDecl *RD = getParent();
   2516   const FieldDecl *LastFD = 0;
   2517   bool IsMsStruct = RD->hasAttr<MsStructAttr>();
   2518 
   2519   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
   2520        I != E; ++I, ++Index) {
   2521     I->CachedFieldIndex = Index + 1;
   2522 
   2523     if (IsMsStruct) {
   2524       // Zero-length bitfields following non-bitfield members are ignored.
   2525       if (getASTContext().ZeroBitfieldFollowsNonBitfield(*I, LastFD)) {
   2526         --Index;
   2527         continue;
   2528       }
   2529       LastFD = *I;
   2530     }
   2531   }
   2532 
   2533   assert(CachedFieldIndex && "failed to find field in parent");
   2534   return CachedFieldIndex - 1;
   2535 }
   2536 
   2537 SourceRange FieldDecl::getSourceRange() const {
   2538   if (const Expr *E = InitializerOrBitWidth.getPointer())
   2539     return SourceRange(getInnerLocStart(), E->getLocEnd());
   2540   return DeclaratorDecl::getSourceRange();
   2541 }
   2542 
   2543 void FieldDecl::setBitWidth(Expr *Width) {
   2544   assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() &&
   2545          "bit width or initializer already set");
   2546   InitializerOrBitWidth.setPointer(Width);
   2547 }
   2548 
   2549 void FieldDecl::setInClassInitializer(Expr *Init) {
   2550   assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() &&
   2551          "bit width or initializer already set");
   2552   InitializerOrBitWidth.setPointer(Init);
   2553 }
   2554 
   2555 //===----------------------------------------------------------------------===//
   2556 // TagDecl Implementation
   2557 //===----------------------------------------------------------------------===//
   2558 
   2559 SourceLocation TagDecl::getOuterLocStart() const {
   2560   return getTemplateOrInnerLocStart(this);
   2561 }
   2562 
   2563 SourceRange TagDecl::getSourceRange() const {
   2564   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
   2565   return SourceRange(getOuterLocStart(), E);
   2566 }
   2567 
   2568 TagDecl* TagDecl::getCanonicalDecl() {
   2569   return getFirstDeclaration();
   2570 }
   2571 
   2572 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
   2573   TypedefNameDeclOrQualifier = TDD;
   2574   if (TypeForDecl)
   2575     const_cast<Type*>(TypeForDecl)->ClearLinkageCache();
   2576   ClearLinkageCache();
   2577 }
   2578 
   2579 void TagDecl::startDefinition() {
   2580   IsBeingDefined = true;
   2581 
   2582   if (isa<CXXRecordDecl>(this)) {
   2583     CXXRecordDecl *D = cast<CXXRecordDecl>(this);
   2584     struct CXXRecordDecl::DefinitionData *Data =
   2585       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
   2586     for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I)
   2587       cast<CXXRecordDecl>(*I)->DefinitionData = Data;
   2588   }
   2589 }
   2590 
   2591 void TagDecl::completeDefinition() {
   2592   assert((!isa<CXXRecordDecl>(this) ||
   2593           cast<CXXRecordDecl>(this)->hasDefinition()) &&
   2594          "definition completed but not started");
   2595 
   2596   IsCompleteDefinition = true;
   2597   IsBeingDefined = false;
   2598 
   2599   if (ASTMutationListener *L = getASTMutationListener())
   2600     L->CompletedTagDefinition(this);
   2601 }
   2602 
   2603 TagDecl *TagDecl::getDefinition() const {
   2604   if (isCompleteDefinition())
   2605     return const_cast<TagDecl *>(this);
   2606   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
   2607     return CXXRD->getDefinition();
   2608 
   2609   for (redecl_iterator R = redecls_begin(), REnd = redecls_end();
   2610        R != REnd; ++R)
   2611     if (R->isCompleteDefinition())
   2612       return *R;
   2613 
   2614   return 0;
   2615 }
   2616 
   2617 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
   2618   if (QualifierLoc) {
   2619     // Make sure the extended qualifier info is allocated.
   2620     if (!hasExtInfo())
   2621       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
   2622     // Set qualifier info.
   2623     getExtInfo()->QualifierLoc = QualifierLoc;
   2624   } else {
   2625     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
   2626     if (hasExtInfo()) {
   2627       if (getExtInfo()->NumTemplParamLists == 0) {
   2628         getASTContext().Deallocate(getExtInfo());
   2629         TypedefNameDeclOrQualifier = (TypedefNameDecl*) 0;
   2630       }
   2631       else
   2632         getExtInfo()->QualifierLoc = QualifierLoc;
   2633     }
   2634   }
   2635 }
   2636 
   2637 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
   2638                                             unsigned NumTPLists,
   2639                                             TemplateParameterList **TPLists) {
   2640   assert(NumTPLists > 0);
   2641   // Make sure the extended decl info is allocated.
   2642   if (!hasExtInfo())
   2643     // Allocate external info struct.
   2644     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
   2645   // Set the template parameter lists info.
   2646   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
   2647 }
   2648 
   2649 //===----------------------------------------------------------------------===//
   2650 // EnumDecl Implementation
   2651 //===----------------------------------------------------------------------===//
   2652 
   2653 void EnumDecl::anchor() { }
   2654 
   2655 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
   2656                            SourceLocation StartLoc, SourceLocation IdLoc,
   2657                            IdentifierInfo *Id,
   2658                            EnumDecl *PrevDecl, bool IsScoped,
   2659                            bool IsScopedUsingClassTag, bool IsFixed) {
   2660   EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl,
   2661                                     IsScoped, IsScopedUsingClassTag, IsFixed);
   2662   C.getTypeDeclType(Enum, PrevDecl);
   2663   return Enum;
   2664 }
   2665 
   2666 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2667   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl));
   2668   return new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(), 0, 0,
   2669                             false, false, false);
   2670 }
   2671 
   2672 void EnumDecl::completeDefinition(QualType NewType,
   2673                                   QualType NewPromotionType,
   2674                                   unsigned NumPositiveBits,
   2675                                   unsigned NumNegativeBits) {
   2676   assert(!isCompleteDefinition() && "Cannot redefine enums!");
   2677   if (!IntegerType)
   2678     IntegerType = NewType.getTypePtr();
   2679   PromotionType = NewPromotionType;
   2680   setNumPositiveBits(NumPositiveBits);
   2681   setNumNegativeBits(NumNegativeBits);
   2682   TagDecl::completeDefinition();
   2683 }
   2684 
   2685 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
   2686   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   2687     return MSI->getTemplateSpecializationKind();
   2688 
   2689   return TSK_Undeclared;
   2690 }
   2691 
   2692 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
   2693                                          SourceLocation PointOfInstantiation) {
   2694   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
   2695   assert(MSI && "Not an instantiated member enumeration?");
   2696   MSI->setTemplateSpecializationKind(TSK);
   2697   if (TSK != TSK_ExplicitSpecialization &&
   2698       PointOfInstantiation.isValid() &&
   2699       MSI->getPointOfInstantiation().isInvalid())
   2700     MSI->setPointOfInstantiation(PointOfInstantiation);
   2701 }
   2702 
   2703 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
   2704   if (SpecializationInfo)
   2705     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
   2706 
   2707   return 0;
   2708 }
   2709 
   2710 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
   2711                                             TemplateSpecializationKind TSK) {
   2712   assert(!SpecializationInfo && "Member enum is already a specialization");
   2713   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
   2714 }
   2715 
   2716 //===----------------------------------------------------------------------===//
   2717 // RecordDecl Implementation
   2718 //===----------------------------------------------------------------------===//
   2719 
   2720 RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
   2721                        SourceLocation StartLoc, SourceLocation IdLoc,
   2722                        IdentifierInfo *Id, RecordDecl *PrevDecl)
   2723   : TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) {
   2724   HasFlexibleArrayMember = false;
   2725   AnonymousStructOrUnion = false;
   2726   HasObjectMember = false;
   2727   LoadedFieldsFromExternalStorage = false;
   2728   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
   2729 }
   2730 
   2731 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
   2732                                SourceLocation StartLoc, SourceLocation IdLoc,
   2733                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
   2734   RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id,
   2735                                      PrevDecl);
   2736   C.getTypeDeclType(R, PrevDecl);
   2737   return R;
   2738 }
   2739 
   2740 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
   2741   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl));
   2742   return new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(),
   2743                               SourceLocation(), 0, 0);
   2744 }
   2745 
   2746 bool RecordDecl::isInjectedClassName() const {
   2747   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
   2748     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
   2749 }
   2750 
   2751 RecordDecl::field_iterator RecordDecl::field_begin() const {
   2752   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
   2753     LoadFieldsFromExternalStorage();
   2754 
   2755   return field_iterator(decl_iterator(FirstDecl));
   2756 }
   2757 
   2758 /// completeDefinition - Notes that the definition of this type is now
   2759 /// complete.
   2760 void RecordDecl::completeDefinition() {
   2761   assert(!isCompleteDefinition() && "Cannot redefine record!");
   2762   TagDecl::completeDefinition();
   2763 }
   2764 
   2765 static bool isFieldOrIndirectField(Decl::Kind K) {
   2766   return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
   2767 }
   2768 
   2769 void RecordDecl::LoadFieldsFromExternalStorage() const {
   2770   ExternalASTSource *Source = getASTContext().getExternalSource();
   2771   assert(hasExternalLexicalStorage() && Source && "No external storage?");
   2772 
   2773   // Notify that we have a RecordDecl doing some initialization.
   2774   ExternalASTSource::Deserializing TheFields(Source);
   2775 
   2776   SmallVector<Decl*, 64> Decls;
   2777   LoadedFieldsFromExternalStorage = true;
   2778   switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
   2779                                            Decls)) {
   2780   case ELR_Success:
   2781     break;
   2782 
   2783   case ELR_AlreadyLoaded:
   2784   case ELR_Failure:
   2785     return;
   2786   }
   2787 
   2788 #ifndef NDEBUG
   2789   // Check that all decls we got were FieldDecls.
   2790   for (unsigned i=0, e=Decls.size(); i != e; ++i)
   2791     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
   2792 #endif
   2793 
   2794   if (Decls.empty())
   2795     return;
   2796 
   2797   llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
   2798                                                  /*FieldsAlreadyLoaded=*/false);
   2799 }
   2800 
   2801 //===----------------------------------------------------------------------===//
   2802 // BlockDecl Implementation
   2803 //===----------------------------------------------------------------------===//
   2804 
   2805 void BlockDecl::setParams(llvm::ArrayRef<ParmVarDecl *> NewParamInfo) {
   2806   assert(ParamInfo == 0 && "Already has param info!");
   2807 
   2808   // Zero params -> null pointer.
   2809   if (!NewParamInfo.empty()) {
   2810     NumParams = NewParamInfo.size();
   2811     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
   2812     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
   2813   }
   2814 }
   2815 
   2816 void BlockDecl::setCaptures(ASTContext &Context,
   2817                             const Capture *begin,
   2818                             const Capture *end,
   2819                             bool capturesCXXThis) {
   2820   CapturesCXXThis = capturesCXXThis;
   2821 
   2822   if (begin == end) {
   2823     NumCaptures = 0;
   2824     Captures = 0;
   2825     return;
   2826   }
   2827 
   2828   NumCaptures = end - begin;
   2829 
   2830   // Avoid new Capture[] because we don't want to provide a default
   2831   // constructor.
   2832   size_t allocationSize = NumCaptures * sizeof(Capture);
   2833   void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
   2834   memcpy(buffer, begin, allocationSize);
   2835   Captures = static_cast<Capture*>(buffer);
   2836 }
   2837 
   2838 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
   2839   for (capture_const_iterator
   2840          i = capture_begin(), e = capture_end(); i != e; ++i)
   2841     // Only auto vars can be captured, so no redeclaration worries.
   2842     if (i->getVariable() == variable)
   2843       return true;
   2844 
   2845   return false;
   2846 }
   2847 
   2848 SourceRange BlockDecl::getSourceRange() const {
   2849   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
   2850 }
   2851 
   2852 //===----------------------------------------------------------------------===//
   2853 // Other Decl Allocation/Deallocation Method Implementations
   2854 //===----------------------------------------------------------------------===//
   2855 
   2856 void TranslationUnitDecl::anchor() { }
   2857 
   2858 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
   2859   return new (C) TranslationUnitDecl(C);
   2860 }
   2861 
   2862 void LabelDecl::anchor() { }
   2863 
   2864 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
   2865                              SourceLocation IdentL, IdentifierInfo *II) {
   2866   return new (C) LabelDecl(DC, IdentL, II, 0, IdentL);
   2867 }
   2868 
   2869 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
   2870                              SourceLocation IdentL, IdentifierInfo *II,
   2871                              SourceLocation GnuLabelL) {
   2872   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
   2873   return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL);
   2874 }
   2875 
   2876 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2877   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl));
   2878   return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation());
   2879 }
   2880 
   2881 void ValueDecl::anchor() { }
   2882 
   2883 void ImplicitParamDecl::anchor() { }
   2884 
   2885 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
   2886                                              SourceLocation IdLoc,
   2887                                              IdentifierInfo *Id,
   2888                                              QualType Type) {
   2889   return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type);
   2890 }
   2891 
   2892 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
   2893                                                          unsigned ID) {
   2894   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl));
   2895   return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType());
   2896 }
   2897 
   2898 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
   2899                                    SourceLocation StartLoc,
   2900                                    const DeclarationNameInfo &NameInfo,
   2901                                    QualType T, TypeSourceInfo *TInfo,
   2902                                    StorageClass SC, StorageClass SCAsWritten,
   2903                                    bool isInlineSpecified,
   2904                                    bool hasWrittenPrototype,
   2905                                    bool isConstexprSpecified) {
   2906   FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo,
   2907                                            T, TInfo, SC, SCAsWritten,
   2908                                            isInlineSpecified,
   2909                                            isConstexprSpecified);
   2910   New->HasWrittenPrototype = hasWrittenPrototype;
   2911   return New;
   2912 }
   2913 
   2914 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2915   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl));
   2916   return new (Mem) FunctionDecl(Function, 0, SourceLocation(),
   2917                                 DeclarationNameInfo(), QualType(), 0,
   2918                                 SC_None, SC_None, false, false);
   2919 }
   2920 
   2921 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
   2922   return new (C) BlockDecl(DC, L);
   2923 }
   2924 
   2925 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2926   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl));
   2927   return new (Mem) BlockDecl(0, SourceLocation());
   2928 }
   2929 
   2930 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
   2931                                            SourceLocation L,
   2932                                            IdentifierInfo *Id, QualType T,
   2933                                            Expr *E, const llvm::APSInt &V) {
   2934   return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
   2935 }
   2936 
   2937 EnumConstantDecl *
   2938 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2939   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl));
   2940   return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0,
   2941                                     llvm::APSInt());
   2942 }
   2943 
   2944 void IndirectFieldDecl::anchor() { }
   2945 
   2946 IndirectFieldDecl *
   2947 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
   2948                           IdentifierInfo *Id, QualType T, NamedDecl **CH,
   2949                           unsigned CHS) {
   2950   return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
   2951 }
   2952 
   2953 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
   2954                                                          unsigned ID) {
   2955   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl));
   2956   return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(),
   2957                                      QualType(), 0, 0);
   2958 }
   2959 
   2960 SourceRange EnumConstantDecl::getSourceRange() const {
   2961   SourceLocation End = getLocation();
   2962   if (Init)
   2963     End = Init->getLocEnd();
   2964   return SourceRange(getLocation(), End);
   2965 }
   2966 
   2967 void TypeDecl::anchor() { }
   2968 
   2969 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
   2970                                  SourceLocation StartLoc, SourceLocation IdLoc,
   2971                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
   2972   return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo);
   2973 }
   2974 
   2975 void TypedefNameDecl::anchor() { }
   2976 
   2977 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2978   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl));
   2979   return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0);
   2980 }
   2981 
   2982 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
   2983                                      SourceLocation StartLoc,
   2984                                      SourceLocation IdLoc, IdentifierInfo *Id,
   2985                                      TypeSourceInfo *TInfo) {
   2986   return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo);
   2987 }
   2988 
   2989 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2990   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl));
   2991   return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0);
   2992 }
   2993 
   2994 SourceRange TypedefDecl::getSourceRange() const {
   2995   SourceLocation RangeEnd = getLocation();
   2996   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
   2997     if (typeIsPostfix(TInfo->getType()))
   2998       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
   2999   }
   3000   return SourceRange(getLocStart(), RangeEnd);
   3001 }
   3002 
   3003 SourceRange TypeAliasDecl::getSourceRange() const {
   3004   SourceLocation RangeEnd = getLocStart();
   3005   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
   3006     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
   3007   return SourceRange(getLocStart(), RangeEnd);
   3008 }
   3009 
   3010 void FileScopeAsmDecl::anchor() { }
   3011 
   3012 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
   3013                                            StringLiteral *Str,
   3014                                            SourceLocation AsmLoc,
   3015                                            SourceLocation RParenLoc) {
   3016   return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
   3017 }
   3018 
   3019 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
   3020                                                        unsigned ID) {
   3021   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl));
   3022   return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation());
   3023 }
   3024 
   3025 //===----------------------------------------------------------------------===//
   3026 // ImportDecl Implementation
   3027 //===----------------------------------------------------------------------===//
   3028 
   3029 /// \brief Retrieve the number of module identifiers needed to name the given
   3030 /// module.
   3031 static unsigned getNumModuleIdentifiers(Module *Mod) {
   3032   unsigned Result = 1;
   3033   while (Mod->Parent) {
   3034     Mod = Mod->Parent;
   3035     ++Result;
   3036   }
   3037   return Result;
   3038 }
   3039 
   3040 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
   3041                        Module *Imported,
   3042                        ArrayRef<SourceLocation> IdentifierLocs)
   3043   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
   3044     NextLocalImport()
   3045 {
   3046   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
   3047   SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
   3048   memcpy(StoredLocs, IdentifierLocs.data(),
   3049          IdentifierLocs.size() * sizeof(SourceLocation));
   3050 }
   3051 
   3052 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
   3053                        Module *Imported, SourceLocation EndLoc)
   3054   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
   3055     NextLocalImport()
   3056 {
   3057   *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
   3058 }
   3059 
   3060 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
   3061                                SourceLocation StartLoc, Module *Imported,
   3062                                ArrayRef<SourceLocation> IdentifierLocs) {
   3063   void *Mem = C.Allocate(sizeof(ImportDecl) +
   3064                          IdentifierLocs.size() * sizeof(SourceLocation));
   3065   return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
   3066 }
   3067 
   3068 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
   3069                                        SourceLocation StartLoc,
   3070                                        Module *Imported,
   3071                                        SourceLocation EndLoc) {
   3072   void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation));
   3073   ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc);
   3074   Import->setImplicit();
   3075   return Import;
   3076 }
   3077 
   3078 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
   3079                                            unsigned NumLocations) {
   3080   void *Mem = AllocateDeserializedDecl(C, ID,
   3081                                        (sizeof(ImportDecl) +
   3082                                         NumLocations * sizeof(SourceLocation)));
   3083   return new (Mem) ImportDecl(EmptyShell());
   3084 }
   3085 
   3086 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
   3087   if (!ImportedAndComplete.getInt())
   3088     return ArrayRef<SourceLocation>();
   3089 
   3090   const SourceLocation *StoredLocs
   3091     = reinterpret_cast<const SourceLocation *>(this + 1);
   3092   return ArrayRef<SourceLocation>(StoredLocs,
   3093                                   getNumModuleIdentifiers(getImportedModule()));
   3094 }
   3095 
   3096 SourceRange ImportDecl::getSourceRange() const {
   3097   if (!ImportedAndComplete.getInt())
   3098     return SourceRange(getLocation(),
   3099                        *reinterpret_cast<const SourceLocation *>(this + 1));
   3100 
   3101   return SourceRange(getLocation(), getIdentifierLocs().back());
   3102 }
   3103