Home | History | Annotate | Download | only in Sema
      1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements name lookup for C, C++, Objective-C, and
     11 //  Objective-C++.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 #include "clang/Sema/Sema.h"
     15 #include "clang/Sema/SemaInternal.h"
     16 #include "clang/Sema/Lookup.h"
     17 #include "clang/Sema/Overload.h"
     18 #include "clang/Sema/DeclSpec.h"
     19 #include "clang/Sema/Scope.h"
     20 #include "clang/Sema/ScopeInfo.h"
     21 #include "clang/Sema/TemplateDeduction.h"
     22 #include "clang/Sema/ExternalSemaSource.h"
     23 #include "clang/Sema/TypoCorrection.h"
     24 #include "clang/AST/ASTContext.h"
     25 #include "clang/AST/CXXInheritance.h"
     26 #include "clang/AST/Decl.h"
     27 #include "clang/AST/DeclCXX.h"
     28 #include "clang/AST/DeclLookups.h"
     29 #include "clang/AST/DeclObjC.h"
     30 #include "clang/AST/DeclTemplate.h"
     31 #include "clang/AST/Expr.h"
     32 #include "clang/AST/ExprCXX.h"
     33 #include "clang/Basic/Builtins.h"
     34 #include "clang/Basic/LangOptions.h"
     35 #include "llvm/ADT/SetVector.h"
     36 #include "llvm/ADT/STLExtras.h"
     37 #include "llvm/ADT/SmallPtrSet.h"
     38 #include "llvm/ADT/StringMap.h"
     39 #include "llvm/ADT/TinyPtrVector.h"
     40 #include "llvm/ADT/edit_distance.h"
     41 #include "llvm/Support/ErrorHandling.h"
     42 #include <algorithm>
     43 #include <iterator>
     44 #include <limits>
     45 #include <list>
     46 #include <map>
     47 #include <set>
     48 #include <utility>
     49 #include <vector>
     50 
     51 using namespace clang;
     52 using namespace sema;
     53 
     54 namespace {
     55   class UnqualUsingEntry {
     56     const DeclContext *Nominated;
     57     const DeclContext *CommonAncestor;
     58 
     59   public:
     60     UnqualUsingEntry(const DeclContext *Nominated,
     61                      const DeclContext *CommonAncestor)
     62       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
     63     }
     64 
     65     const DeclContext *getCommonAncestor() const {
     66       return CommonAncestor;
     67     }
     68 
     69     const DeclContext *getNominatedNamespace() const {
     70       return Nominated;
     71     }
     72 
     73     // Sort by the pointer value of the common ancestor.
     74     struct Comparator {
     75       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
     76         return L.getCommonAncestor() < R.getCommonAncestor();
     77       }
     78 
     79       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
     80         return E.getCommonAncestor() < DC;
     81       }
     82 
     83       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
     84         return DC < E.getCommonAncestor();
     85       }
     86     };
     87   };
     88 
     89   /// A collection of using directives, as used by C++ unqualified
     90   /// lookup.
     91   class UnqualUsingDirectiveSet {
     92     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
     93 
     94     ListTy list;
     95     llvm::SmallPtrSet<DeclContext*, 8> visited;
     96 
     97   public:
     98     UnqualUsingDirectiveSet() {}
     99 
    100     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
    101       // C++ [namespace.udir]p1:
    102       //   During unqualified name lookup, the names appear as if they
    103       //   were declared in the nearest enclosing namespace which contains
    104       //   both the using-directive and the nominated namespace.
    105       DeclContext *InnermostFileDC
    106         = static_cast<DeclContext*>(InnermostFileScope->getEntity());
    107       assert(InnermostFileDC && InnermostFileDC->isFileContext());
    108 
    109       for (; S; S = S->getParent()) {
    110         // C++ [namespace.udir]p1:
    111         //   A using-directive shall not appear in class scope, but may
    112         //   appear in namespace scope or in block scope.
    113         DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
    114         if (Ctx && Ctx->isFileContext()) {
    115           visit(Ctx, Ctx);
    116         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
    117           Scope::udir_iterator I = S->using_directives_begin(),
    118                              End = S->using_directives_end();
    119           for (; I != End; ++I)
    120             visit(*I, InnermostFileDC);
    121         }
    122       }
    123     }
    124 
    125     // Visits a context and collect all of its using directives
    126     // recursively.  Treats all using directives as if they were
    127     // declared in the context.
    128     //
    129     // A given context is only every visited once, so it is important
    130     // that contexts be visited from the inside out in order to get
    131     // the effective DCs right.
    132     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
    133       if (!visited.insert(DC))
    134         return;
    135 
    136       addUsingDirectives(DC, EffectiveDC);
    137     }
    138 
    139     // Visits a using directive and collects all of its using
    140     // directives recursively.  Treats all using directives as if they
    141     // were declared in the effective DC.
    142     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
    143       DeclContext *NS = UD->getNominatedNamespace();
    144       if (!visited.insert(NS))
    145         return;
    146 
    147       addUsingDirective(UD, EffectiveDC);
    148       addUsingDirectives(NS, EffectiveDC);
    149     }
    150 
    151     // Adds all the using directives in a context (and those nominated
    152     // by its using directives, transitively) as if they appeared in
    153     // the given effective context.
    154     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
    155       SmallVector<DeclContext*,4> queue;
    156       while (true) {
    157         DeclContext::udir_iterator I, End;
    158         for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
    159           UsingDirectiveDecl *UD = *I;
    160           DeclContext *NS = UD->getNominatedNamespace();
    161           if (visited.insert(NS)) {
    162             addUsingDirective(UD, EffectiveDC);
    163             queue.push_back(NS);
    164           }
    165         }
    166 
    167         if (queue.empty())
    168           return;
    169 
    170         DC = queue.back();
    171         queue.pop_back();
    172       }
    173     }
    174 
    175     // Add a using directive as if it had been declared in the given
    176     // context.  This helps implement C++ [namespace.udir]p3:
    177     //   The using-directive is transitive: if a scope contains a
    178     //   using-directive that nominates a second namespace that itself
    179     //   contains using-directives, the effect is as if the
    180     //   using-directives from the second namespace also appeared in
    181     //   the first.
    182     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
    183       // Find the common ancestor between the effective context and
    184       // the nominated namespace.
    185       DeclContext *Common = UD->getNominatedNamespace();
    186       while (!Common->Encloses(EffectiveDC))
    187         Common = Common->getParent();
    188       Common = Common->getPrimaryContext();
    189 
    190       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
    191     }
    192 
    193     void done() {
    194       std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
    195     }
    196 
    197     typedef ListTy::const_iterator const_iterator;
    198 
    199     const_iterator begin() const { return list.begin(); }
    200     const_iterator end() const { return list.end(); }
    201 
    202     std::pair<const_iterator,const_iterator>
    203     getNamespacesFor(DeclContext *DC) const {
    204       return std::equal_range(begin(), end(), DC->getPrimaryContext(),
    205                               UnqualUsingEntry::Comparator());
    206     }
    207   };
    208 }
    209 
    210 // Retrieve the set of identifier namespaces that correspond to a
    211 // specific kind of name lookup.
    212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
    213                                bool CPlusPlus,
    214                                bool Redeclaration) {
    215   unsigned IDNS = 0;
    216   switch (NameKind) {
    217   case Sema::LookupObjCImplicitSelfParam:
    218   case Sema::LookupOrdinaryName:
    219   case Sema::LookupRedeclarationWithLinkage:
    220     IDNS = Decl::IDNS_Ordinary;
    221     if (CPlusPlus) {
    222       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
    223       if (Redeclaration)
    224         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
    225     }
    226     break;
    227 
    228   case Sema::LookupOperatorName:
    229     // Operator lookup is its own crazy thing;  it is not the same
    230     // as (e.g.) looking up an operator name for redeclaration.
    231     assert(!Redeclaration && "cannot do redeclaration operator lookup");
    232     IDNS = Decl::IDNS_NonMemberOperator;
    233     break;
    234 
    235   case Sema::LookupTagName:
    236     if (CPlusPlus) {
    237       IDNS = Decl::IDNS_Type;
    238 
    239       // When looking for a redeclaration of a tag name, we add:
    240       // 1) TagFriend to find undeclared friend decls
    241       // 2) Namespace because they can't "overload" with tag decls.
    242       // 3) Tag because it includes class templates, which can't
    243       //    "overload" with tag decls.
    244       if (Redeclaration)
    245         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
    246     } else {
    247       IDNS = Decl::IDNS_Tag;
    248     }
    249     break;
    250   case Sema::LookupLabel:
    251     IDNS = Decl::IDNS_Label;
    252     break;
    253 
    254   case Sema::LookupMemberName:
    255     IDNS = Decl::IDNS_Member;
    256     if (CPlusPlus)
    257       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
    258     break;
    259 
    260   case Sema::LookupNestedNameSpecifierName:
    261     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
    262     break;
    263 
    264   case Sema::LookupNamespaceName:
    265     IDNS = Decl::IDNS_Namespace;
    266     break;
    267 
    268   case Sema::LookupUsingDeclName:
    269     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
    270          | Decl::IDNS_Member | Decl::IDNS_Using;
    271     break;
    272 
    273   case Sema::LookupObjCProtocolName:
    274     IDNS = Decl::IDNS_ObjCProtocol;
    275     break;
    276 
    277   case Sema::LookupAnyName:
    278     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
    279       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
    280       | Decl::IDNS_Type;
    281     break;
    282   }
    283   return IDNS;
    284 }
    285 
    286 void LookupResult::configure() {
    287   IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus,
    288                  isForRedeclaration());
    289 
    290   // If we're looking for one of the allocation or deallocation
    291   // operators, make sure that the implicitly-declared new and delete
    292   // operators can be found.
    293   if (!isForRedeclaration()) {
    294     switch (NameInfo.getName().getCXXOverloadedOperator()) {
    295     case OO_New:
    296     case OO_Delete:
    297     case OO_Array_New:
    298     case OO_Array_Delete:
    299       SemaRef.DeclareGlobalNewDelete();
    300       break;
    301 
    302     default:
    303       break;
    304     }
    305   }
    306 }
    307 
    308 void LookupResult::sanityImpl() const {
    309   // Note that this function is never called by NDEBUG builds. See
    310   // LookupResult::sanity().
    311   assert(ResultKind != NotFound || Decls.size() == 0);
    312   assert(ResultKind != Found || Decls.size() == 1);
    313   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
    314          (Decls.size() == 1 &&
    315           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
    316   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
    317   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
    318          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
    319                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
    320   assert((Paths != NULL) == (ResultKind == Ambiguous &&
    321                              (Ambiguity == AmbiguousBaseSubobjectTypes ||
    322                               Ambiguity == AmbiguousBaseSubobjects)));
    323 }
    324 
    325 // Necessary because CXXBasePaths is not complete in Sema.h
    326 void LookupResult::deletePaths(CXXBasePaths *Paths) {
    327   delete Paths;
    328 }
    329 
    330 static NamedDecl *getVisibleDecl(NamedDecl *D);
    331 
    332 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
    333   return getVisibleDecl(D);
    334 }
    335 
    336 /// Resolves the result kind of this lookup.
    337 void LookupResult::resolveKind() {
    338   unsigned N = Decls.size();
    339 
    340   // Fast case: no possible ambiguity.
    341   if (N == 0) {
    342     assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
    343     return;
    344   }
    345 
    346   // If there's a single decl, we need to examine it to decide what
    347   // kind of lookup this is.
    348   if (N == 1) {
    349     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
    350     if (isa<FunctionTemplateDecl>(D))
    351       ResultKind = FoundOverloaded;
    352     else if (isa<UnresolvedUsingValueDecl>(D))
    353       ResultKind = FoundUnresolvedValue;
    354     return;
    355   }
    356 
    357   // Don't do any extra resolution if we've already resolved as ambiguous.
    358   if (ResultKind == Ambiguous) return;
    359 
    360   llvm::SmallPtrSet<NamedDecl*, 16> Unique;
    361   llvm::SmallPtrSet<QualType, 16> UniqueTypes;
    362 
    363   bool Ambiguous = false;
    364   bool HasTag = false, HasFunction = false, HasNonFunction = false;
    365   bool HasFunctionTemplate = false, HasUnresolved = false;
    366 
    367   unsigned UniqueTagIndex = 0;
    368 
    369   unsigned I = 0;
    370   while (I < N) {
    371     NamedDecl *D = Decls[I]->getUnderlyingDecl();
    372     D = cast<NamedDecl>(D->getCanonicalDecl());
    373 
    374     // Redeclarations of types via typedef can occur both within a scope
    375     // and, through using declarations and directives, across scopes. There is
    376     // no ambiguity if they all refer to the same type, so unique based on the
    377     // canonical type.
    378     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
    379       if (!TD->getDeclContext()->isRecord()) {
    380         QualType T = SemaRef.Context.getTypeDeclType(TD);
    381         if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
    382           // The type is not unique; pull something off the back and continue
    383           // at this index.
    384           Decls[I] = Decls[--N];
    385           continue;
    386         }
    387       }
    388     }
    389 
    390     if (!Unique.insert(D)) {
    391       // If it's not unique, pull something off the back (and
    392       // continue at this index).
    393       Decls[I] = Decls[--N];
    394       continue;
    395     }
    396 
    397     // Otherwise, do some decl type analysis and then continue.
    398 
    399     if (isa<UnresolvedUsingValueDecl>(D)) {
    400       HasUnresolved = true;
    401     } else if (isa<TagDecl>(D)) {
    402       if (HasTag)
    403         Ambiguous = true;
    404       UniqueTagIndex = I;
    405       HasTag = true;
    406     } else if (isa<FunctionTemplateDecl>(D)) {
    407       HasFunction = true;
    408       HasFunctionTemplate = true;
    409     } else if (isa<FunctionDecl>(D)) {
    410       HasFunction = true;
    411     } else {
    412       if (HasNonFunction)
    413         Ambiguous = true;
    414       HasNonFunction = true;
    415     }
    416     I++;
    417   }
    418 
    419   // C++ [basic.scope.hiding]p2:
    420   //   A class name or enumeration name can be hidden by the name of
    421   //   an object, function, or enumerator declared in the same
    422   //   scope. If a class or enumeration name and an object, function,
    423   //   or enumerator are declared in the same scope (in any order)
    424   //   with the same name, the class or enumeration name is hidden
    425   //   wherever the object, function, or enumerator name is visible.
    426   // But it's still an error if there are distinct tag types found,
    427   // even if they're not visible. (ref?)
    428   if (HideTags && HasTag && !Ambiguous &&
    429       (HasFunction || HasNonFunction || HasUnresolved)) {
    430     if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
    431          Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
    432       Decls[UniqueTagIndex] = Decls[--N];
    433     else
    434       Ambiguous = true;
    435   }
    436 
    437   Decls.set_size(N);
    438 
    439   if (HasNonFunction && (HasFunction || HasUnresolved))
    440     Ambiguous = true;
    441 
    442   if (Ambiguous)
    443     setAmbiguous(LookupResult::AmbiguousReference);
    444   else if (HasUnresolved)
    445     ResultKind = LookupResult::FoundUnresolvedValue;
    446   else if (N > 1 || HasFunctionTemplate)
    447     ResultKind = LookupResult::FoundOverloaded;
    448   else
    449     ResultKind = LookupResult::Found;
    450 }
    451 
    452 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
    453   CXXBasePaths::const_paths_iterator I, E;
    454   DeclContext::lookup_iterator DI, DE;
    455   for (I = P.begin(), E = P.end(); I != E; ++I)
    456     for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
    457       addDecl(*DI);
    458 }
    459 
    460 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
    461   Paths = new CXXBasePaths;
    462   Paths->swap(P);
    463   addDeclsFromBasePaths(*Paths);
    464   resolveKind();
    465   setAmbiguous(AmbiguousBaseSubobjects);
    466 }
    467 
    468 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
    469   Paths = new CXXBasePaths;
    470   Paths->swap(P);
    471   addDeclsFromBasePaths(*Paths);
    472   resolveKind();
    473   setAmbiguous(AmbiguousBaseSubobjectTypes);
    474 }
    475 
    476 void LookupResult::print(raw_ostream &Out) {
    477   Out << Decls.size() << " result(s)";
    478   if (isAmbiguous()) Out << ", ambiguous";
    479   if (Paths) Out << ", base paths present";
    480 
    481   for (iterator I = begin(), E = end(); I != E; ++I) {
    482     Out << "\n";
    483     (*I)->print(Out, 2);
    484   }
    485 }
    486 
    487 /// \brief Lookup a builtin function, when name lookup would otherwise
    488 /// fail.
    489 static bool LookupBuiltin(Sema &S, LookupResult &R) {
    490   Sema::LookupNameKind NameKind = R.getLookupKind();
    491 
    492   // If we didn't find a use of this identifier, and if the identifier
    493   // corresponds to a compiler builtin, create the decl object for the builtin
    494   // now, injecting it into translation unit scope, and return it.
    495   if (NameKind == Sema::LookupOrdinaryName ||
    496       NameKind == Sema::LookupRedeclarationWithLinkage) {
    497     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
    498     if (II) {
    499       // If this is a builtin on this (or all) targets, create the decl.
    500       if (unsigned BuiltinID = II->getBuiltinID()) {
    501         // In C++, we don't have any predefined library functions like
    502         // 'malloc'. Instead, we'll just error.
    503         if (S.getLangOpts().CPlusPlus &&
    504             S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
    505           return false;
    506 
    507         if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
    508                                                  BuiltinID, S.TUScope,
    509                                                  R.isForRedeclaration(),
    510                                                  R.getNameLoc())) {
    511           R.addDecl(D);
    512           return true;
    513         }
    514 
    515         if (R.isForRedeclaration()) {
    516           // If we're redeclaring this function anyway, forget that
    517           // this was a builtin at all.
    518           S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
    519         }
    520 
    521         return false;
    522       }
    523     }
    524   }
    525 
    526   return false;
    527 }
    528 
    529 /// \brief Determine whether we can declare a special member function within
    530 /// the class at this point.
    531 static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
    532                                             const CXXRecordDecl *Class) {
    533   // We need to have a definition for the class.
    534   if (!Class->getDefinition() || Class->isDependentContext())
    535     return false;
    536 
    537   // We can't be in the middle of defining the class.
    538   if (const RecordType *RecordTy
    539                         = Context.getTypeDeclType(Class)->getAs<RecordType>())
    540     return !RecordTy->isBeingDefined();
    541 
    542   return false;
    543 }
    544 
    545 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
    546   if (!CanDeclareSpecialMemberFunction(Context, Class))
    547     return;
    548 
    549   // If the default constructor has not yet been declared, do so now.
    550   if (Class->needsImplicitDefaultConstructor())
    551     DeclareImplicitDefaultConstructor(Class);
    552 
    553   // If the copy constructor has not yet been declared, do so now.
    554   if (!Class->hasDeclaredCopyConstructor())
    555     DeclareImplicitCopyConstructor(Class);
    556 
    557   // If the copy assignment operator has not yet been declared, do so now.
    558   if (!Class->hasDeclaredCopyAssignment())
    559     DeclareImplicitCopyAssignment(Class);
    560 
    561   if (getLangOpts().CPlusPlus0x) {
    562     // If the move constructor has not yet been declared, do so now.
    563     if (Class->needsImplicitMoveConstructor())
    564       DeclareImplicitMoveConstructor(Class); // might not actually do it
    565 
    566     // If the move assignment operator has not yet been declared, do so now.
    567     if (Class->needsImplicitMoveAssignment())
    568       DeclareImplicitMoveAssignment(Class); // might not actually do it
    569   }
    570 
    571   // If the destructor has not yet been declared, do so now.
    572   if (!Class->hasDeclaredDestructor())
    573     DeclareImplicitDestructor(Class);
    574 }
    575 
    576 /// \brief Determine whether this is the name of an implicitly-declared
    577 /// special member function.
    578 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
    579   switch (Name.getNameKind()) {
    580   case DeclarationName::CXXConstructorName:
    581   case DeclarationName::CXXDestructorName:
    582     return true;
    583 
    584   case DeclarationName::CXXOperatorName:
    585     return Name.getCXXOverloadedOperator() == OO_Equal;
    586 
    587   default:
    588     break;
    589   }
    590 
    591   return false;
    592 }
    593 
    594 /// \brief If there are any implicit member functions with the given name
    595 /// that need to be declared in the given declaration context, do so.
    596 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
    597                                                    DeclarationName Name,
    598                                                    const DeclContext *DC) {
    599   if (!DC)
    600     return;
    601 
    602   switch (Name.getNameKind()) {
    603   case DeclarationName::CXXConstructorName:
    604     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
    605       if (Record->getDefinition() &&
    606           CanDeclareSpecialMemberFunction(S.Context, Record)) {
    607         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
    608         if (Record->needsImplicitDefaultConstructor())
    609           S.DeclareImplicitDefaultConstructor(Class);
    610         if (!Record->hasDeclaredCopyConstructor())
    611           S.DeclareImplicitCopyConstructor(Class);
    612         if (S.getLangOpts().CPlusPlus0x &&
    613             Record->needsImplicitMoveConstructor())
    614           S.DeclareImplicitMoveConstructor(Class);
    615       }
    616     break;
    617 
    618   case DeclarationName::CXXDestructorName:
    619     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
    620       if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
    621           CanDeclareSpecialMemberFunction(S.Context, Record))
    622         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
    623     break;
    624 
    625   case DeclarationName::CXXOperatorName:
    626     if (Name.getCXXOverloadedOperator() != OO_Equal)
    627       break;
    628 
    629     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
    630       if (Record->getDefinition() &&
    631           CanDeclareSpecialMemberFunction(S.Context, Record)) {
    632         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
    633         if (!Record->hasDeclaredCopyAssignment())
    634           S.DeclareImplicitCopyAssignment(Class);
    635         if (S.getLangOpts().CPlusPlus0x &&
    636             Record->needsImplicitMoveAssignment())
    637           S.DeclareImplicitMoveAssignment(Class);
    638       }
    639     }
    640     break;
    641 
    642   default:
    643     break;
    644   }
    645 }
    646 
    647 // Adds all qualifying matches for a name within a decl context to the
    648 // given lookup result.  Returns true if any matches were found.
    649 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
    650   bool Found = false;
    651 
    652   // Lazily declare C++ special member functions.
    653   if (S.getLangOpts().CPlusPlus)
    654     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
    655 
    656   // Perform lookup into this declaration context.
    657   DeclContext::lookup_const_iterator I, E;
    658   for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
    659     NamedDecl *D = *I;
    660     if ((D = R.getAcceptableDecl(D))) {
    661       R.addDecl(D);
    662       Found = true;
    663     }
    664   }
    665 
    666   if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
    667     return true;
    668 
    669   if (R.getLookupName().getNameKind()
    670         != DeclarationName::CXXConversionFunctionName ||
    671       R.getLookupName().getCXXNameType()->isDependentType() ||
    672       !isa<CXXRecordDecl>(DC))
    673     return Found;
    674 
    675   // C++ [temp.mem]p6:
    676   //   A specialization of a conversion function template is not found by
    677   //   name lookup. Instead, any conversion function templates visible in the
    678   //   context of the use are considered. [...]
    679   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
    680   if (!Record->isCompleteDefinition())
    681     return Found;
    682 
    683   const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
    684   for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
    685          UEnd = Unresolved->end(); U != UEnd; ++U) {
    686     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
    687     if (!ConvTemplate)
    688       continue;
    689 
    690     // When we're performing lookup for the purposes of redeclaration, just
    691     // add the conversion function template. When we deduce template
    692     // arguments for specializations, we'll end up unifying the return
    693     // type of the new declaration with the type of the function template.
    694     if (R.isForRedeclaration()) {
    695       R.addDecl(ConvTemplate);
    696       Found = true;
    697       continue;
    698     }
    699 
    700     // C++ [temp.mem]p6:
    701     //   [...] For each such operator, if argument deduction succeeds
    702     //   (14.9.2.3), the resulting specialization is used as if found by
    703     //   name lookup.
    704     //
    705     // When referencing a conversion function for any purpose other than
    706     // a redeclaration (such that we'll be building an expression with the
    707     // result), perform template argument deduction and place the
    708     // specialization into the result set. We do this to avoid forcing all
    709     // callers to perform special deduction for conversion functions.
    710     TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
    711     FunctionDecl *Specialization = 0;
    712 
    713     const FunctionProtoType *ConvProto
    714       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
    715     assert(ConvProto && "Nonsensical conversion function template type");
    716 
    717     // Compute the type of the function that we would expect the conversion
    718     // function to have, if it were to match the name given.
    719     // FIXME: Calling convention!
    720     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
    721     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
    722     EPI.ExceptionSpecType = EST_None;
    723     EPI.NumExceptions = 0;
    724     QualType ExpectedType
    725       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
    726                                             0, 0, EPI);
    727 
    728     // Perform template argument deduction against the type that we would
    729     // expect the function to have.
    730     if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
    731                                             Specialization, Info)
    732           == Sema::TDK_Success) {
    733       R.addDecl(Specialization);
    734       Found = true;
    735     }
    736   }
    737 
    738   return Found;
    739 }
    740 
    741 // Performs C++ unqualified lookup into the given file context.
    742 static bool
    743 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
    744                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
    745 
    746   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
    747 
    748   // Perform direct name lookup into the LookupCtx.
    749   bool Found = LookupDirect(S, R, NS);
    750 
    751   // Perform direct name lookup into the namespaces nominated by the
    752   // using directives whose common ancestor is this namespace.
    753   UnqualUsingDirectiveSet::const_iterator UI, UEnd;
    754   llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
    755 
    756   for (; UI != UEnd; ++UI)
    757     if (LookupDirect(S, R, UI->getNominatedNamespace()))
    758       Found = true;
    759 
    760   R.resolveKind();
    761 
    762   return Found;
    763 }
    764 
    765 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
    766   if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
    767     return Ctx->isFileContext();
    768   return false;
    769 }
    770 
    771 // Find the next outer declaration context from this scope. This
    772 // routine actually returns the semantic outer context, which may
    773 // differ from the lexical context (encoded directly in the Scope
    774 // stack) when we are parsing a member of a class template. In this
    775 // case, the second element of the pair will be true, to indicate that
    776 // name lookup should continue searching in this semantic context when
    777 // it leaves the current template parameter scope.
    778 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
    779   DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
    780   DeclContext *Lexical = 0;
    781   for (Scope *OuterS = S->getParent(); OuterS;
    782        OuterS = OuterS->getParent()) {
    783     if (OuterS->getEntity()) {
    784       Lexical = static_cast<DeclContext *>(OuterS->getEntity());
    785       break;
    786     }
    787   }
    788 
    789   // C++ [temp.local]p8:
    790   //   In the definition of a member of a class template that appears
    791   //   outside of the namespace containing the class template
    792   //   definition, the name of a template-parameter hides the name of
    793   //   a member of this namespace.
    794   //
    795   // Example:
    796   //
    797   //   namespace N {
    798   //     class C { };
    799   //
    800   //     template<class T> class B {
    801   //       void f(T);
    802   //     };
    803   //   }
    804   //
    805   //   template<class C> void N::B<C>::f(C) {
    806   //     C b;  // C is the template parameter, not N::C
    807   //   }
    808   //
    809   // In this example, the lexical context we return is the
    810   // TranslationUnit, while the semantic context is the namespace N.
    811   if (!Lexical || !DC || !S->getParent() ||
    812       !S->getParent()->isTemplateParamScope())
    813     return std::make_pair(Lexical, false);
    814 
    815   // Find the outermost template parameter scope.
    816   // For the example, this is the scope for the template parameters of
    817   // template<class C>.
    818   Scope *OutermostTemplateScope = S->getParent();
    819   while (OutermostTemplateScope->getParent() &&
    820          OutermostTemplateScope->getParent()->isTemplateParamScope())
    821     OutermostTemplateScope = OutermostTemplateScope->getParent();
    822 
    823   // Find the namespace context in which the original scope occurs. In
    824   // the example, this is namespace N.
    825   DeclContext *Semantic = DC;
    826   while (!Semantic->isFileContext())
    827     Semantic = Semantic->getParent();
    828 
    829   // Find the declaration context just outside of the template
    830   // parameter scope. This is the context in which the template is
    831   // being lexically declaration (a namespace context). In the
    832   // example, this is the global scope.
    833   if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
    834       Lexical->Encloses(Semantic))
    835     return std::make_pair(Semantic, true);
    836 
    837   return std::make_pair(Lexical, false);
    838 }
    839 
    840 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
    841   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
    842 
    843   DeclarationName Name = R.getLookupName();
    844 
    845   // If this is the name of an implicitly-declared special member function,
    846   // go through the scope stack to implicitly declare
    847   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
    848     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
    849       if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
    850         DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
    851   }
    852 
    853   // Implicitly declare member functions with the name we're looking for, if in
    854   // fact we are in a scope where it matters.
    855 
    856   Scope *Initial = S;
    857   IdentifierResolver::iterator
    858     I = IdResolver.begin(Name),
    859     IEnd = IdResolver.end();
    860 
    861   // First we lookup local scope.
    862   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
    863   // ...During unqualified name lookup (3.4.1), the names appear as if
    864   // they were declared in the nearest enclosing namespace which contains
    865   // both the using-directive and the nominated namespace.
    866   // [Note: in this context, "contains" means "contains directly or
    867   // indirectly".
    868   //
    869   // For example:
    870   // namespace A { int i; }
    871   // void foo() {
    872   //   int i;
    873   //   {
    874   //     using namespace A;
    875   //     ++i; // finds local 'i', A::i appears at global scope
    876   //   }
    877   // }
    878   //
    879   DeclContext *OutsideOfTemplateParamDC = 0;
    880   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
    881     DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
    882 
    883     // Check whether the IdResolver has anything in this scope.
    884     bool Found = false;
    885     for (; I != IEnd && S->isDeclScope(*I); ++I) {
    886       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
    887         Found = true;
    888         R.addDecl(ND);
    889       }
    890     }
    891     if (Found) {
    892       R.resolveKind();
    893       if (S->isClassScope())
    894         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
    895           R.setNamingClass(Record);
    896       return true;
    897     }
    898 
    899     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
    900         S->getParent() && !S->getParent()->isTemplateParamScope()) {
    901       // We've just searched the last template parameter scope and
    902       // found nothing, so look into the contexts between the
    903       // lexical and semantic declaration contexts returned by
    904       // findOuterContext(). This implements the name lookup behavior
    905       // of C++ [temp.local]p8.
    906       Ctx = OutsideOfTemplateParamDC;
    907       OutsideOfTemplateParamDC = 0;
    908     }
    909 
    910     if (Ctx) {
    911       DeclContext *OuterCtx;
    912       bool SearchAfterTemplateScope;
    913       llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
    914       if (SearchAfterTemplateScope)
    915         OutsideOfTemplateParamDC = OuterCtx;
    916 
    917       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
    918         // We do not directly look into transparent contexts, since
    919         // those entities will be found in the nearest enclosing
    920         // non-transparent context.
    921         if (Ctx->isTransparentContext())
    922           continue;
    923 
    924         // We do not look directly into function or method contexts,
    925         // since all of the local variables and parameters of the
    926         // function/method are present within the Scope.
    927         if (Ctx->isFunctionOrMethod()) {
    928           // If we have an Objective-C instance method, look for ivars
    929           // in the corresponding interface.
    930           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
    931             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
    932               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
    933                 ObjCInterfaceDecl *ClassDeclared;
    934                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
    935                                                  Name.getAsIdentifierInfo(),
    936                                                              ClassDeclared)) {
    937                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
    938                     R.addDecl(ND);
    939                     R.resolveKind();
    940                     return true;
    941                   }
    942                 }
    943               }
    944           }
    945 
    946           continue;
    947         }
    948 
    949         // Perform qualified name lookup into this context.
    950         // FIXME: In some cases, we know that every name that could be found by
    951         // this qualified name lookup will also be on the identifier chain. For
    952         // example, inside a class without any base classes, we never need to
    953         // perform qualified lookup because all of the members are on top of the
    954         // identifier chain.
    955         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
    956           return true;
    957       }
    958     }
    959   }
    960 
    961   // Stop if we ran out of scopes.
    962   // FIXME:  This really, really shouldn't be happening.
    963   if (!S) return false;
    964 
    965   // If we are looking for members, no need to look into global/namespace scope.
    966   if (R.getLookupKind() == LookupMemberName)
    967     return false;
    968 
    969   // Collect UsingDirectiveDecls in all scopes, and recursively all
    970   // nominated namespaces by those using-directives.
    971   //
    972   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
    973   // don't build it for each lookup!
    974 
    975   UnqualUsingDirectiveSet UDirs;
    976   UDirs.visitScopeChain(Initial, S);
    977   UDirs.done();
    978 
    979   // Lookup namespace scope, and global scope.
    980   // Unqualified name lookup in C++ requires looking into scopes
    981   // that aren't strictly lexical, and therefore we walk through the
    982   // context as well as walking through the scopes.
    983 
    984   for (; S; S = S->getParent()) {
    985     // Check whether the IdResolver has anything in this scope.
    986     bool Found = false;
    987     for (; I != IEnd && S->isDeclScope(*I); ++I) {
    988       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
    989         // We found something.  Look for anything else in our scope
    990         // with this same name and in an acceptable identifier
    991         // namespace, so that we can construct an overload set if we
    992         // need to.
    993         Found = true;
    994         R.addDecl(ND);
    995       }
    996     }
    997 
    998     if (Found && S->isTemplateParamScope()) {
    999       R.resolveKind();
   1000       return true;
   1001     }
   1002 
   1003     DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
   1004     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
   1005         S->getParent() && !S->getParent()->isTemplateParamScope()) {
   1006       // We've just searched the last template parameter scope and
   1007       // found nothing, so look into the contexts between the
   1008       // lexical and semantic declaration contexts returned by
   1009       // findOuterContext(). This implements the name lookup behavior
   1010       // of C++ [temp.local]p8.
   1011       Ctx = OutsideOfTemplateParamDC;
   1012       OutsideOfTemplateParamDC = 0;
   1013     }
   1014 
   1015     if (Ctx) {
   1016       DeclContext *OuterCtx;
   1017       bool SearchAfterTemplateScope;
   1018       llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
   1019       if (SearchAfterTemplateScope)
   1020         OutsideOfTemplateParamDC = OuterCtx;
   1021 
   1022       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
   1023         // We do not directly look into transparent contexts, since
   1024         // those entities will be found in the nearest enclosing
   1025         // non-transparent context.
   1026         if (Ctx->isTransparentContext())
   1027           continue;
   1028 
   1029         // If we have a context, and it's not a context stashed in the
   1030         // template parameter scope for an out-of-line definition, also
   1031         // look into that context.
   1032         if (!(Found && S && S->isTemplateParamScope())) {
   1033           assert(Ctx->isFileContext() &&
   1034               "We should have been looking only at file context here already.");
   1035 
   1036           // Look into context considering using-directives.
   1037           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
   1038             Found = true;
   1039         }
   1040 
   1041         if (Found) {
   1042           R.resolveKind();
   1043           return true;
   1044         }
   1045 
   1046         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
   1047           return false;
   1048       }
   1049     }
   1050 
   1051     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
   1052       return false;
   1053   }
   1054 
   1055   return !R.empty();
   1056 }
   1057 
   1058 /// \brief Retrieve the visible declaration corresponding to D, if any.
   1059 ///
   1060 /// This routine determines whether the declaration D is visible in the current
   1061 /// module, with the current imports. If not, it checks whether any
   1062 /// redeclaration of D is visible, and if so, returns that declaration.
   1063 ///
   1064 /// \returns D, or a visible previous declaration of D, whichever is more recent
   1065 /// and visible. If no declaration of D is visible, returns null.
   1066 static NamedDecl *getVisibleDecl(NamedDecl *D) {
   1067   if (LookupResult::isVisible(D))
   1068     return D;
   1069 
   1070   for (Decl::redecl_iterator RD = D->redecls_begin(), RDEnd = D->redecls_end();
   1071        RD != RDEnd; ++RD) {
   1072     if (NamedDecl *ND = dyn_cast<NamedDecl>(*RD)) {
   1073       if (LookupResult::isVisible(ND))
   1074         return ND;
   1075     }
   1076   }
   1077 
   1078   return 0;
   1079 }
   1080 
   1081 /// @brief Perform unqualified name lookup starting from a given
   1082 /// scope.
   1083 ///
   1084 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
   1085 /// used to find names within the current scope. For example, 'x' in
   1086 /// @code
   1087 /// int x;
   1088 /// int f() {
   1089 ///   return x; // unqualified name look finds 'x' in the global scope
   1090 /// }
   1091 /// @endcode
   1092 ///
   1093 /// Different lookup criteria can find different names. For example, a
   1094 /// particular scope can have both a struct and a function of the same
   1095 /// name, and each can be found by certain lookup criteria. For more
   1096 /// information about lookup criteria, see the documentation for the
   1097 /// class LookupCriteria.
   1098 ///
   1099 /// @param S        The scope from which unqualified name lookup will
   1100 /// begin. If the lookup criteria permits, name lookup may also search
   1101 /// in the parent scopes.
   1102 ///
   1103 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
   1104 /// look up and the lookup kind), and is updated with the results of lookup
   1105 /// including zero or more declarations and possibly additional information
   1106 /// used to diagnose ambiguities.
   1107 ///
   1108 /// @returns \c true if lookup succeeded and false otherwise.
   1109 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
   1110   DeclarationName Name = R.getLookupName();
   1111   if (!Name) return false;
   1112 
   1113   LookupNameKind NameKind = R.getLookupKind();
   1114 
   1115   if (!getLangOpts().CPlusPlus) {
   1116     // Unqualified name lookup in C/Objective-C is purely lexical, so
   1117     // search in the declarations attached to the name.
   1118     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
   1119       // Find the nearest non-transparent declaration scope.
   1120       while (!(S->getFlags() & Scope::DeclScope) ||
   1121              (S->getEntity() &&
   1122               static_cast<DeclContext *>(S->getEntity())
   1123                 ->isTransparentContext()))
   1124         S = S->getParent();
   1125     }
   1126 
   1127     unsigned IDNS = R.getIdentifierNamespace();
   1128 
   1129     // Scan up the scope chain looking for a decl that matches this
   1130     // identifier that is in the appropriate namespace.  This search
   1131     // should not take long, as shadowing of names is uncommon, and
   1132     // deep shadowing is extremely uncommon.
   1133     bool LeftStartingScope = false;
   1134 
   1135     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
   1136                                    IEnd = IdResolver.end();
   1137          I != IEnd; ++I)
   1138       if ((*I)->isInIdentifierNamespace(IDNS)) {
   1139         if (NameKind == LookupRedeclarationWithLinkage) {
   1140           // Determine whether this (or a previous) declaration is
   1141           // out-of-scope.
   1142           if (!LeftStartingScope && !S->isDeclScope(*I))
   1143             LeftStartingScope = true;
   1144 
   1145           // If we found something outside of our starting scope that
   1146           // does not have linkage, skip it.
   1147           if (LeftStartingScope && !((*I)->hasLinkage()))
   1148             continue;
   1149         }
   1150         else if (NameKind == LookupObjCImplicitSelfParam &&
   1151                  !isa<ImplicitParamDecl>(*I))
   1152           continue;
   1153 
   1154         // If this declaration is module-private and it came from an AST
   1155         // file, we can't see it.
   1156         NamedDecl *D = R.isHiddenDeclarationVisible()? *I : getVisibleDecl(*I);
   1157         if (!D)
   1158           continue;
   1159 
   1160         R.addDecl(D);
   1161 
   1162         // Check whether there are any other declarations with the same name
   1163         // and in the same scope.
   1164         if (I != IEnd) {
   1165           // Find the scope in which this declaration was declared (if it
   1166           // actually exists in a Scope).
   1167           while (S && !S->isDeclScope(D))
   1168             S = S->getParent();
   1169 
   1170           // If the scope containing the declaration is the translation unit,
   1171           // then we'll need to perform our checks based on the matching
   1172           // DeclContexts rather than matching scopes.
   1173           if (S && isNamespaceOrTranslationUnitScope(S))
   1174             S = 0;
   1175 
   1176           // Compute the DeclContext, if we need it.
   1177           DeclContext *DC = 0;
   1178           if (!S)
   1179             DC = (*I)->getDeclContext()->getRedeclContext();
   1180 
   1181           IdentifierResolver::iterator LastI = I;
   1182           for (++LastI; LastI != IEnd; ++LastI) {
   1183             if (S) {
   1184               // Match based on scope.
   1185               if (!S->isDeclScope(*LastI))
   1186                 break;
   1187             } else {
   1188               // Match based on DeclContext.
   1189               DeclContext *LastDC
   1190                 = (*LastI)->getDeclContext()->getRedeclContext();
   1191               if (!LastDC->Equals(DC))
   1192                 break;
   1193             }
   1194 
   1195             // If the declaration isn't in the right namespace, skip it.
   1196             if (!(*LastI)->isInIdentifierNamespace(IDNS))
   1197               continue;
   1198 
   1199             D = R.isHiddenDeclarationVisible()? *LastI : getVisibleDecl(*LastI);
   1200             if (D)
   1201               R.addDecl(D);
   1202           }
   1203 
   1204           R.resolveKind();
   1205         }
   1206         return true;
   1207       }
   1208   } else {
   1209     // Perform C++ unqualified name lookup.
   1210     if (CppLookupName(R, S))
   1211       return true;
   1212   }
   1213 
   1214   // If we didn't find a use of this identifier, and if the identifier
   1215   // corresponds to a compiler builtin, create the decl object for the builtin
   1216   // now, injecting it into translation unit scope, and return it.
   1217   if (AllowBuiltinCreation && LookupBuiltin(*this, R))
   1218     return true;
   1219 
   1220   // If we didn't find a use of this identifier, the ExternalSource
   1221   // may be able to handle the situation.
   1222   // Note: some lookup failures are expected!
   1223   // See e.g. R.isForRedeclaration().
   1224   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
   1225 }
   1226 
   1227 /// @brief Perform qualified name lookup in the namespaces nominated by
   1228 /// using directives by the given context.
   1229 ///
   1230 /// C++98 [namespace.qual]p2:
   1231 ///   Given X::m (where X is a user-declared namespace), or given \::m
   1232 ///   (where X is the global namespace), let S be the set of all
   1233 ///   declarations of m in X and in the transitive closure of all
   1234 ///   namespaces nominated by using-directives in X and its used
   1235 ///   namespaces, except that using-directives are ignored in any
   1236 ///   namespace, including X, directly containing one or more
   1237 ///   declarations of m. No namespace is searched more than once in
   1238 ///   the lookup of a name. If S is the empty set, the program is
   1239 ///   ill-formed. Otherwise, if S has exactly one member, or if the
   1240 ///   context of the reference is a using-declaration
   1241 ///   (namespace.udecl), S is the required set of declarations of
   1242 ///   m. Otherwise if the use of m is not one that allows a unique
   1243 ///   declaration to be chosen from S, the program is ill-formed.
   1244 ///
   1245 /// C++98 [namespace.qual]p5:
   1246 ///   During the lookup of a qualified namespace member name, if the
   1247 ///   lookup finds more than one declaration of the member, and if one
   1248 ///   declaration introduces a class name or enumeration name and the
   1249 ///   other declarations either introduce the same object, the same
   1250 ///   enumerator or a set of functions, the non-type name hides the
   1251 ///   class or enumeration name if and only if the declarations are
   1252 ///   from the same namespace; otherwise (the declarations are from
   1253 ///   different namespaces), the program is ill-formed.
   1254 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
   1255                                                  DeclContext *StartDC) {
   1256   assert(StartDC->isFileContext() && "start context is not a file context");
   1257 
   1258   DeclContext::udir_iterator I = StartDC->using_directives_begin();
   1259   DeclContext::udir_iterator E = StartDC->using_directives_end();
   1260 
   1261   if (I == E) return false;
   1262 
   1263   // We have at least added all these contexts to the queue.
   1264   llvm::SmallPtrSet<DeclContext*, 8> Visited;
   1265   Visited.insert(StartDC);
   1266 
   1267   // We have not yet looked into these namespaces, much less added
   1268   // their "using-children" to the queue.
   1269   SmallVector<NamespaceDecl*, 8> Queue;
   1270 
   1271   // We have already looked into the initial namespace; seed the queue
   1272   // with its using-children.
   1273   for (; I != E; ++I) {
   1274     NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
   1275     if (Visited.insert(ND))
   1276       Queue.push_back(ND);
   1277   }
   1278 
   1279   // The easiest way to implement the restriction in [namespace.qual]p5
   1280   // is to check whether any of the individual results found a tag
   1281   // and, if so, to declare an ambiguity if the final result is not
   1282   // a tag.
   1283   bool FoundTag = false;
   1284   bool FoundNonTag = false;
   1285 
   1286   LookupResult LocalR(LookupResult::Temporary, R);
   1287 
   1288   bool Found = false;
   1289   while (!Queue.empty()) {
   1290     NamespaceDecl *ND = Queue.back();
   1291     Queue.pop_back();
   1292 
   1293     // We go through some convolutions here to avoid copying results
   1294     // between LookupResults.
   1295     bool UseLocal = !R.empty();
   1296     LookupResult &DirectR = UseLocal ? LocalR : R;
   1297     bool FoundDirect = LookupDirect(S, DirectR, ND);
   1298 
   1299     if (FoundDirect) {
   1300       // First do any local hiding.
   1301       DirectR.resolveKind();
   1302 
   1303       // If the local result is a tag, remember that.
   1304       if (DirectR.isSingleTagDecl())
   1305         FoundTag = true;
   1306       else
   1307         FoundNonTag = true;
   1308 
   1309       // Append the local results to the total results if necessary.
   1310       if (UseLocal) {
   1311         R.addAllDecls(LocalR);
   1312         LocalR.clear();
   1313       }
   1314     }
   1315 
   1316     // If we find names in this namespace, ignore its using directives.
   1317     if (FoundDirect) {
   1318       Found = true;
   1319       continue;
   1320     }
   1321 
   1322     for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
   1323       NamespaceDecl *Nom = (*I)->getNominatedNamespace();
   1324       if (Visited.insert(Nom))
   1325         Queue.push_back(Nom);
   1326     }
   1327   }
   1328 
   1329   if (Found) {
   1330     if (FoundTag && FoundNonTag)
   1331       R.setAmbiguousQualifiedTagHiding();
   1332     else
   1333       R.resolveKind();
   1334   }
   1335 
   1336   return Found;
   1337 }
   1338 
   1339 /// \brief Callback that looks for any member of a class with the given name.
   1340 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
   1341                             CXXBasePath &Path,
   1342                             void *Name) {
   1343   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   1344 
   1345   DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
   1346   Path.Decls = BaseRecord->lookup(N);
   1347   return Path.Decls.first != Path.Decls.second;
   1348 }
   1349 
   1350 /// \brief Determine whether the given set of member declarations contains only
   1351 /// static members, nested types, and enumerators.
   1352 template<typename InputIterator>
   1353 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
   1354   Decl *D = (*First)->getUnderlyingDecl();
   1355   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
   1356     return true;
   1357 
   1358   if (isa<CXXMethodDecl>(D)) {
   1359     // Determine whether all of the methods are static.
   1360     bool AllMethodsAreStatic = true;
   1361     for(; First != Last; ++First) {
   1362       D = (*First)->getUnderlyingDecl();
   1363 
   1364       if (!isa<CXXMethodDecl>(D)) {
   1365         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
   1366         break;
   1367       }
   1368 
   1369       if (!cast<CXXMethodDecl>(D)->isStatic()) {
   1370         AllMethodsAreStatic = false;
   1371         break;
   1372       }
   1373     }
   1374 
   1375     if (AllMethodsAreStatic)
   1376       return true;
   1377   }
   1378 
   1379   return false;
   1380 }
   1381 
   1382 /// \brief Perform qualified name lookup into a given context.
   1383 ///
   1384 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
   1385 /// names when the context of those names is explicit specified, e.g.,
   1386 /// "std::vector" or "x->member", or as part of unqualified name lookup.
   1387 ///
   1388 /// Different lookup criteria can find different names. For example, a
   1389 /// particular scope can have both a struct and a function of the same
   1390 /// name, and each can be found by certain lookup criteria. For more
   1391 /// information about lookup criteria, see the documentation for the
   1392 /// class LookupCriteria.
   1393 ///
   1394 /// \param R captures both the lookup criteria and any lookup results found.
   1395 ///
   1396 /// \param LookupCtx The context in which qualified name lookup will
   1397 /// search. If the lookup criteria permits, name lookup may also search
   1398 /// in the parent contexts or (for C++ classes) base classes.
   1399 ///
   1400 /// \param InUnqualifiedLookup true if this is qualified name lookup that
   1401 /// occurs as part of unqualified name lookup.
   1402 ///
   1403 /// \returns true if lookup succeeded, false if it failed.
   1404 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
   1405                                bool InUnqualifiedLookup) {
   1406   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
   1407 
   1408   if (!R.getLookupName())
   1409     return false;
   1410 
   1411   // Make sure that the declaration context is complete.
   1412   assert((!isa<TagDecl>(LookupCtx) ||
   1413           LookupCtx->isDependentContext() ||
   1414           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
   1415           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
   1416          "Declaration context must already be complete!");
   1417 
   1418   // Perform qualified name lookup into the LookupCtx.
   1419   if (LookupDirect(*this, R, LookupCtx)) {
   1420     R.resolveKind();
   1421     if (isa<CXXRecordDecl>(LookupCtx))
   1422       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
   1423     return true;
   1424   }
   1425 
   1426   // Don't descend into implied contexts for redeclarations.
   1427   // C++98 [namespace.qual]p6:
   1428   //   In a declaration for a namespace member in which the
   1429   //   declarator-id is a qualified-id, given that the qualified-id
   1430   //   for the namespace member has the form
   1431   //     nested-name-specifier unqualified-id
   1432   //   the unqualified-id shall name a member of the namespace
   1433   //   designated by the nested-name-specifier.
   1434   // See also [class.mfct]p5 and [class.static.data]p2.
   1435   if (R.isForRedeclaration())
   1436     return false;
   1437 
   1438   // If this is a namespace, look it up in the implied namespaces.
   1439   if (LookupCtx->isFileContext())
   1440     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
   1441 
   1442   // If this isn't a C++ class, we aren't allowed to look into base
   1443   // classes, we're done.
   1444   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
   1445   if (!LookupRec || !LookupRec->getDefinition())
   1446     return false;
   1447 
   1448   // If we're performing qualified name lookup into a dependent class,
   1449   // then we are actually looking into a current instantiation. If we have any
   1450   // dependent base classes, then we either have to delay lookup until
   1451   // template instantiation time (at which point all bases will be available)
   1452   // or we have to fail.
   1453   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
   1454       LookupRec->hasAnyDependentBases()) {
   1455     R.setNotFoundInCurrentInstantiation();
   1456     return false;
   1457   }
   1458 
   1459   // Perform lookup into our base classes.
   1460   CXXBasePaths Paths;
   1461   Paths.setOrigin(LookupRec);
   1462 
   1463   // Look for this member in our base classes
   1464   CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
   1465   switch (R.getLookupKind()) {
   1466     case LookupObjCImplicitSelfParam:
   1467     case LookupOrdinaryName:
   1468     case LookupMemberName:
   1469     case LookupRedeclarationWithLinkage:
   1470       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
   1471       break;
   1472 
   1473     case LookupTagName:
   1474       BaseCallback = &CXXRecordDecl::FindTagMember;
   1475       break;
   1476 
   1477     case LookupAnyName:
   1478       BaseCallback = &LookupAnyMember;
   1479       break;
   1480 
   1481     case LookupUsingDeclName:
   1482       // This lookup is for redeclarations only.
   1483 
   1484     case LookupOperatorName:
   1485     case LookupNamespaceName:
   1486     case LookupObjCProtocolName:
   1487     case LookupLabel:
   1488       // These lookups will never find a member in a C++ class (or base class).
   1489       return false;
   1490 
   1491     case LookupNestedNameSpecifierName:
   1492       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
   1493       break;
   1494   }
   1495 
   1496   if (!LookupRec->lookupInBases(BaseCallback,
   1497                                 R.getLookupName().getAsOpaquePtr(), Paths))
   1498     return false;
   1499 
   1500   R.setNamingClass(LookupRec);
   1501 
   1502   // C++ [class.member.lookup]p2:
   1503   //   [...] If the resulting set of declarations are not all from
   1504   //   sub-objects of the same type, or the set has a nonstatic member
   1505   //   and includes members from distinct sub-objects, there is an
   1506   //   ambiguity and the program is ill-formed. Otherwise that set is
   1507   //   the result of the lookup.
   1508   QualType SubobjectType;
   1509   int SubobjectNumber = 0;
   1510   AccessSpecifier SubobjectAccess = AS_none;
   1511 
   1512   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
   1513        Path != PathEnd; ++Path) {
   1514     const CXXBasePathElement &PathElement = Path->back();
   1515 
   1516     // Pick the best (i.e. most permissive i.e. numerically lowest) access
   1517     // across all paths.
   1518     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
   1519 
   1520     // Determine whether we're looking at a distinct sub-object or not.
   1521     if (SubobjectType.isNull()) {
   1522       // This is the first subobject we've looked at. Record its type.
   1523       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
   1524       SubobjectNumber = PathElement.SubobjectNumber;
   1525       continue;
   1526     }
   1527 
   1528     if (SubobjectType
   1529                  != Context.getCanonicalType(PathElement.Base->getType())) {
   1530       // We found members of the given name in two subobjects of
   1531       // different types. If the declaration sets aren't the same, this
   1532       // this lookup is ambiguous.
   1533       if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) {
   1534         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
   1535         DeclContext::lookup_iterator FirstD = FirstPath->Decls.first;
   1536         DeclContext::lookup_iterator CurrentD = Path->Decls.first;
   1537 
   1538         while (FirstD != FirstPath->Decls.second &&
   1539                CurrentD != Path->Decls.second) {
   1540          if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
   1541              (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
   1542            break;
   1543 
   1544           ++FirstD;
   1545           ++CurrentD;
   1546         }
   1547 
   1548         if (FirstD == FirstPath->Decls.second &&
   1549             CurrentD == Path->Decls.second)
   1550           continue;
   1551       }
   1552 
   1553       R.setAmbiguousBaseSubobjectTypes(Paths);
   1554       return true;
   1555     }
   1556 
   1557     if (SubobjectNumber != PathElement.SubobjectNumber) {
   1558       // We have a different subobject of the same type.
   1559 
   1560       // C++ [class.member.lookup]p5:
   1561       //   A static member, a nested type or an enumerator defined in
   1562       //   a base class T can unambiguously be found even if an object
   1563       //   has more than one base class subobject of type T.
   1564       if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second))
   1565         continue;
   1566 
   1567       // We have found a nonstatic member name in multiple, distinct
   1568       // subobjects. Name lookup is ambiguous.
   1569       R.setAmbiguousBaseSubobjects(Paths);
   1570       return true;
   1571     }
   1572   }
   1573 
   1574   // Lookup in a base class succeeded; return these results.
   1575 
   1576   DeclContext::lookup_iterator I, E;
   1577   for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
   1578     NamedDecl *D = *I;
   1579     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
   1580                                                     D->getAccess());
   1581     R.addDecl(D, AS);
   1582   }
   1583   R.resolveKind();
   1584   return true;
   1585 }
   1586 
   1587 /// @brief Performs name lookup for a name that was parsed in the
   1588 /// source code, and may contain a C++ scope specifier.
   1589 ///
   1590 /// This routine is a convenience routine meant to be called from
   1591 /// contexts that receive a name and an optional C++ scope specifier
   1592 /// (e.g., "N::M::x"). It will then perform either qualified or
   1593 /// unqualified name lookup (with LookupQualifiedName or LookupName,
   1594 /// respectively) on the given name and return those results.
   1595 ///
   1596 /// @param S        The scope from which unqualified name lookup will
   1597 /// begin.
   1598 ///
   1599 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
   1600 ///
   1601 /// @param EnteringContext Indicates whether we are going to enter the
   1602 /// context of the scope-specifier SS (if present).
   1603 ///
   1604 /// @returns True if any decls were found (but possibly ambiguous)
   1605 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
   1606                             bool AllowBuiltinCreation, bool EnteringContext) {
   1607   if (SS && SS->isInvalid()) {
   1608     // When the scope specifier is invalid, don't even look for
   1609     // anything.
   1610     return false;
   1611   }
   1612 
   1613   if (SS && SS->isSet()) {
   1614     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
   1615       // We have resolved the scope specifier to a particular declaration
   1616       // contex, and will perform name lookup in that context.
   1617       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
   1618         return false;
   1619 
   1620       R.setContextRange(SS->getRange());
   1621       return LookupQualifiedName(R, DC);
   1622     }
   1623 
   1624     // We could not resolve the scope specified to a specific declaration
   1625     // context, which means that SS refers to an unknown specialization.
   1626     // Name lookup can't find anything in this case.
   1627     R.setNotFoundInCurrentInstantiation();
   1628     R.setContextRange(SS->getRange());
   1629     return false;
   1630   }
   1631 
   1632   // Perform unqualified name lookup starting in the given scope.
   1633   return LookupName(R, S, AllowBuiltinCreation);
   1634 }
   1635 
   1636 
   1637 /// \brief Produce a diagnostic describing the ambiguity that resulted
   1638 /// from name lookup.
   1639 ///
   1640 /// \param Result The result of the ambiguous lookup to be diagnosed.
   1641 ///
   1642 /// \returns true
   1643 bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
   1644   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
   1645 
   1646   DeclarationName Name = Result.getLookupName();
   1647   SourceLocation NameLoc = Result.getNameLoc();
   1648   SourceRange LookupRange = Result.getContextRange();
   1649 
   1650   switch (Result.getAmbiguityKind()) {
   1651   case LookupResult::AmbiguousBaseSubobjects: {
   1652     CXXBasePaths *Paths = Result.getBasePaths();
   1653     QualType SubobjectType = Paths->front().back().Base->getType();
   1654     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
   1655       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
   1656       << LookupRange;
   1657 
   1658     DeclContext::lookup_iterator Found = Paths->front().Decls.first;
   1659     while (isa<CXXMethodDecl>(*Found) &&
   1660            cast<CXXMethodDecl>(*Found)->isStatic())
   1661       ++Found;
   1662 
   1663     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
   1664 
   1665     return true;
   1666   }
   1667 
   1668   case LookupResult::AmbiguousBaseSubobjectTypes: {
   1669     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
   1670       << Name << LookupRange;
   1671 
   1672     CXXBasePaths *Paths = Result.getBasePaths();
   1673     std::set<Decl *> DeclsPrinted;
   1674     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
   1675                                       PathEnd = Paths->end();
   1676          Path != PathEnd; ++Path) {
   1677       Decl *D = *Path->Decls.first;
   1678       if (DeclsPrinted.insert(D).second)
   1679         Diag(D->getLocation(), diag::note_ambiguous_member_found);
   1680     }
   1681 
   1682     return true;
   1683   }
   1684 
   1685   case LookupResult::AmbiguousTagHiding: {
   1686     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
   1687 
   1688     llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
   1689 
   1690     LookupResult::iterator DI, DE = Result.end();
   1691     for (DI = Result.begin(); DI != DE; ++DI)
   1692       if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
   1693         TagDecls.insert(TD);
   1694         Diag(TD->getLocation(), diag::note_hidden_tag);
   1695       }
   1696 
   1697     for (DI = Result.begin(); DI != DE; ++DI)
   1698       if (!isa<TagDecl>(*DI))
   1699         Diag((*DI)->getLocation(), diag::note_hiding_object);
   1700 
   1701     // For recovery purposes, go ahead and implement the hiding.
   1702     LookupResult::Filter F = Result.makeFilter();
   1703     while (F.hasNext()) {
   1704       if (TagDecls.count(F.next()))
   1705         F.erase();
   1706     }
   1707     F.done();
   1708 
   1709     return true;
   1710   }
   1711 
   1712   case LookupResult::AmbiguousReference: {
   1713     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
   1714 
   1715     LookupResult::iterator DI = Result.begin(), DE = Result.end();
   1716     for (; DI != DE; ++DI)
   1717       Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
   1718 
   1719     return true;
   1720   }
   1721   }
   1722 
   1723   llvm_unreachable("unknown ambiguity kind");
   1724 }
   1725 
   1726 namespace {
   1727   struct AssociatedLookup {
   1728     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
   1729                      Sema::AssociatedNamespaceSet &Namespaces,
   1730                      Sema::AssociatedClassSet &Classes)
   1731       : S(S), Namespaces(Namespaces), Classes(Classes),
   1732         InstantiationLoc(InstantiationLoc) {
   1733     }
   1734 
   1735     Sema &S;
   1736     Sema::AssociatedNamespaceSet &Namespaces;
   1737     Sema::AssociatedClassSet &Classes;
   1738     SourceLocation InstantiationLoc;
   1739   };
   1740 }
   1741 
   1742 static void
   1743 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
   1744 
   1745 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
   1746                                       DeclContext *Ctx) {
   1747   // Add the associated namespace for this class.
   1748 
   1749   // We don't use DeclContext::getEnclosingNamespaceContext() as this may
   1750   // be a locally scoped record.
   1751 
   1752   // We skip out of inline namespaces. The innermost non-inline namespace
   1753   // contains all names of all its nested inline namespaces anyway, so we can
   1754   // replace the entire inline namespace tree with its root.
   1755   while (Ctx->isRecord() || Ctx->isTransparentContext() ||
   1756          Ctx->isInlineNamespace())
   1757     Ctx = Ctx->getParent();
   1758 
   1759   if (Ctx->isFileContext())
   1760     Namespaces.insert(Ctx->getPrimaryContext());
   1761 }
   1762 
   1763 // \brief Add the associated classes and namespaces for argument-dependent
   1764 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
   1765 static void
   1766 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
   1767                                   const TemplateArgument &Arg) {
   1768   // C++ [basic.lookup.koenig]p2, last bullet:
   1769   //   -- [...] ;
   1770   switch (Arg.getKind()) {
   1771     case TemplateArgument::Null:
   1772       break;
   1773 
   1774     case TemplateArgument::Type:
   1775       // [...] the namespaces and classes associated with the types of the
   1776       // template arguments provided for template type parameters (excluding
   1777       // template template parameters)
   1778       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
   1779       break;
   1780 
   1781     case TemplateArgument::Template:
   1782     case TemplateArgument::TemplateExpansion: {
   1783       // [...] the namespaces in which any template template arguments are
   1784       // defined; and the classes in which any member templates used as
   1785       // template template arguments are defined.
   1786       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
   1787       if (ClassTemplateDecl *ClassTemplate
   1788                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
   1789         DeclContext *Ctx = ClassTemplate->getDeclContext();
   1790         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   1791           Result.Classes.insert(EnclosingClass);
   1792         // Add the associated namespace for this class.
   1793         CollectEnclosingNamespace(Result.Namespaces, Ctx);
   1794       }
   1795       break;
   1796     }
   1797 
   1798     case TemplateArgument::Declaration:
   1799     case TemplateArgument::Integral:
   1800     case TemplateArgument::Expression:
   1801       // [Note: non-type template arguments do not contribute to the set of
   1802       //  associated namespaces. ]
   1803       break;
   1804 
   1805     case TemplateArgument::Pack:
   1806       for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
   1807                                         PEnd = Arg.pack_end();
   1808            P != PEnd; ++P)
   1809         addAssociatedClassesAndNamespaces(Result, *P);
   1810       break;
   1811   }
   1812 }
   1813 
   1814 // \brief Add the associated classes and namespaces for
   1815 // argument-dependent lookup with an argument of class type
   1816 // (C++ [basic.lookup.koenig]p2).
   1817 static void
   1818 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
   1819                                   CXXRecordDecl *Class) {
   1820 
   1821   // Just silently ignore anything whose name is __va_list_tag.
   1822   if (Class->getDeclName() == Result.S.VAListTagName)
   1823     return;
   1824 
   1825   // C++ [basic.lookup.koenig]p2:
   1826   //   [...]
   1827   //     -- If T is a class type (including unions), its associated
   1828   //        classes are: the class itself; the class of which it is a
   1829   //        member, if any; and its direct and indirect base
   1830   //        classes. Its associated namespaces are the namespaces in
   1831   //        which its associated classes are defined.
   1832 
   1833   // Add the class of which it is a member, if any.
   1834   DeclContext *Ctx = Class->getDeclContext();
   1835   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   1836     Result.Classes.insert(EnclosingClass);
   1837   // Add the associated namespace for this class.
   1838   CollectEnclosingNamespace(Result.Namespaces, Ctx);
   1839 
   1840   // Add the class itself. If we've already seen this class, we don't
   1841   // need to visit base classes.
   1842   if (!Result.Classes.insert(Class))
   1843     return;
   1844 
   1845   // -- If T is a template-id, its associated namespaces and classes are
   1846   //    the namespace in which the template is defined; for member
   1847   //    templates, the member template's class; the namespaces and classes
   1848   //    associated with the types of the template arguments provided for
   1849   //    template type parameters (excluding template template parameters); the
   1850   //    namespaces in which any template template arguments are defined; and
   1851   //    the classes in which any member templates used as template template
   1852   //    arguments are defined. [Note: non-type template arguments do not
   1853   //    contribute to the set of associated namespaces. ]
   1854   if (ClassTemplateSpecializationDecl *Spec
   1855         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
   1856     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
   1857     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   1858       Result.Classes.insert(EnclosingClass);
   1859     // Add the associated namespace for this class.
   1860     CollectEnclosingNamespace(Result.Namespaces, Ctx);
   1861 
   1862     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
   1863     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   1864       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
   1865   }
   1866 
   1867   // Only recurse into base classes for complete types.
   1868   if (!Class->hasDefinition()) {
   1869     QualType type = Result.S.Context.getTypeDeclType(Class);
   1870     if (Result.S.RequireCompleteType(Result.InstantiationLoc, type,
   1871                                      /*no diagnostic*/ 0))
   1872       return;
   1873   }
   1874 
   1875   // Add direct and indirect base classes along with their associated
   1876   // namespaces.
   1877   SmallVector<CXXRecordDecl *, 32> Bases;
   1878   Bases.push_back(Class);
   1879   while (!Bases.empty()) {
   1880     // Pop this class off the stack.
   1881     Class = Bases.back();
   1882     Bases.pop_back();
   1883 
   1884     // Visit the base classes.
   1885     for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
   1886                                          BaseEnd = Class->bases_end();
   1887          Base != BaseEnd; ++Base) {
   1888       const RecordType *BaseType = Base->getType()->getAs<RecordType>();
   1889       // In dependent contexts, we do ADL twice, and the first time around,
   1890       // the base type might be a dependent TemplateSpecializationType, or a
   1891       // TemplateTypeParmType. If that happens, simply ignore it.
   1892       // FIXME: If we want to support export, we probably need to add the
   1893       // namespace of the template in a TemplateSpecializationType, or even
   1894       // the classes and namespaces of known non-dependent arguments.
   1895       if (!BaseType)
   1896         continue;
   1897       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   1898       if (Result.Classes.insert(BaseDecl)) {
   1899         // Find the associated namespace for this base class.
   1900         DeclContext *BaseCtx = BaseDecl->getDeclContext();
   1901         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
   1902 
   1903         // Make sure we visit the bases of this base class.
   1904         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
   1905           Bases.push_back(BaseDecl);
   1906       }
   1907     }
   1908   }
   1909 }
   1910 
   1911 // \brief Add the associated classes and namespaces for
   1912 // argument-dependent lookup with an argument of type T
   1913 // (C++ [basic.lookup.koenig]p2).
   1914 static void
   1915 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
   1916   // C++ [basic.lookup.koenig]p2:
   1917   //
   1918   //   For each argument type T in the function call, there is a set
   1919   //   of zero or more associated namespaces and a set of zero or more
   1920   //   associated classes to be considered. The sets of namespaces and
   1921   //   classes is determined entirely by the types of the function
   1922   //   arguments (and the namespace of any template template
   1923   //   argument). Typedef names and using-declarations used to specify
   1924   //   the types do not contribute to this set. The sets of namespaces
   1925   //   and classes are determined in the following way:
   1926 
   1927   SmallVector<const Type *, 16> Queue;
   1928   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
   1929 
   1930   while (true) {
   1931     switch (T->getTypeClass()) {
   1932 
   1933 #define TYPE(Class, Base)
   1934 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   1935 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   1936 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
   1937 #define ABSTRACT_TYPE(Class, Base)
   1938 #include "clang/AST/TypeNodes.def"
   1939       // T is canonical.  We can also ignore dependent types because
   1940       // we don't need to do ADL at the definition point, but if we
   1941       // wanted to implement template export (or if we find some other
   1942       // use for associated classes and namespaces...) this would be
   1943       // wrong.
   1944       break;
   1945 
   1946     //    -- If T is a pointer to U or an array of U, its associated
   1947     //       namespaces and classes are those associated with U.
   1948     case Type::Pointer:
   1949       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
   1950       continue;
   1951     case Type::ConstantArray:
   1952     case Type::IncompleteArray:
   1953     case Type::VariableArray:
   1954       T = cast<ArrayType>(T)->getElementType().getTypePtr();
   1955       continue;
   1956 
   1957     //     -- If T is a fundamental type, its associated sets of
   1958     //        namespaces and classes are both empty.
   1959     case Type::Builtin:
   1960       break;
   1961 
   1962     //     -- If T is a class type (including unions), its associated
   1963     //        classes are: the class itself; the class of which it is a
   1964     //        member, if any; and its direct and indirect base
   1965     //        classes. Its associated namespaces are the namespaces in
   1966     //        which its associated classes are defined.
   1967     case Type::Record: {
   1968       CXXRecordDecl *Class
   1969         = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
   1970       addAssociatedClassesAndNamespaces(Result, Class);
   1971       break;
   1972     }
   1973 
   1974     //     -- If T is an enumeration type, its associated namespace is
   1975     //        the namespace in which it is defined. If it is class
   1976     //        member, its associated class is the member's class; else
   1977     //        it has no associated class.
   1978     case Type::Enum: {
   1979       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
   1980 
   1981       DeclContext *Ctx = Enum->getDeclContext();
   1982       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   1983         Result.Classes.insert(EnclosingClass);
   1984 
   1985       // Add the associated namespace for this class.
   1986       CollectEnclosingNamespace(Result.Namespaces, Ctx);
   1987 
   1988       break;
   1989     }
   1990 
   1991     //     -- If T is a function type, its associated namespaces and
   1992     //        classes are those associated with the function parameter
   1993     //        types and those associated with the return type.
   1994     case Type::FunctionProto: {
   1995       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   1996       for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
   1997                                              ArgEnd = Proto->arg_type_end();
   1998              Arg != ArgEnd; ++Arg)
   1999         Queue.push_back(Arg->getTypePtr());
   2000       // fallthrough
   2001     }
   2002     case Type::FunctionNoProto: {
   2003       const FunctionType *FnType = cast<FunctionType>(T);
   2004       T = FnType->getResultType().getTypePtr();
   2005       continue;
   2006     }
   2007 
   2008     //     -- If T is a pointer to a member function of a class X, its
   2009     //        associated namespaces and classes are those associated
   2010     //        with the function parameter types and return type,
   2011     //        together with those associated with X.
   2012     //
   2013     //     -- If T is a pointer to a data member of class X, its
   2014     //        associated namespaces and classes are those associated
   2015     //        with the member type together with those associated with
   2016     //        X.
   2017     case Type::MemberPointer: {
   2018       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
   2019 
   2020       // Queue up the class type into which this points.
   2021       Queue.push_back(MemberPtr->getClass());
   2022 
   2023       // And directly continue with the pointee type.
   2024       T = MemberPtr->getPointeeType().getTypePtr();
   2025       continue;
   2026     }
   2027 
   2028     // As an extension, treat this like a normal pointer.
   2029     case Type::BlockPointer:
   2030       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
   2031       continue;
   2032 
   2033     // References aren't covered by the standard, but that's such an
   2034     // obvious defect that we cover them anyway.
   2035     case Type::LValueReference:
   2036     case Type::RValueReference:
   2037       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
   2038       continue;
   2039 
   2040     // These are fundamental types.
   2041     case Type::Vector:
   2042     case Type::ExtVector:
   2043     case Type::Complex:
   2044       break;
   2045 
   2046     // If T is an Objective-C object or interface type, or a pointer to an
   2047     // object or interface type, the associated namespace is the global
   2048     // namespace.
   2049     case Type::ObjCObject:
   2050     case Type::ObjCInterface:
   2051     case Type::ObjCObjectPointer:
   2052       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
   2053       break;
   2054 
   2055     // Atomic types are just wrappers; use the associations of the
   2056     // contained type.
   2057     case Type::Atomic:
   2058       T = cast<AtomicType>(T)->getValueType().getTypePtr();
   2059       continue;
   2060     }
   2061 
   2062     if (Queue.empty()) break;
   2063     T = Queue.back();
   2064     Queue.pop_back();
   2065   }
   2066 }
   2067 
   2068 /// \brief Find the associated classes and namespaces for
   2069 /// argument-dependent lookup for a call with the given set of
   2070 /// arguments.
   2071 ///
   2072 /// This routine computes the sets of associated classes and associated
   2073 /// namespaces searched by argument-dependent lookup
   2074 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
   2075 void
   2076 Sema::FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
   2077                                          llvm::ArrayRef<Expr *> Args,
   2078                                  AssociatedNamespaceSet &AssociatedNamespaces,
   2079                                  AssociatedClassSet &AssociatedClasses) {
   2080   AssociatedNamespaces.clear();
   2081   AssociatedClasses.clear();
   2082 
   2083   AssociatedLookup Result(*this, InstantiationLoc,
   2084                           AssociatedNamespaces, AssociatedClasses);
   2085 
   2086   // C++ [basic.lookup.koenig]p2:
   2087   //   For each argument type T in the function call, there is a set
   2088   //   of zero or more associated namespaces and a set of zero or more
   2089   //   associated classes to be considered. The sets of namespaces and
   2090   //   classes is determined entirely by the types of the function
   2091   //   arguments (and the namespace of any template template
   2092   //   argument).
   2093   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   2094     Expr *Arg = Args[ArgIdx];
   2095 
   2096     if (Arg->getType() != Context.OverloadTy) {
   2097       addAssociatedClassesAndNamespaces(Result, Arg->getType());
   2098       continue;
   2099     }
   2100 
   2101     // [...] In addition, if the argument is the name or address of a
   2102     // set of overloaded functions and/or function templates, its
   2103     // associated classes and namespaces are the union of those
   2104     // associated with each of the members of the set: the namespace
   2105     // in which the function or function template is defined and the
   2106     // classes and namespaces associated with its (non-dependent)
   2107     // parameter types and return type.
   2108     Arg = Arg->IgnoreParens();
   2109     if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
   2110       if (unaryOp->getOpcode() == UO_AddrOf)
   2111         Arg = unaryOp->getSubExpr();
   2112 
   2113     UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
   2114     if (!ULE) continue;
   2115 
   2116     for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
   2117            I != E; ++I) {
   2118       // Look through any using declarations to find the underlying function.
   2119       NamedDecl *Fn = (*I)->getUnderlyingDecl();
   2120 
   2121       FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
   2122       if (!FDecl)
   2123         FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
   2124 
   2125       // Add the classes and namespaces associated with the parameter
   2126       // types and return type of this function.
   2127       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
   2128     }
   2129   }
   2130 }
   2131 
   2132 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
   2133 /// an acceptable non-member overloaded operator for a call whose
   2134 /// arguments have types T1 (and, if non-empty, T2). This routine
   2135 /// implements the check in C++ [over.match.oper]p3b2 concerning
   2136 /// enumeration types.
   2137 static bool
   2138 IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
   2139                                        QualType T1, QualType T2,
   2140                                        ASTContext &Context) {
   2141   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
   2142     return true;
   2143 
   2144   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
   2145     return true;
   2146 
   2147   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
   2148   if (Proto->getNumArgs() < 1)
   2149     return false;
   2150 
   2151   if (T1->isEnumeralType()) {
   2152     QualType ArgType = Proto->getArgType(0).getNonReferenceType();
   2153     if (Context.hasSameUnqualifiedType(T1, ArgType))
   2154       return true;
   2155   }
   2156 
   2157   if (Proto->getNumArgs() < 2)
   2158     return false;
   2159 
   2160   if (!T2.isNull() && T2->isEnumeralType()) {
   2161     QualType ArgType = Proto->getArgType(1).getNonReferenceType();
   2162     if (Context.hasSameUnqualifiedType(T2, ArgType))
   2163       return true;
   2164   }
   2165 
   2166   return false;
   2167 }
   2168 
   2169 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
   2170                                   SourceLocation Loc,
   2171                                   LookupNameKind NameKind,
   2172                                   RedeclarationKind Redecl) {
   2173   LookupResult R(*this, Name, Loc, NameKind, Redecl);
   2174   LookupName(R, S);
   2175   return R.getAsSingle<NamedDecl>();
   2176 }
   2177 
   2178 /// \brief Find the protocol with the given name, if any.
   2179 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
   2180                                        SourceLocation IdLoc,
   2181                                        RedeclarationKind Redecl) {
   2182   Decl *D = LookupSingleName(TUScope, II, IdLoc,
   2183                              LookupObjCProtocolName, Redecl);
   2184   return cast_or_null<ObjCProtocolDecl>(D);
   2185 }
   2186 
   2187 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
   2188                                         QualType T1, QualType T2,
   2189                                         UnresolvedSetImpl &Functions) {
   2190   // C++ [over.match.oper]p3:
   2191   //     -- The set of non-member candidates is the result of the
   2192   //        unqualified lookup of operator@ in the context of the
   2193   //        expression according to the usual rules for name lookup in
   2194   //        unqualified function calls (3.4.2) except that all member
   2195   //        functions are ignored. However, if no operand has a class
   2196   //        type, only those non-member functions in the lookup set
   2197   //        that have a first parameter of type T1 or "reference to
   2198   //        (possibly cv-qualified) T1", when T1 is an enumeration
   2199   //        type, or (if there is a right operand) a second parameter
   2200   //        of type T2 or "reference to (possibly cv-qualified) T2",
   2201   //        when T2 is an enumeration type, are candidate functions.
   2202   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   2203   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
   2204   LookupName(Operators, S);
   2205 
   2206   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
   2207 
   2208   if (Operators.empty())
   2209     return;
   2210 
   2211   for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
   2212        Op != OpEnd; ++Op) {
   2213     NamedDecl *Found = (*Op)->getUnderlyingDecl();
   2214     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
   2215       if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
   2216         Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
   2217     } else if (FunctionTemplateDecl *FunTmpl
   2218                  = dyn_cast<FunctionTemplateDecl>(Found)) {
   2219       // FIXME: friend operators?
   2220       // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
   2221       // later?
   2222       if (!FunTmpl->getDeclContext()->isRecord())
   2223         Functions.addDecl(*Op, Op.getAccess());
   2224     }
   2225   }
   2226 }
   2227 
   2228 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
   2229                                                             CXXSpecialMember SM,
   2230                                                             bool ConstArg,
   2231                                                             bool VolatileArg,
   2232                                                             bool RValueThis,
   2233                                                             bool ConstThis,
   2234                                                             bool VolatileThis) {
   2235   RD = RD->getDefinition();
   2236   assert((RD && !RD->isBeingDefined()) &&
   2237          "doing special member lookup into record that isn't fully complete");
   2238   if (RValueThis || ConstThis || VolatileThis)
   2239     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
   2240            "constructors and destructors always have unqualified lvalue this");
   2241   if (ConstArg || VolatileArg)
   2242     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
   2243            "parameter-less special members can't have qualified arguments");
   2244 
   2245   llvm::FoldingSetNodeID ID;
   2246   ID.AddPointer(RD);
   2247   ID.AddInteger(SM);
   2248   ID.AddInteger(ConstArg);
   2249   ID.AddInteger(VolatileArg);
   2250   ID.AddInteger(RValueThis);
   2251   ID.AddInteger(ConstThis);
   2252   ID.AddInteger(VolatileThis);
   2253 
   2254   void *InsertPoint;
   2255   SpecialMemberOverloadResult *Result =
   2256     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
   2257 
   2258   // This was already cached
   2259   if (Result)
   2260     return Result;
   2261 
   2262   Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
   2263   Result = new (Result) SpecialMemberOverloadResult(ID);
   2264   SpecialMemberCache.InsertNode(Result, InsertPoint);
   2265 
   2266   if (SM == CXXDestructor) {
   2267     if (!RD->hasDeclaredDestructor())
   2268       DeclareImplicitDestructor(RD);
   2269     CXXDestructorDecl *DD = RD->getDestructor();
   2270     assert(DD && "record without a destructor");
   2271     Result->setMethod(DD);
   2272     Result->setKind(DD->isDeleted() ?
   2273                     SpecialMemberOverloadResult::NoMemberOrDeleted :
   2274                     SpecialMemberOverloadResult::Success);
   2275     return Result;
   2276   }
   2277 
   2278   // Prepare for overload resolution. Here we construct a synthetic argument
   2279   // if necessary and make sure that implicit functions are declared.
   2280   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
   2281   DeclarationName Name;
   2282   Expr *Arg = 0;
   2283   unsigned NumArgs;
   2284 
   2285   QualType ArgType = CanTy;
   2286   ExprValueKind VK = VK_LValue;
   2287 
   2288   if (SM == CXXDefaultConstructor) {
   2289     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
   2290     NumArgs = 0;
   2291     if (RD->needsImplicitDefaultConstructor())
   2292       DeclareImplicitDefaultConstructor(RD);
   2293   } else {
   2294     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
   2295       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
   2296       if (!RD->hasDeclaredCopyConstructor())
   2297         DeclareImplicitCopyConstructor(RD);
   2298       if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveConstructor())
   2299         DeclareImplicitMoveConstructor(RD);
   2300     } else {
   2301       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
   2302       if (!RD->hasDeclaredCopyAssignment())
   2303         DeclareImplicitCopyAssignment(RD);
   2304       if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveAssignment())
   2305         DeclareImplicitMoveAssignment(RD);
   2306     }
   2307 
   2308     if (ConstArg)
   2309       ArgType.addConst();
   2310     if (VolatileArg)
   2311       ArgType.addVolatile();
   2312 
   2313     // This isn't /really/ specified by the standard, but it's implied
   2314     // we should be working from an RValue in the case of move to ensure
   2315     // that we prefer to bind to rvalue references, and an LValue in the
   2316     // case of copy to ensure we don't bind to rvalue references.
   2317     // Possibly an XValue is actually correct in the case of move, but
   2318     // there is no semantic difference for class types in this restricted
   2319     // case.
   2320     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
   2321       VK = VK_LValue;
   2322     else
   2323       VK = VK_RValue;
   2324   }
   2325 
   2326   OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
   2327 
   2328   if (SM != CXXDefaultConstructor) {
   2329     NumArgs = 1;
   2330     Arg = &FakeArg;
   2331   }
   2332 
   2333   // Create the object argument
   2334   QualType ThisTy = CanTy;
   2335   if (ConstThis)
   2336     ThisTy.addConst();
   2337   if (VolatileThis)
   2338     ThisTy.addVolatile();
   2339   Expr::Classification Classification =
   2340     OpaqueValueExpr(SourceLocation(), ThisTy,
   2341                     RValueThis ? VK_RValue : VK_LValue).Classify(Context);
   2342 
   2343   // Now we perform lookup on the name we computed earlier and do overload
   2344   // resolution. Lookup is only performed directly into the class since there
   2345   // will always be a (possibly implicit) declaration to shadow any others.
   2346   OverloadCandidateSet OCS((SourceLocation()));
   2347   DeclContext::lookup_iterator I, E;
   2348 
   2349   llvm::tie(I, E) = RD->lookup(Name);
   2350   assert((I != E) &&
   2351          "lookup for a constructor or assignment operator was empty");
   2352   for ( ; I != E; ++I) {
   2353     Decl *Cand = *I;
   2354 
   2355     if (Cand->isInvalidDecl())
   2356       continue;
   2357 
   2358     if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
   2359       // FIXME: [namespace.udecl]p15 says that we should only consider a
   2360       // using declaration here if it does not match a declaration in the
   2361       // derived class. We do not implement this correctly in other cases
   2362       // either.
   2363       Cand = U->getTargetDecl();
   2364 
   2365       if (Cand->isInvalidDecl())
   2366         continue;
   2367     }
   2368 
   2369     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
   2370       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
   2371         AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
   2372                            Classification, llvm::makeArrayRef(&Arg, NumArgs),
   2373                            OCS, true);
   2374       else
   2375         AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
   2376                              llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
   2377     } else if (FunctionTemplateDecl *Tmpl =
   2378                  dyn_cast<FunctionTemplateDecl>(Cand)) {
   2379       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
   2380         AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
   2381                                    RD, 0, ThisTy, Classification,
   2382                                    llvm::makeArrayRef(&Arg, NumArgs),
   2383                                    OCS, true);
   2384       else
   2385         AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
   2386                                      0, llvm::makeArrayRef(&Arg, NumArgs),
   2387                                      OCS, true);
   2388     } else {
   2389       assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
   2390     }
   2391   }
   2392 
   2393   OverloadCandidateSet::iterator Best;
   2394   switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
   2395     case OR_Success:
   2396       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
   2397       Result->setKind(SpecialMemberOverloadResult::Success);
   2398       break;
   2399 
   2400     case OR_Deleted:
   2401       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
   2402       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
   2403       break;
   2404 
   2405     case OR_Ambiguous:
   2406       Result->setMethod(0);
   2407       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
   2408       break;
   2409 
   2410     case OR_No_Viable_Function:
   2411       Result->setMethod(0);
   2412       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
   2413       break;
   2414   }
   2415 
   2416   return Result;
   2417 }
   2418 
   2419 /// \brief Look up the default constructor for the given class.
   2420 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
   2421   SpecialMemberOverloadResult *Result =
   2422     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
   2423                         false, false);
   2424 
   2425   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   2426 }
   2427 
   2428 /// \brief Look up the copying constructor for the given class.
   2429 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
   2430                                                    unsigned Quals) {
   2431   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2432          "non-const, non-volatile qualifiers for copy ctor arg");
   2433   SpecialMemberOverloadResult *Result =
   2434     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
   2435                         Quals & Qualifiers::Volatile, false, false, false);
   2436 
   2437   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   2438 }
   2439 
   2440 /// \brief Look up the moving constructor for the given class.
   2441 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
   2442                                                   unsigned Quals) {
   2443   SpecialMemberOverloadResult *Result =
   2444     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
   2445                         Quals & Qualifiers::Volatile, false, false, false);
   2446 
   2447   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   2448 }
   2449 
   2450 /// \brief Look up the constructors for the given class.
   2451 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
   2452   // If the implicit constructors have not yet been declared, do so now.
   2453   if (CanDeclareSpecialMemberFunction(Context, Class)) {
   2454     if (Class->needsImplicitDefaultConstructor())
   2455       DeclareImplicitDefaultConstructor(Class);
   2456     if (!Class->hasDeclaredCopyConstructor())
   2457       DeclareImplicitCopyConstructor(Class);
   2458     if (getLangOpts().CPlusPlus0x && Class->needsImplicitMoveConstructor())
   2459       DeclareImplicitMoveConstructor(Class);
   2460   }
   2461 
   2462   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
   2463   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
   2464   return Class->lookup(Name);
   2465 }
   2466 
   2467 /// \brief Look up the copying assignment operator for the given class.
   2468 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
   2469                                              unsigned Quals, bool RValueThis,
   2470                                              unsigned ThisQuals) {
   2471   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2472          "non-const, non-volatile qualifiers for copy assignment arg");
   2473   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2474          "non-const, non-volatile qualifiers for copy assignment this");
   2475   SpecialMemberOverloadResult *Result =
   2476     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
   2477                         Quals & Qualifiers::Volatile, RValueThis,
   2478                         ThisQuals & Qualifiers::Const,
   2479                         ThisQuals & Qualifiers::Volatile);
   2480 
   2481   return Result->getMethod();
   2482 }
   2483 
   2484 /// \brief Look up the moving assignment operator for the given class.
   2485 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
   2486                                             unsigned Quals,
   2487                                             bool RValueThis,
   2488                                             unsigned ThisQuals) {
   2489   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2490          "non-const, non-volatile qualifiers for copy assignment this");
   2491   SpecialMemberOverloadResult *Result =
   2492     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
   2493                         Quals & Qualifiers::Volatile, RValueThis,
   2494                         ThisQuals & Qualifiers::Const,
   2495                         ThisQuals & Qualifiers::Volatile);
   2496 
   2497   return Result->getMethod();
   2498 }
   2499 
   2500 /// \brief Look for the destructor of the given class.
   2501 ///
   2502 /// During semantic analysis, this routine should be used in lieu of
   2503 /// CXXRecordDecl::getDestructor().
   2504 ///
   2505 /// \returns The destructor for this class.
   2506 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
   2507   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
   2508                                                      false, false, false,
   2509                                                      false, false)->getMethod());
   2510 }
   2511 
   2512 /// LookupLiteralOperator - Determine which literal operator should be used for
   2513 /// a user-defined literal, per C++11 [lex.ext].
   2514 ///
   2515 /// Normal overload resolution is not used to select which literal operator to
   2516 /// call for a user-defined literal. Look up the provided literal operator name,
   2517 /// and filter the results to the appropriate set for the given argument types.
   2518 Sema::LiteralOperatorLookupResult
   2519 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
   2520                             ArrayRef<QualType> ArgTys,
   2521                             bool AllowRawAndTemplate) {
   2522   LookupName(R, S);
   2523   assert(R.getResultKind() != LookupResult::Ambiguous &&
   2524          "literal operator lookup can't be ambiguous");
   2525 
   2526   // Filter the lookup results appropriately.
   2527   LookupResult::Filter F = R.makeFilter();
   2528 
   2529   bool FoundTemplate = false;
   2530   bool FoundRaw = false;
   2531   bool FoundExactMatch = false;
   2532 
   2533   while (F.hasNext()) {
   2534     Decl *D = F.next();
   2535     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
   2536       D = USD->getTargetDecl();
   2537 
   2538     bool IsTemplate = isa<FunctionTemplateDecl>(D);
   2539     bool IsRaw = false;
   2540     bool IsExactMatch = false;
   2541 
   2542     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   2543       if (FD->getNumParams() == 1 &&
   2544           FD->getParamDecl(0)->getType()->getAs<PointerType>())
   2545         IsRaw = true;
   2546       else {
   2547         IsExactMatch = true;
   2548         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
   2549           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
   2550           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
   2551             IsExactMatch = false;
   2552             break;
   2553           }
   2554         }
   2555       }
   2556     }
   2557 
   2558     if (IsExactMatch) {
   2559       FoundExactMatch = true;
   2560       AllowRawAndTemplate = false;
   2561       if (FoundRaw || FoundTemplate) {
   2562         // Go through again and remove the raw and template decls we've
   2563         // already found.
   2564         F.restart();
   2565         FoundRaw = FoundTemplate = false;
   2566       }
   2567     } else if (AllowRawAndTemplate && (IsTemplate || IsRaw)) {
   2568       FoundTemplate |= IsTemplate;
   2569       FoundRaw |= IsRaw;
   2570     } else {
   2571       F.erase();
   2572     }
   2573   }
   2574 
   2575   F.done();
   2576 
   2577   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
   2578   // parameter type, that is used in preference to a raw literal operator
   2579   // or literal operator template.
   2580   if (FoundExactMatch)
   2581     return LOLR_Cooked;
   2582 
   2583   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
   2584   // operator template, but not both.
   2585   if (FoundRaw && FoundTemplate) {
   2586     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
   2587     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
   2588       Decl *D = *I;
   2589       if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
   2590         D = USD->getTargetDecl();
   2591       if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
   2592         D = FunTmpl->getTemplatedDecl();
   2593       NoteOverloadCandidate(cast<FunctionDecl>(D));
   2594     }
   2595     return LOLR_Error;
   2596   }
   2597 
   2598   if (FoundRaw)
   2599     return LOLR_Raw;
   2600 
   2601   if (FoundTemplate)
   2602     return LOLR_Template;
   2603 
   2604   // Didn't find anything we could use.
   2605   Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
   2606     << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
   2607     << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRawAndTemplate;
   2608   return LOLR_Error;
   2609 }
   2610 
   2611 void ADLResult::insert(NamedDecl *New) {
   2612   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
   2613 
   2614   // If we haven't yet seen a decl for this key, or the last decl
   2615   // was exactly this one, we're done.
   2616   if (Old == 0 || Old == New) {
   2617     Old = New;
   2618     return;
   2619   }
   2620 
   2621   // Otherwise, decide which is a more recent redeclaration.
   2622   FunctionDecl *OldFD, *NewFD;
   2623   if (isa<FunctionTemplateDecl>(New)) {
   2624     OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
   2625     NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
   2626   } else {
   2627     OldFD = cast<FunctionDecl>(Old);
   2628     NewFD = cast<FunctionDecl>(New);
   2629   }
   2630 
   2631   FunctionDecl *Cursor = NewFD;
   2632   while (true) {
   2633     Cursor = Cursor->getPreviousDecl();
   2634 
   2635     // If we got to the end without finding OldFD, OldFD is the newer
   2636     // declaration;  leave things as they are.
   2637     if (!Cursor) return;
   2638 
   2639     // If we do find OldFD, then NewFD is newer.
   2640     if (Cursor == OldFD) break;
   2641 
   2642     // Otherwise, keep looking.
   2643   }
   2644 
   2645   Old = New;
   2646 }
   2647 
   2648 void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
   2649                                    SourceLocation Loc,
   2650                                    llvm::ArrayRef<Expr *> Args,
   2651                                    ADLResult &Result,
   2652                                    bool StdNamespaceIsAssociated) {
   2653   // Find all of the associated namespaces and classes based on the
   2654   // arguments we have.
   2655   AssociatedNamespaceSet AssociatedNamespaces;
   2656   AssociatedClassSet AssociatedClasses;
   2657   FindAssociatedClassesAndNamespaces(Loc, Args,
   2658                                      AssociatedNamespaces,
   2659                                      AssociatedClasses);
   2660   if (StdNamespaceIsAssociated && StdNamespace)
   2661     AssociatedNamespaces.insert(getStdNamespace());
   2662 
   2663   QualType T1, T2;
   2664   if (Operator) {
   2665     T1 = Args[0]->getType();
   2666     if (Args.size() >= 2)
   2667       T2 = Args[1]->getType();
   2668   }
   2669 
   2670   // C++ [basic.lookup.argdep]p3:
   2671   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
   2672   //   and let Y be the lookup set produced by argument dependent
   2673   //   lookup (defined as follows). If X contains [...] then Y is
   2674   //   empty. Otherwise Y is the set of declarations found in the
   2675   //   namespaces associated with the argument types as described
   2676   //   below. The set of declarations found by the lookup of the name
   2677   //   is the union of X and Y.
   2678   //
   2679   // Here, we compute Y and add its members to the overloaded
   2680   // candidate set.
   2681   for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
   2682                                      NSEnd = AssociatedNamespaces.end();
   2683        NS != NSEnd; ++NS) {
   2684     //   When considering an associated namespace, the lookup is the
   2685     //   same as the lookup performed when the associated namespace is
   2686     //   used as a qualifier (3.4.3.2) except that:
   2687     //
   2688     //     -- Any using-directives in the associated namespace are
   2689     //        ignored.
   2690     //
   2691     //     -- Any namespace-scope friend functions declared in
   2692     //        associated classes are visible within their respective
   2693     //        namespaces even if they are not visible during an ordinary
   2694     //        lookup (11.4).
   2695     DeclContext::lookup_iterator I, E;
   2696     for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
   2697       NamedDecl *D = *I;
   2698       // If the only declaration here is an ordinary friend, consider
   2699       // it only if it was declared in an associated classes.
   2700       if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
   2701         DeclContext *LexDC = D->getLexicalDeclContext();
   2702         if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
   2703           continue;
   2704       }
   2705 
   2706       if (isa<UsingShadowDecl>(D))
   2707         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2708 
   2709       if (isa<FunctionDecl>(D)) {
   2710         if (Operator &&
   2711             !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
   2712                                                     T1, T2, Context))
   2713           continue;
   2714       } else if (!isa<FunctionTemplateDecl>(D))
   2715         continue;
   2716 
   2717       Result.insert(D);
   2718     }
   2719   }
   2720 }
   2721 
   2722 //----------------------------------------------------------------------------
   2723 // Search for all visible declarations.
   2724 //----------------------------------------------------------------------------
   2725 VisibleDeclConsumer::~VisibleDeclConsumer() { }
   2726 
   2727 namespace {
   2728 
   2729 class ShadowContextRAII;
   2730 
   2731 class VisibleDeclsRecord {
   2732 public:
   2733   /// \brief An entry in the shadow map, which is optimized to store a
   2734   /// single declaration (the common case) but can also store a list
   2735   /// of declarations.
   2736   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
   2737 
   2738 private:
   2739   /// \brief A mapping from declaration names to the declarations that have
   2740   /// this name within a particular scope.
   2741   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
   2742 
   2743   /// \brief A list of shadow maps, which is used to model name hiding.
   2744   std::list<ShadowMap> ShadowMaps;
   2745 
   2746   /// \brief The declaration contexts we have already visited.
   2747   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
   2748 
   2749   friend class ShadowContextRAII;
   2750 
   2751 public:
   2752   /// \brief Determine whether we have already visited this context
   2753   /// (and, if not, note that we are going to visit that context now).
   2754   bool visitedContext(DeclContext *Ctx) {
   2755     return !VisitedContexts.insert(Ctx);
   2756   }
   2757 
   2758   bool alreadyVisitedContext(DeclContext *Ctx) {
   2759     return VisitedContexts.count(Ctx);
   2760   }
   2761 
   2762   /// \brief Determine whether the given declaration is hidden in the
   2763   /// current scope.
   2764   ///
   2765   /// \returns the declaration that hides the given declaration, or
   2766   /// NULL if no such declaration exists.
   2767   NamedDecl *checkHidden(NamedDecl *ND);
   2768 
   2769   /// \brief Add a declaration to the current shadow map.
   2770   void add(NamedDecl *ND) {
   2771     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
   2772   }
   2773 };
   2774 
   2775 /// \brief RAII object that records when we've entered a shadow context.
   2776 class ShadowContextRAII {
   2777   VisibleDeclsRecord &Visible;
   2778 
   2779   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
   2780 
   2781 public:
   2782   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
   2783     Visible.ShadowMaps.push_back(ShadowMap());
   2784   }
   2785 
   2786   ~ShadowContextRAII() {
   2787     Visible.ShadowMaps.pop_back();
   2788   }
   2789 };
   2790 
   2791 } // end anonymous namespace
   2792 
   2793 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
   2794   // Look through using declarations.
   2795   ND = ND->getUnderlyingDecl();
   2796 
   2797   unsigned IDNS = ND->getIdentifierNamespace();
   2798   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
   2799   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
   2800        SM != SMEnd; ++SM) {
   2801     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
   2802     if (Pos == SM->end())
   2803       continue;
   2804 
   2805     for (ShadowMapEntry::iterator I = Pos->second.begin(),
   2806                                IEnd = Pos->second.end();
   2807          I != IEnd; ++I) {
   2808       // A tag declaration does not hide a non-tag declaration.
   2809       if ((*I)->hasTagIdentifierNamespace() &&
   2810           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
   2811                    Decl::IDNS_ObjCProtocol)))
   2812         continue;
   2813 
   2814       // Protocols are in distinct namespaces from everything else.
   2815       if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
   2816            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
   2817           (*I)->getIdentifierNamespace() != IDNS)
   2818         continue;
   2819 
   2820       // Functions and function templates in the same scope overload
   2821       // rather than hide.  FIXME: Look for hiding based on function
   2822       // signatures!
   2823       if ((*I)->isFunctionOrFunctionTemplate() &&
   2824           ND->isFunctionOrFunctionTemplate() &&
   2825           SM == ShadowMaps.rbegin())
   2826         continue;
   2827 
   2828       // We've found a declaration that hides this one.
   2829       return *I;
   2830     }
   2831   }
   2832 
   2833   return 0;
   2834 }
   2835 
   2836 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
   2837                                bool QualifiedNameLookup,
   2838                                bool InBaseClass,
   2839                                VisibleDeclConsumer &Consumer,
   2840                                VisibleDeclsRecord &Visited) {
   2841   if (!Ctx)
   2842     return;
   2843 
   2844   // Make sure we don't visit the same context twice.
   2845   if (Visited.visitedContext(Ctx->getPrimaryContext()))
   2846     return;
   2847 
   2848   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
   2849     Result.getSema().ForceDeclarationOfImplicitMembers(Class);
   2850 
   2851   // Enumerate all of the results in this context.
   2852   for (DeclContext::all_lookups_iterator L = Ctx->lookups_begin(),
   2853                                       LEnd = Ctx->lookups_end();
   2854        L != LEnd; ++L) {
   2855     for (DeclContext::lookup_result R = *L; R.first != R.second; ++R.first) {
   2856       if (NamedDecl *ND = dyn_cast<NamedDecl>(*R.first)) {
   2857         if ((ND = Result.getAcceptableDecl(ND))) {
   2858           Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
   2859           Visited.add(ND);
   2860         }
   2861       }
   2862     }
   2863   }
   2864 
   2865   // Traverse using directives for qualified name lookup.
   2866   if (QualifiedNameLookup) {
   2867     ShadowContextRAII Shadow(Visited);
   2868     DeclContext::udir_iterator I, E;
   2869     for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
   2870       LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
   2871                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
   2872     }
   2873   }
   2874 
   2875   // Traverse the contexts of inherited C++ classes.
   2876   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
   2877     if (!Record->hasDefinition())
   2878       return;
   2879 
   2880     for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
   2881                                          BEnd = Record->bases_end();
   2882          B != BEnd; ++B) {
   2883       QualType BaseType = B->getType();
   2884 
   2885       // Don't look into dependent bases, because name lookup can't look
   2886       // there anyway.
   2887       if (BaseType->isDependentType())
   2888         continue;
   2889 
   2890       const RecordType *Record = BaseType->getAs<RecordType>();
   2891       if (!Record)
   2892         continue;
   2893 
   2894       // FIXME: It would be nice to be able to determine whether referencing
   2895       // a particular member would be ambiguous. For example, given
   2896       //
   2897       //   struct A { int member; };
   2898       //   struct B { int member; };
   2899       //   struct C : A, B { };
   2900       //
   2901       //   void f(C *c) { c->### }
   2902       //
   2903       // accessing 'member' would result in an ambiguity. However, we
   2904       // could be smart enough to qualify the member with the base
   2905       // class, e.g.,
   2906       //
   2907       //   c->B::member
   2908       //
   2909       // or
   2910       //
   2911       //   c->A::member
   2912 
   2913       // Find results in this base class (and its bases).
   2914       ShadowContextRAII Shadow(Visited);
   2915       LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
   2916                          true, Consumer, Visited);
   2917     }
   2918   }
   2919 
   2920   // Traverse the contexts of Objective-C classes.
   2921   if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
   2922     // Traverse categories.
   2923     for (ObjCCategoryDecl *Category = IFace->getCategoryList();
   2924          Category; Category = Category->getNextClassCategory()) {
   2925       ShadowContextRAII Shadow(Visited);
   2926       LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
   2927                          Consumer, Visited);
   2928     }
   2929 
   2930     // Traverse protocols.
   2931     for (ObjCInterfaceDecl::all_protocol_iterator
   2932          I = IFace->all_referenced_protocol_begin(),
   2933          E = IFace->all_referenced_protocol_end(); I != E; ++I) {
   2934       ShadowContextRAII Shadow(Visited);
   2935       LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
   2936                          Visited);
   2937     }
   2938 
   2939     // Traverse the superclass.
   2940     if (IFace->getSuperClass()) {
   2941       ShadowContextRAII Shadow(Visited);
   2942       LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
   2943                          true, Consumer, Visited);
   2944     }
   2945 
   2946     // If there is an implementation, traverse it. We do this to find
   2947     // synthesized ivars.
   2948     if (IFace->getImplementation()) {
   2949       ShadowContextRAII Shadow(Visited);
   2950       LookupVisibleDecls(IFace->getImplementation(), Result,
   2951                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
   2952     }
   2953   } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
   2954     for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
   2955            E = Protocol->protocol_end(); I != E; ++I) {
   2956       ShadowContextRAII Shadow(Visited);
   2957       LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
   2958                          Visited);
   2959     }
   2960   } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
   2961     for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
   2962            E = Category->protocol_end(); I != E; ++I) {
   2963       ShadowContextRAII Shadow(Visited);
   2964       LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
   2965                          Visited);
   2966     }
   2967 
   2968     // If there is an implementation, traverse it.
   2969     if (Category->getImplementation()) {
   2970       ShadowContextRAII Shadow(Visited);
   2971       LookupVisibleDecls(Category->getImplementation(), Result,
   2972                          QualifiedNameLookup, true, Consumer, Visited);
   2973     }
   2974   }
   2975 }
   2976 
   2977 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
   2978                                UnqualUsingDirectiveSet &UDirs,
   2979                                VisibleDeclConsumer &Consumer,
   2980                                VisibleDeclsRecord &Visited) {
   2981   if (!S)
   2982     return;
   2983 
   2984   if (!S->getEntity() ||
   2985       (!S->getParent() &&
   2986        !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
   2987       ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
   2988     // Walk through the declarations in this Scope.
   2989     for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
   2990          D != DEnd; ++D) {
   2991       if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
   2992         if ((ND = Result.getAcceptableDecl(ND))) {
   2993           Consumer.FoundDecl(ND, Visited.checkHidden(ND), 0, false);
   2994           Visited.add(ND);
   2995         }
   2996     }
   2997   }
   2998 
   2999   // FIXME: C++ [temp.local]p8
   3000   DeclContext *Entity = 0;
   3001   if (S->getEntity()) {
   3002     // Look into this scope's declaration context, along with any of its
   3003     // parent lookup contexts (e.g., enclosing classes), up to the point
   3004     // where we hit the context stored in the next outer scope.
   3005     Entity = (DeclContext *)S->getEntity();
   3006     DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
   3007 
   3008     for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
   3009          Ctx = Ctx->getLookupParent()) {
   3010       if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
   3011         if (Method->isInstanceMethod()) {
   3012           // For instance methods, look for ivars in the method's interface.
   3013           LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
   3014                                   Result.getNameLoc(), Sema::LookupMemberName);
   3015           if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
   3016             LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
   3017                                /*InBaseClass=*/false, Consumer, Visited);
   3018           }
   3019         }
   3020 
   3021         // We've already performed all of the name lookup that we need
   3022         // to for Objective-C methods; the next context will be the
   3023         // outer scope.
   3024         break;
   3025       }
   3026 
   3027       if (Ctx->isFunctionOrMethod())
   3028         continue;
   3029 
   3030       LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
   3031                          /*InBaseClass=*/false, Consumer, Visited);
   3032     }
   3033   } else if (!S->getParent()) {
   3034     // Look into the translation unit scope. We walk through the translation
   3035     // unit's declaration context, because the Scope itself won't have all of
   3036     // the declarations if we loaded a precompiled header.
   3037     // FIXME: We would like the translation unit's Scope object to point to the
   3038     // translation unit, so we don't need this special "if" branch. However,
   3039     // doing so would force the normal C++ name-lookup code to look into the
   3040     // translation unit decl when the IdentifierInfo chains would suffice.
   3041     // Once we fix that problem (which is part of a more general "don't look
   3042     // in DeclContexts unless we have to" optimization), we can eliminate this.
   3043     Entity = Result.getSema().Context.getTranslationUnitDecl();
   3044     LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
   3045                        /*InBaseClass=*/false, Consumer, Visited);
   3046   }
   3047 
   3048   if (Entity) {
   3049     // Lookup visible declarations in any namespaces found by using
   3050     // directives.
   3051     UnqualUsingDirectiveSet::const_iterator UI, UEnd;
   3052     llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
   3053     for (; UI != UEnd; ++UI)
   3054       LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
   3055                          Result, /*QualifiedNameLookup=*/false,
   3056                          /*InBaseClass=*/false, Consumer, Visited);
   3057   }
   3058 
   3059   // Lookup names in the parent scope.
   3060   ShadowContextRAII Shadow(Visited);
   3061   LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
   3062 }
   3063 
   3064 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
   3065                               VisibleDeclConsumer &Consumer,
   3066                               bool IncludeGlobalScope) {
   3067   // Determine the set of using directives available during
   3068   // unqualified name lookup.
   3069   Scope *Initial = S;
   3070   UnqualUsingDirectiveSet UDirs;
   3071   if (getLangOpts().CPlusPlus) {
   3072     // Find the first namespace or translation-unit scope.
   3073     while (S && !isNamespaceOrTranslationUnitScope(S))
   3074       S = S->getParent();
   3075 
   3076     UDirs.visitScopeChain(Initial, S);
   3077   }
   3078   UDirs.done();
   3079 
   3080   // Look for visible declarations.
   3081   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
   3082   VisibleDeclsRecord Visited;
   3083   if (!IncludeGlobalScope)
   3084     Visited.visitedContext(Context.getTranslationUnitDecl());
   3085   ShadowContextRAII Shadow(Visited);
   3086   ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
   3087 }
   3088 
   3089 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
   3090                               VisibleDeclConsumer &Consumer,
   3091                               bool IncludeGlobalScope) {
   3092   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
   3093   VisibleDeclsRecord Visited;
   3094   if (!IncludeGlobalScope)
   3095     Visited.visitedContext(Context.getTranslationUnitDecl());
   3096   ShadowContextRAII Shadow(Visited);
   3097   ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
   3098                        /*InBaseClass=*/false, Consumer, Visited);
   3099 }
   3100 
   3101 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
   3102 /// If GnuLabelLoc is a valid source location, then this is a definition
   3103 /// of an __label__ label name, otherwise it is a normal label definition
   3104 /// or use.
   3105 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
   3106                                      SourceLocation GnuLabelLoc) {
   3107   // Do a lookup to see if we have a label with this name already.
   3108   NamedDecl *Res = 0;
   3109 
   3110   if (GnuLabelLoc.isValid()) {
   3111     // Local label definitions always shadow existing labels.
   3112     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
   3113     Scope *S = CurScope;
   3114     PushOnScopeChains(Res, S, true);
   3115     return cast<LabelDecl>(Res);
   3116   }
   3117 
   3118   // Not a GNU local label.
   3119   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
   3120   // If we found a label, check to see if it is in the same context as us.
   3121   // When in a Block, we don't want to reuse a label in an enclosing function.
   3122   if (Res && Res->getDeclContext() != CurContext)
   3123     Res = 0;
   3124   if (Res == 0) {
   3125     // If not forward referenced or defined already, create the backing decl.
   3126     Res = LabelDecl::Create(Context, CurContext, Loc, II);
   3127     Scope *S = CurScope->getFnParent();
   3128     assert(S && "Not in a function?");
   3129     PushOnScopeChains(Res, S, true);
   3130   }
   3131   return cast<LabelDecl>(Res);
   3132 }
   3133 
   3134 //===----------------------------------------------------------------------===//
   3135 // Typo correction
   3136 //===----------------------------------------------------------------------===//
   3137 
   3138 namespace {
   3139 
   3140 typedef llvm::SmallVector<TypoCorrection, 1> TypoResultList;
   3141 typedef llvm::StringMap<TypoResultList, llvm::BumpPtrAllocator> TypoResultsMap;
   3142 typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
   3143 
   3144 static const unsigned MaxTypoDistanceResultSets = 5;
   3145 
   3146 class TypoCorrectionConsumer : public VisibleDeclConsumer {
   3147   /// \brief The name written that is a typo in the source.
   3148   StringRef Typo;
   3149 
   3150   /// \brief The results found that have the smallest edit distance
   3151   /// found (so far) with the typo name.
   3152   ///
   3153   /// The pointer value being set to the current DeclContext indicates
   3154   /// whether there is a keyword with this name.
   3155   TypoEditDistanceMap CorrectionResults;
   3156 
   3157   Sema &SemaRef;
   3158 
   3159 public:
   3160   explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo)
   3161     : Typo(Typo->getName()),
   3162       SemaRef(SemaRef) { }
   3163 
   3164   virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
   3165                          bool InBaseClass);
   3166   void FoundName(StringRef Name);
   3167   void addKeywordResult(StringRef Keyword);
   3168   void addName(StringRef Name, NamedDecl *ND, unsigned Distance,
   3169                NestedNameSpecifier *NNS=NULL, bool isKeyword=false);
   3170   void addCorrection(TypoCorrection Correction);
   3171 
   3172   typedef TypoResultsMap::iterator result_iterator;
   3173   typedef TypoEditDistanceMap::iterator distance_iterator;
   3174   distance_iterator begin() { return CorrectionResults.begin(); }
   3175   distance_iterator end()  { return CorrectionResults.end(); }
   3176   void erase(distance_iterator I) { CorrectionResults.erase(I); }
   3177   unsigned size() const { return CorrectionResults.size(); }
   3178   bool empty() const { return CorrectionResults.empty(); }
   3179 
   3180   TypoResultList &operator[](StringRef Name) {
   3181     return CorrectionResults.begin()->second[Name];
   3182   }
   3183 
   3184   unsigned getBestEditDistance(bool Normalized) {
   3185     if (CorrectionResults.empty())
   3186       return (std::numeric_limits<unsigned>::max)();
   3187 
   3188     unsigned BestED = CorrectionResults.begin()->first;
   3189     return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
   3190   }
   3191 
   3192   TypoResultsMap &getBestResults() {
   3193     return CorrectionResults.begin()->second;
   3194   }
   3195 
   3196 };
   3197 
   3198 }
   3199 
   3200 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
   3201                                        DeclContext *Ctx, bool InBaseClass) {
   3202   // Don't consider hidden names for typo correction.
   3203   if (Hiding)
   3204     return;
   3205 
   3206   // Only consider entities with identifiers for names, ignoring
   3207   // special names (constructors, overloaded operators, selectors,
   3208   // etc.).
   3209   IdentifierInfo *Name = ND->getIdentifier();
   3210   if (!Name)
   3211     return;
   3212 
   3213   FoundName(Name->getName());
   3214 }
   3215 
   3216 void TypoCorrectionConsumer::FoundName(StringRef Name) {
   3217   // Use a simple length-based heuristic to determine the minimum possible
   3218   // edit distance. If the minimum isn't good enough, bail out early.
   3219   unsigned MinED = abs((int)Name.size() - (int)Typo.size());
   3220   if (MinED && Typo.size() / MinED < 3)
   3221     return;
   3222 
   3223   // Compute an upper bound on the allowable edit distance, so that the
   3224   // edit-distance algorithm can short-circuit.
   3225   unsigned UpperBound = (Typo.size() + 2) / 3;
   3226 
   3227   // Compute the edit distance between the typo and the name of this
   3228   // entity, and add the identifier to the list of results.
   3229   addName(Name, NULL, Typo.edit_distance(Name, true, UpperBound));
   3230 }
   3231 
   3232 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
   3233   // Compute the edit distance between the typo and this keyword,
   3234   // and add the keyword to the list of results.
   3235   addName(Keyword, NULL, Typo.edit_distance(Keyword), NULL, true);
   3236 }
   3237 
   3238 void TypoCorrectionConsumer::addName(StringRef Name,
   3239                                      NamedDecl *ND,
   3240                                      unsigned Distance,
   3241                                      NestedNameSpecifier *NNS,
   3242                                      bool isKeyword) {
   3243   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, Distance);
   3244   if (isKeyword) TC.makeKeyword();
   3245   addCorrection(TC);
   3246 }
   3247 
   3248 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
   3249   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
   3250   TypoResultList &CList =
   3251       CorrectionResults[Correction.getEditDistance(false)][Name];
   3252 
   3253   if (!CList.empty() && !CList.back().isResolved())
   3254     CList.pop_back();
   3255   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
   3256     std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
   3257     for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
   3258          RI != RIEnd; ++RI) {
   3259       // If the Correction refers to a decl already in the result list,
   3260       // replace the existing result if the string representation of Correction
   3261       // comes before the current result alphabetically, then stop as there is
   3262       // nothing more to be done to add Correction to the candidate set.
   3263       if (RI->getCorrectionDecl() == NewND) {
   3264         if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
   3265           *RI = Correction;
   3266         return;
   3267       }
   3268     }
   3269   }
   3270   if (CList.empty() || Correction.isResolved())
   3271     CList.push_back(Correction);
   3272 
   3273   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
   3274     erase(llvm::prior(CorrectionResults.end()));
   3275 }
   3276 
   3277 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
   3278 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
   3279 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
   3280 static void getNestedNameSpecifierIdentifiers(
   3281     NestedNameSpecifier *NNS,
   3282     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
   3283   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
   3284     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
   3285   else
   3286     Identifiers.clear();
   3287 
   3288   const IdentifierInfo *II = NULL;
   3289 
   3290   switch (NNS->getKind()) {
   3291   case NestedNameSpecifier::Identifier:
   3292     II = NNS->getAsIdentifier();
   3293     break;
   3294 
   3295   case NestedNameSpecifier::Namespace:
   3296     if (NNS->getAsNamespace()->isAnonymousNamespace())
   3297       return;
   3298     II = NNS->getAsNamespace()->getIdentifier();
   3299     break;
   3300 
   3301   case NestedNameSpecifier::NamespaceAlias:
   3302     II = NNS->getAsNamespaceAlias()->getIdentifier();
   3303     break;
   3304 
   3305   case NestedNameSpecifier::TypeSpecWithTemplate:
   3306   case NestedNameSpecifier::TypeSpec:
   3307     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
   3308     break;
   3309 
   3310   case NestedNameSpecifier::Global:
   3311     return;
   3312   }
   3313 
   3314   if (II)
   3315     Identifiers.push_back(II);
   3316 }
   3317 
   3318 namespace {
   3319 
   3320 class SpecifierInfo {
   3321  public:
   3322   DeclContext* DeclCtx;
   3323   NestedNameSpecifier* NameSpecifier;
   3324   unsigned EditDistance;
   3325 
   3326   SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED)
   3327       : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {}
   3328 };
   3329 
   3330 typedef SmallVector<DeclContext*, 4> DeclContextList;
   3331 typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
   3332 
   3333 class NamespaceSpecifierSet {
   3334   ASTContext &Context;
   3335   DeclContextList CurContextChain;
   3336   SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
   3337   SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
   3338   bool isSorted;
   3339 
   3340   SpecifierInfoList Specifiers;
   3341   llvm::SmallSetVector<unsigned, 4> Distances;
   3342   llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
   3343 
   3344   /// \brief Helper for building the list of DeclContexts between the current
   3345   /// context and the top of the translation unit
   3346   static DeclContextList BuildContextChain(DeclContext *Start);
   3347 
   3348   void SortNamespaces();
   3349 
   3350  public:
   3351   NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
   3352                         CXXScopeSpec *CurScopeSpec)
   3353       : Context(Context), CurContextChain(BuildContextChain(CurContext)),
   3354         isSorted(true) {
   3355     if (CurScopeSpec && CurScopeSpec->getScopeRep())
   3356       getNestedNameSpecifierIdentifiers(CurScopeSpec->getScopeRep(),
   3357                                         CurNameSpecifierIdentifiers);
   3358     // Build the list of identifiers that would be used for an absolute
   3359     // (from the global context) NestedNameSpecifier referring to the current
   3360     // context.
   3361     for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
   3362                                         CEnd = CurContextChain.rend();
   3363          C != CEnd; ++C) {
   3364       if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
   3365         CurContextIdentifiers.push_back(ND->getIdentifier());
   3366     }
   3367   }
   3368 
   3369   /// \brief Add the namespace to the set, computing the corresponding
   3370   /// NestedNameSpecifier and its distance in the process.
   3371   void AddNamespace(NamespaceDecl *ND);
   3372 
   3373   typedef SpecifierInfoList::iterator iterator;
   3374   iterator begin() {
   3375     if (!isSorted) SortNamespaces();
   3376     return Specifiers.begin();
   3377   }
   3378   iterator end() { return Specifiers.end(); }
   3379 };
   3380 
   3381 }
   3382 
   3383 DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) {
   3384   assert(Start && "Bulding a context chain from a null context");
   3385   DeclContextList Chain;
   3386   for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL;
   3387        DC = DC->getLookupParent()) {
   3388     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
   3389     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
   3390         !(ND && ND->isAnonymousNamespace()))
   3391       Chain.push_back(DC->getPrimaryContext());
   3392   }
   3393   return Chain;
   3394 }
   3395 
   3396 void NamespaceSpecifierSet::SortNamespaces() {
   3397   SmallVector<unsigned, 4> sortedDistances;
   3398   sortedDistances.append(Distances.begin(), Distances.end());
   3399 
   3400   if (sortedDistances.size() > 1)
   3401     std::sort(sortedDistances.begin(), sortedDistances.end());
   3402 
   3403   Specifiers.clear();
   3404   for (SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(),
   3405                                        DIEnd = sortedDistances.end();
   3406        DI != DIEnd; ++DI) {
   3407     SpecifierInfoList &SpecList = DistanceMap[*DI];
   3408     Specifiers.append(SpecList.begin(), SpecList.end());
   3409   }
   3410 
   3411   isSorted = true;
   3412 }
   3413 
   3414 void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) {
   3415   DeclContext *Ctx = cast<DeclContext>(ND);
   3416   NestedNameSpecifier *NNS = NULL;
   3417   unsigned NumSpecifiers = 0;
   3418   DeclContextList NamespaceDeclChain(BuildContextChain(Ctx));
   3419   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
   3420 
   3421   // Eliminate common elements from the two DeclContext chains.
   3422   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
   3423                                       CEnd = CurContextChain.rend();
   3424        C != CEnd && !NamespaceDeclChain.empty() &&
   3425        NamespaceDeclChain.back() == *C; ++C) {
   3426     NamespaceDeclChain.pop_back();
   3427   }
   3428 
   3429   // Add an explicit leading '::' specifier if needed.
   3430   if (NamespaceDecl *ND =
   3431         NamespaceDeclChain.empty() ? NULL :
   3432           dyn_cast_or_null<NamespaceDecl>(NamespaceDeclChain.back())) {
   3433     IdentifierInfo *Name = ND->getIdentifier();
   3434     if (std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
   3435                   Name) != CurContextIdentifiers.end() ||
   3436         std::find(CurNameSpecifierIdentifiers.begin(),
   3437                   CurNameSpecifierIdentifiers.end(),
   3438                   Name) != CurNameSpecifierIdentifiers.end()) {
   3439       NamespaceDeclChain = FullNamespaceDeclChain;
   3440       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
   3441     }
   3442   }
   3443 
   3444   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
   3445   for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(),
   3446                                       CEnd = NamespaceDeclChain.rend();
   3447        C != CEnd; ++C) {
   3448     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C);
   3449     if (ND) {
   3450       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
   3451       ++NumSpecifiers;
   3452     }
   3453   }
   3454 
   3455   // If the built NestedNameSpecifier would be replacing an existing
   3456   // NestedNameSpecifier, use the number of component identifiers that
   3457   // would need to be changed as the edit distance instead of the number
   3458   // of components in the built NestedNameSpecifier.
   3459   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
   3460     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
   3461     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
   3462     NumSpecifiers = llvm::ComputeEditDistance(
   3463       llvm::ArrayRef<const IdentifierInfo*>(CurNameSpecifierIdentifiers),
   3464       llvm::ArrayRef<const IdentifierInfo*>(NewNameSpecifierIdentifiers));
   3465   }
   3466 
   3467   isSorted = false;
   3468   Distances.insert(NumSpecifiers);
   3469   DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers));
   3470 }
   3471 
   3472 /// \brief Perform name lookup for a possible result for typo correction.
   3473 static void LookupPotentialTypoResult(Sema &SemaRef,
   3474                                       LookupResult &Res,
   3475                                       IdentifierInfo *Name,
   3476                                       Scope *S, CXXScopeSpec *SS,
   3477                                       DeclContext *MemberContext,
   3478                                       bool EnteringContext,
   3479                                       bool isObjCIvarLookup) {
   3480   Res.suppressDiagnostics();
   3481   Res.clear();
   3482   Res.setLookupName(Name);
   3483   if (MemberContext) {
   3484     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
   3485       if (isObjCIvarLookup) {
   3486         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
   3487           Res.addDecl(Ivar);
   3488           Res.resolveKind();
   3489           return;
   3490         }
   3491       }
   3492 
   3493       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
   3494         Res.addDecl(Prop);
   3495         Res.resolveKind();
   3496         return;
   3497       }
   3498     }
   3499 
   3500     SemaRef.LookupQualifiedName(Res, MemberContext);
   3501     return;
   3502   }
   3503 
   3504   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
   3505                            EnteringContext);
   3506 
   3507   // Fake ivar lookup; this should really be part of
   3508   // LookupParsedName.
   3509   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
   3510     if (Method->isInstanceMethod() && Method->getClassInterface() &&
   3511         (Res.empty() ||
   3512          (Res.isSingleResult() &&
   3513           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
   3514        if (ObjCIvarDecl *IV
   3515              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
   3516          Res.addDecl(IV);
   3517          Res.resolveKind();
   3518        }
   3519      }
   3520   }
   3521 }
   3522 
   3523 /// \brief Add keywords to the consumer as possible typo corrections.
   3524 static void AddKeywordsToConsumer(Sema &SemaRef,
   3525                                   TypoCorrectionConsumer &Consumer,
   3526                                   Scope *S, CorrectionCandidateCallback &CCC,
   3527                                   bool AfterNestedNameSpecifier) {
   3528   if (AfterNestedNameSpecifier) {
   3529     // For 'X::', we know exactly which keywords can appear next.
   3530     Consumer.addKeywordResult("template");
   3531     if (CCC.WantExpressionKeywords)
   3532       Consumer.addKeywordResult("operator");
   3533     return;
   3534   }
   3535 
   3536   if (CCC.WantObjCSuper)
   3537     Consumer.addKeywordResult("super");
   3538 
   3539   if (CCC.WantTypeSpecifiers) {
   3540     // Add type-specifier keywords to the set of results.
   3541     const char *CTypeSpecs[] = {
   3542       "char", "const", "double", "enum", "float", "int", "long", "short",
   3543       "signed", "struct", "union", "unsigned", "void", "volatile",
   3544       "_Complex", "_Imaginary",
   3545       // storage-specifiers as well
   3546       "extern", "inline", "static", "typedef"
   3547     };
   3548 
   3549     const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
   3550     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
   3551       Consumer.addKeywordResult(CTypeSpecs[I]);
   3552 
   3553     if (SemaRef.getLangOpts().C99)
   3554       Consumer.addKeywordResult("restrict");
   3555     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
   3556       Consumer.addKeywordResult("bool");
   3557     else if (SemaRef.getLangOpts().C99)
   3558       Consumer.addKeywordResult("_Bool");
   3559 
   3560     if (SemaRef.getLangOpts().CPlusPlus) {
   3561       Consumer.addKeywordResult("class");
   3562       Consumer.addKeywordResult("typename");
   3563       Consumer.addKeywordResult("wchar_t");
   3564 
   3565       if (SemaRef.getLangOpts().CPlusPlus0x) {
   3566         Consumer.addKeywordResult("char16_t");
   3567         Consumer.addKeywordResult("char32_t");
   3568         Consumer.addKeywordResult("constexpr");
   3569         Consumer.addKeywordResult("decltype");
   3570         Consumer.addKeywordResult("thread_local");
   3571       }
   3572     }
   3573 
   3574     if (SemaRef.getLangOpts().GNUMode)
   3575       Consumer.addKeywordResult("typeof");
   3576   }
   3577 
   3578   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
   3579     Consumer.addKeywordResult("const_cast");
   3580     Consumer.addKeywordResult("dynamic_cast");
   3581     Consumer.addKeywordResult("reinterpret_cast");
   3582     Consumer.addKeywordResult("static_cast");
   3583   }
   3584 
   3585   if (CCC.WantExpressionKeywords) {
   3586     Consumer.addKeywordResult("sizeof");
   3587     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
   3588       Consumer.addKeywordResult("false");
   3589       Consumer.addKeywordResult("true");
   3590     }
   3591 
   3592     if (SemaRef.getLangOpts().CPlusPlus) {
   3593       const char *CXXExprs[] = {
   3594         "delete", "new", "operator", "throw", "typeid"
   3595       };
   3596       const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
   3597       for (unsigned I = 0; I != NumCXXExprs; ++I)
   3598         Consumer.addKeywordResult(CXXExprs[I]);
   3599 
   3600       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
   3601           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
   3602         Consumer.addKeywordResult("this");
   3603 
   3604       if (SemaRef.getLangOpts().CPlusPlus0x) {
   3605         Consumer.addKeywordResult("alignof");
   3606         Consumer.addKeywordResult("nullptr");
   3607       }
   3608     }
   3609 
   3610     if (SemaRef.getLangOpts().C11) {
   3611       // FIXME: We should not suggest _Alignof if the alignof macro
   3612       // is present.
   3613       Consumer.addKeywordResult("_Alignof");
   3614     }
   3615   }
   3616 
   3617   if (CCC.WantRemainingKeywords) {
   3618     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
   3619       // Statements.
   3620       const char *CStmts[] = {
   3621         "do", "else", "for", "goto", "if", "return", "switch", "while" };
   3622       const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
   3623       for (unsigned I = 0; I != NumCStmts; ++I)
   3624         Consumer.addKeywordResult(CStmts[I]);
   3625 
   3626       if (SemaRef.getLangOpts().CPlusPlus) {
   3627         Consumer.addKeywordResult("catch");
   3628         Consumer.addKeywordResult("try");
   3629       }
   3630 
   3631       if (S && S->getBreakParent())
   3632         Consumer.addKeywordResult("break");
   3633 
   3634       if (S && S->getContinueParent())
   3635         Consumer.addKeywordResult("continue");
   3636 
   3637       if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
   3638         Consumer.addKeywordResult("case");
   3639         Consumer.addKeywordResult("default");
   3640       }
   3641     } else {
   3642       if (SemaRef.getLangOpts().CPlusPlus) {
   3643         Consumer.addKeywordResult("namespace");
   3644         Consumer.addKeywordResult("template");
   3645       }
   3646 
   3647       if (S && S->isClassScope()) {
   3648         Consumer.addKeywordResult("explicit");
   3649         Consumer.addKeywordResult("friend");
   3650         Consumer.addKeywordResult("mutable");
   3651         Consumer.addKeywordResult("private");
   3652         Consumer.addKeywordResult("protected");
   3653         Consumer.addKeywordResult("public");
   3654         Consumer.addKeywordResult("virtual");
   3655       }
   3656     }
   3657 
   3658     if (SemaRef.getLangOpts().CPlusPlus) {
   3659       Consumer.addKeywordResult("using");
   3660 
   3661       if (SemaRef.getLangOpts().CPlusPlus0x)
   3662         Consumer.addKeywordResult("static_assert");
   3663     }
   3664   }
   3665 }
   3666 
   3667 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
   3668                               TypoCorrection &Candidate) {
   3669   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
   3670   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
   3671 }
   3672 
   3673 /// \brief Try to "correct" a typo in the source code by finding
   3674 /// visible declarations whose names are similar to the name that was
   3675 /// present in the source code.
   3676 ///
   3677 /// \param TypoName the \c DeclarationNameInfo structure that contains
   3678 /// the name that was present in the source code along with its location.
   3679 ///
   3680 /// \param LookupKind the name-lookup criteria used to search for the name.
   3681 ///
   3682 /// \param S the scope in which name lookup occurs.
   3683 ///
   3684 /// \param SS the nested-name-specifier that precedes the name we're
   3685 /// looking for, if present.
   3686 ///
   3687 /// \param CCC A CorrectionCandidateCallback object that provides further
   3688 /// validation of typo correction candidates. It also provides flags for
   3689 /// determining the set of keywords permitted.
   3690 ///
   3691 /// \param MemberContext if non-NULL, the context in which to look for
   3692 /// a member access expression.
   3693 ///
   3694 /// \param EnteringContext whether we're entering the context described by
   3695 /// the nested-name-specifier SS.
   3696 ///
   3697 /// \param OPT when non-NULL, the search for visible declarations will
   3698 /// also walk the protocols in the qualified interfaces of \p OPT.
   3699 ///
   3700 /// \returns a \c TypoCorrection containing the corrected name if the typo
   3701 /// along with information such as the \c NamedDecl where the corrected name
   3702 /// was declared, and any additional \c NestedNameSpecifier needed to access
   3703 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
   3704 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
   3705                                  Sema::LookupNameKind LookupKind,
   3706                                  Scope *S, CXXScopeSpec *SS,
   3707                                  CorrectionCandidateCallback &CCC,
   3708                                  DeclContext *MemberContext,
   3709                                  bool EnteringContext,
   3710                                  const ObjCObjectPointerType *OPT) {
   3711   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking)
   3712     return TypoCorrection();
   3713 
   3714   // In Microsoft mode, don't perform typo correction in a template member
   3715   // function dependent context because it interferes with the "lookup into
   3716   // dependent bases of class templates" feature.
   3717   if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
   3718       isa<CXXMethodDecl>(CurContext))
   3719     return TypoCorrection();
   3720 
   3721   // We only attempt to correct typos for identifiers.
   3722   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
   3723   if (!Typo)
   3724     return TypoCorrection();
   3725 
   3726   // If the scope specifier itself was invalid, don't try to correct
   3727   // typos.
   3728   if (SS && SS->isInvalid())
   3729     return TypoCorrection();
   3730 
   3731   // Never try to correct typos during template deduction or
   3732   // instantiation.
   3733   if (!ActiveTemplateInstantiations.empty())
   3734     return TypoCorrection();
   3735 
   3736   NamespaceSpecifierSet Namespaces(Context, CurContext, SS);
   3737 
   3738   TypoCorrectionConsumer Consumer(*this, Typo);
   3739 
   3740   // If a callback object considers an empty typo correction candidate to be
   3741   // viable, assume it does not do any actual validation of the candidates.
   3742   TypoCorrection EmptyCorrection;
   3743   bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection);
   3744 
   3745   // Perform name lookup to find visible, similarly-named entities.
   3746   bool IsUnqualifiedLookup = false;
   3747   DeclContext *QualifiedDC = MemberContext;
   3748   if (MemberContext) {
   3749     LookupVisibleDecls(MemberContext, LookupKind, Consumer);
   3750 
   3751     // Look in qualified interfaces.
   3752     if (OPT) {
   3753       for (ObjCObjectPointerType::qual_iterator
   3754              I = OPT->qual_begin(), E = OPT->qual_end();
   3755            I != E; ++I)
   3756         LookupVisibleDecls(*I, LookupKind, Consumer);
   3757     }
   3758   } else if (SS && SS->isSet()) {
   3759     QualifiedDC = computeDeclContext(*SS, EnteringContext);
   3760     if (!QualifiedDC)
   3761       return TypoCorrection();
   3762 
   3763     // Provide a stop gap for files that are just seriously broken.  Trying
   3764     // to correct all typos can turn into a HUGE performance penalty, causing
   3765     // some files to take minutes to get rejected by the parser.
   3766     if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
   3767       return TypoCorrection();
   3768     ++TyposCorrected;
   3769 
   3770     LookupVisibleDecls(QualifiedDC, LookupKind, Consumer);
   3771   } else {
   3772     IsUnqualifiedLookup = true;
   3773     UnqualifiedTyposCorrectedMap::iterator Cached
   3774       = UnqualifiedTyposCorrected.find(Typo);
   3775     if (Cached != UnqualifiedTyposCorrected.end()) {
   3776       // Add the cached value, unless it's a keyword or fails validation. In the
   3777       // keyword case, we'll end up adding the keyword below.
   3778       if (Cached->second) {
   3779         if (!Cached->second.isKeyword() &&
   3780             isCandidateViable(CCC, Cached->second))
   3781           Consumer.addCorrection(Cached->second);
   3782       } else {
   3783         // Only honor no-correction cache hits when a callback that will validate
   3784         // correction candidates is not being used.
   3785         if (!ValidatingCallback)
   3786           return TypoCorrection();
   3787       }
   3788     }
   3789     if (Cached == UnqualifiedTyposCorrected.end()) {
   3790       // Provide a stop gap for files that are just seriously broken.  Trying
   3791       // to correct all typos can turn into a HUGE performance penalty, causing
   3792       // some files to take minutes to get rejected by the parser.
   3793       if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
   3794         return TypoCorrection();
   3795     }
   3796   }
   3797 
   3798   // Determine whether we are going to search in the various namespaces for
   3799   // corrections.
   3800   bool SearchNamespaces
   3801     = getLangOpts().CPlusPlus &&
   3802       (IsUnqualifiedLookup || (QualifiedDC && QualifiedDC->isNamespace()));
   3803   // In a few cases we *only* want to search for corrections bases on just
   3804   // adding or changing the nested name specifier.
   3805   bool AllowOnlyNNSChanges = Typo->getName().size() < 3;
   3806 
   3807   if (IsUnqualifiedLookup || SearchNamespaces) {
   3808     // For unqualified lookup, look through all of the names that we have
   3809     // seen in this translation unit.
   3810     // FIXME: Re-add the ability to skip very unlikely potential corrections.
   3811     for (IdentifierTable::iterator I = Context.Idents.begin(),
   3812                                 IEnd = Context.Idents.end();
   3813          I != IEnd; ++I)
   3814       Consumer.FoundName(I->getKey());
   3815 
   3816     // Walk through identifiers in external identifier sources.
   3817     // FIXME: Re-add the ability to skip very unlikely potential corrections.
   3818     if (IdentifierInfoLookup *External
   3819                             = Context.Idents.getExternalIdentifierLookup()) {
   3820       OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
   3821       do {
   3822         StringRef Name = Iter->Next();
   3823         if (Name.empty())
   3824           break;
   3825 
   3826         Consumer.FoundName(Name);
   3827       } while (true);
   3828     }
   3829   }
   3830 
   3831   AddKeywordsToConsumer(*this, Consumer, S, CCC, SS && SS->isNotEmpty());
   3832 
   3833   // If we haven't found anything, we're done.
   3834   if (Consumer.empty()) {
   3835     // If this was an unqualified lookup, note that no correction was found.
   3836     if (IsUnqualifiedLookup)
   3837       (void)UnqualifiedTyposCorrected[Typo];
   3838 
   3839     return TypoCorrection();
   3840   }
   3841 
   3842   // Make sure the best edit distance (prior to adding any namespace qualifiers)
   3843   // is not more that about a third of the length of the typo's identifier.
   3844   unsigned ED = Consumer.getBestEditDistance(true);
   3845   if (ED > 0 && Typo->getName().size() / ED < 3) {
   3846     // If this was an unqualified lookup, note that no correction was found.
   3847     if (IsUnqualifiedLookup)
   3848       (void)UnqualifiedTyposCorrected[Typo];
   3849 
   3850     return TypoCorrection();
   3851   }
   3852 
   3853   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
   3854   // to search those namespaces.
   3855   if (SearchNamespaces) {
   3856     // Load any externally-known namespaces.
   3857     if (ExternalSource && !LoadedExternalKnownNamespaces) {
   3858       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
   3859       LoadedExternalKnownNamespaces = true;
   3860       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
   3861       for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
   3862         KnownNamespaces[ExternalKnownNamespaces[I]] = true;
   3863     }
   3864 
   3865     for (llvm::DenseMap<NamespaceDecl*, bool>::iterator
   3866            KNI = KnownNamespaces.begin(),
   3867            KNIEnd = KnownNamespaces.end();
   3868          KNI != KNIEnd; ++KNI)
   3869       Namespaces.AddNamespace(KNI->first);
   3870   }
   3871 
   3872   // Weed out any names that could not be found by name lookup or, if a
   3873   // CorrectionCandidateCallback object was provided, failed validation.
   3874   llvm::SmallVector<TypoCorrection, 16> QualifiedResults;
   3875   LookupResult TmpRes(*this, TypoName, LookupKind);
   3876   TmpRes.suppressDiagnostics();
   3877   while (!Consumer.empty()) {
   3878     TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
   3879     unsigned ED = DI->first;
   3880     for (TypoCorrectionConsumer::result_iterator I = DI->second.begin(),
   3881                                               IEnd = DI->second.end();
   3882          I != IEnd; /* Increment in loop. */) {
   3883       // If we only want nested name specifier corrections, ignore potential
   3884       // corrections that have a different base identifier from the typo.
   3885       if (AllowOnlyNNSChanges &&
   3886           I->second.front().getCorrectionAsIdentifierInfo() != Typo) {
   3887         TypoCorrectionConsumer::result_iterator Prev = I;
   3888         ++I;
   3889         DI->second.erase(Prev);
   3890         continue;
   3891       }
   3892 
   3893       // If the item already has been looked up or is a keyword, keep it.
   3894       // If a validator callback object was given, drop the correction
   3895       // unless it passes validation.
   3896       bool Viable = false;
   3897       for (TypoResultList::iterator RI = I->second.begin();
   3898            RI != I->second.end(); /* Increment in loop. */) {
   3899         TypoResultList::iterator Prev = RI;
   3900         ++RI;
   3901         if (Prev->isResolved()) {
   3902           if (!isCandidateViable(CCC, *Prev))
   3903             RI = I->second.erase(Prev);
   3904           else
   3905             Viable = true;
   3906         }
   3907       }
   3908       if (Viable || I->second.empty()) {
   3909         TypoCorrectionConsumer::result_iterator Prev = I;
   3910         ++I;
   3911         if (!Viable)
   3912           DI->second.erase(Prev);
   3913         continue;
   3914       }
   3915       assert(I->second.size() == 1 && "Expected a single unresolved candidate");
   3916 
   3917       // Perform name lookup on this name.
   3918       TypoCorrection &Candidate = I->second.front();
   3919       IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
   3920       LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext,
   3921                                 EnteringContext, CCC.IsObjCIvarLookup);
   3922 
   3923       switch (TmpRes.getResultKind()) {
   3924       case LookupResult::NotFound:
   3925       case LookupResult::NotFoundInCurrentInstantiation:
   3926       case LookupResult::FoundUnresolvedValue:
   3927         QualifiedResults.push_back(Candidate);
   3928         // We didn't find this name in our scope, or didn't like what we found;
   3929         // ignore it.
   3930         {
   3931           TypoCorrectionConsumer::result_iterator Next = I;
   3932           ++Next;
   3933           DI->second.erase(I);
   3934           I = Next;
   3935         }
   3936         break;
   3937 
   3938       case LookupResult::Ambiguous:
   3939         // We don't deal with ambiguities.
   3940         return TypoCorrection();
   3941 
   3942       case LookupResult::FoundOverloaded: {
   3943         TypoCorrectionConsumer::result_iterator Prev = I;
   3944         // Store all of the Decls for overloaded symbols
   3945         for (LookupResult::iterator TRD = TmpRes.begin(),
   3946                                  TRDEnd = TmpRes.end();
   3947              TRD != TRDEnd; ++TRD)
   3948           Candidate.addCorrectionDecl(*TRD);
   3949         ++I;
   3950         if (!isCandidateViable(CCC, Candidate))
   3951           DI->second.erase(Prev);
   3952         break;
   3953       }
   3954 
   3955       case LookupResult::Found: {
   3956         TypoCorrectionConsumer::result_iterator Prev = I;
   3957         Candidate.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
   3958         ++I;
   3959         if (!isCandidateViable(CCC, Candidate))
   3960           DI->second.erase(Prev);
   3961         break;
   3962       }
   3963 
   3964       }
   3965     }
   3966 
   3967     if (DI->second.empty())
   3968       Consumer.erase(DI);
   3969     else if (!getLangOpts().CPlusPlus || QualifiedResults.empty() || !ED)
   3970       // If there are results in the closest possible bucket, stop
   3971       break;
   3972 
   3973     // Only perform the qualified lookups for C++
   3974     if (SearchNamespaces) {
   3975       TmpRes.suppressDiagnostics();
   3976       for (llvm::SmallVector<TypoCorrection,
   3977                              16>::iterator QRI = QualifiedResults.begin(),
   3978                                         QRIEnd = QualifiedResults.end();
   3979            QRI != QRIEnd; ++QRI) {
   3980         for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(),
   3981                                           NIEnd = Namespaces.end();
   3982              NI != NIEnd; ++NI) {
   3983           DeclContext *Ctx = NI->DeclCtx;
   3984 
   3985           // FIXME: Stop searching once the namespaces are too far away to create
   3986           // acceptable corrections for this identifier (since the namespaces
   3987           // are sorted in ascending order by edit distance).
   3988 
   3989           TmpRes.clear();
   3990           TmpRes.setLookupName(QRI->getCorrectionAsIdentifierInfo());
   3991           if (!LookupQualifiedName(TmpRes, Ctx)) continue;
   3992 
   3993           // Any corrections added below will be validated in subsequent
   3994           // iterations of the main while() loop over the Consumer's contents.
   3995           switch (TmpRes.getResultKind()) {
   3996           case LookupResult::Found: {
   3997             TypoCorrection TC(*QRI);
   3998             TC.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
   3999             TC.setCorrectionSpecifier(NI->NameSpecifier);
   4000             TC.setQualifierDistance(NI->EditDistance);
   4001             Consumer.addCorrection(TC);
   4002             break;
   4003           }
   4004           case LookupResult::FoundOverloaded: {
   4005             TypoCorrection TC(*QRI);
   4006             TC.setCorrectionSpecifier(NI->NameSpecifier);
   4007             TC.setQualifierDistance(NI->EditDistance);
   4008             for (LookupResult::iterator TRD = TmpRes.begin(),
   4009                                      TRDEnd = TmpRes.end();
   4010                  TRD != TRDEnd; ++TRD)
   4011               TC.addCorrectionDecl(*TRD);
   4012             Consumer.addCorrection(TC);
   4013             break;
   4014           }
   4015           case LookupResult::NotFound:
   4016           case LookupResult::NotFoundInCurrentInstantiation:
   4017           case LookupResult::Ambiguous:
   4018           case LookupResult::FoundUnresolvedValue:
   4019             break;
   4020           }
   4021         }
   4022       }
   4023     }
   4024 
   4025     QualifiedResults.clear();
   4026   }
   4027 
   4028   // No corrections remain...
   4029   if (Consumer.empty()) return TypoCorrection();
   4030 
   4031   TypoResultsMap &BestResults = Consumer.getBestResults();
   4032   ED = Consumer.getBestEditDistance(true);
   4033 
   4034   if (!AllowOnlyNNSChanges && ED > 0 && Typo->getName().size() / ED < 3) {
   4035     // If this was an unqualified lookup and we believe the callback
   4036     // object wouldn't have filtered out possible corrections, note
   4037     // that no correction was found.
   4038     if (IsUnqualifiedLookup && !ValidatingCallback)
   4039       (void)UnqualifiedTyposCorrected[Typo];
   4040 
   4041     return TypoCorrection();
   4042   }
   4043 
   4044   // If only a single name remains, return that result.
   4045   if (BestResults.size() == 1) {
   4046     const TypoResultList &CorrectionList = BestResults.begin()->second;
   4047     const TypoCorrection &Result = CorrectionList.front();
   4048     if (CorrectionList.size() != 1) return TypoCorrection();
   4049 
   4050     // Don't correct to a keyword that's the same as the typo; the keyword
   4051     // wasn't actually in scope.
   4052     if (ED == 0 && Result.isKeyword()) return TypoCorrection();
   4053 
   4054     // Record the correction for unqualified lookup.
   4055     if (IsUnqualifiedLookup)
   4056       UnqualifiedTyposCorrected[Typo] = Result;
   4057 
   4058     return Result;
   4059   }
   4060   else if (BestResults.size() > 1
   4061            // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
   4062            // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
   4063            // some instances of CTC_Unknown, while WantRemainingKeywords is true
   4064            // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
   4065            && CCC.WantObjCSuper && !CCC.WantRemainingKeywords
   4066            && BestResults["super"].front().isKeyword()) {
   4067     // Prefer 'super' when we're completing in a message-receiver
   4068     // context.
   4069 
   4070     // Don't correct to a keyword that's the same as the typo; the keyword
   4071     // wasn't actually in scope.
   4072     if (ED == 0) return TypoCorrection();
   4073 
   4074     // Record the correction for unqualified lookup.
   4075     if (IsUnqualifiedLookup)
   4076       UnqualifiedTyposCorrected[Typo] = BestResults["super"].front();
   4077 
   4078     return BestResults["super"].front();
   4079   }
   4080 
   4081   // If this was an unqualified lookup and we believe the callback object did
   4082   // not filter out possible corrections, note that no correction was found.
   4083   if (IsUnqualifiedLookup && !ValidatingCallback)
   4084     (void)UnqualifiedTyposCorrected[Typo];
   4085 
   4086   return TypoCorrection();
   4087 }
   4088 
   4089 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
   4090   if (!CDecl) return;
   4091 
   4092   if (isKeyword())
   4093     CorrectionDecls.clear();
   4094 
   4095   CorrectionDecls.push_back(CDecl);
   4096 
   4097   if (!CorrectionName)
   4098     CorrectionName = CDecl->getDeclName();
   4099 }
   4100 
   4101 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
   4102   if (CorrectionNameSpec) {
   4103     std::string tmpBuffer;
   4104     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
   4105     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
   4106     CorrectionName.printName(PrefixOStream);
   4107     return PrefixOStream.str();
   4108   }
   4109 
   4110   return CorrectionName.getAsString();
   4111 }
   4112