Home | History | Annotate | Download | only in VMCore
      1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements simple dominator construction algorithms for finding
     11 // forward dominators.  Postdominators are available in libanalysis, but are not
     12 // included in libvmcore, because it's not needed.  Forward dominators are
     13 // needed to support the Verifier pass.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Analysis/Dominators.h"
     18 #include "llvm/Support/CFG.h"
     19 #include "llvm/Support/Compiler.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/ADT/DepthFirstIterator.h"
     22 #include "llvm/ADT/SmallPtrSet.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/Analysis/DominatorInternals.h"
     25 #include "llvm/Assembly/Writer.h"
     26 #include "llvm/Instructions.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include <algorithm>
     30 using namespace llvm;
     31 
     32 // Always verify dominfo if expensive checking is enabled.
     33 #ifdef XDEBUG
     34 static bool VerifyDomInfo = true;
     35 #else
     36 static bool VerifyDomInfo = false;
     37 #endif
     38 static cl::opt<bool,true>
     39 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
     40                cl::desc("Verify dominator info (time consuming)"));
     41 
     42 bool BasicBlockEdge::isSingleEdge() const {
     43   const TerminatorInst *TI = Start->getTerminator();
     44   unsigned NumEdgesToEnd = 0;
     45   for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
     46     if (TI->getSuccessor(i) == End)
     47       ++NumEdgesToEnd;
     48     if (NumEdgesToEnd >= 2)
     49       return false;
     50   }
     51   assert(NumEdgesToEnd == 1);
     52   return true;
     53 }
     54 
     55 //===----------------------------------------------------------------------===//
     56 //  DominatorTree Implementation
     57 //===----------------------------------------------------------------------===//
     58 //
     59 // Provide public access to DominatorTree information.  Implementation details
     60 // can be found in DominatorInternals.h.
     61 //
     62 //===----------------------------------------------------------------------===//
     63 
     64 TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
     65 TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
     66 
     67 char DominatorTree::ID = 0;
     68 INITIALIZE_PASS(DominatorTree, "domtree",
     69                 "Dominator Tree Construction", true, true)
     70 
     71 bool DominatorTree::runOnFunction(Function &F) {
     72   DT->recalculate(F);
     73   return false;
     74 }
     75 
     76 void DominatorTree::verifyAnalysis() const {
     77   if (!VerifyDomInfo) return;
     78 
     79   Function &F = *getRoot()->getParent();
     80 
     81   DominatorTree OtherDT;
     82   OtherDT.getBase().recalculate(F);
     83   if (compare(OtherDT)) {
     84     errs() << "DominatorTree is not up to date!\nComputed:\n";
     85     print(errs());
     86     errs() << "\nActual:\n";
     87     OtherDT.print(errs());
     88     abort();
     89   }
     90 }
     91 
     92 void DominatorTree::print(raw_ostream &OS, const Module *) const {
     93   DT->print(OS);
     94 }
     95 
     96 // dominates - Return true if Def dominates a use in User. This performs
     97 // the special checks necessary if Def and User are in the same basic block.
     98 // Note that Def doesn't dominate a use in Def itself!
     99 bool DominatorTree::dominates(const Instruction *Def,
    100                               const Instruction *User) const {
    101   const BasicBlock *UseBB = User->getParent();
    102   const BasicBlock *DefBB = Def->getParent();
    103 
    104   // Any unreachable use is dominated, even if Def == User.
    105   if (!isReachableFromEntry(UseBB))
    106     return true;
    107 
    108   // Unreachable definitions don't dominate anything.
    109   if (!isReachableFromEntry(DefBB))
    110     return false;
    111 
    112   // An instruction doesn't dominate a use in itself.
    113   if (Def == User)
    114     return false;
    115 
    116   // The value defined by an invoke dominates an instruction only if
    117   // it dominates every instruction in UseBB.
    118   // A PHI is dominated only if the instruction dominates every possible use
    119   // in the UseBB.
    120   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
    121     return dominates(Def, UseBB);
    122 
    123   if (DefBB != UseBB)
    124     return dominates(DefBB, UseBB);
    125 
    126   // Loop through the basic block until we find Def or User.
    127   BasicBlock::const_iterator I = DefBB->begin();
    128   for (; &*I != Def && &*I != User; ++I)
    129     /*empty*/;
    130 
    131   return &*I == Def;
    132 }
    133 
    134 // true if Def would dominate a use in any instruction in UseBB.
    135 // note that dominates(Def, Def->getParent()) is false.
    136 bool DominatorTree::dominates(const Instruction *Def,
    137                               const BasicBlock *UseBB) const {
    138   const BasicBlock *DefBB = Def->getParent();
    139 
    140   // Any unreachable use is dominated, even if DefBB == UseBB.
    141   if (!isReachableFromEntry(UseBB))
    142     return true;
    143 
    144   // Unreachable definitions don't dominate anything.
    145   if (!isReachableFromEntry(DefBB))
    146     return false;
    147 
    148   if (DefBB == UseBB)
    149     return false;
    150 
    151   const InvokeInst *II = dyn_cast<InvokeInst>(Def);
    152   if (!II)
    153     return dominates(DefBB, UseBB);
    154 
    155   // Invoke results are only usable in the normal destination, not in the
    156   // exceptional destination.
    157   BasicBlock *NormalDest = II->getNormalDest();
    158   BasicBlockEdge E(DefBB, NormalDest);
    159   return dominates(E, UseBB);
    160 }
    161 
    162 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
    163                               const BasicBlock *UseBB) const {
    164   // Assert that we have a single edge. We could handle them by simply
    165   // returning false, but since isSingleEdge is linear on the number of
    166   // edges, the callers can normally handle them more efficiently.
    167   assert(BBE.isSingleEdge());
    168 
    169   // If the BB the edge ends in doesn't dominate the use BB, then the
    170   // edge also doesn't.
    171   const BasicBlock *Start = BBE.getStart();
    172   const BasicBlock *End = BBE.getEnd();
    173   if (!dominates(End, UseBB))
    174     return false;
    175 
    176   // Simple case: if the end BB has a single predecessor, the fact that it
    177   // dominates the use block implies that the edge also does.
    178   if (End->getSinglePredecessor())
    179     return true;
    180 
    181   // The normal edge from the invoke is critical. Conceptually, what we would
    182   // like to do is split it and check if the new block dominates the use.
    183   // With X being the new block, the graph would look like:
    184   //
    185   //        DefBB
    186   //          /\      .  .
    187   //         /  \     .  .
    188   //        /    \    .  .
    189   //       /      \   |  |
    190   //      A        X  B  C
    191   //      |         \ | /
    192   //      .          \|/
    193   //      .      NormalDest
    194   //      .
    195   //
    196   // Given the definition of dominance, NormalDest is dominated by X iff X
    197   // dominates all of NormalDest's predecessors (X, B, C in the example). X
    198   // trivially dominates itself, so we only have to find if it dominates the
    199   // other predecessors. Since the only way out of X is via NormalDest, X can
    200   // only properly dominate a node if NormalDest dominates that node too.
    201   for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
    202        PI != E; ++PI) {
    203     const BasicBlock *BB = *PI;
    204     if (BB == Start)
    205       continue;
    206 
    207     if (!dominates(End, BB))
    208       return false;
    209   }
    210   return true;
    211 }
    212 
    213 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
    214                               const Use &U) const {
    215   // Assert that we have a single edge. We could handle them by simply
    216   // returning false, but since isSingleEdge is linear on the number of
    217   // edges, the callers can normally handle them more efficiently.
    218   assert(BBE.isSingleEdge());
    219 
    220   Instruction *UserInst = cast<Instruction>(U.getUser());
    221   // A PHI in the end of the edge is dominated by it.
    222   PHINode *PN = dyn_cast<PHINode>(UserInst);
    223   if (PN && PN->getParent() == BBE.getEnd() &&
    224       PN->getIncomingBlock(U) == BBE.getStart())
    225     return true;
    226 
    227   // Otherwise use the edge-dominates-block query, which
    228   // handles the crazy critical edge cases properly.
    229   const BasicBlock *UseBB;
    230   if (PN)
    231     UseBB = PN->getIncomingBlock(U);
    232   else
    233     UseBB = UserInst->getParent();
    234   return dominates(BBE, UseBB);
    235 }
    236 
    237 bool DominatorTree::dominates(const Instruction *Def,
    238                               const Use &U) const {
    239   Instruction *UserInst = cast<Instruction>(U.getUser());
    240   const BasicBlock *DefBB = Def->getParent();
    241 
    242   // Determine the block in which the use happens. PHI nodes use
    243   // their operands on edges; simulate this by thinking of the use
    244   // happening at the end of the predecessor block.
    245   const BasicBlock *UseBB;
    246   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
    247     UseBB = PN->getIncomingBlock(U);
    248   else
    249     UseBB = UserInst->getParent();
    250 
    251   // Any unreachable use is dominated, even if Def == User.
    252   if (!isReachableFromEntry(UseBB))
    253     return true;
    254 
    255   // Unreachable definitions don't dominate anything.
    256   if (!isReachableFromEntry(DefBB))
    257     return false;
    258 
    259   // Invoke instructions define their return values on the edges
    260   // to their normal successors, so we have to handle them specially.
    261   // Among other things, this means they don't dominate anything in
    262   // their own block, except possibly a phi, so we don't need to
    263   // walk the block in any case.
    264   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
    265     BasicBlock *NormalDest = II->getNormalDest();
    266     BasicBlockEdge E(DefBB, NormalDest);
    267     return dominates(E, U);
    268   }
    269 
    270   // If the def and use are in different blocks, do a simple CFG dominator
    271   // tree query.
    272   if (DefBB != UseBB)
    273     return dominates(DefBB, UseBB);
    274 
    275   // Ok, def and use are in the same block. If the def is an invoke, it
    276   // doesn't dominate anything in the block. If it's a PHI, it dominates
    277   // everything in the block.
    278   if (isa<PHINode>(UserInst))
    279     return true;
    280 
    281   // Otherwise, just loop through the basic block until we find Def or User.
    282   BasicBlock::const_iterator I = DefBB->begin();
    283   for (; &*I != Def && &*I != UserInst; ++I)
    284     /*empty*/;
    285 
    286   return &*I != UserInst;
    287 }
    288 
    289 bool DominatorTree::isReachableFromEntry(const Use &U) const {
    290   Instruction *I = dyn_cast<Instruction>(U.getUser());
    291 
    292   // ConstantExprs aren't really reachable from the entry block, but they
    293   // don't need to be treated like unreachable code either.
    294   if (!I) return true;
    295 
    296   // PHI nodes use their operands on their incoming edges.
    297   if (PHINode *PN = dyn_cast<PHINode>(I))
    298     return isReachableFromEntry(PN->getIncomingBlock(U));
    299 
    300   // Everything else uses their operands in their own block.
    301   return isReachableFromEntry(I->getParent());
    302 }
    303