Home | History | Annotate | Download | only in Core
      1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
     15 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
     16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     17 
     18 using namespace clang;
     19 using namespace ento;
     20 
     21 namespace {
     22 class SimpleSValBuilder : public SValBuilder {
     23 protected:
     24   virtual SVal dispatchCast(SVal val, QualType castTy);
     25   virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
     26   virtual SVal evalCastFromLoc(Loc val, QualType castTy);
     27 
     28 public:
     29   SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
     30                     ProgramStateManager &stateMgr)
     31                     : SValBuilder(alloc, context, stateMgr) {}
     32   virtual ~SimpleSValBuilder() {}
     33 
     34   virtual SVal evalMinus(NonLoc val);
     35   virtual SVal evalComplement(NonLoc val);
     36   virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
     37                            NonLoc lhs, NonLoc rhs, QualType resultTy);
     38   virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
     39                            Loc lhs, Loc rhs, QualType resultTy);
     40   virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
     41                            Loc lhs, NonLoc rhs, QualType resultTy);
     42 
     43   /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
     44   ///  (integer) value, that value is returned. Otherwise, returns NULL.
     45   virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V);
     46 
     47   SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
     48                      const llvm::APSInt &RHS, QualType resultTy);
     49 };
     50 } // end anonymous namespace
     51 
     52 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
     53                                            ASTContext &context,
     54                                            ProgramStateManager &stateMgr) {
     55   return new SimpleSValBuilder(alloc, context, stateMgr);
     56 }
     57 
     58 //===----------------------------------------------------------------------===//
     59 // Transfer function for Casts.
     60 //===----------------------------------------------------------------------===//
     61 
     62 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
     63   assert(isa<Loc>(&Val) || isa<NonLoc>(&Val));
     64   return isa<Loc>(Val) ? evalCastFromLoc(cast<Loc>(Val), CastTy)
     65                        : evalCastFromNonLoc(cast<NonLoc>(Val), CastTy);
     66 }
     67 
     68 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
     69 
     70   bool isLocType = Loc::isLocType(castTy);
     71 
     72   if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) {
     73     if (isLocType)
     74       return LI->getLoc();
     75 
     76     // FIXME: Correctly support promotions/truncations.
     77     unsigned castSize = Context.getTypeSize(castTy);
     78     if (castSize == LI->getNumBits())
     79       return val;
     80     return makeLocAsInteger(LI->getLoc(), castSize);
     81   }
     82 
     83   if (const SymExpr *se = val.getAsSymbolicExpression()) {
     84     QualType T = Context.getCanonicalType(se->getType(Context));
     85     // If types are the same or both are integers, ignore the cast.
     86     // FIXME: Remove this hack when we support symbolic truncation/extension.
     87     // HACK: If both castTy and T are integers, ignore the cast.  This is
     88     // not a permanent solution.  Eventually we want to precisely handle
     89     // extension/truncation of symbolic integers.  This prevents us from losing
     90     // precision when we assign 'x = y' and 'y' is symbolic and x and y are
     91     // different integer types.
     92    if (haveSameType(T, castTy))
     93       return val;
     94 
     95     if (!isLocType)
     96       return makeNonLoc(se, T, castTy);
     97     return UnknownVal();
     98   }
     99 
    100   // If value is a non integer constant, produce unknown.
    101   if (!isa<nonloc::ConcreteInt>(val))
    102     return UnknownVal();
    103 
    104   // Only handle casts from integers to integers - if val is an integer constant
    105   // being cast to a non integer type, produce unknown.
    106   if (!isLocType && !castTy->isIntegerType())
    107     return UnknownVal();
    108 
    109   llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue();
    110   BasicVals.getAPSIntType(castTy).apply(i);
    111 
    112   if (isLocType)
    113     return makeIntLocVal(i);
    114   else
    115     return makeIntVal(i);
    116 }
    117 
    118 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
    119 
    120   // Casts from pointers -> pointers, just return the lval.
    121   //
    122   // Casts from pointers -> references, just return the lval.  These
    123   //   can be introduced by the frontend for corner cases, e.g
    124   //   casting from va_list* to __builtin_va_list&.
    125   //
    126   if (Loc::isLocType(castTy) || castTy->isReferenceType())
    127     return val;
    128 
    129   // FIXME: Handle transparent unions where a value can be "transparently"
    130   //  lifted into a union type.
    131   if (castTy->isUnionType())
    132     return UnknownVal();
    133 
    134   if (castTy->isIntegerType()) {
    135     unsigned BitWidth = Context.getTypeSize(castTy);
    136 
    137     if (!isa<loc::ConcreteInt>(val))
    138       return makeLocAsInteger(val, BitWidth);
    139 
    140     llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue();
    141     BasicVals.getAPSIntType(castTy).apply(i);
    142     return makeIntVal(i);
    143   }
    144 
    145   // All other cases: return 'UnknownVal'.  This includes casting pointers
    146   // to floats, which is probably badness it itself, but this is a good
    147   // intermediate solution until we do something better.
    148   return UnknownVal();
    149 }
    150 
    151 //===----------------------------------------------------------------------===//
    152 // Transfer function for unary operators.
    153 //===----------------------------------------------------------------------===//
    154 
    155 SVal SimpleSValBuilder::evalMinus(NonLoc val) {
    156   switch (val.getSubKind()) {
    157   case nonloc::ConcreteIntKind:
    158     return cast<nonloc::ConcreteInt>(val).evalMinus(*this);
    159   default:
    160     return UnknownVal();
    161   }
    162 }
    163 
    164 SVal SimpleSValBuilder::evalComplement(NonLoc X) {
    165   switch (X.getSubKind()) {
    166   case nonloc::ConcreteIntKind:
    167     return cast<nonloc::ConcreteInt>(X).evalComplement(*this);
    168   default:
    169     return UnknownVal();
    170   }
    171 }
    172 
    173 //===----------------------------------------------------------------------===//
    174 // Transfer function for binary operators.
    175 //===----------------------------------------------------------------------===//
    176 
    177 static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
    178   switch (op) {
    179   default:
    180     llvm_unreachable("Invalid opcode.");
    181   case BO_LT: return BO_GE;
    182   case BO_GT: return BO_LE;
    183   case BO_LE: return BO_GT;
    184   case BO_GE: return BO_LT;
    185   case BO_EQ: return BO_NE;
    186   case BO_NE: return BO_EQ;
    187   }
    188 }
    189 
    190 static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
    191   switch (op) {
    192   default:
    193     llvm_unreachable("Invalid opcode.");
    194   case BO_LT: return BO_GT;
    195   case BO_GT: return BO_LT;
    196   case BO_LE: return BO_GE;
    197   case BO_GE: return BO_LE;
    198   case BO_EQ:
    199   case BO_NE:
    200     return op;
    201   }
    202 }
    203 
    204 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
    205                                     BinaryOperator::Opcode op,
    206                                     const llvm::APSInt &RHS,
    207                                     QualType resultTy) {
    208   bool isIdempotent = false;
    209 
    210   // Check for a few special cases with known reductions first.
    211   switch (op) {
    212   default:
    213     // We can't reduce this case; just treat it normally.
    214     break;
    215   case BO_Mul:
    216     // a*0 and a*1
    217     if (RHS == 0)
    218       return makeIntVal(0, resultTy);
    219     else if (RHS == 1)
    220       isIdempotent = true;
    221     break;
    222   case BO_Div:
    223     // a/0 and a/1
    224     if (RHS == 0)
    225       // This is also handled elsewhere.
    226       return UndefinedVal();
    227     else if (RHS == 1)
    228       isIdempotent = true;
    229     break;
    230   case BO_Rem:
    231     // a%0 and a%1
    232     if (RHS == 0)
    233       // This is also handled elsewhere.
    234       return UndefinedVal();
    235     else if (RHS == 1)
    236       return makeIntVal(0, resultTy);
    237     break;
    238   case BO_Add:
    239   case BO_Sub:
    240   case BO_Shl:
    241   case BO_Shr:
    242   case BO_Xor:
    243     // a+0, a-0, a<<0, a>>0, a^0
    244     if (RHS == 0)
    245       isIdempotent = true;
    246     break;
    247   case BO_And:
    248     // a&0 and a&(~0)
    249     if (RHS == 0)
    250       return makeIntVal(0, resultTy);
    251     else if (RHS.isAllOnesValue())
    252       isIdempotent = true;
    253     break;
    254   case BO_Or:
    255     // a|0 and a|(~0)
    256     if (RHS == 0)
    257       isIdempotent = true;
    258     else if (RHS.isAllOnesValue()) {
    259       const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
    260       return nonloc::ConcreteInt(Result);
    261     }
    262     break;
    263   }
    264 
    265   // Idempotent ops (like a*1) can still change the type of an expression.
    266   // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
    267   // dirty work.
    268   if (isIdempotent)
    269       return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
    270 
    271   // If we reach this point, the expression cannot be simplified.
    272   // Make a SymbolVal for the entire expression, after converting the RHS.
    273   const llvm::APSInt *ConvertedRHS = &RHS;
    274   if (BinaryOperator::isComparisonOp(op)) {
    275     // We're looking for a type big enough to compare the symbolic value
    276     // with the given constant.
    277     // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
    278     ASTContext &Ctx = getContext();
    279     QualType SymbolType = LHS->getType(Ctx);
    280     uint64_t ValWidth = RHS.getBitWidth();
    281     uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
    282 
    283     if (ValWidth < TypeWidth) {
    284       // If the value is too small, extend it.
    285       ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
    286     } else if (ValWidth == TypeWidth) {
    287       // If the value is signed but the symbol is unsigned, do the comparison
    288       // in unsigned space. [C99 6.3.1.8]
    289       // (For the opposite case, the value is already unsigned.)
    290       if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
    291         ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
    292     }
    293   } else
    294     ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
    295 
    296   return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
    297 }
    298 
    299 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
    300                                   BinaryOperator::Opcode op,
    301                                   NonLoc lhs, NonLoc rhs,
    302                                   QualType resultTy)  {
    303   NonLoc InputLHS = lhs;
    304   NonLoc InputRHS = rhs;
    305 
    306   // Handle trivial case where left-side and right-side are the same.
    307   if (lhs == rhs)
    308     switch (op) {
    309       default:
    310         break;
    311       case BO_EQ:
    312       case BO_LE:
    313       case BO_GE:
    314         return makeTruthVal(true, resultTy);
    315       case BO_LT:
    316       case BO_GT:
    317       case BO_NE:
    318         return makeTruthVal(false, resultTy);
    319       case BO_Xor:
    320       case BO_Sub:
    321         if (resultTy->isIntegralOrEnumerationType())
    322           return makeIntVal(0, resultTy);
    323         return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
    324       case BO_Or:
    325       case BO_And:
    326         return evalCastFromNonLoc(lhs, resultTy);
    327     }
    328 
    329   while (1) {
    330     switch (lhs.getSubKind()) {
    331     default:
    332       return makeSymExprValNN(state, op, lhs, rhs, resultTy);
    333     case nonloc::LocAsIntegerKind: {
    334       Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc();
    335       switch (rhs.getSubKind()) {
    336         case nonloc::LocAsIntegerKind:
    337           return evalBinOpLL(state, op, lhsL,
    338                              cast<nonloc::LocAsInteger>(rhs).getLoc(),
    339                              resultTy);
    340         case nonloc::ConcreteIntKind: {
    341           // Transform the integer into a location and compare.
    342           llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue();
    343           BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
    344           return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
    345         }
    346         default:
    347           switch (op) {
    348             case BO_EQ:
    349               return makeTruthVal(false, resultTy);
    350             case BO_NE:
    351               return makeTruthVal(true, resultTy);
    352             default:
    353               // This case also handles pointer arithmetic.
    354               return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
    355           }
    356       }
    357     }
    358     case nonloc::ConcreteIntKind: {
    359       llvm::APSInt LHSValue = cast<nonloc::ConcreteInt>(lhs).getValue();
    360 
    361       // If we're dealing with two known constants, just perform the operation.
    362       if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
    363         llvm::APSInt RHSValue = *KnownRHSValue;
    364         if (BinaryOperator::isComparisonOp(op)) {
    365           // We're looking for a type big enough to compare the two values.
    366           // FIXME: This is not correct. char + short will result in a promotion
    367           // to int. Unfortunately we have lost types by this point.
    368           APSIntType CompareType = std::max(APSIntType(LHSValue),
    369                                             APSIntType(RHSValue));
    370           CompareType.apply(LHSValue);
    371           CompareType.apply(RHSValue);
    372         } else if (!BinaryOperator::isShiftOp(op)) {
    373           APSIntType IntType = BasicVals.getAPSIntType(resultTy);
    374           IntType.apply(LHSValue);
    375           IntType.apply(RHSValue);
    376         }
    377 
    378         const llvm::APSInt *Result =
    379           BasicVals.evalAPSInt(op, LHSValue, RHSValue);
    380         if (!Result)
    381           return UndefinedVal();
    382 
    383         return nonloc::ConcreteInt(*Result);
    384       }
    385 
    386       // Swap the left and right sides and flip the operator if doing so
    387       // allows us to better reason about the expression (this is a form
    388       // of expression canonicalization).
    389       // While we're at it, catch some special cases for non-commutative ops.
    390       switch (op) {
    391       case BO_LT:
    392       case BO_GT:
    393       case BO_LE:
    394       case BO_GE:
    395         op = ReverseComparison(op);
    396         // FALL-THROUGH
    397       case BO_EQ:
    398       case BO_NE:
    399       case BO_Add:
    400       case BO_Mul:
    401       case BO_And:
    402       case BO_Xor:
    403       case BO_Or:
    404         std::swap(lhs, rhs);
    405         continue;
    406       case BO_Shr:
    407         // (~0)>>a
    408         if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
    409           return evalCastFromNonLoc(lhs, resultTy);
    410         // FALL-THROUGH
    411       case BO_Shl:
    412         // 0<<a and 0>>a
    413         if (LHSValue == 0)
    414           return evalCastFromNonLoc(lhs, resultTy);
    415         return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
    416       default:
    417         return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
    418       }
    419     }
    420     case nonloc::SymbolValKind: {
    421       // We only handle LHS as simple symbols or SymIntExprs.
    422       SymbolRef Sym = cast<nonloc::SymbolVal>(lhs).getSymbol();
    423 
    424       // LHS is a symbolic expression.
    425       if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
    426 
    427         // Is this a logical not? (!x is represented as x == 0.)
    428         if (op == BO_EQ && rhs.isZeroConstant()) {
    429           // We know how to negate certain expressions. Simplify them here.
    430 
    431           BinaryOperator::Opcode opc = symIntExpr->getOpcode();
    432           switch (opc) {
    433           default:
    434             // We don't know how to negate this operation.
    435             // Just handle it as if it were a normal comparison to 0.
    436             break;
    437           case BO_LAnd:
    438           case BO_LOr:
    439             llvm_unreachable("Logical operators handled by branching logic.");
    440           case BO_Assign:
    441           case BO_MulAssign:
    442           case BO_DivAssign:
    443           case BO_RemAssign:
    444           case BO_AddAssign:
    445           case BO_SubAssign:
    446           case BO_ShlAssign:
    447           case BO_ShrAssign:
    448           case BO_AndAssign:
    449           case BO_XorAssign:
    450           case BO_OrAssign:
    451           case BO_Comma:
    452             llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
    453           case BO_PtrMemD:
    454           case BO_PtrMemI:
    455             llvm_unreachable("Pointer arithmetic not handled here.");
    456           case BO_LT:
    457           case BO_GT:
    458           case BO_LE:
    459           case BO_GE:
    460           case BO_EQ:
    461           case BO_NE:
    462             // Negate the comparison and make a value.
    463             opc = NegateComparison(opc);
    464             assert(symIntExpr->getType(Context) == resultTy);
    465             return makeNonLoc(symIntExpr->getLHS(), opc,
    466                 symIntExpr->getRHS(), resultTy);
    467           }
    468         }
    469 
    470         // For now, only handle expressions whose RHS is a constant.
    471         if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
    472           // If both the LHS and the current expression are additive,
    473           // fold their constants and try again.
    474           if (BinaryOperator::isAdditiveOp(op)) {
    475             BinaryOperator::Opcode lop = symIntExpr->getOpcode();
    476             if (BinaryOperator::isAdditiveOp(lop)) {
    477               // Convert the two constants to a common type, then combine them.
    478 
    479               // resultTy may not be the best type to convert to, but it's
    480               // probably the best choice in expressions with mixed type
    481               // (such as x+1U+2LL). The rules for implicit conversions should
    482               // choose a reasonable type to preserve the expression, and will
    483               // at least match how the value is going to be used.
    484               APSIntType IntType = BasicVals.getAPSIntType(resultTy);
    485               const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
    486               const llvm::APSInt &second = IntType.convert(*RHSValue);
    487 
    488               const llvm::APSInt *newRHS;
    489               if (lop == op)
    490                 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
    491               else
    492                 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
    493 
    494               assert(newRHS && "Invalid operation despite common type!");
    495               rhs = nonloc::ConcreteInt(*newRHS);
    496               lhs = nonloc::SymbolVal(symIntExpr->getLHS());
    497               op = lop;
    498               continue;
    499             }
    500           }
    501 
    502           // Otherwise, make a SymIntExpr out of the expression.
    503           return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
    504         }
    505 
    506 
    507       } else if (isa<SymbolData>(Sym)) {
    508         // Does the symbol simplify to a constant?  If so, "fold" the constant
    509         // by setting 'lhs' to a ConcreteInt and try again.
    510         if (const llvm::APSInt *Constant = state->getConstraintManager()
    511                                                   .getSymVal(state, Sym)) {
    512           lhs = nonloc::ConcreteInt(*Constant);
    513           continue;
    514         }
    515 
    516         // Is the RHS a constant?
    517         if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
    518           return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
    519       }
    520 
    521       // Give up -- this is not a symbolic expression we can handle.
    522       return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
    523     }
    524     }
    525   }
    526 }
    527 
    528 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
    529 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
    530                                   BinaryOperator::Opcode op,
    531                                   Loc lhs, Loc rhs,
    532                                   QualType resultTy) {
    533   // Only comparisons and subtractions are valid operations on two pointers.
    534   // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
    535   // However, if a pointer is casted to an integer, evalBinOpNN may end up
    536   // calling this function with another operation (PR7527). We don't attempt to
    537   // model this for now, but it could be useful, particularly when the
    538   // "location" is actually an integer value that's been passed through a void*.
    539   if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
    540     return UnknownVal();
    541 
    542   // Special cases for when both sides are identical.
    543   if (lhs == rhs) {
    544     switch (op) {
    545     default:
    546       llvm_unreachable("Unimplemented operation for two identical values");
    547     case BO_Sub:
    548       return makeZeroVal(resultTy);
    549     case BO_EQ:
    550     case BO_LE:
    551     case BO_GE:
    552       return makeTruthVal(true, resultTy);
    553     case BO_NE:
    554     case BO_LT:
    555     case BO_GT:
    556       return makeTruthVal(false, resultTy);
    557     }
    558   }
    559 
    560   switch (lhs.getSubKind()) {
    561   default:
    562     llvm_unreachable("Ordering not implemented for this Loc.");
    563 
    564   case loc::GotoLabelKind:
    565     // The only thing we know about labels is that they're non-null.
    566     if (rhs.isZeroConstant()) {
    567       switch (op) {
    568       default:
    569         break;
    570       case BO_Sub:
    571         return evalCastFromLoc(lhs, resultTy);
    572       case BO_EQ:
    573       case BO_LE:
    574       case BO_LT:
    575         return makeTruthVal(false, resultTy);
    576       case BO_NE:
    577       case BO_GT:
    578       case BO_GE:
    579         return makeTruthVal(true, resultTy);
    580       }
    581     }
    582     // There may be two labels for the same location, and a function region may
    583     // have the same address as a label at the start of the function (depending
    584     // on the ABI).
    585     // FIXME: we can probably do a comparison against other MemRegions, though.
    586     // FIXME: is there a way to tell if two labels refer to the same location?
    587     return UnknownVal();
    588 
    589   case loc::ConcreteIntKind: {
    590     // If one of the operands is a symbol and the other is a constant,
    591     // build an expression for use by the constraint manager.
    592     if (SymbolRef rSym = rhs.getAsLocSymbol()) {
    593       // We can only build expressions with symbols on the left,
    594       // so we need a reversible operator.
    595       if (!BinaryOperator::isComparisonOp(op))
    596         return UnknownVal();
    597 
    598       const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue();
    599       return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
    600     }
    601 
    602     // If both operands are constants, just perform the operation.
    603     if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
    604       SVal ResultVal = cast<loc::ConcreteInt>(lhs).evalBinOp(BasicVals, op,
    605                                                              *rInt);
    606       if (Loc *Result = dyn_cast<Loc>(&ResultVal))
    607         return evalCastFromLoc(*Result, resultTy);
    608       else
    609         return UnknownVal();
    610     }
    611 
    612     // Special case comparisons against NULL.
    613     // This must come after the test if the RHS is a symbol, which is used to
    614     // build constraints. The address of any non-symbolic region is guaranteed
    615     // to be non-NULL, as is any label.
    616     assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs));
    617     if (lhs.isZeroConstant()) {
    618       switch (op) {
    619       default:
    620         break;
    621       case BO_EQ:
    622       case BO_GT:
    623       case BO_GE:
    624         return makeTruthVal(false, resultTy);
    625       case BO_NE:
    626       case BO_LT:
    627       case BO_LE:
    628         return makeTruthVal(true, resultTy);
    629       }
    630     }
    631 
    632     // Comparing an arbitrary integer to a region or label address is
    633     // completely unknowable.
    634     return UnknownVal();
    635   }
    636   case loc::MemRegionKind: {
    637     if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
    638       // If one of the operands is a symbol and the other is a constant,
    639       // build an expression for use by the constraint manager.
    640       if (SymbolRef lSym = lhs.getAsLocSymbol())
    641         return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
    642 
    643       // Special case comparisons to NULL.
    644       // This must come after the test if the LHS is a symbol, which is used to
    645       // build constraints. The address of any non-symbolic region is guaranteed
    646       // to be non-NULL.
    647       if (rInt->isZeroConstant()) {
    648         switch (op) {
    649         default:
    650           break;
    651         case BO_Sub:
    652           return evalCastFromLoc(lhs, resultTy);
    653         case BO_EQ:
    654         case BO_LT:
    655         case BO_LE:
    656           return makeTruthVal(false, resultTy);
    657         case BO_NE:
    658         case BO_GT:
    659         case BO_GE:
    660           return makeTruthVal(true, resultTy);
    661         }
    662       }
    663 
    664       // Comparing a region to an arbitrary integer is completely unknowable.
    665       return UnknownVal();
    666     }
    667 
    668     // Get both values as regions, if possible.
    669     const MemRegion *LeftMR = lhs.getAsRegion();
    670     assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
    671 
    672     const MemRegion *RightMR = rhs.getAsRegion();
    673     if (!RightMR)
    674       // The RHS is probably a label, which in theory could address a region.
    675       // FIXME: we can probably make a more useful statement about non-code
    676       // regions, though.
    677       return UnknownVal();
    678 
    679     const MemSpaceRegion *LeftMS = LeftMR->getMemorySpace();
    680     const MemSpaceRegion *RightMS = RightMR->getMemorySpace();
    681     const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
    682     const MemRegion *LeftBase = LeftMR->getBaseRegion();
    683     const MemRegion *RightBase = RightMR->getBaseRegion();
    684 
    685     // If the two regions are from different known memory spaces they cannot be
    686     // equal. Also, assume that no symbolic region (whose memory space is
    687     // unknown) is on the stack.
    688     if (LeftMS != RightMS &&
    689         ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
    690          (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
    691       switch (op) {
    692       default:
    693         return UnknownVal();
    694       case BO_EQ:
    695         return makeTruthVal(false, resultTy);
    696       case BO_NE:
    697         return makeTruthVal(true, resultTy);
    698       }
    699     }
    700 
    701     // If both values wrap regions, see if they're from different base regions.
    702     // Note, heap base symbolic regions are assumed to not alias with
    703     // each other; for example, we assume that malloc returns different address
    704     // on each invocation.
    705     if (LeftBase != RightBase &&
    706         ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
    707          (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
    708       switch (op) {
    709       default:
    710         return UnknownVal();
    711       case BO_EQ:
    712         return makeTruthVal(false, resultTy);
    713       case BO_NE:
    714         return makeTruthVal(true, resultTy);
    715       }
    716     }
    717 
    718     // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
    719     // ElementRegion path and the FieldRegion path below should be unified.
    720     if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
    721       // First see if the right region is also an ElementRegion.
    722       const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
    723       if (!RightER)
    724         return UnknownVal();
    725 
    726       // Next, see if the two ERs have the same super-region and matching types.
    727       // FIXME: This should do something useful even if the types don't match,
    728       // though if both indexes are constant the RegionRawOffset path will
    729       // give the correct answer.
    730       if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
    731           LeftER->getElementType() == RightER->getElementType()) {
    732         // Get the left index and cast it to the correct type.
    733         // If the index is unknown or undefined, bail out here.
    734         SVal LeftIndexVal = LeftER->getIndex();
    735         NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
    736         if (!LeftIndex)
    737           return UnknownVal();
    738         LeftIndexVal = evalCastFromNonLoc(*LeftIndex, resultTy);
    739         LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
    740         if (!LeftIndex)
    741           return UnknownVal();
    742 
    743         // Do the same for the right index.
    744         SVal RightIndexVal = RightER->getIndex();
    745         NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
    746         if (!RightIndex)
    747           return UnknownVal();
    748         RightIndexVal = evalCastFromNonLoc(*RightIndex, resultTy);
    749         RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
    750         if (!RightIndex)
    751           return UnknownVal();
    752 
    753         // Actually perform the operation.
    754         // evalBinOpNN expects the two indexes to already be the right type.
    755         return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
    756       }
    757 
    758       // If the element indexes aren't comparable, see if the raw offsets are.
    759       RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
    760       RegionRawOffset RightOffset = RightER->getAsArrayOffset();
    761 
    762       if (LeftOffset.getRegion() != NULL &&
    763           LeftOffset.getRegion() == RightOffset.getRegion()) {
    764         CharUnits left = LeftOffset.getOffset();
    765         CharUnits right = RightOffset.getOffset();
    766 
    767         switch (op) {
    768         default:
    769           return UnknownVal();
    770         case BO_LT:
    771           return makeTruthVal(left < right, resultTy);
    772         case BO_GT:
    773           return makeTruthVal(left > right, resultTy);
    774         case BO_LE:
    775           return makeTruthVal(left <= right, resultTy);
    776         case BO_GE:
    777           return makeTruthVal(left >= right, resultTy);
    778         case BO_EQ:
    779           return makeTruthVal(left == right, resultTy);
    780         case BO_NE:
    781           return makeTruthVal(left != right, resultTy);
    782         }
    783       }
    784 
    785       // If we get here, we have no way of comparing the ElementRegions.
    786       return UnknownVal();
    787     }
    788 
    789     // See if both regions are fields of the same structure.
    790     // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
    791     if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
    792       // Only comparisons are meaningful here!
    793       if (!BinaryOperator::isComparisonOp(op))
    794         return UnknownVal();
    795 
    796       // First see if the right region is also a FieldRegion.
    797       const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
    798       if (!RightFR)
    799         return UnknownVal();
    800 
    801       // Next, see if the two FRs have the same super-region.
    802       // FIXME: This doesn't handle casts yet, and simply stripping the casts
    803       // doesn't help.
    804       if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
    805         return UnknownVal();
    806 
    807       const FieldDecl *LeftFD = LeftFR->getDecl();
    808       const FieldDecl *RightFD = RightFR->getDecl();
    809       const RecordDecl *RD = LeftFD->getParent();
    810 
    811       // Make sure the two FRs are from the same kind of record. Just in case!
    812       // FIXME: This is probably where inheritance would be a problem.
    813       if (RD != RightFD->getParent())
    814         return UnknownVal();
    815 
    816       // We know for sure that the two fields are not the same, since that
    817       // would have given us the same SVal.
    818       if (op == BO_EQ)
    819         return makeTruthVal(false, resultTy);
    820       if (op == BO_NE)
    821         return makeTruthVal(true, resultTy);
    822 
    823       // Iterate through the fields and see which one comes first.
    824       // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
    825       // members and the units in which bit-fields reside have addresses that
    826       // increase in the order in which they are declared."
    827       bool leftFirst = (op == BO_LT || op == BO_LE);
    828       for (RecordDecl::field_iterator I = RD->field_begin(),
    829            E = RD->field_end(); I!=E; ++I) {
    830         if (*I == LeftFD)
    831           return makeTruthVal(leftFirst, resultTy);
    832         if (*I == RightFD)
    833           return makeTruthVal(!leftFirst, resultTy);
    834       }
    835 
    836       llvm_unreachable("Fields not found in parent record's definition");
    837     }
    838 
    839     // If we get here, we have no way of comparing the regions.
    840     return UnknownVal();
    841   }
    842   }
    843 }
    844 
    845 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
    846                                   BinaryOperator::Opcode op,
    847                                   Loc lhs, NonLoc rhs, QualType resultTy) {
    848 
    849   // Special case: rhs is a zero constant.
    850   if (rhs.isZeroConstant())
    851     return lhs;
    852 
    853   // Special case: 'rhs' is an integer that has the same width as a pointer and
    854   // we are using the integer location in a comparison.  Normally this cannot be
    855   // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32
    856   // can generate comparisons that trigger this code.
    857   // FIXME: Are all locations guaranteed to have pointer width?
    858   if (BinaryOperator::isComparisonOp(op)) {
    859     if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
    860       const llvm::APSInt *x = &rhsInt->getValue();
    861       ASTContext &ctx = Context;
    862       if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
    863         // Convert the signedness of the integer (if necessary).
    864         if (x->isSigned())
    865           x = &getBasicValueFactory().getValue(*x, true);
    866 
    867         return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
    868       }
    869     }
    870     return UnknownVal();
    871   }
    872 
    873   // We are dealing with pointer arithmetic.
    874 
    875   // Handle pointer arithmetic on constant values.
    876   if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
    877     if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) {
    878       const llvm::APSInt &leftI = lhsInt->getValue();
    879       assert(leftI.isUnsigned());
    880       llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
    881 
    882       // Convert the bitwidth of rightI.  This should deal with overflow
    883       // since we are dealing with concrete values.
    884       rightI = rightI.extOrTrunc(leftI.getBitWidth());
    885 
    886       // Offset the increment by the pointer size.
    887       llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
    888       rightI *= Multiplicand;
    889 
    890       // Compute the adjusted pointer.
    891       switch (op) {
    892         case BO_Add:
    893           rightI = leftI + rightI;
    894           break;
    895         case BO_Sub:
    896           rightI = leftI - rightI;
    897           break;
    898         default:
    899           llvm_unreachable("Invalid pointer arithmetic operation");
    900       }
    901       return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
    902     }
    903   }
    904 
    905   // Handle cases where 'lhs' is a region.
    906   if (const MemRegion *region = lhs.getAsRegion()) {
    907     rhs = cast<NonLoc>(convertToArrayIndex(rhs));
    908     SVal index = UnknownVal();
    909     const MemRegion *superR = 0;
    910     QualType elementType;
    911 
    912     if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
    913       assert(op == BO_Add || op == BO_Sub);
    914       index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
    915                           getArrayIndexType());
    916       superR = elemReg->getSuperRegion();
    917       elementType = elemReg->getElementType();
    918     }
    919     else if (isa<SubRegion>(region)) {
    920       superR = region;
    921       index = rhs;
    922       if (resultTy->isAnyPointerType())
    923         elementType = resultTy->getPointeeType();
    924     }
    925 
    926     if (NonLoc *indexV = dyn_cast<NonLoc>(&index)) {
    927       return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
    928                                                        superR, getContext()));
    929     }
    930   }
    931   return UnknownVal();
    932 }
    933 
    934 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
    935                                                    SVal V) {
    936   if (V.isUnknownOrUndef())
    937     return NULL;
    938 
    939   if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V))
    940     return &X->getValue();
    941 
    942   if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V))
    943     return &X->getValue();
    944 
    945   if (SymbolRef Sym = V.getAsSymbol())
    946     return state->getConstraintManager().getSymVal(state, Sym);
    947 
    948   // FIXME: Add support for SymExprs.
    949   return NULL;
    950 }
    951