Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Implements semantic analysis for C++ expressions.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Sema/SemaInternal.h"
     16 #include "clang/Sema/DeclSpec.h"
     17 #include "clang/Sema/Initialization.h"
     18 #include "clang/Sema/Lookup.h"
     19 #include "clang/Sema/ParsedTemplate.h"
     20 #include "clang/Sema/ScopeInfo.h"
     21 #include "clang/Sema/Scope.h"
     22 #include "clang/Sema/TemplateDeduction.h"
     23 #include "clang/AST/ASTContext.h"
     24 #include "clang/AST/CharUnits.h"
     25 #include "clang/AST/CXXInheritance.h"
     26 #include "clang/AST/DeclObjC.h"
     27 #include "clang/AST/ExprCXX.h"
     28 #include "clang/AST/ExprObjC.h"
     29 #include "clang/AST/TypeLoc.h"
     30 #include "clang/Basic/PartialDiagnostic.h"
     31 #include "clang/Basic/TargetInfo.h"
     32 #include "clang/Lex/Preprocessor.h"
     33 #include "TypeLocBuilder.h"
     34 #include "llvm/ADT/APInt.h"
     35 #include "llvm/ADT/STLExtras.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 using namespace clang;
     38 using namespace sema;
     39 
     40 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
     41                                    IdentifierInfo &II,
     42                                    SourceLocation NameLoc,
     43                                    Scope *S, CXXScopeSpec &SS,
     44                                    ParsedType ObjectTypePtr,
     45                                    bool EnteringContext) {
     46   // Determine where to perform name lookup.
     47 
     48   // FIXME: This area of the standard is very messy, and the current
     49   // wording is rather unclear about which scopes we search for the
     50   // destructor name; see core issues 399 and 555. Issue 399 in
     51   // particular shows where the current description of destructor name
     52   // lookup is completely out of line with existing practice, e.g.,
     53   // this appears to be ill-formed:
     54   //
     55   //   namespace N {
     56   //     template <typename T> struct S {
     57   //       ~S();
     58   //     };
     59   //   }
     60   //
     61   //   void f(N::S<int>* s) {
     62   //     s->N::S<int>::~S();
     63   //   }
     64   //
     65   // See also PR6358 and PR6359.
     66   // For this reason, we're currently only doing the C++03 version of this
     67   // code; the C++0x version has to wait until we get a proper spec.
     68   QualType SearchType;
     69   DeclContext *LookupCtx = 0;
     70   bool isDependent = false;
     71   bool LookInScope = false;
     72 
     73   // If we have an object type, it's because we are in a
     74   // pseudo-destructor-expression or a member access expression, and
     75   // we know what type we're looking for.
     76   if (ObjectTypePtr)
     77     SearchType = GetTypeFromParser(ObjectTypePtr);
     78 
     79   if (SS.isSet()) {
     80     NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
     81 
     82     bool AlreadySearched = false;
     83     bool LookAtPrefix = true;
     84     // C++ [basic.lookup.qual]p6:
     85     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
     86     //   the type-names are looked up as types in the scope designated by the
     87     //   nested-name-specifier. In a qualified-id of the form:
     88     //
     89     //     ::[opt] nested-name-specifier  ~ class-name
     90     //
     91     //   where the nested-name-specifier designates a namespace scope, and in
     92     //   a qualified-id of the form:
     93     //
     94     //     ::opt nested-name-specifier class-name ::  ~ class-name
     95     //
     96     //   the class-names are looked up as types in the scope designated by
     97     //   the nested-name-specifier.
     98     //
     99     // Here, we check the first case (completely) and determine whether the
    100     // code below is permitted to look at the prefix of the
    101     // nested-name-specifier.
    102     DeclContext *DC = computeDeclContext(SS, EnteringContext);
    103     if (DC && DC->isFileContext()) {
    104       AlreadySearched = true;
    105       LookupCtx = DC;
    106       isDependent = false;
    107     } else if (DC && isa<CXXRecordDecl>(DC))
    108       LookAtPrefix = false;
    109 
    110     // The second case from the C++03 rules quoted further above.
    111     NestedNameSpecifier *Prefix = 0;
    112     if (AlreadySearched) {
    113       // Nothing left to do.
    114     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
    115       CXXScopeSpec PrefixSS;
    116       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
    117       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
    118       isDependent = isDependentScopeSpecifier(PrefixSS);
    119     } else if (ObjectTypePtr) {
    120       LookupCtx = computeDeclContext(SearchType);
    121       isDependent = SearchType->isDependentType();
    122     } else {
    123       LookupCtx = computeDeclContext(SS, EnteringContext);
    124       isDependent = LookupCtx && LookupCtx->isDependentContext();
    125     }
    126 
    127     LookInScope = false;
    128   } else if (ObjectTypePtr) {
    129     // C++ [basic.lookup.classref]p3:
    130     //   If the unqualified-id is ~type-name, the type-name is looked up
    131     //   in the context of the entire postfix-expression. If the type T
    132     //   of the object expression is of a class type C, the type-name is
    133     //   also looked up in the scope of class C. At least one of the
    134     //   lookups shall find a name that refers to (possibly
    135     //   cv-qualified) T.
    136     LookupCtx = computeDeclContext(SearchType);
    137     isDependent = SearchType->isDependentType();
    138     assert((isDependent || !SearchType->isIncompleteType()) &&
    139            "Caller should have completed object type");
    140 
    141     LookInScope = true;
    142   } else {
    143     // Perform lookup into the current scope (only).
    144     LookInScope = true;
    145   }
    146 
    147   TypeDecl *NonMatchingTypeDecl = 0;
    148   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
    149   for (unsigned Step = 0; Step != 2; ++Step) {
    150     // Look for the name first in the computed lookup context (if we
    151     // have one) and, if that fails to find a match, in the scope (if
    152     // we're allowed to look there).
    153     Found.clear();
    154     if (Step == 0 && LookupCtx)
    155       LookupQualifiedName(Found, LookupCtx);
    156     else if (Step == 1 && LookInScope && S)
    157       LookupName(Found, S);
    158     else
    159       continue;
    160 
    161     // FIXME: Should we be suppressing ambiguities here?
    162     if (Found.isAmbiguous())
    163       return ParsedType();
    164 
    165     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
    166       QualType T = Context.getTypeDeclType(Type);
    167 
    168       if (SearchType.isNull() || SearchType->isDependentType() ||
    169           Context.hasSameUnqualifiedType(T, SearchType)) {
    170         // We found our type!
    171 
    172         return ParsedType::make(T);
    173       }
    174 
    175       if (!SearchType.isNull())
    176         NonMatchingTypeDecl = Type;
    177     }
    178 
    179     // If the name that we found is a class template name, and it is
    180     // the same name as the template name in the last part of the
    181     // nested-name-specifier (if present) or the object type, then
    182     // this is the destructor for that class.
    183     // FIXME: This is a workaround until we get real drafting for core
    184     // issue 399, for which there isn't even an obvious direction.
    185     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
    186       QualType MemberOfType;
    187       if (SS.isSet()) {
    188         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
    189           // Figure out the type of the context, if it has one.
    190           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
    191             MemberOfType = Context.getTypeDeclType(Record);
    192         }
    193       }
    194       if (MemberOfType.isNull())
    195         MemberOfType = SearchType;
    196 
    197       if (MemberOfType.isNull())
    198         continue;
    199 
    200       // We're referring into a class template specialization. If the
    201       // class template we found is the same as the template being
    202       // specialized, we found what we are looking for.
    203       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
    204         if (ClassTemplateSpecializationDecl *Spec
    205               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
    206           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
    207                 Template->getCanonicalDecl())
    208             return ParsedType::make(MemberOfType);
    209         }
    210 
    211         continue;
    212       }
    213 
    214       // We're referring to an unresolved class template
    215       // specialization. Determine whether we class template we found
    216       // is the same as the template being specialized or, if we don't
    217       // know which template is being specialized, that it at least
    218       // has the same name.
    219       if (const TemplateSpecializationType *SpecType
    220             = MemberOfType->getAs<TemplateSpecializationType>()) {
    221         TemplateName SpecName = SpecType->getTemplateName();
    222 
    223         // The class template we found is the same template being
    224         // specialized.
    225         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
    226           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
    227             return ParsedType::make(MemberOfType);
    228 
    229           continue;
    230         }
    231 
    232         // The class template we found has the same name as the
    233         // (dependent) template name being specialized.
    234         if (DependentTemplateName *DepTemplate
    235                                     = SpecName.getAsDependentTemplateName()) {
    236           if (DepTemplate->isIdentifier() &&
    237               DepTemplate->getIdentifier() == Template->getIdentifier())
    238             return ParsedType::make(MemberOfType);
    239 
    240           continue;
    241         }
    242       }
    243     }
    244   }
    245 
    246   if (isDependent) {
    247     // We didn't find our type, but that's okay: it's dependent
    248     // anyway.
    249 
    250     // FIXME: What if we have no nested-name-specifier?
    251     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
    252                                    SS.getWithLocInContext(Context),
    253                                    II, NameLoc);
    254     return ParsedType::make(T);
    255   }
    256 
    257   if (NonMatchingTypeDecl) {
    258     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
    259     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
    260       << T << SearchType;
    261     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
    262       << T;
    263   } else if (ObjectTypePtr)
    264     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
    265       << &II;
    266   else
    267     Diag(NameLoc, diag::err_destructor_class_name);
    268 
    269   return ParsedType();
    270 }
    271 
    272 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
    273     if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
    274       return ParsedType();
    275     assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
    276            && "only get destructor types from declspecs");
    277     QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
    278     QualType SearchType = GetTypeFromParser(ObjectType);
    279     if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
    280       return ParsedType::make(T);
    281     }
    282 
    283     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
    284       << T << SearchType;
    285     return ParsedType();
    286 }
    287 
    288 /// \brief Build a C++ typeid expression with a type operand.
    289 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    290                                 SourceLocation TypeidLoc,
    291                                 TypeSourceInfo *Operand,
    292                                 SourceLocation RParenLoc) {
    293   // C++ [expr.typeid]p4:
    294   //   The top-level cv-qualifiers of the lvalue expression or the type-id
    295   //   that is the operand of typeid are always ignored.
    296   //   If the type of the type-id is a class type or a reference to a class
    297   //   type, the class shall be completely-defined.
    298   Qualifiers Quals;
    299   QualType T
    300     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
    301                                       Quals);
    302   if (T->getAs<RecordType>() &&
    303       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    304     return ExprError();
    305 
    306   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
    307                                            Operand,
    308                                            SourceRange(TypeidLoc, RParenLoc)));
    309 }
    310 
    311 /// \brief Build a C++ typeid expression with an expression operand.
    312 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    313                                 SourceLocation TypeidLoc,
    314                                 Expr *E,
    315                                 SourceLocation RParenLoc) {
    316   if (E && !E->isTypeDependent()) {
    317     if (E->getType()->isPlaceholderType()) {
    318       ExprResult result = CheckPlaceholderExpr(E);
    319       if (result.isInvalid()) return ExprError();
    320       E = result.take();
    321     }
    322 
    323     QualType T = E->getType();
    324     if (const RecordType *RecordT = T->getAs<RecordType>()) {
    325       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
    326       // C++ [expr.typeid]p3:
    327       //   [...] If the type of the expression is a class type, the class
    328       //   shall be completely-defined.
    329       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    330         return ExprError();
    331 
    332       // C++ [expr.typeid]p3:
    333       //   When typeid is applied to an expression other than an glvalue of a
    334       //   polymorphic class type [...] [the] expression is an unevaluated
    335       //   operand. [...]
    336       if (RecordD->isPolymorphic() && E->isGLValue()) {
    337         // The subexpression is potentially evaluated; switch the context
    338         // and recheck the subexpression.
    339         ExprResult Result = TranformToPotentiallyEvaluated(E);
    340         if (Result.isInvalid()) return ExprError();
    341         E = Result.take();
    342 
    343         // We require a vtable to query the type at run time.
    344         MarkVTableUsed(TypeidLoc, RecordD);
    345       }
    346     }
    347 
    348     // C++ [expr.typeid]p4:
    349     //   [...] If the type of the type-id is a reference to a possibly
    350     //   cv-qualified type, the result of the typeid expression refers to a
    351     //   std::type_info object representing the cv-unqualified referenced
    352     //   type.
    353     Qualifiers Quals;
    354     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
    355     if (!Context.hasSameType(T, UnqualT)) {
    356       T = UnqualT;
    357       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
    358     }
    359   }
    360 
    361   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
    362                                            E,
    363                                            SourceRange(TypeidLoc, RParenLoc)));
    364 }
    365 
    366 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
    367 ExprResult
    368 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
    369                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    370   // Find the std::type_info type.
    371   if (!getStdNamespace())
    372     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    373 
    374   if (!CXXTypeInfoDecl) {
    375     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
    376     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
    377     LookupQualifiedName(R, getStdNamespace());
    378     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    379     // Microsoft's typeinfo doesn't have type_info in std but in the global
    380     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
    381     if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
    382       LookupQualifiedName(R, Context.getTranslationUnitDecl());
    383       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    384     }
    385     if (!CXXTypeInfoDecl)
    386       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    387   }
    388 
    389   if (!getLangOpts().RTTI) {
    390     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
    391   }
    392 
    393   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
    394 
    395   if (isType) {
    396     // The operand is a type; handle it as such.
    397     TypeSourceInfo *TInfo = 0;
    398     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    399                                    &TInfo);
    400     if (T.isNull())
    401       return ExprError();
    402 
    403     if (!TInfo)
    404       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    405 
    406     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
    407   }
    408 
    409   // The operand is an expression.
    410   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    411 }
    412 
    413 /// Retrieve the UuidAttr associated with QT.
    414 static UuidAttr *GetUuidAttrOfType(QualType QT) {
    415   // Optionally remove one level of pointer, reference or array indirection.
    416   const Type *Ty = QT.getTypePtr();
    417   if (QT->isPointerType() || QT->isReferenceType())
    418     Ty = QT->getPointeeType().getTypePtr();
    419   else if (QT->isArrayType())
    420     Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
    421 
    422   // Loop all record redeclaration looking for an uuid attribute.
    423   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
    424   for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
    425        E = RD->redecls_end(); I != E; ++I) {
    426     if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
    427       return Uuid;
    428   }
    429 
    430   return 0;
    431 }
    432 
    433 /// \brief Build a Microsoft __uuidof expression with a type operand.
    434 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    435                                 SourceLocation TypeidLoc,
    436                                 TypeSourceInfo *Operand,
    437                                 SourceLocation RParenLoc) {
    438   if (!Operand->getType()->isDependentType()) {
    439     if (!GetUuidAttrOfType(Operand->getType()))
    440       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    441   }
    442 
    443   // FIXME: add __uuidof semantic analysis for type operand.
    444   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
    445                                            Operand,
    446                                            SourceRange(TypeidLoc, RParenLoc)));
    447 }
    448 
    449 /// \brief Build a Microsoft __uuidof expression with an expression operand.
    450 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    451                                 SourceLocation TypeidLoc,
    452                                 Expr *E,
    453                                 SourceLocation RParenLoc) {
    454   if (!E->getType()->isDependentType()) {
    455     if (!GetUuidAttrOfType(E->getType()) &&
    456         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
    457       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    458   }
    459   // FIXME: add __uuidof semantic analysis for type operand.
    460   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
    461                                            E,
    462                                            SourceRange(TypeidLoc, RParenLoc)));
    463 }
    464 
    465 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
    466 ExprResult
    467 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
    468                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    469   // If MSVCGuidDecl has not been cached, do the lookup.
    470   if (!MSVCGuidDecl) {
    471     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
    472     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
    473     LookupQualifiedName(R, Context.getTranslationUnitDecl());
    474     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
    475     if (!MSVCGuidDecl)
    476       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
    477   }
    478 
    479   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
    480 
    481   if (isType) {
    482     // The operand is a type; handle it as such.
    483     TypeSourceInfo *TInfo = 0;
    484     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    485                                    &TInfo);
    486     if (T.isNull())
    487       return ExprError();
    488 
    489     if (!TInfo)
    490       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    491 
    492     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
    493   }
    494 
    495   // The operand is an expression.
    496   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    497 }
    498 
    499 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
    500 ExprResult
    501 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
    502   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
    503          "Unknown C++ Boolean value!");
    504   return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
    505                                                 Context.BoolTy, OpLoc));
    506 }
    507 
    508 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
    509 ExprResult
    510 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
    511   return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
    512 }
    513 
    514 /// ActOnCXXThrow - Parse throw expressions.
    515 ExprResult
    516 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
    517   bool IsThrownVarInScope = false;
    518   if (Ex) {
    519     // C++0x [class.copymove]p31:
    520     //   When certain criteria are met, an implementation is allowed to omit the
    521     //   copy/move construction of a class object [...]
    522     //
    523     //     - in a throw-expression, when the operand is the name of a
    524     //       non-volatile automatic object (other than a function or catch-
    525     //       clause parameter) whose scope does not extend beyond the end of the
    526     //       innermost enclosing try-block (if there is one), the copy/move
    527     //       operation from the operand to the exception object (15.1) can be
    528     //       omitted by constructing the automatic object directly into the
    529     //       exception object
    530     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
    531       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
    532         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
    533           for( ; S; S = S->getParent()) {
    534             if (S->isDeclScope(Var)) {
    535               IsThrownVarInScope = true;
    536               break;
    537             }
    538 
    539             if (S->getFlags() &
    540                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
    541                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
    542                  Scope::TryScope))
    543               break;
    544           }
    545         }
    546       }
    547   }
    548 
    549   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
    550 }
    551 
    552 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
    553                                bool IsThrownVarInScope) {
    554   // Don't report an error if 'throw' is used in system headers.
    555   if (!getLangOpts().CXXExceptions &&
    556       !getSourceManager().isInSystemHeader(OpLoc))
    557     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
    558 
    559   if (Ex && !Ex->isTypeDependent()) {
    560     ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
    561     if (ExRes.isInvalid())
    562       return ExprError();
    563     Ex = ExRes.take();
    564   }
    565 
    566   return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
    567                                           IsThrownVarInScope));
    568 }
    569 
    570 /// CheckCXXThrowOperand - Validate the operand of a throw.
    571 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
    572                                       bool IsThrownVarInScope) {
    573   // C++ [except.throw]p3:
    574   //   A throw-expression initializes a temporary object, called the exception
    575   //   object, the type of which is determined by removing any top-level
    576   //   cv-qualifiers from the static type of the operand of throw and adjusting
    577   //   the type from "array of T" or "function returning T" to "pointer to T"
    578   //   or "pointer to function returning T", [...]
    579   if (E->getType().hasQualifiers())
    580     E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
    581                           E->getValueKind()).take();
    582 
    583   ExprResult Res = DefaultFunctionArrayConversion(E);
    584   if (Res.isInvalid())
    585     return ExprError();
    586   E = Res.take();
    587 
    588   //   If the type of the exception would be an incomplete type or a pointer
    589   //   to an incomplete type other than (cv) void the program is ill-formed.
    590   QualType Ty = E->getType();
    591   bool isPointer = false;
    592   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
    593     Ty = Ptr->getPointeeType();
    594     isPointer = true;
    595   }
    596   if (!isPointer || !Ty->isVoidType()) {
    597     if (RequireCompleteType(ThrowLoc, Ty,
    598                             isPointer? diag::err_throw_incomplete_ptr
    599                                      : diag::err_throw_incomplete,
    600                             E->getSourceRange()))
    601       return ExprError();
    602 
    603     if (RequireNonAbstractType(ThrowLoc, E->getType(),
    604                                diag::err_throw_abstract_type, E))
    605       return ExprError();
    606   }
    607 
    608   // Initialize the exception result.  This implicitly weeds out
    609   // abstract types or types with inaccessible copy constructors.
    610 
    611   // C++0x [class.copymove]p31:
    612   //   When certain criteria are met, an implementation is allowed to omit the
    613   //   copy/move construction of a class object [...]
    614   //
    615   //     - in a throw-expression, when the operand is the name of a
    616   //       non-volatile automatic object (other than a function or catch-clause
    617   //       parameter) whose scope does not extend beyond the end of the
    618   //       innermost enclosing try-block (if there is one), the copy/move
    619   //       operation from the operand to the exception object (15.1) can be
    620   //       omitted by constructing the automatic object directly into the
    621   //       exception object
    622   const VarDecl *NRVOVariable = 0;
    623   if (IsThrownVarInScope)
    624     NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
    625 
    626   InitializedEntity Entity =
    627       InitializedEntity::InitializeException(ThrowLoc, E->getType(),
    628                                              /*NRVO=*/NRVOVariable != 0);
    629   Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
    630                                         QualType(), E,
    631                                         IsThrownVarInScope);
    632   if (Res.isInvalid())
    633     return ExprError();
    634   E = Res.take();
    635 
    636   // If the exception has class type, we need additional handling.
    637   const RecordType *RecordTy = Ty->getAs<RecordType>();
    638   if (!RecordTy)
    639     return Owned(E);
    640   CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
    641 
    642   // If we are throwing a polymorphic class type or pointer thereof,
    643   // exception handling will make use of the vtable.
    644   MarkVTableUsed(ThrowLoc, RD);
    645 
    646   // If a pointer is thrown, the referenced object will not be destroyed.
    647   if (isPointer)
    648     return Owned(E);
    649 
    650   // If the class has a destructor, we must be able to call it.
    651   if (RD->hasIrrelevantDestructor())
    652     return Owned(E);
    653 
    654   CXXDestructorDecl *Destructor = LookupDestructor(RD);
    655   if (!Destructor)
    656     return Owned(E);
    657 
    658   MarkFunctionReferenced(E->getExprLoc(), Destructor);
    659   CheckDestructorAccess(E->getExprLoc(), Destructor,
    660                         PDiag(diag::err_access_dtor_exception) << Ty);
    661   DiagnoseUseOfDecl(Destructor, E->getExprLoc());
    662   return Owned(E);
    663 }
    664 
    665 QualType Sema::getCurrentThisType() {
    666   DeclContext *DC = getFunctionLevelDeclContext();
    667   QualType ThisTy = CXXThisTypeOverride;
    668   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
    669     if (method && method->isInstance())
    670       ThisTy = method->getThisType(Context);
    671   }
    672 
    673   return ThisTy;
    674 }
    675 
    676 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
    677                                          Decl *ContextDecl,
    678                                          unsigned CXXThisTypeQuals,
    679                                          bool Enabled)
    680   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
    681 {
    682   if (!Enabled || !ContextDecl)
    683     return;
    684 
    685   CXXRecordDecl *Record = 0;
    686   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
    687     Record = Template->getTemplatedDecl();
    688   else
    689     Record = cast<CXXRecordDecl>(ContextDecl);
    690 
    691   S.CXXThisTypeOverride
    692     = S.Context.getPointerType(
    693         S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
    694 
    695   this->Enabled = true;
    696 }
    697 
    698 
    699 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
    700   if (Enabled) {
    701     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
    702   }
    703 }
    704 
    705 void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
    706   // We don't need to capture this in an unevaluated context.
    707   if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
    708     return;
    709 
    710   // Otherwise, check that we can capture 'this'.
    711   unsigned NumClosures = 0;
    712   for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
    713     if (CapturingScopeInfo *CSI =
    714             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
    715       if (CSI->CXXThisCaptureIndex != 0) {
    716         // 'this' is already being captured; there isn't anything more to do.
    717         break;
    718       }
    719 
    720       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
    721           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
    722           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
    723           Explicit) {
    724         // This closure can capture 'this'; continue looking upwards.
    725         NumClosures++;
    726         Explicit = false;
    727         continue;
    728       }
    729       // This context can't implicitly capture 'this'; fail out.
    730       Diag(Loc, diag::err_this_capture) << Explicit;
    731       return;
    732     }
    733     break;
    734   }
    735 
    736   // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
    737   // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
    738   // contexts.
    739   for (unsigned idx = FunctionScopes.size() - 1;
    740        NumClosures; --idx, --NumClosures) {
    741     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
    742     Expr *ThisExpr = 0;
    743     QualType ThisTy = getCurrentThisType();
    744     if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
    745       // For lambda expressions, build a field and an initializing expression.
    746       CXXRecordDecl *Lambda = LSI->Lambda;
    747       FieldDecl *Field
    748         = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
    749                             Context.getTrivialTypeSourceInfo(ThisTy, Loc),
    750                             0, false, ICIS_NoInit);
    751       Field->setImplicit(true);
    752       Field->setAccess(AS_private);
    753       Lambda->addDecl(Field);
    754       ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
    755     }
    756     bool isNested = NumClosures > 1;
    757     CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
    758   }
    759 }
    760 
    761 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
    762   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
    763   /// is a non-lvalue expression whose value is the address of the object for
    764   /// which the function is called.
    765 
    766   QualType ThisTy = getCurrentThisType();
    767   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
    768 
    769   CheckCXXThisCapture(Loc);
    770   return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
    771 }
    772 
    773 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
    774   // If we're outside the body of a member function, then we'll have a specified
    775   // type for 'this'.
    776   if (CXXThisTypeOverride.isNull())
    777     return false;
    778 
    779   // Determine whether we're looking into a class that's currently being
    780   // defined.
    781   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
    782   return Class && Class->isBeingDefined();
    783 }
    784 
    785 ExprResult
    786 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
    787                                 SourceLocation LParenLoc,
    788                                 MultiExprArg exprs,
    789                                 SourceLocation RParenLoc) {
    790   if (!TypeRep)
    791     return ExprError();
    792 
    793   TypeSourceInfo *TInfo;
    794   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
    795   if (!TInfo)
    796     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
    797 
    798   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
    799 }
    800 
    801 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
    802 /// Can be interpreted either as function-style casting ("int(x)")
    803 /// or class type construction ("ClassType(x,y,z)")
    804 /// or creation of a value-initialized type ("int()").
    805 ExprResult
    806 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
    807                                 SourceLocation LParenLoc,
    808                                 MultiExprArg exprs,
    809                                 SourceLocation RParenLoc) {
    810   QualType Ty = TInfo->getType();
    811   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
    812 
    813   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(exprs)) {
    814     return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
    815                                                     LParenLoc,
    816                                                     exprs,
    817                                                     RParenLoc));
    818   }
    819 
    820   unsigned NumExprs = exprs.size();
    821   Expr **Exprs = exprs.data();
    822 
    823   bool ListInitialization = LParenLoc.isInvalid();
    824   assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
    825          && "List initialization must have initializer list as expression.");
    826   SourceRange FullRange = SourceRange(TyBeginLoc,
    827       ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
    828 
    829   // C++ [expr.type.conv]p1:
    830   // If the expression list is a single expression, the type conversion
    831   // expression is equivalent (in definedness, and if defined in meaning) to the
    832   // corresponding cast expression.
    833   if (NumExprs == 1 && !ListInitialization) {
    834     Expr *Arg = Exprs[0];
    835     return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
    836   }
    837 
    838   QualType ElemTy = Ty;
    839   if (Ty->isArrayType()) {
    840     if (!ListInitialization)
    841       return ExprError(Diag(TyBeginLoc,
    842                             diag::err_value_init_for_array_type) << FullRange);
    843     ElemTy = Context.getBaseElementType(Ty);
    844   }
    845 
    846   if (!Ty->isVoidType() &&
    847       RequireCompleteType(TyBeginLoc, ElemTy,
    848                           diag::err_invalid_incomplete_type_use, FullRange))
    849     return ExprError();
    850 
    851   if (RequireNonAbstractType(TyBeginLoc, Ty,
    852                              diag::err_allocation_of_abstract_type))
    853     return ExprError();
    854 
    855   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
    856   InitializationKind Kind
    857     = NumExprs ? ListInitialization
    858                     ? InitializationKind::CreateDirectList(TyBeginLoc)
    859                     : InitializationKind::CreateDirect(TyBeginLoc,
    860                                                        LParenLoc, RParenLoc)
    861                : InitializationKind::CreateValue(TyBeginLoc,
    862                                                  LParenLoc, RParenLoc);
    863   InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
    864   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, exprs);
    865 
    866   if (!Result.isInvalid() && ListInitialization &&
    867       isa<InitListExpr>(Result.get())) {
    868     // If the list-initialization doesn't involve a constructor call, we'll get
    869     // the initializer-list (with corrected type) back, but that's not what we
    870     // want, since it will be treated as an initializer list in further
    871     // processing. Explicitly insert a cast here.
    872     InitListExpr *List = cast<InitListExpr>(Result.take());
    873     Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
    874                                     Expr::getValueKindForType(TInfo->getType()),
    875                                                  TInfo, TyBeginLoc, CK_NoOp,
    876                                                  List, /*Path=*/0, RParenLoc));
    877   }
    878 
    879   // FIXME: Improve AST representation?
    880   return Result;
    881 }
    882 
    883 /// doesUsualArrayDeleteWantSize - Answers whether the usual
    884 /// operator delete[] for the given type has a size_t parameter.
    885 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
    886                                          QualType allocType) {
    887   const RecordType *record =
    888     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
    889   if (!record) return false;
    890 
    891   // Try to find an operator delete[] in class scope.
    892 
    893   DeclarationName deleteName =
    894     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
    895   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
    896   S.LookupQualifiedName(ops, record->getDecl());
    897 
    898   // We're just doing this for information.
    899   ops.suppressDiagnostics();
    900 
    901   // Very likely: there's no operator delete[].
    902   if (ops.empty()) return false;
    903 
    904   // If it's ambiguous, it should be illegal to call operator delete[]
    905   // on this thing, so it doesn't matter if we allocate extra space or not.
    906   if (ops.isAmbiguous()) return false;
    907 
    908   LookupResult::Filter filter = ops.makeFilter();
    909   while (filter.hasNext()) {
    910     NamedDecl *del = filter.next()->getUnderlyingDecl();
    911 
    912     // C++0x [basic.stc.dynamic.deallocation]p2:
    913     //   A template instance is never a usual deallocation function,
    914     //   regardless of its signature.
    915     if (isa<FunctionTemplateDecl>(del)) {
    916       filter.erase();
    917       continue;
    918     }
    919 
    920     // C++0x [basic.stc.dynamic.deallocation]p2:
    921     //   If class T does not declare [an operator delete[] with one
    922     //   parameter] but does declare a member deallocation function
    923     //   named operator delete[] with exactly two parameters, the
    924     //   second of which has type std::size_t, then this function
    925     //   is a usual deallocation function.
    926     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
    927       filter.erase();
    928       continue;
    929     }
    930   }
    931   filter.done();
    932 
    933   if (!ops.isSingleResult()) return false;
    934 
    935   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
    936   return (del->getNumParams() == 2);
    937 }
    938 
    939 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
    940 ///
    941 /// E.g.:
    942 /// @code new (memory) int[size][4] @endcode
    943 /// or
    944 /// @code ::new Foo(23, "hello") @endcode
    945 ///
    946 /// \param StartLoc The first location of the expression.
    947 /// \param UseGlobal True if 'new' was prefixed with '::'.
    948 /// \param PlacementLParen Opening paren of the placement arguments.
    949 /// \param PlacementArgs Placement new arguments.
    950 /// \param PlacementRParen Closing paren of the placement arguments.
    951 /// \param TypeIdParens If the type is in parens, the source range.
    952 /// \param D The type to be allocated, as well as array dimensions.
    953 /// \param Initializer The initializing expression or initializer-list, or null
    954 ///   if there is none.
    955 ExprResult
    956 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
    957                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
    958                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
    959                   Declarator &D, Expr *Initializer) {
    960   bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
    961 
    962   Expr *ArraySize = 0;
    963   // If the specified type is an array, unwrap it and save the expression.
    964   if (D.getNumTypeObjects() > 0 &&
    965       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
    966      DeclaratorChunk &Chunk = D.getTypeObject(0);
    967     if (TypeContainsAuto)
    968       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
    969         << D.getSourceRange());
    970     if (Chunk.Arr.hasStatic)
    971       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
    972         << D.getSourceRange());
    973     if (!Chunk.Arr.NumElts)
    974       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
    975         << D.getSourceRange());
    976 
    977     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
    978     D.DropFirstTypeObject();
    979   }
    980 
    981   // Every dimension shall be of constant size.
    982   if (ArraySize) {
    983     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
    984       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
    985         break;
    986 
    987       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
    988       if (Expr *NumElts = (Expr *)Array.NumElts) {
    989         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
    990           Array.NumElts
    991             = VerifyIntegerConstantExpression(NumElts, 0,
    992                                               diag::err_new_array_nonconst)
    993                 .take();
    994           if (!Array.NumElts)
    995             return ExprError();
    996         }
    997       }
    998     }
    999   }
   1000 
   1001   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
   1002   QualType AllocType = TInfo->getType();
   1003   if (D.isInvalidType())
   1004     return ExprError();
   1005 
   1006   SourceRange DirectInitRange;
   1007   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
   1008     DirectInitRange = List->getSourceRange();
   1009 
   1010   return BuildCXXNew(StartLoc, UseGlobal,
   1011                      PlacementLParen,
   1012                      PlacementArgs,
   1013                      PlacementRParen,
   1014                      TypeIdParens,
   1015                      AllocType,
   1016                      TInfo,
   1017                      ArraySize,
   1018                      DirectInitRange,
   1019                      Initializer,
   1020                      TypeContainsAuto);
   1021 }
   1022 
   1023 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
   1024                                        Expr *Init) {
   1025   if (!Init)
   1026     return true;
   1027   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
   1028     return PLE->getNumExprs() == 0;
   1029   if (isa<ImplicitValueInitExpr>(Init))
   1030     return true;
   1031   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
   1032     return !CCE->isListInitialization() &&
   1033            CCE->getConstructor()->isDefaultConstructor();
   1034   else if (Style == CXXNewExpr::ListInit) {
   1035     assert(isa<InitListExpr>(Init) &&
   1036            "Shouldn't create list CXXConstructExprs for arrays.");
   1037     return true;
   1038   }
   1039   return false;
   1040 }
   1041 
   1042 ExprResult
   1043 Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
   1044                   SourceLocation PlacementLParen,
   1045                   MultiExprArg PlacementArgs,
   1046                   SourceLocation PlacementRParen,
   1047                   SourceRange TypeIdParens,
   1048                   QualType AllocType,
   1049                   TypeSourceInfo *AllocTypeInfo,
   1050                   Expr *ArraySize,
   1051                   SourceRange DirectInitRange,
   1052                   Expr *Initializer,
   1053                   bool TypeMayContainAuto) {
   1054   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
   1055 
   1056   CXXNewExpr::InitializationStyle initStyle;
   1057   if (DirectInitRange.isValid()) {
   1058     assert(Initializer && "Have parens but no initializer.");
   1059     initStyle = CXXNewExpr::CallInit;
   1060   } else if (Initializer && isa<InitListExpr>(Initializer))
   1061     initStyle = CXXNewExpr::ListInit;
   1062   else {
   1063     // In template instantiation, the initializer could be a CXXDefaultArgExpr
   1064     // unwrapped from a CXXConstructExpr that was implicitly built. There is no
   1065     // particularly sane way we can handle this (especially since it can even
   1066     // occur for array new), so we throw the initializer away and have it be
   1067     // rebuilt.
   1068     if (Initializer && isa<CXXDefaultArgExpr>(Initializer))
   1069       Initializer = 0;
   1070     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
   1071             isa<CXXConstructExpr>(Initializer)) &&
   1072            "Initializer expression that cannot have been implicitly created.");
   1073     initStyle = CXXNewExpr::NoInit;
   1074   }
   1075 
   1076   Expr **Inits = &Initializer;
   1077   unsigned NumInits = Initializer ? 1 : 0;
   1078   if (initStyle == CXXNewExpr::CallInit) {
   1079     if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) {
   1080       Inits = List->getExprs();
   1081       NumInits = List->getNumExprs();
   1082     } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){
   1083       if (!isa<CXXTemporaryObjectExpr>(CCE)) {
   1084         // Can happen in template instantiation. Since this is just an implicit
   1085         // construction, we just take it apart and rebuild it.
   1086         Inits = CCE->getArgs();
   1087         NumInits = CCE->getNumArgs();
   1088       }
   1089     }
   1090   }
   1091 
   1092   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   1093   AutoType *AT = 0;
   1094   if (TypeMayContainAuto &&
   1095       (AT = AllocType->getContainedAutoType()) && !AT->isDeduced()) {
   1096     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
   1097       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
   1098                        << AllocType << TypeRange);
   1099     if (initStyle == CXXNewExpr::ListInit)
   1100       return ExprError(Diag(Inits[0]->getLocStart(),
   1101                             diag::err_auto_new_requires_parens)
   1102                        << AllocType << TypeRange);
   1103     if (NumInits > 1) {
   1104       Expr *FirstBad = Inits[1];
   1105       return ExprError(Diag(FirstBad->getLocStart(),
   1106                             diag::err_auto_new_ctor_multiple_expressions)
   1107                        << AllocType << TypeRange);
   1108     }
   1109     Expr *Deduce = Inits[0];
   1110     TypeSourceInfo *DeducedType = 0;
   1111     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
   1112       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
   1113                        << AllocType << Deduce->getType()
   1114                        << TypeRange << Deduce->getSourceRange());
   1115     if (!DeducedType)
   1116       return ExprError();
   1117 
   1118     AllocTypeInfo = DeducedType;
   1119     AllocType = AllocTypeInfo->getType();
   1120   }
   1121 
   1122   // Per C++0x [expr.new]p5, the type being constructed may be a
   1123   // typedef of an array type.
   1124   if (!ArraySize) {
   1125     if (const ConstantArrayType *Array
   1126                               = Context.getAsConstantArrayType(AllocType)) {
   1127       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
   1128                                          Context.getSizeType(),
   1129                                          TypeRange.getEnd());
   1130       AllocType = Array->getElementType();
   1131     }
   1132   }
   1133 
   1134   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
   1135     return ExprError();
   1136 
   1137   if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
   1138     Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
   1139          diag::warn_dangling_std_initializer_list)
   1140         << /*at end of FE*/0 << Inits[0]->getSourceRange();
   1141   }
   1142 
   1143   // In ARC, infer 'retaining' for the allocated
   1144   if (getLangOpts().ObjCAutoRefCount &&
   1145       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
   1146       AllocType->isObjCLifetimeType()) {
   1147     AllocType = Context.getLifetimeQualifiedType(AllocType,
   1148                                     AllocType->getObjCARCImplicitLifetime());
   1149   }
   1150 
   1151   QualType ResultType = Context.getPointerType(AllocType);
   1152 
   1153   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
   1154   //   integral or enumeration type with a non-negative value."
   1155   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
   1156   //   enumeration type, or a class type for which a single non-explicit
   1157   //   conversion function to integral or unscoped enumeration type exists.
   1158   if (ArraySize && !ArraySize->isTypeDependent()) {
   1159     class SizeConvertDiagnoser : public ICEConvertDiagnoser {
   1160       Expr *ArraySize;
   1161 
   1162     public:
   1163       SizeConvertDiagnoser(Expr *ArraySize)
   1164         : ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
   1165 
   1166       virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
   1167                                                QualType T) {
   1168         return S.Diag(Loc, diag::err_array_size_not_integral)
   1169                  << S.getLangOpts().CPlusPlus0x << T;
   1170       }
   1171 
   1172       virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
   1173                                                    QualType T) {
   1174         return S.Diag(Loc, diag::err_array_size_incomplete_type)
   1175                  << T << ArraySize->getSourceRange();
   1176       }
   1177 
   1178       virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
   1179                                                      SourceLocation Loc,
   1180                                                      QualType T,
   1181                                                      QualType ConvTy) {
   1182         return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
   1183       }
   1184 
   1185       virtual DiagnosticBuilder noteExplicitConv(Sema &S,
   1186                                                  CXXConversionDecl *Conv,
   1187                                                  QualType ConvTy) {
   1188         return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
   1189                  << ConvTy->isEnumeralType() << ConvTy;
   1190       }
   1191 
   1192       virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
   1193                                                   QualType T) {
   1194         return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
   1195       }
   1196 
   1197       virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
   1198                                               QualType ConvTy) {
   1199         return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
   1200                  << ConvTy->isEnumeralType() << ConvTy;
   1201       }
   1202 
   1203       virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
   1204                                                    QualType T,
   1205                                                    QualType ConvTy) {
   1206         return S.Diag(Loc,
   1207                       S.getLangOpts().CPlusPlus0x
   1208                         ? diag::warn_cxx98_compat_array_size_conversion
   1209                         : diag::ext_array_size_conversion)
   1210                  << T << ConvTy->isEnumeralType() << ConvTy;
   1211       }
   1212     } SizeDiagnoser(ArraySize);
   1213 
   1214     ExprResult ConvertedSize
   1215       = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
   1216                                            /*AllowScopedEnumerations*/ false);
   1217     if (ConvertedSize.isInvalid())
   1218       return ExprError();
   1219 
   1220     ArraySize = ConvertedSize.take();
   1221     QualType SizeType = ArraySize->getType();
   1222     if (!SizeType->isIntegralOrUnscopedEnumerationType())
   1223       return ExprError();
   1224 
   1225     // C++98 [expr.new]p7:
   1226     //   The expression in a direct-new-declarator shall have integral type
   1227     //   with a non-negative value.
   1228     //
   1229     // Let's see if this is a constant < 0. If so, we reject it out of
   1230     // hand. Otherwise, if it's not a constant, we must have an unparenthesized
   1231     // array type.
   1232     //
   1233     // Note: such a construct has well-defined semantics in C++11: it throws
   1234     // std::bad_array_new_length.
   1235     if (!ArraySize->isValueDependent()) {
   1236       llvm::APSInt Value;
   1237       // We've already performed any required implicit conversion to integer or
   1238       // unscoped enumeration type.
   1239       if (ArraySize->isIntegerConstantExpr(Value, Context)) {
   1240         if (Value < llvm::APSInt(
   1241                         llvm::APInt::getNullValue(Value.getBitWidth()),
   1242                                  Value.isUnsigned())) {
   1243           if (getLangOpts().CPlusPlus0x)
   1244             Diag(ArraySize->getLocStart(),
   1245                  diag::warn_typecheck_negative_array_new_size)
   1246               << ArraySize->getSourceRange();
   1247           else
   1248             return ExprError(Diag(ArraySize->getLocStart(),
   1249                                   diag::err_typecheck_negative_array_size)
   1250                              << ArraySize->getSourceRange());
   1251         } else if (!AllocType->isDependentType()) {
   1252           unsigned ActiveSizeBits =
   1253             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
   1254           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   1255             if (getLangOpts().CPlusPlus0x)
   1256               Diag(ArraySize->getLocStart(),
   1257                    diag::warn_array_new_too_large)
   1258                 << Value.toString(10)
   1259                 << ArraySize->getSourceRange();
   1260             else
   1261               return ExprError(Diag(ArraySize->getLocStart(),
   1262                                     diag::err_array_too_large)
   1263                                << Value.toString(10)
   1264                                << ArraySize->getSourceRange());
   1265           }
   1266         }
   1267       } else if (TypeIdParens.isValid()) {
   1268         // Can't have dynamic array size when the type-id is in parentheses.
   1269         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
   1270           << ArraySize->getSourceRange()
   1271           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
   1272           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
   1273 
   1274         TypeIdParens = SourceRange();
   1275       }
   1276     }
   1277 
   1278     // ARC: warn about ABI issues.
   1279     if (getLangOpts().ObjCAutoRefCount) {
   1280       QualType BaseAllocType = Context.getBaseElementType(AllocType);
   1281       if (BaseAllocType.hasStrongOrWeakObjCLifetime())
   1282         Diag(StartLoc, diag::warn_err_new_delete_object_array)
   1283           << 0 << BaseAllocType;
   1284     }
   1285 
   1286     // Note that we do *not* convert the argument in any way.  It can
   1287     // be signed, larger than size_t, whatever.
   1288   }
   1289 
   1290   FunctionDecl *OperatorNew = 0;
   1291   FunctionDecl *OperatorDelete = 0;
   1292   Expr **PlaceArgs = PlacementArgs.data();
   1293   unsigned NumPlaceArgs = PlacementArgs.size();
   1294 
   1295   if (!AllocType->isDependentType() &&
   1296       !Expr::hasAnyTypeDependentArguments(
   1297         llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
   1298       FindAllocationFunctions(StartLoc,
   1299                               SourceRange(PlacementLParen, PlacementRParen),
   1300                               UseGlobal, AllocType, ArraySize, PlaceArgs,
   1301                               NumPlaceArgs, OperatorNew, OperatorDelete))
   1302     return ExprError();
   1303 
   1304   // If this is an array allocation, compute whether the usual array
   1305   // deallocation function for the type has a size_t parameter.
   1306   bool UsualArrayDeleteWantsSize = false;
   1307   if (ArraySize && !AllocType->isDependentType())
   1308     UsualArrayDeleteWantsSize
   1309       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
   1310 
   1311   SmallVector<Expr *, 8> AllPlaceArgs;
   1312   if (OperatorNew) {
   1313     // Add default arguments, if any.
   1314     const FunctionProtoType *Proto =
   1315       OperatorNew->getType()->getAs<FunctionProtoType>();
   1316     VariadicCallType CallType =
   1317       Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
   1318 
   1319     if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
   1320                                Proto, 1, PlaceArgs, NumPlaceArgs,
   1321                                AllPlaceArgs, CallType))
   1322       return ExprError();
   1323 
   1324     NumPlaceArgs = AllPlaceArgs.size();
   1325     if (NumPlaceArgs > 0)
   1326       PlaceArgs = &AllPlaceArgs[0];
   1327 
   1328     DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
   1329                           PlaceArgs, NumPlaceArgs);
   1330 
   1331     // FIXME: Missing call to CheckFunctionCall or equivalent
   1332   }
   1333 
   1334   // Warn if the type is over-aligned and is being allocated by global operator
   1335   // new.
   1336   if (NumPlaceArgs == 0 && OperatorNew &&
   1337       (OperatorNew->isImplicit() ||
   1338        getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
   1339     if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
   1340       unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
   1341       if (Align > SuitableAlign)
   1342         Diag(StartLoc, diag::warn_overaligned_type)
   1343             << AllocType
   1344             << unsigned(Align / Context.getCharWidth())
   1345             << unsigned(SuitableAlign / Context.getCharWidth());
   1346     }
   1347   }
   1348 
   1349   QualType InitType = AllocType;
   1350   // Array 'new' can't have any initializers except empty parentheses.
   1351   // Initializer lists are also allowed, in C++11. Rely on the parser for the
   1352   // dialect distinction.
   1353   if (ResultType->isArrayType() || ArraySize) {
   1354     if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
   1355       SourceRange InitRange(Inits[0]->getLocStart(),
   1356                             Inits[NumInits - 1]->getLocEnd());
   1357       Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
   1358       return ExprError();
   1359     }
   1360     if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
   1361       // We do the initialization typechecking against the array type
   1362       // corresponding to the number of initializers + 1 (to also check
   1363       // default-initialization).
   1364       unsigned NumElements = ILE->getNumInits() + 1;
   1365       InitType = Context.getConstantArrayType(AllocType,
   1366           llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
   1367                                               ArrayType::Normal, 0);
   1368     }
   1369   }
   1370 
   1371   if (!AllocType->isDependentType() &&
   1372       !Expr::hasAnyTypeDependentArguments(
   1373         llvm::makeArrayRef(Inits, NumInits))) {
   1374     // C++11 [expr.new]p15:
   1375     //   A new-expression that creates an object of type T initializes that
   1376     //   object as follows:
   1377     InitializationKind Kind
   1378     //     - If the new-initializer is omitted, the object is default-
   1379     //       initialized (8.5); if no initialization is performed,
   1380     //       the object has indeterminate value
   1381       = initStyle == CXXNewExpr::NoInit
   1382           ? InitializationKind::CreateDefault(TypeRange.getBegin())
   1383     //     - Otherwise, the new-initializer is interpreted according to the
   1384     //       initialization rules of 8.5 for direct-initialization.
   1385           : initStyle == CXXNewExpr::ListInit
   1386               ? InitializationKind::CreateDirectList(TypeRange.getBegin())
   1387               : InitializationKind::CreateDirect(TypeRange.getBegin(),
   1388                                                  DirectInitRange.getBegin(),
   1389                                                  DirectInitRange.getEnd());
   1390 
   1391     InitializedEntity Entity
   1392       = InitializedEntity::InitializeNew(StartLoc, InitType);
   1393     InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
   1394     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
   1395                                           MultiExprArg(Inits, NumInits));
   1396     if (FullInit.isInvalid())
   1397       return ExprError();
   1398 
   1399     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
   1400     // we don't want the initialized object to be destructed.
   1401     if (CXXBindTemporaryExpr *Binder =
   1402             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
   1403       FullInit = Owned(Binder->getSubExpr());
   1404 
   1405     Initializer = FullInit.take();
   1406   }
   1407 
   1408   // Mark the new and delete operators as referenced.
   1409   if (OperatorNew)
   1410     MarkFunctionReferenced(StartLoc, OperatorNew);
   1411   if (OperatorDelete)
   1412     MarkFunctionReferenced(StartLoc, OperatorDelete);
   1413 
   1414   // C++0x [expr.new]p17:
   1415   //   If the new expression creates an array of objects of class type,
   1416   //   access and ambiguity control are done for the destructor.
   1417   QualType BaseAllocType = Context.getBaseElementType(AllocType);
   1418   if (ArraySize && !BaseAllocType->isDependentType()) {
   1419     if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
   1420       if (CXXDestructorDecl *dtor = LookupDestructor(
   1421               cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
   1422         MarkFunctionReferenced(StartLoc, dtor);
   1423         CheckDestructorAccess(StartLoc, dtor,
   1424                               PDiag(diag::err_access_dtor)
   1425                                 << BaseAllocType);
   1426         DiagnoseUseOfDecl(dtor, StartLoc);
   1427       }
   1428     }
   1429   }
   1430 
   1431   return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
   1432                                         OperatorDelete,
   1433                                         UsualArrayDeleteWantsSize,
   1434                                    llvm::makeArrayRef(PlaceArgs, NumPlaceArgs),
   1435                                         TypeIdParens,
   1436                                         ArraySize, initStyle, Initializer,
   1437                                         ResultType, AllocTypeInfo,
   1438                                         StartLoc, DirectInitRange));
   1439 }
   1440 
   1441 /// \brief Checks that a type is suitable as the allocated type
   1442 /// in a new-expression.
   1443 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
   1444                               SourceRange R) {
   1445   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
   1446   //   abstract class type or array thereof.
   1447   if (AllocType->isFunctionType())
   1448     return Diag(Loc, diag::err_bad_new_type)
   1449       << AllocType << 0 << R;
   1450   else if (AllocType->isReferenceType())
   1451     return Diag(Loc, diag::err_bad_new_type)
   1452       << AllocType << 1 << R;
   1453   else if (!AllocType->isDependentType() &&
   1454            RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
   1455     return true;
   1456   else if (RequireNonAbstractType(Loc, AllocType,
   1457                                   diag::err_allocation_of_abstract_type))
   1458     return true;
   1459   else if (AllocType->isVariablyModifiedType())
   1460     return Diag(Loc, diag::err_variably_modified_new_type)
   1461              << AllocType;
   1462   else if (unsigned AddressSpace = AllocType.getAddressSpace())
   1463     return Diag(Loc, diag::err_address_space_qualified_new)
   1464       << AllocType.getUnqualifiedType() << AddressSpace;
   1465   else if (getLangOpts().ObjCAutoRefCount) {
   1466     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
   1467       QualType BaseAllocType = Context.getBaseElementType(AT);
   1468       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
   1469           BaseAllocType->isObjCLifetimeType())
   1470         return Diag(Loc, diag::err_arc_new_array_without_ownership)
   1471           << BaseAllocType;
   1472     }
   1473   }
   1474 
   1475   return false;
   1476 }
   1477 
   1478 /// \brief Determine whether the given function is a non-placement
   1479 /// deallocation function.
   1480 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
   1481   if (FD->isInvalidDecl())
   1482     return false;
   1483 
   1484   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
   1485     return Method->isUsualDeallocationFunction();
   1486 
   1487   return ((FD->getOverloadedOperator() == OO_Delete ||
   1488            FD->getOverloadedOperator() == OO_Array_Delete) &&
   1489           FD->getNumParams() == 1);
   1490 }
   1491 
   1492 /// FindAllocationFunctions - Finds the overloads of operator new and delete
   1493 /// that are appropriate for the allocation.
   1494 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
   1495                                    bool UseGlobal, QualType AllocType,
   1496                                    bool IsArray, Expr **PlaceArgs,
   1497                                    unsigned NumPlaceArgs,
   1498                                    FunctionDecl *&OperatorNew,
   1499                                    FunctionDecl *&OperatorDelete) {
   1500   // --- Choosing an allocation function ---
   1501   // C++ 5.3.4p8 - 14 & 18
   1502   // 1) If UseGlobal is true, only look in the global scope. Else, also look
   1503   //   in the scope of the allocated class.
   1504   // 2) If an array size is given, look for operator new[], else look for
   1505   //   operator new.
   1506   // 3) The first argument is always size_t. Append the arguments from the
   1507   //   placement form.
   1508 
   1509   SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
   1510   // We don't care about the actual value of this argument.
   1511   // FIXME: Should the Sema create the expression and embed it in the syntax
   1512   // tree? Or should the consumer just recalculate the value?
   1513   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
   1514                       Context.getTargetInfo().getPointerWidth(0)),
   1515                       Context.getSizeType(),
   1516                       SourceLocation());
   1517   AllocArgs[0] = &Size;
   1518   std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
   1519 
   1520   // C++ [expr.new]p8:
   1521   //   If the allocated type is a non-array type, the allocation
   1522   //   function's name is operator new and the deallocation function's
   1523   //   name is operator delete. If the allocated type is an array
   1524   //   type, the allocation function's name is operator new[] and the
   1525   //   deallocation function's name is operator delete[].
   1526   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
   1527                                         IsArray ? OO_Array_New : OO_New);
   1528   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   1529                                         IsArray ? OO_Array_Delete : OO_Delete);
   1530 
   1531   QualType AllocElemType = Context.getBaseElementType(AllocType);
   1532 
   1533   if (AllocElemType->isRecordType() && !UseGlobal) {
   1534     CXXRecordDecl *Record
   1535       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1536     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
   1537                           AllocArgs.size(), Record, /*AllowMissing=*/true,
   1538                           OperatorNew))
   1539       return true;
   1540   }
   1541   if (!OperatorNew) {
   1542     // Didn't find a member overload. Look for a global one.
   1543     DeclareGlobalNewDelete();
   1544     DeclContext *TUDecl = Context.getTranslationUnitDecl();
   1545     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
   1546                           AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
   1547                           OperatorNew))
   1548       return true;
   1549   }
   1550 
   1551   // We don't need an operator delete if we're running under
   1552   // -fno-exceptions.
   1553   if (!getLangOpts().Exceptions) {
   1554     OperatorDelete = 0;
   1555     return false;
   1556   }
   1557 
   1558   // FindAllocationOverload can change the passed in arguments, so we need to
   1559   // copy them back.
   1560   if (NumPlaceArgs > 0)
   1561     std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
   1562 
   1563   // C++ [expr.new]p19:
   1564   //
   1565   //   If the new-expression begins with a unary :: operator, the
   1566   //   deallocation function's name is looked up in the global
   1567   //   scope. Otherwise, if the allocated type is a class type T or an
   1568   //   array thereof, the deallocation function's name is looked up in
   1569   //   the scope of T. If this lookup fails to find the name, or if
   1570   //   the allocated type is not a class type or array thereof, the
   1571   //   deallocation function's name is looked up in the global scope.
   1572   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
   1573   if (AllocElemType->isRecordType() && !UseGlobal) {
   1574     CXXRecordDecl *RD
   1575       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1576     LookupQualifiedName(FoundDelete, RD);
   1577   }
   1578   if (FoundDelete.isAmbiguous())
   1579     return true; // FIXME: clean up expressions?
   1580 
   1581   if (FoundDelete.empty()) {
   1582     DeclareGlobalNewDelete();
   1583     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
   1584   }
   1585 
   1586   FoundDelete.suppressDiagnostics();
   1587 
   1588   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
   1589 
   1590   // Whether we're looking for a placement operator delete is dictated
   1591   // by whether we selected a placement operator new, not by whether
   1592   // we had explicit placement arguments.  This matters for things like
   1593   //   struct A { void *operator new(size_t, int = 0); ... };
   1594   //   A *a = new A()
   1595   bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
   1596 
   1597   if (isPlacementNew) {
   1598     // C++ [expr.new]p20:
   1599     //   A declaration of a placement deallocation function matches the
   1600     //   declaration of a placement allocation function if it has the
   1601     //   same number of parameters and, after parameter transformations
   1602     //   (8.3.5), all parameter types except the first are
   1603     //   identical. [...]
   1604     //
   1605     // To perform this comparison, we compute the function type that
   1606     // the deallocation function should have, and use that type both
   1607     // for template argument deduction and for comparison purposes.
   1608     //
   1609     // FIXME: this comparison should ignore CC and the like.
   1610     QualType ExpectedFunctionType;
   1611     {
   1612       const FunctionProtoType *Proto
   1613         = OperatorNew->getType()->getAs<FunctionProtoType>();
   1614 
   1615       SmallVector<QualType, 4> ArgTypes;
   1616       ArgTypes.push_back(Context.VoidPtrTy);
   1617       for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
   1618         ArgTypes.push_back(Proto->getArgType(I));
   1619 
   1620       FunctionProtoType::ExtProtoInfo EPI;
   1621       EPI.Variadic = Proto->isVariadic();
   1622 
   1623       ExpectedFunctionType
   1624         = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
   1625                                   ArgTypes.size(), EPI);
   1626     }
   1627 
   1628     for (LookupResult::iterator D = FoundDelete.begin(),
   1629                              DEnd = FoundDelete.end();
   1630          D != DEnd; ++D) {
   1631       FunctionDecl *Fn = 0;
   1632       if (FunctionTemplateDecl *FnTmpl
   1633             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
   1634         // Perform template argument deduction to try to match the
   1635         // expected function type.
   1636         TemplateDeductionInfo Info(Context, StartLoc);
   1637         if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
   1638           continue;
   1639       } else
   1640         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
   1641 
   1642       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
   1643         Matches.push_back(std::make_pair(D.getPair(), Fn));
   1644     }
   1645   } else {
   1646     // C++ [expr.new]p20:
   1647     //   [...] Any non-placement deallocation function matches a
   1648     //   non-placement allocation function. [...]
   1649     for (LookupResult::iterator D = FoundDelete.begin(),
   1650                              DEnd = FoundDelete.end();
   1651          D != DEnd; ++D) {
   1652       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
   1653         if (isNonPlacementDeallocationFunction(Fn))
   1654           Matches.push_back(std::make_pair(D.getPair(), Fn));
   1655     }
   1656   }
   1657 
   1658   // C++ [expr.new]p20:
   1659   //   [...] If the lookup finds a single matching deallocation
   1660   //   function, that function will be called; otherwise, no
   1661   //   deallocation function will be called.
   1662   if (Matches.size() == 1) {
   1663     OperatorDelete = Matches[0].second;
   1664 
   1665     // C++0x [expr.new]p20:
   1666     //   If the lookup finds the two-parameter form of a usual
   1667     //   deallocation function (3.7.4.2) and that function, considered
   1668     //   as a placement deallocation function, would have been
   1669     //   selected as a match for the allocation function, the program
   1670     //   is ill-formed.
   1671     if (NumPlaceArgs && getLangOpts().CPlusPlus0x &&
   1672         isNonPlacementDeallocationFunction(OperatorDelete)) {
   1673       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
   1674         << SourceRange(PlaceArgs[0]->getLocStart(),
   1675                        PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
   1676       Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
   1677         << DeleteName;
   1678     } else {
   1679       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
   1680                             Matches[0].first);
   1681     }
   1682   }
   1683 
   1684   return false;
   1685 }
   1686 
   1687 /// FindAllocationOverload - Find an fitting overload for the allocation
   1688 /// function in the specified scope.
   1689 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
   1690                                   DeclarationName Name, Expr** Args,
   1691                                   unsigned NumArgs, DeclContext *Ctx,
   1692                                   bool AllowMissing, FunctionDecl *&Operator,
   1693                                   bool Diagnose) {
   1694   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
   1695   LookupQualifiedName(R, Ctx);
   1696   if (R.empty()) {
   1697     if (AllowMissing || !Diagnose)
   1698       return false;
   1699     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   1700       << Name << Range;
   1701   }
   1702 
   1703   if (R.isAmbiguous())
   1704     return true;
   1705 
   1706   R.suppressDiagnostics();
   1707 
   1708   OverloadCandidateSet Candidates(StartLoc);
   1709   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
   1710        Alloc != AllocEnd; ++Alloc) {
   1711     // Even member operator new/delete are implicitly treated as
   1712     // static, so don't use AddMemberCandidate.
   1713     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
   1714 
   1715     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
   1716       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
   1717                                    /*ExplicitTemplateArgs=*/0,
   1718                                    llvm::makeArrayRef(Args, NumArgs),
   1719                                    Candidates,
   1720                                    /*SuppressUserConversions=*/false);
   1721       continue;
   1722     }
   1723 
   1724     FunctionDecl *Fn = cast<FunctionDecl>(D);
   1725     AddOverloadCandidate(Fn, Alloc.getPair(),
   1726                          llvm::makeArrayRef(Args, NumArgs), Candidates,
   1727                          /*SuppressUserConversions=*/false);
   1728   }
   1729 
   1730   // Do the resolution.
   1731   OverloadCandidateSet::iterator Best;
   1732   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
   1733   case OR_Success: {
   1734     // Got one!
   1735     FunctionDecl *FnDecl = Best->Function;
   1736     MarkFunctionReferenced(StartLoc, FnDecl);
   1737     // The first argument is size_t, and the first parameter must be size_t,
   1738     // too. This is checked on declaration and can be assumed. (It can't be
   1739     // asserted on, though, since invalid decls are left in there.)
   1740     // Watch out for variadic allocator function.
   1741     unsigned NumArgsInFnDecl = FnDecl->getNumParams();
   1742     for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
   1743       InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
   1744                                                        FnDecl->getParamDecl(i));
   1745 
   1746       if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
   1747         return true;
   1748 
   1749       ExprResult Result
   1750         = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
   1751       if (Result.isInvalid())
   1752         return true;
   1753 
   1754       Args[i] = Result.takeAs<Expr>();
   1755     }
   1756 
   1757     Operator = FnDecl;
   1758 
   1759     if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
   1760                               Best->FoundDecl, Diagnose) == AR_inaccessible)
   1761       return true;
   1762 
   1763     return false;
   1764   }
   1765 
   1766   case OR_No_Viable_Function:
   1767     if (Diagnose) {
   1768       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   1769         << Name << Range;
   1770       Candidates.NoteCandidates(*this, OCD_AllCandidates,
   1771                                 llvm::makeArrayRef(Args, NumArgs));
   1772     }
   1773     return true;
   1774 
   1775   case OR_Ambiguous:
   1776     if (Diagnose) {
   1777       Diag(StartLoc, diag::err_ovl_ambiguous_call)
   1778         << Name << Range;
   1779       Candidates.NoteCandidates(*this, OCD_ViableCandidates,
   1780                                 llvm::makeArrayRef(Args, NumArgs));
   1781     }
   1782     return true;
   1783 
   1784   case OR_Deleted: {
   1785     if (Diagnose) {
   1786       Diag(StartLoc, diag::err_ovl_deleted_call)
   1787         << Best->Function->isDeleted()
   1788         << Name
   1789         << getDeletedOrUnavailableSuffix(Best->Function)
   1790         << Range;
   1791       Candidates.NoteCandidates(*this, OCD_AllCandidates,
   1792                                 llvm::makeArrayRef(Args, NumArgs));
   1793     }
   1794     return true;
   1795   }
   1796   }
   1797   llvm_unreachable("Unreachable, bad result from BestViableFunction");
   1798 }
   1799 
   1800 
   1801 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
   1802 /// delete. These are:
   1803 /// @code
   1804 ///   // C++03:
   1805 ///   void* operator new(std::size_t) throw(std::bad_alloc);
   1806 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
   1807 ///   void operator delete(void *) throw();
   1808 ///   void operator delete[](void *) throw();
   1809 ///   // C++0x:
   1810 ///   void* operator new(std::size_t);
   1811 ///   void* operator new[](std::size_t);
   1812 ///   void operator delete(void *);
   1813 ///   void operator delete[](void *);
   1814 /// @endcode
   1815 /// C++0x operator delete is implicitly noexcept.
   1816 /// Note that the placement and nothrow forms of new are *not* implicitly
   1817 /// declared. Their use requires including \<new\>.
   1818 void Sema::DeclareGlobalNewDelete() {
   1819   if (GlobalNewDeleteDeclared)
   1820     return;
   1821 
   1822   // C++ [basic.std.dynamic]p2:
   1823   //   [...] The following allocation and deallocation functions (18.4) are
   1824   //   implicitly declared in global scope in each translation unit of a
   1825   //   program
   1826   //
   1827   //     C++03:
   1828   //     void* operator new(std::size_t) throw(std::bad_alloc);
   1829   //     void* operator new[](std::size_t) throw(std::bad_alloc);
   1830   //     void  operator delete(void*) throw();
   1831   //     void  operator delete[](void*) throw();
   1832   //     C++0x:
   1833   //     void* operator new(std::size_t);
   1834   //     void* operator new[](std::size_t);
   1835   //     void  operator delete(void*);
   1836   //     void  operator delete[](void*);
   1837   //
   1838   //   These implicit declarations introduce only the function names operator
   1839   //   new, operator new[], operator delete, operator delete[].
   1840   //
   1841   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
   1842   // "std" or "bad_alloc" as necessary to form the exception specification.
   1843   // However, we do not make these implicit declarations visible to name
   1844   // lookup.
   1845   // Note that the C++0x versions of operator delete are deallocation functions,
   1846   // and thus are implicitly noexcept.
   1847   if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) {
   1848     // The "std::bad_alloc" class has not yet been declared, so build it
   1849     // implicitly.
   1850     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
   1851                                         getOrCreateStdNamespace(),
   1852                                         SourceLocation(), SourceLocation(),
   1853                                       &PP.getIdentifierTable().get("bad_alloc"),
   1854                                         0);
   1855     getStdBadAlloc()->setImplicit(true);
   1856   }
   1857 
   1858   GlobalNewDeleteDeclared = true;
   1859 
   1860   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
   1861   QualType SizeT = Context.getSizeType();
   1862   bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
   1863 
   1864   DeclareGlobalAllocationFunction(
   1865       Context.DeclarationNames.getCXXOperatorName(OO_New),
   1866       VoidPtr, SizeT, AssumeSaneOperatorNew);
   1867   DeclareGlobalAllocationFunction(
   1868       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
   1869       VoidPtr, SizeT, AssumeSaneOperatorNew);
   1870   DeclareGlobalAllocationFunction(
   1871       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
   1872       Context.VoidTy, VoidPtr);
   1873   DeclareGlobalAllocationFunction(
   1874       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
   1875       Context.VoidTy, VoidPtr);
   1876 }
   1877 
   1878 /// DeclareGlobalAllocationFunction - Declares a single implicit global
   1879 /// allocation function if it doesn't already exist.
   1880 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
   1881                                            QualType Return, QualType Argument,
   1882                                            bool AddMallocAttr) {
   1883   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
   1884 
   1885   // Check if this function is already declared.
   1886   {
   1887     DeclContext::lookup_iterator Alloc, AllocEnd;
   1888     for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
   1889          Alloc != AllocEnd; ++Alloc) {
   1890       // Only look at non-template functions, as it is the predefined,
   1891       // non-templated allocation function we are trying to declare here.
   1892       if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
   1893         QualType InitialParamType =
   1894           Context.getCanonicalType(
   1895             Func->getParamDecl(0)->getType().getUnqualifiedType());
   1896         // FIXME: Do we need to check for default arguments here?
   1897         if (Func->getNumParams() == 1 && InitialParamType == Argument) {
   1898           if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
   1899             Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
   1900           return;
   1901         }
   1902       }
   1903     }
   1904   }
   1905 
   1906   QualType BadAllocType;
   1907   bool HasBadAllocExceptionSpec
   1908     = (Name.getCXXOverloadedOperator() == OO_New ||
   1909        Name.getCXXOverloadedOperator() == OO_Array_New);
   1910   if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) {
   1911     assert(StdBadAlloc && "Must have std::bad_alloc declared");
   1912     BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
   1913   }
   1914 
   1915   FunctionProtoType::ExtProtoInfo EPI;
   1916   if (HasBadAllocExceptionSpec) {
   1917     if (!getLangOpts().CPlusPlus0x) {
   1918       EPI.ExceptionSpecType = EST_Dynamic;
   1919       EPI.NumExceptions = 1;
   1920       EPI.Exceptions = &BadAllocType;
   1921     }
   1922   } else {
   1923     EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ?
   1924                                 EST_BasicNoexcept : EST_DynamicNone;
   1925   }
   1926 
   1927   QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
   1928   FunctionDecl *Alloc =
   1929     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
   1930                          SourceLocation(), Name,
   1931                          FnType, /*TInfo=*/0, SC_None,
   1932                          SC_None, false, true);
   1933   Alloc->setImplicit();
   1934 
   1935   if (AddMallocAttr)
   1936     Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
   1937 
   1938   ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
   1939                                            SourceLocation(), 0,
   1940                                            Argument, /*TInfo=*/0,
   1941                                            SC_None, SC_None, 0);
   1942   Alloc->setParams(Param);
   1943 
   1944   // FIXME: Also add this declaration to the IdentifierResolver, but
   1945   // make sure it is at the end of the chain to coincide with the
   1946   // global scope.
   1947   Context.getTranslationUnitDecl()->addDecl(Alloc);
   1948 }
   1949 
   1950 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
   1951                                     DeclarationName Name,
   1952                                     FunctionDecl* &Operator, bool Diagnose) {
   1953   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
   1954   // Try to find operator delete/operator delete[] in class scope.
   1955   LookupQualifiedName(Found, RD);
   1956 
   1957   if (Found.isAmbiguous())
   1958     return true;
   1959 
   1960   Found.suppressDiagnostics();
   1961 
   1962   SmallVector<DeclAccessPair,4> Matches;
   1963   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   1964        F != FEnd; ++F) {
   1965     NamedDecl *ND = (*F)->getUnderlyingDecl();
   1966 
   1967     // Ignore template operator delete members from the check for a usual
   1968     // deallocation function.
   1969     if (isa<FunctionTemplateDecl>(ND))
   1970       continue;
   1971 
   1972     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
   1973       Matches.push_back(F.getPair());
   1974   }
   1975 
   1976   // There's exactly one suitable operator;  pick it.
   1977   if (Matches.size() == 1) {
   1978     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
   1979 
   1980     if (Operator->isDeleted()) {
   1981       if (Diagnose) {
   1982         Diag(StartLoc, diag::err_deleted_function_use);
   1983         NoteDeletedFunction(Operator);
   1984       }
   1985       return true;
   1986     }
   1987 
   1988     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
   1989                               Matches[0], Diagnose) == AR_inaccessible)
   1990       return true;
   1991 
   1992     return false;
   1993 
   1994   // We found multiple suitable operators;  complain about the ambiguity.
   1995   } else if (!Matches.empty()) {
   1996     if (Diagnose) {
   1997       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
   1998         << Name << RD;
   1999 
   2000       for (SmallVectorImpl<DeclAccessPair>::iterator
   2001              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
   2002         Diag((*F)->getUnderlyingDecl()->getLocation(),
   2003              diag::note_member_declared_here) << Name;
   2004     }
   2005     return true;
   2006   }
   2007 
   2008   // We did find operator delete/operator delete[] declarations, but
   2009   // none of them were suitable.
   2010   if (!Found.empty()) {
   2011     if (Diagnose) {
   2012       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
   2013         << Name << RD;
   2014 
   2015       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   2016            F != FEnd; ++F)
   2017         Diag((*F)->getUnderlyingDecl()->getLocation(),
   2018              diag::note_member_declared_here) << Name;
   2019     }
   2020     return true;
   2021   }
   2022 
   2023   // Look for a global declaration.
   2024   DeclareGlobalNewDelete();
   2025   DeclContext *TUDecl = Context.getTranslationUnitDecl();
   2026 
   2027   CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
   2028   Expr* DeallocArgs[1];
   2029   DeallocArgs[0] = &Null;
   2030   if (FindAllocationOverload(StartLoc, SourceRange(), Name,
   2031                              DeallocArgs, 1, TUDecl, !Diagnose,
   2032                              Operator, Diagnose))
   2033     return true;
   2034 
   2035   assert(Operator && "Did not find a deallocation function!");
   2036   return false;
   2037 }
   2038 
   2039 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
   2040 /// @code ::delete ptr; @endcode
   2041 /// or
   2042 /// @code delete [] ptr; @endcode
   2043 ExprResult
   2044 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
   2045                      bool ArrayForm, Expr *ExE) {
   2046   // C++ [expr.delete]p1:
   2047   //   The operand shall have a pointer type, or a class type having a single
   2048   //   conversion function to a pointer type. The result has type void.
   2049   //
   2050   // DR599 amends "pointer type" to "pointer to object type" in both cases.
   2051 
   2052   ExprResult Ex = Owned(ExE);
   2053   FunctionDecl *OperatorDelete = 0;
   2054   bool ArrayFormAsWritten = ArrayForm;
   2055   bool UsualArrayDeleteWantsSize = false;
   2056 
   2057   if (!Ex.get()->isTypeDependent()) {
   2058     // Perform lvalue-to-rvalue cast, if needed.
   2059     Ex = DefaultLvalueConversion(Ex.take());
   2060 
   2061     QualType Type = Ex.get()->getType();
   2062 
   2063     if (const RecordType *Record = Type->getAs<RecordType>()) {
   2064       if (RequireCompleteType(StartLoc, Type,
   2065                               diag::err_delete_incomplete_class_type))
   2066         return ExprError();
   2067 
   2068       SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
   2069 
   2070       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
   2071       const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
   2072       for (UnresolvedSetImpl::iterator I = Conversions->begin(),
   2073              E = Conversions->end(); I != E; ++I) {
   2074         NamedDecl *D = I.getDecl();
   2075         if (isa<UsingShadowDecl>(D))
   2076           D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2077 
   2078         // Skip over templated conversion functions; they aren't considered.
   2079         if (isa<FunctionTemplateDecl>(D))
   2080           continue;
   2081 
   2082         CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
   2083 
   2084         QualType ConvType = Conv->getConversionType().getNonReferenceType();
   2085         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   2086           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
   2087             ObjectPtrConversions.push_back(Conv);
   2088       }
   2089       if (ObjectPtrConversions.size() == 1) {
   2090         // We have a single conversion to a pointer-to-object type. Perform
   2091         // that conversion.
   2092         // TODO: don't redo the conversion calculation.
   2093         ExprResult Res =
   2094           PerformImplicitConversion(Ex.get(),
   2095                             ObjectPtrConversions.front()->getConversionType(),
   2096                                     AA_Converting);
   2097         if (Res.isUsable()) {
   2098           Ex = Res;
   2099           Type = Ex.get()->getType();
   2100         }
   2101       }
   2102       else if (ObjectPtrConversions.size() > 1) {
   2103         Diag(StartLoc, diag::err_ambiguous_delete_operand)
   2104               << Type << Ex.get()->getSourceRange();
   2105         for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
   2106           NoteOverloadCandidate(ObjectPtrConversions[i]);
   2107         return ExprError();
   2108       }
   2109     }
   2110 
   2111     if (!Type->isPointerType())
   2112       return ExprError(Diag(StartLoc, diag::err_delete_operand)
   2113         << Type << Ex.get()->getSourceRange());
   2114 
   2115     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
   2116     QualType PointeeElem = Context.getBaseElementType(Pointee);
   2117 
   2118     if (unsigned AddressSpace = Pointee.getAddressSpace())
   2119       return Diag(Ex.get()->getLocStart(),
   2120                   diag::err_address_space_qualified_delete)
   2121                << Pointee.getUnqualifiedType() << AddressSpace;
   2122 
   2123     CXXRecordDecl *PointeeRD = 0;
   2124     if (Pointee->isVoidType() && !isSFINAEContext()) {
   2125       // The C++ standard bans deleting a pointer to a non-object type, which
   2126       // effectively bans deletion of "void*". However, most compilers support
   2127       // this, so we treat it as a warning unless we're in a SFINAE context.
   2128       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
   2129         << Type << Ex.get()->getSourceRange();
   2130     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
   2131       return ExprError(Diag(StartLoc, diag::err_delete_operand)
   2132         << Type << Ex.get()->getSourceRange());
   2133     } else if (!Pointee->isDependentType()) {
   2134       if (!RequireCompleteType(StartLoc, Pointee,
   2135                                diag::warn_delete_incomplete, Ex.get())) {
   2136         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
   2137           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
   2138       }
   2139     }
   2140 
   2141     // C++ [expr.delete]p2:
   2142     //   [Note: a pointer to a const type can be the operand of a
   2143     //   delete-expression; it is not necessary to cast away the constness
   2144     //   (5.2.11) of the pointer expression before it is used as the operand
   2145     //   of the delete-expression. ]
   2146 
   2147     if (Pointee->isArrayType() && !ArrayForm) {
   2148       Diag(StartLoc, diag::warn_delete_array_type)
   2149           << Type << Ex.get()->getSourceRange()
   2150           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
   2151       ArrayForm = true;
   2152     }
   2153 
   2154     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   2155                                       ArrayForm ? OO_Array_Delete : OO_Delete);
   2156 
   2157     if (PointeeRD) {
   2158       if (!UseGlobal &&
   2159           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
   2160                                    OperatorDelete))
   2161         return ExprError();
   2162 
   2163       // If we're allocating an array of records, check whether the
   2164       // usual operator delete[] has a size_t parameter.
   2165       if (ArrayForm) {
   2166         // If the user specifically asked to use the global allocator,
   2167         // we'll need to do the lookup into the class.
   2168         if (UseGlobal)
   2169           UsualArrayDeleteWantsSize =
   2170             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
   2171 
   2172         // Otherwise, the usual operator delete[] should be the
   2173         // function we just found.
   2174         else if (isa<CXXMethodDecl>(OperatorDelete))
   2175           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
   2176       }
   2177 
   2178       if (!PointeeRD->hasIrrelevantDestructor())
   2179         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
   2180           MarkFunctionReferenced(StartLoc,
   2181                                     const_cast<CXXDestructorDecl*>(Dtor));
   2182           DiagnoseUseOfDecl(Dtor, StartLoc);
   2183         }
   2184 
   2185       // C++ [expr.delete]p3:
   2186       //   In the first alternative (delete object), if the static type of the
   2187       //   object to be deleted is different from its dynamic type, the static
   2188       //   type shall be a base class of the dynamic type of the object to be
   2189       //   deleted and the static type shall have a virtual destructor or the
   2190       //   behavior is undefined.
   2191       //
   2192       // Note: a final class cannot be derived from, no issue there
   2193       if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
   2194         CXXDestructorDecl *dtor = PointeeRD->getDestructor();
   2195         if (dtor && !dtor->isVirtual()) {
   2196           if (PointeeRD->isAbstract()) {
   2197             // If the class is abstract, we warn by default, because we're
   2198             // sure the code has undefined behavior.
   2199             Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
   2200                 << PointeeElem;
   2201           } else if (!ArrayForm) {
   2202             // Otherwise, if this is not an array delete, it's a bit suspect,
   2203             // but not necessarily wrong.
   2204             Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
   2205           }
   2206         }
   2207       }
   2208 
   2209     } else if (getLangOpts().ObjCAutoRefCount &&
   2210                PointeeElem->isObjCLifetimeType() &&
   2211                (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
   2212                 PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
   2213                ArrayForm) {
   2214       Diag(StartLoc, diag::warn_err_new_delete_object_array)
   2215         << 1 << PointeeElem;
   2216     }
   2217 
   2218     if (!OperatorDelete) {
   2219       // Look for a global declaration.
   2220       DeclareGlobalNewDelete();
   2221       DeclContext *TUDecl = Context.getTranslationUnitDecl();
   2222       Expr *Arg = Ex.get();
   2223       if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
   2224         Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
   2225                                        CK_BitCast, Arg, 0, VK_RValue);
   2226       if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
   2227                                  &Arg, 1, TUDecl, /*AllowMissing=*/false,
   2228                                  OperatorDelete))
   2229         return ExprError();
   2230     }
   2231 
   2232     MarkFunctionReferenced(StartLoc, OperatorDelete);
   2233 
   2234     // Check access and ambiguity of operator delete and destructor.
   2235     if (PointeeRD) {
   2236       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
   2237           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
   2238                       PDiag(diag::err_access_dtor) << PointeeElem);
   2239       }
   2240     }
   2241 
   2242   }
   2243 
   2244   return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
   2245                                            ArrayFormAsWritten,
   2246                                            UsualArrayDeleteWantsSize,
   2247                                            OperatorDelete, Ex.take(), StartLoc));
   2248 }
   2249 
   2250 /// \brief Check the use of the given variable as a C++ condition in an if,
   2251 /// while, do-while, or switch statement.
   2252 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
   2253                                         SourceLocation StmtLoc,
   2254                                         bool ConvertToBoolean) {
   2255   QualType T = ConditionVar->getType();
   2256 
   2257   // C++ [stmt.select]p2:
   2258   //   The declarator shall not specify a function or an array.
   2259   if (T->isFunctionType())
   2260     return ExprError(Diag(ConditionVar->getLocation(),
   2261                           diag::err_invalid_use_of_function_type)
   2262                        << ConditionVar->getSourceRange());
   2263   else if (T->isArrayType())
   2264     return ExprError(Diag(ConditionVar->getLocation(),
   2265                           diag::err_invalid_use_of_array_type)
   2266                      << ConditionVar->getSourceRange());
   2267 
   2268   ExprResult Condition =
   2269     Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
   2270                               SourceLocation(),
   2271                               ConditionVar,
   2272                               /*enclosing*/ false,
   2273                               ConditionVar->getLocation(),
   2274                               ConditionVar->getType().getNonReferenceType(),
   2275                               VK_LValue));
   2276 
   2277   MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
   2278 
   2279   if (ConvertToBoolean) {
   2280     Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
   2281     if (Condition.isInvalid())
   2282       return ExprError();
   2283   }
   2284 
   2285   return Condition;
   2286 }
   2287 
   2288 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
   2289 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
   2290   // C++ 6.4p4:
   2291   // The value of a condition that is an initialized declaration in a statement
   2292   // other than a switch statement is the value of the declared variable
   2293   // implicitly converted to type bool. If that conversion is ill-formed, the
   2294   // program is ill-formed.
   2295   // The value of a condition that is an expression is the value of the
   2296   // expression, implicitly converted to bool.
   2297   //
   2298   return PerformContextuallyConvertToBool(CondExpr);
   2299 }
   2300 
   2301 /// Helper function to determine whether this is the (deprecated) C++
   2302 /// conversion from a string literal to a pointer to non-const char or
   2303 /// non-const wchar_t (for narrow and wide string literals,
   2304 /// respectively).
   2305 bool
   2306 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
   2307   // Look inside the implicit cast, if it exists.
   2308   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
   2309     From = Cast->getSubExpr();
   2310 
   2311   // A string literal (2.13.4) that is not a wide string literal can
   2312   // be converted to an rvalue of type "pointer to char"; a wide
   2313   // string literal can be converted to an rvalue of type "pointer
   2314   // to wchar_t" (C++ 4.2p2).
   2315   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
   2316     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
   2317       if (const BuiltinType *ToPointeeType
   2318           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
   2319         // This conversion is considered only when there is an
   2320         // explicit appropriate pointer target type (C++ 4.2p2).
   2321         if (!ToPtrType->getPointeeType().hasQualifiers()) {
   2322           switch (StrLit->getKind()) {
   2323             case StringLiteral::UTF8:
   2324             case StringLiteral::UTF16:
   2325             case StringLiteral::UTF32:
   2326               // We don't allow UTF literals to be implicitly converted
   2327               break;
   2328             case StringLiteral::Ascii:
   2329               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
   2330                       ToPointeeType->getKind() == BuiltinType::Char_S);
   2331             case StringLiteral::Wide:
   2332               return ToPointeeType->isWideCharType();
   2333           }
   2334         }
   2335       }
   2336 
   2337   return false;
   2338 }
   2339 
   2340 static ExprResult BuildCXXCastArgument(Sema &S,
   2341                                        SourceLocation CastLoc,
   2342                                        QualType Ty,
   2343                                        CastKind Kind,
   2344                                        CXXMethodDecl *Method,
   2345                                        DeclAccessPair FoundDecl,
   2346                                        bool HadMultipleCandidates,
   2347                                        Expr *From) {
   2348   switch (Kind) {
   2349   default: llvm_unreachable("Unhandled cast kind!");
   2350   case CK_ConstructorConversion: {
   2351     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
   2352     SmallVector<Expr*, 8> ConstructorArgs;
   2353 
   2354     if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
   2355       return ExprError();
   2356 
   2357     S.CheckConstructorAccess(CastLoc, Constructor,
   2358                              InitializedEntity::InitializeTemporary(Ty),
   2359                              Constructor->getAccess());
   2360 
   2361     ExprResult Result
   2362       = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
   2363                                 ConstructorArgs,
   2364                                 HadMultipleCandidates, /*ZeroInit*/ false,
   2365                                 CXXConstructExpr::CK_Complete, SourceRange());
   2366     if (Result.isInvalid())
   2367       return ExprError();
   2368 
   2369     return S.MaybeBindToTemporary(Result.takeAs<Expr>());
   2370   }
   2371 
   2372   case CK_UserDefinedConversion: {
   2373     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
   2374 
   2375     // Create an implicit call expr that calls it.
   2376     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
   2377     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
   2378                                                  HadMultipleCandidates);
   2379     if (Result.isInvalid())
   2380       return ExprError();
   2381     // Record usage of conversion in an implicit cast.
   2382     Result = S.Owned(ImplicitCastExpr::Create(S.Context,
   2383                                               Result.get()->getType(),
   2384                                               CK_UserDefinedConversion,
   2385                                               Result.get(), 0,
   2386                                               Result.get()->getValueKind()));
   2387 
   2388     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
   2389 
   2390     return S.MaybeBindToTemporary(Result.get());
   2391   }
   2392   }
   2393 }
   2394 
   2395 /// PerformImplicitConversion - Perform an implicit conversion of the
   2396 /// expression From to the type ToType using the pre-computed implicit
   2397 /// conversion sequence ICS. Returns the converted
   2398 /// expression. Action is the kind of conversion we're performing,
   2399 /// used in the error message.
   2400 ExprResult
   2401 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   2402                                 const ImplicitConversionSequence &ICS,
   2403                                 AssignmentAction Action,
   2404                                 CheckedConversionKind CCK) {
   2405   switch (ICS.getKind()) {
   2406   case ImplicitConversionSequence::StandardConversion: {
   2407     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
   2408                                                Action, CCK);
   2409     if (Res.isInvalid())
   2410       return ExprError();
   2411     From = Res.take();
   2412     break;
   2413   }
   2414 
   2415   case ImplicitConversionSequence::UserDefinedConversion: {
   2416 
   2417       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
   2418       CastKind CastKind;
   2419       QualType BeforeToType;
   2420       assert(FD && "FIXME: aggregate initialization from init list");
   2421       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
   2422         CastKind = CK_UserDefinedConversion;
   2423 
   2424         // If the user-defined conversion is specified by a conversion function,
   2425         // the initial standard conversion sequence converts the source type to
   2426         // the implicit object parameter of the conversion function.
   2427         BeforeToType = Context.getTagDeclType(Conv->getParent());
   2428       } else {
   2429         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
   2430         CastKind = CK_ConstructorConversion;
   2431         // Do no conversion if dealing with ... for the first conversion.
   2432         if (!ICS.UserDefined.EllipsisConversion) {
   2433           // If the user-defined conversion is specified by a constructor, the
   2434           // initial standard conversion sequence converts the source type to the
   2435           // type required by the argument of the constructor
   2436           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
   2437         }
   2438       }
   2439       // Watch out for elipsis conversion.
   2440       if (!ICS.UserDefined.EllipsisConversion) {
   2441         ExprResult Res =
   2442           PerformImplicitConversion(From, BeforeToType,
   2443                                     ICS.UserDefined.Before, AA_Converting,
   2444                                     CCK);
   2445         if (Res.isInvalid())
   2446           return ExprError();
   2447         From = Res.take();
   2448       }
   2449 
   2450       ExprResult CastArg
   2451         = BuildCXXCastArgument(*this,
   2452                                From->getLocStart(),
   2453                                ToType.getNonReferenceType(),
   2454                                CastKind, cast<CXXMethodDecl>(FD),
   2455                                ICS.UserDefined.FoundConversionFunction,
   2456                                ICS.UserDefined.HadMultipleCandidates,
   2457                                From);
   2458 
   2459       if (CastArg.isInvalid())
   2460         return ExprError();
   2461 
   2462       From = CastArg.take();
   2463 
   2464       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
   2465                                        AA_Converting, CCK);
   2466   }
   2467 
   2468   case ImplicitConversionSequence::AmbiguousConversion:
   2469     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
   2470                           PDiag(diag::err_typecheck_ambiguous_condition)
   2471                             << From->getSourceRange());
   2472      return ExprError();
   2473 
   2474   case ImplicitConversionSequence::EllipsisConversion:
   2475     llvm_unreachable("Cannot perform an ellipsis conversion");
   2476 
   2477   case ImplicitConversionSequence::BadConversion:
   2478     return ExprError();
   2479   }
   2480 
   2481   // Everything went well.
   2482   return Owned(From);
   2483 }
   2484 
   2485 /// PerformImplicitConversion - Perform an implicit conversion of the
   2486 /// expression From to the type ToType by following the standard
   2487 /// conversion sequence SCS. Returns the converted
   2488 /// expression. Flavor is the context in which we're performing this
   2489 /// conversion, for use in error messages.
   2490 ExprResult
   2491 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   2492                                 const StandardConversionSequence& SCS,
   2493                                 AssignmentAction Action,
   2494                                 CheckedConversionKind CCK) {
   2495   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
   2496 
   2497   // Overall FIXME: we are recomputing too many types here and doing far too
   2498   // much extra work. What this means is that we need to keep track of more
   2499   // information that is computed when we try the implicit conversion initially,
   2500   // so that we don't need to recompute anything here.
   2501   QualType FromType = From->getType();
   2502 
   2503   if (SCS.CopyConstructor) {
   2504     // FIXME: When can ToType be a reference type?
   2505     assert(!ToType->isReferenceType());
   2506     if (SCS.Second == ICK_Derived_To_Base) {
   2507       SmallVector<Expr*, 8> ConstructorArgs;
   2508       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
   2509                                   From, /*FIXME:ConstructLoc*/SourceLocation(),
   2510                                   ConstructorArgs))
   2511         return ExprError();
   2512       return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
   2513                                    ToType, SCS.CopyConstructor,
   2514                                    ConstructorArgs,
   2515                                    /*HadMultipleCandidates*/ false,
   2516                                    /*ZeroInit*/ false,
   2517                                    CXXConstructExpr::CK_Complete,
   2518                                    SourceRange());
   2519     }
   2520     return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
   2521                                  ToType, SCS.CopyConstructor,
   2522                                  From, /*HadMultipleCandidates*/ false,
   2523                                  /*ZeroInit*/ false,
   2524                                  CXXConstructExpr::CK_Complete,
   2525                                  SourceRange());
   2526   }
   2527 
   2528   // Resolve overloaded function references.
   2529   if (Context.hasSameType(FromType, Context.OverloadTy)) {
   2530     DeclAccessPair Found;
   2531     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
   2532                                                           true, Found);
   2533     if (!Fn)
   2534       return ExprError();
   2535 
   2536     if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
   2537       return ExprError();
   2538 
   2539     From = FixOverloadedFunctionReference(From, Found, Fn);
   2540     FromType = From->getType();
   2541   }
   2542 
   2543   // Perform the first implicit conversion.
   2544   switch (SCS.First) {
   2545   case ICK_Identity:
   2546     // Nothing to do.
   2547     break;
   2548 
   2549   case ICK_Lvalue_To_Rvalue: {
   2550     assert(From->getObjectKind() != OK_ObjCProperty);
   2551     FromType = FromType.getUnqualifiedType();
   2552     ExprResult FromRes = DefaultLvalueConversion(From);
   2553     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
   2554     From = FromRes.take();
   2555     break;
   2556   }
   2557 
   2558   case ICK_Array_To_Pointer:
   2559     FromType = Context.getArrayDecayedType(FromType);
   2560     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
   2561                              VK_RValue, /*BasePath=*/0, CCK).take();
   2562     break;
   2563 
   2564   case ICK_Function_To_Pointer:
   2565     FromType = Context.getPointerType(FromType);
   2566     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
   2567                              VK_RValue, /*BasePath=*/0, CCK).take();
   2568     break;
   2569 
   2570   default:
   2571     llvm_unreachable("Improper first standard conversion");
   2572   }
   2573 
   2574   // Perform the second implicit conversion
   2575   switch (SCS.Second) {
   2576   case ICK_Identity:
   2577     // If both sides are functions (or pointers/references to them), there could
   2578     // be incompatible exception declarations.
   2579     if (CheckExceptionSpecCompatibility(From, ToType))
   2580       return ExprError();
   2581     // Nothing else to do.
   2582     break;
   2583 
   2584   case ICK_NoReturn_Adjustment:
   2585     // If both sides are functions (or pointers/references to them), there could
   2586     // be incompatible exception declarations.
   2587     if (CheckExceptionSpecCompatibility(From, ToType))
   2588       return ExprError();
   2589 
   2590     From = ImpCastExprToType(From, ToType, CK_NoOp,
   2591                              VK_RValue, /*BasePath=*/0, CCK).take();
   2592     break;
   2593 
   2594   case ICK_Integral_Promotion:
   2595   case ICK_Integral_Conversion:
   2596     From = ImpCastExprToType(From, ToType, CK_IntegralCast,
   2597                              VK_RValue, /*BasePath=*/0, CCK).take();
   2598     break;
   2599 
   2600   case ICK_Floating_Promotion:
   2601   case ICK_Floating_Conversion:
   2602     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
   2603                              VK_RValue, /*BasePath=*/0, CCK).take();
   2604     break;
   2605 
   2606   case ICK_Complex_Promotion:
   2607   case ICK_Complex_Conversion: {
   2608     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
   2609     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
   2610     CastKind CK;
   2611     if (FromEl->isRealFloatingType()) {
   2612       if (ToEl->isRealFloatingType())
   2613         CK = CK_FloatingComplexCast;
   2614       else
   2615         CK = CK_FloatingComplexToIntegralComplex;
   2616     } else if (ToEl->isRealFloatingType()) {
   2617       CK = CK_IntegralComplexToFloatingComplex;
   2618     } else {
   2619       CK = CK_IntegralComplexCast;
   2620     }
   2621     From = ImpCastExprToType(From, ToType, CK,
   2622                              VK_RValue, /*BasePath=*/0, CCK).take();
   2623     break;
   2624   }
   2625 
   2626   case ICK_Floating_Integral:
   2627     if (ToType->isRealFloatingType())
   2628       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
   2629                                VK_RValue, /*BasePath=*/0, CCK).take();
   2630     else
   2631       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
   2632                                VK_RValue, /*BasePath=*/0, CCK).take();
   2633     break;
   2634 
   2635   case ICK_Compatible_Conversion:
   2636       From = ImpCastExprToType(From, ToType, CK_NoOp,
   2637                                VK_RValue, /*BasePath=*/0, CCK).take();
   2638     break;
   2639 
   2640   case ICK_Writeback_Conversion:
   2641   case ICK_Pointer_Conversion: {
   2642     if (SCS.IncompatibleObjC && Action != AA_Casting) {
   2643       // Diagnose incompatible Objective-C conversions
   2644       if (Action == AA_Initializing || Action == AA_Assigning)
   2645         Diag(From->getLocStart(),
   2646              diag::ext_typecheck_convert_incompatible_pointer)
   2647           << ToType << From->getType() << Action
   2648           << From->getSourceRange() << 0;
   2649       else
   2650         Diag(From->getLocStart(),
   2651              diag::ext_typecheck_convert_incompatible_pointer)
   2652           << From->getType() << ToType << Action
   2653           << From->getSourceRange() << 0;
   2654 
   2655       if (From->getType()->isObjCObjectPointerType() &&
   2656           ToType->isObjCObjectPointerType())
   2657         EmitRelatedResultTypeNote(From);
   2658     }
   2659     else if (getLangOpts().ObjCAutoRefCount &&
   2660              !CheckObjCARCUnavailableWeakConversion(ToType,
   2661                                                     From->getType())) {
   2662       if (Action == AA_Initializing)
   2663         Diag(From->getLocStart(),
   2664              diag::err_arc_weak_unavailable_assign);
   2665       else
   2666         Diag(From->getLocStart(),
   2667              diag::err_arc_convesion_of_weak_unavailable)
   2668           << (Action == AA_Casting) << From->getType() << ToType
   2669           << From->getSourceRange();
   2670     }
   2671 
   2672     CastKind Kind = CK_Invalid;
   2673     CXXCastPath BasePath;
   2674     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
   2675       return ExprError();
   2676 
   2677     // Make sure we extend blocks if necessary.
   2678     // FIXME: doing this here is really ugly.
   2679     if (Kind == CK_BlockPointerToObjCPointerCast) {
   2680       ExprResult E = From;
   2681       (void) PrepareCastToObjCObjectPointer(E);
   2682       From = E.take();
   2683     }
   2684 
   2685     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   2686              .take();
   2687     break;
   2688   }
   2689 
   2690   case ICK_Pointer_Member: {
   2691     CastKind Kind = CK_Invalid;
   2692     CXXCastPath BasePath;
   2693     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
   2694       return ExprError();
   2695     if (CheckExceptionSpecCompatibility(From, ToType))
   2696       return ExprError();
   2697     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   2698              .take();
   2699     break;
   2700   }
   2701 
   2702   case ICK_Boolean_Conversion:
   2703     // Perform half-to-boolean conversion via float.
   2704     if (From->getType()->isHalfType()) {
   2705       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
   2706       FromType = Context.FloatTy;
   2707     }
   2708 
   2709     From = ImpCastExprToType(From, Context.BoolTy,
   2710                              ScalarTypeToBooleanCastKind(FromType),
   2711                              VK_RValue, /*BasePath=*/0, CCK).take();
   2712     break;
   2713 
   2714   case ICK_Derived_To_Base: {
   2715     CXXCastPath BasePath;
   2716     if (CheckDerivedToBaseConversion(From->getType(),
   2717                                      ToType.getNonReferenceType(),
   2718                                      From->getLocStart(),
   2719                                      From->getSourceRange(),
   2720                                      &BasePath,
   2721                                      CStyle))
   2722       return ExprError();
   2723 
   2724     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
   2725                       CK_DerivedToBase, From->getValueKind(),
   2726                       &BasePath, CCK).take();
   2727     break;
   2728   }
   2729 
   2730   case ICK_Vector_Conversion:
   2731     From = ImpCastExprToType(From, ToType, CK_BitCast,
   2732                              VK_RValue, /*BasePath=*/0, CCK).take();
   2733     break;
   2734 
   2735   case ICK_Vector_Splat:
   2736     From = ImpCastExprToType(From, ToType, CK_VectorSplat,
   2737                              VK_RValue, /*BasePath=*/0, CCK).take();
   2738     break;
   2739 
   2740   case ICK_Complex_Real:
   2741     // Case 1.  x -> _Complex y
   2742     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
   2743       QualType ElType = ToComplex->getElementType();
   2744       bool isFloatingComplex = ElType->isRealFloatingType();
   2745 
   2746       // x -> y
   2747       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
   2748         // do nothing
   2749       } else if (From->getType()->isRealFloatingType()) {
   2750         From = ImpCastExprToType(From, ElType,
   2751                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
   2752       } else {
   2753         assert(From->getType()->isIntegerType());
   2754         From = ImpCastExprToType(From, ElType,
   2755                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
   2756       }
   2757       // y -> _Complex y
   2758       From = ImpCastExprToType(From, ToType,
   2759                    isFloatingComplex ? CK_FloatingRealToComplex
   2760                                      : CK_IntegralRealToComplex).take();
   2761 
   2762     // Case 2.  _Complex x -> y
   2763     } else {
   2764       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
   2765       assert(FromComplex);
   2766 
   2767       QualType ElType = FromComplex->getElementType();
   2768       bool isFloatingComplex = ElType->isRealFloatingType();
   2769 
   2770       // _Complex x -> x
   2771       From = ImpCastExprToType(From, ElType,
   2772                    isFloatingComplex ? CK_FloatingComplexToReal
   2773                                      : CK_IntegralComplexToReal,
   2774                                VK_RValue, /*BasePath=*/0, CCK).take();
   2775 
   2776       // x -> y
   2777       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
   2778         // do nothing
   2779       } else if (ToType->isRealFloatingType()) {
   2780         From = ImpCastExprToType(From, ToType,
   2781                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
   2782                                  VK_RValue, /*BasePath=*/0, CCK).take();
   2783       } else {
   2784         assert(ToType->isIntegerType());
   2785         From = ImpCastExprToType(From, ToType,
   2786                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
   2787                                  VK_RValue, /*BasePath=*/0, CCK).take();
   2788       }
   2789     }
   2790     break;
   2791 
   2792   case ICK_Block_Pointer_Conversion: {
   2793     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
   2794                              VK_RValue, /*BasePath=*/0, CCK).take();
   2795     break;
   2796   }
   2797 
   2798   case ICK_TransparentUnionConversion: {
   2799     ExprResult FromRes = Owned(From);
   2800     Sema::AssignConvertType ConvTy =
   2801       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
   2802     if (FromRes.isInvalid())
   2803       return ExprError();
   2804     From = FromRes.take();
   2805     assert ((ConvTy == Sema::Compatible) &&
   2806             "Improper transparent union conversion");
   2807     (void)ConvTy;
   2808     break;
   2809   }
   2810 
   2811   case ICK_Lvalue_To_Rvalue:
   2812   case ICK_Array_To_Pointer:
   2813   case ICK_Function_To_Pointer:
   2814   case ICK_Qualification:
   2815   case ICK_Num_Conversion_Kinds:
   2816     llvm_unreachable("Improper second standard conversion");
   2817   }
   2818 
   2819   switch (SCS.Third) {
   2820   case ICK_Identity:
   2821     // Nothing to do.
   2822     break;
   2823 
   2824   case ICK_Qualification: {
   2825     // The qualification keeps the category of the inner expression, unless the
   2826     // target type isn't a reference.
   2827     ExprValueKind VK = ToType->isReferenceType() ?
   2828                                   From->getValueKind() : VK_RValue;
   2829     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
   2830                              CK_NoOp, VK, /*BasePath=*/0, CCK).take();
   2831 
   2832     if (SCS.DeprecatedStringLiteralToCharPtr &&
   2833         !getLangOpts().WritableStrings)
   2834       Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
   2835         << ToType.getNonReferenceType();
   2836 
   2837     break;
   2838     }
   2839 
   2840   default:
   2841     llvm_unreachable("Improper third standard conversion");
   2842   }
   2843 
   2844   // If this conversion sequence involved a scalar -> atomic conversion, perform
   2845   // that conversion now.
   2846   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
   2847     if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
   2848       From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
   2849                                CCK).take();
   2850 
   2851   return Owned(From);
   2852 }
   2853 
   2854 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
   2855                                      SourceLocation KWLoc,
   2856                                      ParsedType Ty,
   2857                                      SourceLocation RParen) {
   2858   TypeSourceInfo *TSInfo;
   2859   QualType T = GetTypeFromParser(Ty, &TSInfo);
   2860 
   2861   if (!TSInfo)
   2862     TSInfo = Context.getTrivialTypeSourceInfo(T);
   2863   return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
   2864 }
   2865 
   2866 /// \brief Check the completeness of a type in a unary type trait.
   2867 ///
   2868 /// If the particular type trait requires a complete type, tries to complete
   2869 /// it. If completing the type fails, a diagnostic is emitted and false
   2870 /// returned. If completing the type succeeds or no completion was required,
   2871 /// returns true.
   2872 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
   2873                                                 UnaryTypeTrait UTT,
   2874                                                 SourceLocation Loc,
   2875                                                 QualType ArgTy) {
   2876   // C++0x [meta.unary.prop]p3:
   2877   //   For all of the class templates X declared in this Clause, instantiating
   2878   //   that template with a template argument that is a class template
   2879   //   specialization may result in the implicit instantiation of the template
   2880   //   argument if and only if the semantics of X require that the argument
   2881   //   must be a complete type.
   2882   // We apply this rule to all the type trait expressions used to implement
   2883   // these class templates. We also try to follow any GCC documented behavior
   2884   // in these expressions to ensure portability of standard libraries.
   2885   switch (UTT) {
   2886     // is_complete_type somewhat obviously cannot require a complete type.
   2887   case UTT_IsCompleteType:
   2888     // Fall-through
   2889 
   2890     // These traits are modeled on the type predicates in C++0x
   2891     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
   2892     // requiring a complete type, as whether or not they return true cannot be
   2893     // impacted by the completeness of the type.
   2894   case UTT_IsVoid:
   2895   case UTT_IsIntegral:
   2896   case UTT_IsFloatingPoint:
   2897   case UTT_IsArray:
   2898   case UTT_IsPointer:
   2899   case UTT_IsLvalueReference:
   2900   case UTT_IsRvalueReference:
   2901   case UTT_IsMemberFunctionPointer:
   2902   case UTT_IsMemberObjectPointer:
   2903   case UTT_IsEnum:
   2904   case UTT_IsUnion:
   2905   case UTT_IsClass:
   2906   case UTT_IsFunction:
   2907   case UTT_IsReference:
   2908   case UTT_IsArithmetic:
   2909   case UTT_IsFundamental:
   2910   case UTT_IsObject:
   2911   case UTT_IsScalar:
   2912   case UTT_IsCompound:
   2913   case UTT_IsMemberPointer:
   2914     // Fall-through
   2915 
   2916     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
   2917     // which requires some of its traits to have the complete type. However,
   2918     // the completeness of the type cannot impact these traits' semantics, and
   2919     // so they don't require it. This matches the comments on these traits in
   2920     // Table 49.
   2921   case UTT_IsConst:
   2922   case UTT_IsVolatile:
   2923   case UTT_IsSigned:
   2924   case UTT_IsUnsigned:
   2925     return true;
   2926 
   2927     // C++0x [meta.unary.prop] Table 49 requires the following traits to be
   2928     // applied to a complete type.
   2929   case UTT_IsTrivial:
   2930   case UTT_IsTriviallyCopyable:
   2931   case UTT_IsStandardLayout:
   2932   case UTT_IsPOD:
   2933   case UTT_IsLiteral:
   2934   case UTT_IsEmpty:
   2935   case UTT_IsPolymorphic:
   2936   case UTT_IsAbstract:
   2937     // Fall-through
   2938 
   2939   // These traits require a complete type.
   2940   case UTT_IsFinal:
   2941 
   2942     // These trait expressions are designed to help implement predicates in
   2943     // [meta.unary.prop] despite not being named the same. They are specified
   2944     // by both GCC and the Embarcadero C++ compiler, and require the complete
   2945     // type due to the overarching C++0x type predicates being implemented
   2946     // requiring the complete type.
   2947   case UTT_HasNothrowAssign:
   2948   case UTT_HasNothrowConstructor:
   2949   case UTT_HasNothrowCopy:
   2950   case UTT_HasTrivialAssign:
   2951   case UTT_HasTrivialDefaultConstructor:
   2952   case UTT_HasTrivialCopy:
   2953   case UTT_HasTrivialDestructor:
   2954   case UTT_HasVirtualDestructor:
   2955     // Arrays of unknown bound are expressly allowed.
   2956     QualType ElTy = ArgTy;
   2957     if (ArgTy->isIncompleteArrayType())
   2958       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
   2959 
   2960     // The void type is expressly allowed.
   2961     if (ElTy->isVoidType())
   2962       return true;
   2963 
   2964     return !S.RequireCompleteType(
   2965       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
   2966   }
   2967   llvm_unreachable("Type trait not handled by switch");
   2968 }
   2969 
   2970 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
   2971                                    SourceLocation KeyLoc, QualType T) {
   2972   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   2973 
   2974   ASTContext &C = Self.Context;
   2975   switch(UTT) {
   2976     // Type trait expressions corresponding to the primary type category
   2977     // predicates in C++0x [meta.unary.cat].
   2978   case UTT_IsVoid:
   2979     return T->isVoidType();
   2980   case UTT_IsIntegral:
   2981     return T->isIntegralType(C);
   2982   case UTT_IsFloatingPoint:
   2983     return T->isFloatingType();
   2984   case UTT_IsArray:
   2985     return T->isArrayType();
   2986   case UTT_IsPointer:
   2987     return T->isPointerType();
   2988   case UTT_IsLvalueReference:
   2989     return T->isLValueReferenceType();
   2990   case UTT_IsRvalueReference:
   2991     return T->isRValueReferenceType();
   2992   case UTT_IsMemberFunctionPointer:
   2993     return T->isMemberFunctionPointerType();
   2994   case UTT_IsMemberObjectPointer:
   2995     return T->isMemberDataPointerType();
   2996   case UTT_IsEnum:
   2997     return T->isEnumeralType();
   2998   case UTT_IsUnion:
   2999     return T->isUnionType();
   3000   case UTT_IsClass:
   3001     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
   3002   case UTT_IsFunction:
   3003     return T->isFunctionType();
   3004 
   3005     // Type trait expressions which correspond to the convenient composition
   3006     // predicates in C++0x [meta.unary.comp].
   3007   case UTT_IsReference:
   3008     return T->isReferenceType();
   3009   case UTT_IsArithmetic:
   3010     return T->isArithmeticType() && !T->isEnumeralType();
   3011   case UTT_IsFundamental:
   3012     return T->isFundamentalType();
   3013   case UTT_IsObject:
   3014     return T->isObjectType();
   3015   case UTT_IsScalar:
   3016     // Note: semantic analysis depends on Objective-C lifetime types to be
   3017     // considered scalar types. However, such types do not actually behave
   3018     // like scalar types at run time (since they may require retain/release
   3019     // operations), so we report them as non-scalar.
   3020     if (T->isObjCLifetimeType()) {
   3021       switch (T.getObjCLifetime()) {
   3022       case Qualifiers::OCL_None:
   3023       case Qualifiers::OCL_ExplicitNone:
   3024         return true;
   3025 
   3026       case Qualifiers::OCL_Strong:
   3027       case Qualifiers::OCL_Weak:
   3028       case Qualifiers::OCL_Autoreleasing:
   3029         return false;
   3030       }
   3031     }
   3032 
   3033     return T->isScalarType();
   3034   case UTT_IsCompound:
   3035     return T->isCompoundType();
   3036   case UTT_IsMemberPointer:
   3037     return T->isMemberPointerType();
   3038 
   3039     // Type trait expressions which correspond to the type property predicates
   3040     // in C++0x [meta.unary.prop].
   3041   case UTT_IsConst:
   3042     return T.isConstQualified();
   3043   case UTT_IsVolatile:
   3044     return T.isVolatileQualified();
   3045   case UTT_IsTrivial:
   3046     return T.isTrivialType(Self.Context);
   3047   case UTT_IsTriviallyCopyable:
   3048     return T.isTriviallyCopyableType(Self.Context);
   3049   case UTT_IsStandardLayout:
   3050     return T->isStandardLayoutType();
   3051   case UTT_IsPOD:
   3052     return T.isPODType(Self.Context);
   3053   case UTT_IsLiteral:
   3054     return T->isLiteralType();
   3055   case UTT_IsEmpty:
   3056     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3057       return !RD->isUnion() && RD->isEmpty();
   3058     return false;
   3059   case UTT_IsPolymorphic:
   3060     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3061       return RD->isPolymorphic();
   3062     return false;
   3063   case UTT_IsAbstract:
   3064     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3065       return RD->isAbstract();
   3066     return false;
   3067   case UTT_IsFinal:
   3068     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3069       return RD->hasAttr<FinalAttr>();
   3070     return false;
   3071   case UTT_IsSigned:
   3072     return T->isSignedIntegerType();
   3073   case UTT_IsUnsigned:
   3074     return T->isUnsignedIntegerType();
   3075 
   3076     // Type trait expressions which query classes regarding their construction,
   3077     // destruction, and copying. Rather than being based directly on the
   3078     // related type predicates in the standard, they are specified by both
   3079     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
   3080     // specifications.
   3081     //
   3082     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
   3083     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   3084   case UTT_HasTrivialDefaultConstructor:
   3085     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3086     //   If __is_pod (type) is true then the trait is true, else if type is
   3087     //   a cv class or union type (or array thereof) with a trivial default
   3088     //   constructor ([class.ctor]) then the trait is true, else it is false.
   3089     if (T.isPODType(Self.Context))
   3090       return true;
   3091     if (const RecordType *RT =
   3092           C.getBaseElementType(T)->getAs<RecordType>())
   3093       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
   3094     return false;
   3095   case UTT_HasTrivialCopy:
   3096     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3097     //   If __is_pod (type) is true or type is a reference type then
   3098     //   the trait is true, else if type is a cv class or union type
   3099     //   with a trivial copy constructor ([class.copy]) then the trait
   3100     //   is true, else it is false.
   3101     if (T.isPODType(Self.Context) || T->isReferenceType())
   3102       return true;
   3103     if (const RecordType *RT = T->getAs<RecordType>())
   3104       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
   3105     return false;
   3106   case UTT_HasTrivialAssign:
   3107     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3108     //   If type is const qualified or is a reference type then the
   3109     //   trait is false. Otherwise if __is_pod (type) is true then the
   3110     //   trait is true, else if type is a cv class or union type with
   3111     //   a trivial copy assignment ([class.copy]) then the trait is
   3112     //   true, else it is false.
   3113     // Note: the const and reference restrictions are interesting,
   3114     // given that const and reference members don't prevent a class
   3115     // from having a trivial copy assignment operator (but do cause
   3116     // errors if the copy assignment operator is actually used, q.v.
   3117     // [class.copy]p12).
   3118 
   3119     if (C.getBaseElementType(T).isConstQualified())
   3120       return false;
   3121     if (T.isPODType(Self.Context))
   3122       return true;
   3123     if (const RecordType *RT = T->getAs<RecordType>())
   3124       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
   3125     return false;
   3126   case UTT_HasTrivialDestructor:
   3127     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3128     //   If __is_pod (type) is true or type is a reference type
   3129     //   then the trait is true, else if type is a cv class or union
   3130     //   type (or array thereof) with a trivial destructor
   3131     //   ([class.dtor]) then the trait is true, else it is
   3132     //   false.
   3133     if (T.isPODType(Self.Context) || T->isReferenceType())
   3134       return true;
   3135 
   3136     // Objective-C++ ARC: autorelease types don't require destruction.
   3137     if (T->isObjCLifetimeType() &&
   3138         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
   3139       return true;
   3140 
   3141     if (const RecordType *RT =
   3142           C.getBaseElementType(T)->getAs<RecordType>())
   3143       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
   3144     return false;
   3145   // TODO: Propagate nothrowness for implicitly declared special members.
   3146   case UTT_HasNothrowAssign:
   3147     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3148     //   If type is const qualified or is a reference type then the
   3149     //   trait is false. Otherwise if __has_trivial_assign (type)
   3150     //   is true then the trait is true, else if type is a cv class
   3151     //   or union type with copy assignment operators that are known
   3152     //   not to throw an exception then the trait is true, else it is
   3153     //   false.
   3154     if (C.getBaseElementType(T).isConstQualified())
   3155       return false;
   3156     if (T->isReferenceType())
   3157       return false;
   3158     if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
   3159       return true;
   3160     if (const RecordType *RT = T->getAs<RecordType>()) {
   3161       CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
   3162       if (RD->hasTrivialCopyAssignment())
   3163         return true;
   3164 
   3165       bool FoundAssign = false;
   3166       DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
   3167       LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
   3168                        Sema::LookupOrdinaryName);
   3169       if (Self.LookupQualifiedName(Res, RD)) {
   3170         Res.suppressDiagnostics();
   3171         for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
   3172              Op != OpEnd; ++Op) {
   3173           if (isa<FunctionTemplateDecl>(*Op))
   3174             continue;
   3175 
   3176           CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
   3177           if (Operator->isCopyAssignmentOperator()) {
   3178             FoundAssign = true;
   3179             const FunctionProtoType *CPT
   3180                 = Operator->getType()->getAs<FunctionProtoType>();
   3181             CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3182             if (!CPT)
   3183               return false;
   3184             if (!CPT->isNothrow(Self.Context))
   3185               return false;
   3186           }
   3187         }
   3188       }
   3189 
   3190       return FoundAssign;
   3191     }
   3192     return false;
   3193   case UTT_HasNothrowCopy:
   3194     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3195     //   If __has_trivial_copy (type) is true then the trait is true, else
   3196     //   if type is a cv class or union type with copy constructors that are
   3197     //   known not to throw an exception then the trait is true, else it is
   3198     //   false.
   3199     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
   3200       return true;
   3201     if (const RecordType *RT = T->getAs<RecordType>()) {
   3202       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   3203       if (RD->hasTrivialCopyConstructor())
   3204         return true;
   3205 
   3206       bool FoundConstructor = false;
   3207       unsigned FoundTQs;
   3208       DeclContext::lookup_const_iterator Con, ConEnd;
   3209       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
   3210            Con != ConEnd; ++Con) {
   3211         // A template constructor is never a copy constructor.
   3212         // FIXME: However, it may actually be selected at the actual overload
   3213         // resolution point.
   3214         if (isa<FunctionTemplateDecl>(*Con))
   3215           continue;
   3216         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
   3217         if (Constructor->isCopyConstructor(FoundTQs)) {
   3218           FoundConstructor = true;
   3219           const FunctionProtoType *CPT
   3220               = Constructor->getType()->getAs<FunctionProtoType>();
   3221           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3222           if (!CPT)
   3223             return false;
   3224           // FIXME: check whether evaluating default arguments can throw.
   3225           // For now, we'll be conservative and assume that they can throw.
   3226           if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
   3227             return false;
   3228         }
   3229       }
   3230 
   3231       return FoundConstructor;
   3232     }
   3233     return false;
   3234   case UTT_HasNothrowConstructor:
   3235     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3236     //   If __has_trivial_constructor (type) is true then the trait is
   3237     //   true, else if type is a cv class or union type (or array
   3238     //   thereof) with a default constructor that is known not to
   3239     //   throw an exception then the trait is true, else it is false.
   3240     if (T.isPODType(C) || T->isObjCLifetimeType())
   3241       return true;
   3242     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
   3243       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   3244       if (RD->hasTrivialDefaultConstructor())
   3245         return true;
   3246 
   3247       DeclContext::lookup_const_iterator Con, ConEnd;
   3248       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
   3249            Con != ConEnd; ++Con) {
   3250         // FIXME: In C++0x, a constructor template can be a default constructor.
   3251         if (isa<FunctionTemplateDecl>(*Con))
   3252           continue;
   3253         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
   3254         if (Constructor->isDefaultConstructor()) {
   3255           const FunctionProtoType *CPT
   3256               = Constructor->getType()->getAs<FunctionProtoType>();
   3257           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3258           if (!CPT)
   3259             return false;
   3260           // TODO: check whether evaluating default arguments can throw.
   3261           // For now, we'll be conservative and assume that they can throw.
   3262           return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
   3263         }
   3264       }
   3265     }
   3266     return false;
   3267   case UTT_HasVirtualDestructor:
   3268     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3269     //   If type is a class type with a virtual destructor ([class.dtor])
   3270     //   then the trait is true, else it is false.
   3271     if (const RecordType *Record = T->getAs<RecordType>()) {
   3272       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
   3273       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
   3274         return Destructor->isVirtual();
   3275     }
   3276     return false;
   3277 
   3278     // These type trait expressions are modeled on the specifications for the
   3279     // Embarcadero C++0x type trait functions:
   3280     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   3281   case UTT_IsCompleteType:
   3282     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
   3283     //   Returns True if and only if T is a complete type at the point of the
   3284     //   function call.
   3285     return !T->isIncompleteType();
   3286   }
   3287   llvm_unreachable("Type trait not covered by switch");
   3288 }
   3289 
   3290 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
   3291                                      SourceLocation KWLoc,
   3292                                      TypeSourceInfo *TSInfo,
   3293                                      SourceLocation RParen) {
   3294   QualType T = TSInfo->getType();
   3295   if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
   3296     return ExprError();
   3297 
   3298   bool Value = false;
   3299   if (!T->isDependentType())
   3300     Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
   3301 
   3302   return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
   3303                                                 RParen, Context.BoolTy));
   3304 }
   3305 
   3306 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
   3307                                       SourceLocation KWLoc,
   3308                                       ParsedType LhsTy,
   3309                                       ParsedType RhsTy,
   3310                                       SourceLocation RParen) {
   3311   TypeSourceInfo *LhsTSInfo;
   3312   QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
   3313   if (!LhsTSInfo)
   3314     LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
   3315 
   3316   TypeSourceInfo *RhsTSInfo;
   3317   QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
   3318   if (!RhsTSInfo)
   3319     RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
   3320 
   3321   return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
   3322 }
   3323 
   3324 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
   3325 /// ARC mode.
   3326 static bool hasNontrivialObjCLifetime(QualType T) {
   3327   switch (T.getObjCLifetime()) {
   3328   case Qualifiers::OCL_ExplicitNone:
   3329     return false;
   3330 
   3331   case Qualifiers::OCL_Strong:
   3332   case Qualifiers::OCL_Weak:
   3333   case Qualifiers::OCL_Autoreleasing:
   3334     return true;
   3335 
   3336   case Qualifiers::OCL_None:
   3337     return T->isObjCLifetimeType();
   3338   }
   3339 
   3340   llvm_unreachable("Unknown ObjC lifetime qualifier");
   3341 }
   3342 
   3343 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
   3344                               ArrayRef<TypeSourceInfo *> Args,
   3345                               SourceLocation RParenLoc) {
   3346   switch (Kind) {
   3347   case clang::TT_IsTriviallyConstructible: {
   3348     // C++11 [meta.unary.prop]:
   3349     //   is_trivially_constructible is defined as:
   3350     //
   3351     //     is_constructible<T, Args...>::value is true and the variable
   3352     //     definition for is_constructible, as defined below, is known to call no
   3353     //     operation that is not trivial.
   3354     //
   3355     //   The predicate condition for a template specialization
   3356     //   is_constructible<T, Args...> shall be satisfied if and only if the
   3357     //   following variable definition would be well-formed for some invented
   3358     //   variable t:
   3359     //
   3360     //     T t(create<Args>()...);
   3361     if (Args.empty()) {
   3362       S.Diag(KWLoc, diag::err_type_trait_arity)
   3363         << 1 << 1 << 1 << (int)Args.size();
   3364       return false;
   3365     }
   3366 
   3367     bool SawVoid = false;
   3368     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3369       if (Args[I]->getType()->isVoidType()) {
   3370         SawVoid = true;
   3371         continue;
   3372       }
   3373 
   3374       if (!Args[I]->getType()->isIncompleteType() &&
   3375         S.RequireCompleteType(KWLoc, Args[I]->getType(),
   3376           diag::err_incomplete_type_used_in_type_trait_expr))
   3377         return false;
   3378     }
   3379 
   3380     // If any argument was 'void', of course it won't type-check.
   3381     if (SawVoid)
   3382       return false;
   3383 
   3384     llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
   3385     llvm::SmallVector<Expr *, 2> ArgExprs;
   3386     ArgExprs.reserve(Args.size() - 1);
   3387     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
   3388       QualType T = Args[I]->getType();
   3389       if (T->isObjectType() || T->isFunctionType())
   3390         T = S.Context.getRValueReferenceType(T);
   3391       OpaqueArgExprs.push_back(
   3392         OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
   3393                         T.getNonLValueExprType(S.Context),
   3394                         Expr::getValueKindForType(T)));
   3395       ArgExprs.push_back(&OpaqueArgExprs.back());
   3396     }
   3397 
   3398     // Perform the initialization in an unevaluated context within a SFINAE
   3399     // trap at translation unit scope.
   3400     EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   3401     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
   3402     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
   3403     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
   3404     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
   3405                                                                  RParenLoc));
   3406     InitializationSequence Init(S, To, InitKind,
   3407                                 ArgExprs.begin(), ArgExprs.size());
   3408     if (Init.Failed())
   3409       return false;
   3410 
   3411     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
   3412     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
   3413       return false;
   3414 
   3415     // Under Objective-C ARC, if the destination has non-trivial Objective-C
   3416     // lifetime, this is a non-trivial construction.
   3417     if (S.getLangOpts().ObjCAutoRefCount &&
   3418         hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
   3419       return false;
   3420 
   3421     // The initialization succeeded; now make sure there are no non-trivial
   3422     // calls.
   3423     return !Result.get()->hasNonTrivialCall(S.Context);
   3424   }
   3425   }
   3426 
   3427   return false;
   3428 }
   3429 
   3430 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
   3431                                 ArrayRef<TypeSourceInfo *> Args,
   3432                                 SourceLocation RParenLoc) {
   3433   bool Dependent = false;
   3434   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3435     if (Args[I]->getType()->isDependentType()) {
   3436       Dependent = true;
   3437       break;
   3438     }
   3439   }
   3440 
   3441   bool Value = false;
   3442   if (!Dependent)
   3443     Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
   3444 
   3445   return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
   3446                                Args, RParenLoc, Value);
   3447 }
   3448 
   3449 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
   3450                                 ArrayRef<ParsedType> Args,
   3451                                 SourceLocation RParenLoc) {
   3452   llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
   3453   ConvertedArgs.reserve(Args.size());
   3454 
   3455   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3456     TypeSourceInfo *TInfo;
   3457     QualType T = GetTypeFromParser(Args[I], &TInfo);
   3458     if (!TInfo)
   3459       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
   3460 
   3461     ConvertedArgs.push_back(TInfo);
   3462   }
   3463 
   3464   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
   3465 }
   3466 
   3467 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
   3468                                     QualType LhsT, QualType RhsT,
   3469                                     SourceLocation KeyLoc) {
   3470   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
   3471          "Cannot evaluate traits of dependent types");
   3472 
   3473   switch(BTT) {
   3474   case BTT_IsBaseOf: {
   3475     // C++0x [meta.rel]p2
   3476     // Base is a base class of Derived without regard to cv-qualifiers or
   3477     // Base and Derived are not unions and name the same class type without
   3478     // regard to cv-qualifiers.
   3479 
   3480     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
   3481     if (!lhsRecord) return false;
   3482 
   3483     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
   3484     if (!rhsRecord) return false;
   3485 
   3486     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
   3487              == (lhsRecord == rhsRecord));
   3488 
   3489     if (lhsRecord == rhsRecord)
   3490       return !lhsRecord->getDecl()->isUnion();
   3491 
   3492     // C++0x [meta.rel]p2:
   3493     //   If Base and Derived are class types and are different types
   3494     //   (ignoring possible cv-qualifiers) then Derived shall be a
   3495     //   complete type.
   3496     if (Self.RequireCompleteType(KeyLoc, RhsT,
   3497                           diag::err_incomplete_type_used_in_type_trait_expr))
   3498       return false;
   3499 
   3500     return cast<CXXRecordDecl>(rhsRecord->getDecl())
   3501       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
   3502   }
   3503   case BTT_IsSame:
   3504     return Self.Context.hasSameType(LhsT, RhsT);
   3505   case BTT_TypeCompatible:
   3506     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
   3507                                            RhsT.getUnqualifiedType());
   3508   case BTT_IsConvertible:
   3509   case BTT_IsConvertibleTo: {
   3510     // C++0x [meta.rel]p4:
   3511     //   Given the following function prototype:
   3512     //
   3513     //     template <class T>
   3514     //       typename add_rvalue_reference<T>::type create();
   3515     //
   3516     //   the predicate condition for a template specialization
   3517     //   is_convertible<From, To> shall be satisfied if and only if
   3518     //   the return expression in the following code would be
   3519     //   well-formed, including any implicit conversions to the return
   3520     //   type of the function:
   3521     //
   3522     //     To test() {
   3523     //       return create<From>();
   3524     //     }
   3525     //
   3526     //   Access checking is performed as if in a context unrelated to To and
   3527     //   From. Only the validity of the immediate context of the expression
   3528     //   of the return-statement (including conversions to the return type)
   3529     //   is considered.
   3530     //
   3531     // We model the initialization as a copy-initialization of a temporary
   3532     // of the appropriate type, which for this expression is identical to the
   3533     // return statement (since NRVO doesn't apply).
   3534 
   3535     // Functions aren't allowed to return function or array types.
   3536     if (RhsT->isFunctionType() || RhsT->isArrayType())
   3537       return false;
   3538 
   3539     // A return statement in a void function must have void type.
   3540     if (RhsT->isVoidType())
   3541       return LhsT->isVoidType();
   3542 
   3543     // A function definition requires a complete, non-abstract return type.
   3544     if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
   3545         Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
   3546       return false;
   3547 
   3548     // Compute the result of add_rvalue_reference.
   3549     if (LhsT->isObjectType() || LhsT->isFunctionType())
   3550       LhsT = Self.Context.getRValueReferenceType(LhsT);
   3551 
   3552     // Build a fake source and destination for initialization.
   3553     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
   3554     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
   3555                          Expr::getValueKindForType(LhsT));
   3556     Expr *FromPtr = &From;
   3557     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
   3558                                                            SourceLocation()));
   3559 
   3560     // Perform the initialization in an unevaluated context within a SFINAE
   3561     // trap at translation unit scope.
   3562     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
   3563     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
   3564     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
   3565     InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
   3566     if (Init.Failed())
   3567       return false;
   3568 
   3569     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
   3570     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
   3571   }
   3572 
   3573   case BTT_IsTriviallyAssignable: {
   3574     // C++11 [meta.unary.prop]p3:
   3575     //   is_trivially_assignable is defined as:
   3576     //     is_assignable<T, U>::value is true and the assignment, as defined by
   3577     //     is_assignable, is known to call no operation that is not trivial
   3578     //
   3579     //   is_assignable is defined as:
   3580     //     The expression declval<T>() = declval<U>() is well-formed when
   3581     //     treated as an unevaluated operand (Clause 5).
   3582     //
   3583     //   For both, T and U shall be complete types, (possibly cv-qualified)
   3584     //   void, or arrays of unknown bound.
   3585     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
   3586         Self.RequireCompleteType(KeyLoc, LhsT,
   3587           diag::err_incomplete_type_used_in_type_trait_expr))
   3588       return false;
   3589     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
   3590         Self.RequireCompleteType(KeyLoc, RhsT,
   3591           diag::err_incomplete_type_used_in_type_trait_expr))
   3592       return false;
   3593 
   3594     // cv void is never assignable.
   3595     if (LhsT->isVoidType() || RhsT->isVoidType())
   3596       return false;
   3597 
   3598     // Build expressions that emulate the effect of declval<T>() and
   3599     // declval<U>().
   3600     if (LhsT->isObjectType() || LhsT->isFunctionType())
   3601       LhsT = Self.Context.getRValueReferenceType(LhsT);
   3602     if (RhsT->isObjectType() || RhsT->isFunctionType())
   3603       RhsT = Self.Context.getRValueReferenceType(RhsT);
   3604     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
   3605                         Expr::getValueKindForType(LhsT));
   3606     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
   3607                         Expr::getValueKindForType(RhsT));
   3608 
   3609     // Attempt the assignment in an unevaluated context within a SFINAE
   3610     // trap at translation unit scope.
   3611     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
   3612     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
   3613     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
   3614     ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
   3615     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
   3616       return false;
   3617 
   3618     // Under Objective-C ARC, if the destination has non-trivial Objective-C
   3619     // lifetime, this is a non-trivial assignment.
   3620     if (Self.getLangOpts().ObjCAutoRefCount &&
   3621         hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
   3622       return false;
   3623 
   3624     return !Result.get()->hasNonTrivialCall(Self.Context);
   3625   }
   3626   }
   3627   llvm_unreachable("Unknown type trait or not implemented");
   3628 }
   3629 
   3630 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
   3631                                       SourceLocation KWLoc,
   3632                                       TypeSourceInfo *LhsTSInfo,
   3633                                       TypeSourceInfo *RhsTSInfo,
   3634                                       SourceLocation RParen) {
   3635   QualType LhsT = LhsTSInfo->getType();
   3636   QualType RhsT = RhsTSInfo->getType();
   3637 
   3638   if (BTT == BTT_TypeCompatible) {
   3639     if (getLangOpts().CPlusPlus) {
   3640       Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
   3641         << SourceRange(KWLoc, RParen);
   3642       return ExprError();
   3643     }
   3644   }
   3645 
   3646   bool Value = false;
   3647   if (!LhsT->isDependentType() && !RhsT->isDependentType())
   3648     Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
   3649 
   3650   // Select trait result type.
   3651   QualType ResultType;
   3652   switch (BTT) {
   3653   case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
   3654   case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
   3655   case BTT_IsSame:         ResultType = Context.BoolTy; break;
   3656   case BTT_TypeCompatible: ResultType = Context.IntTy; break;
   3657   case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
   3658   case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
   3659   }
   3660 
   3661   return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
   3662                                                  RhsTSInfo, Value, RParen,
   3663                                                  ResultType));
   3664 }
   3665 
   3666 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
   3667                                      SourceLocation KWLoc,
   3668                                      ParsedType Ty,
   3669                                      Expr* DimExpr,
   3670                                      SourceLocation RParen) {
   3671   TypeSourceInfo *TSInfo;
   3672   QualType T = GetTypeFromParser(Ty, &TSInfo);
   3673   if (!TSInfo)
   3674     TSInfo = Context.getTrivialTypeSourceInfo(T);
   3675 
   3676   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
   3677 }
   3678 
   3679 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
   3680                                            QualType T, Expr *DimExpr,
   3681                                            SourceLocation KeyLoc) {
   3682   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   3683 
   3684   switch(ATT) {
   3685   case ATT_ArrayRank:
   3686     if (T->isArrayType()) {
   3687       unsigned Dim = 0;
   3688       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   3689         ++Dim;
   3690         T = AT->getElementType();
   3691       }
   3692       return Dim;
   3693     }
   3694     return 0;
   3695 
   3696   case ATT_ArrayExtent: {
   3697     llvm::APSInt Value;
   3698     uint64_t Dim;
   3699     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
   3700           diag::err_dimension_expr_not_constant_integer,
   3701           false).isInvalid())
   3702       return 0;
   3703     if (Value.isSigned() && Value.isNegative()) {
   3704       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
   3705         << DimExpr->getSourceRange();
   3706       return 0;
   3707     }
   3708     Dim = Value.getLimitedValue();
   3709 
   3710     if (T->isArrayType()) {
   3711       unsigned D = 0;
   3712       bool Matched = false;
   3713       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   3714         if (Dim == D) {
   3715           Matched = true;
   3716           break;
   3717         }
   3718         ++D;
   3719         T = AT->getElementType();
   3720       }
   3721 
   3722       if (Matched && T->isArrayType()) {
   3723         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
   3724           return CAT->getSize().getLimitedValue();
   3725       }
   3726     }
   3727     return 0;
   3728   }
   3729   }
   3730   llvm_unreachable("Unknown type trait or not implemented");
   3731 }
   3732 
   3733 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
   3734                                      SourceLocation KWLoc,
   3735                                      TypeSourceInfo *TSInfo,
   3736                                      Expr* DimExpr,
   3737                                      SourceLocation RParen) {
   3738   QualType T = TSInfo->getType();
   3739 
   3740   // FIXME: This should likely be tracked as an APInt to remove any host
   3741   // assumptions about the width of size_t on the target.
   3742   uint64_t Value = 0;
   3743   if (!T->isDependentType())
   3744     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
   3745 
   3746   // While the specification for these traits from the Embarcadero C++
   3747   // compiler's documentation says the return type is 'unsigned int', Clang
   3748   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
   3749   // compiler, there is no difference. On several other platforms this is an
   3750   // important distinction.
   3751   return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
   3752                                                 DimExpr, RParen,
   3753                                                 Context.getSizeType()));
   3754 }
   3755 
   3756 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
   3757                                       SourceLocation KWLoc,
   3758                                       Expr *Queried,
   3759                                       SourceLocation RParen) {
   3760   // If error parsing the expression, ignore.
   3761   if (!Queried)
   3762     return ExprError();
   3763 
   3764   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
   3765 
   3766   return Result;
   3767 }
   3768 
   3769 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
   3770   switch (ET) {
   3771   case ET_IsLValueExpr: return E->isLValue();
   3772   case ET_IsRValueExpr: return E->isRValue();
   3773   }
   3774   llvm_unreachable("Expression trait not covered by switch");
   3775 }
   3776 
   3777 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
   3778                                       SourceLocation KWLoc,
   3779                                       Expr *Queried,
   3780                                       SourceLocation RParen) {
   3781   if (Queried->isTypeDependent()) {
   3782     // Delay type-checking for type-dependent expressions.
   3783   } else if (Queried->getType()->isPlaceholderType()) {
   3784     ExprResult PE = CheckPlaceholderExpr(Queried);
   3785     if (PE.isInvalid()) return ExprError();
   3786     return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
   3787   }
   3788 
   3789   bool Value = EvaluateExpressionTrait(ET, Queried);
   3790 
   3791   return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
   3792                                                  RParen, Context.BoolTy));
   3793 }
   3794 
   3795 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
   3796                                             ExprValueKind &VK,
   3797                                             SourceLocation Loc,
   3798                                             bool isIndirect) {
   3799   assert(!LHS.get()->getType()->isPlaceholderType() &&
   3800          !RHS.get()->getType()->isPlaceholderType() &&
   3801          "placeholders should have been weeded out by now");
   3802 
   3803   // The LHS undergoes lvalue conversions if this is ->*.
   3804   if (isIndirect) {
   3805     LHS = DefaultLvalueConversion(LHS.take());
   3806     if (LHS.isInvalid()) return QualType();
   3807   }
   3808 
   3809   // The RHS always undergoes lvalue conversions.
   3810   RHS = DefaultLvalueConversion(RHS.take());
   3811   if (RHS.isInvalid()) return QualType();
   3812 
   3813   const char *OpSpelling = isIndirect ? "->*" : ".*";
   3814   // C++ 5.5p2
   3815   //   The binary operator .* [p3: ->*] binds its second operand, which shall
   3816   //   be of type "pointer to member of T" (where T is a completely-defined
   3817   //   class type) [...]
   3818   QualType RHSType = RHS.get()->getType();
   3819   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
   3820   if (!MemPtr) {
   3821     Diag(Loc, diag::err_bad_memptr_rhs)
   3822       << OpSpelling << RHSType << RHS.get()->getSourceRange();
   3823     return QualType();
   3824   }
   3825 
   3826   QualType Class(MemPtr->getClass(), 0);
   3827 
   3828   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
   3829   // member pointer points must be completely-defined. However, there is no
   3830   // reason for this semantic distinction, and the rule is not enforced by
   3831   // other compilers. Therefore, we do not check this property, as it is
   3832   // likely to be considered a defect.
   3833 
   3834   // C++ 5.5p2
   3835   //   [...] to its first operand, which shall be of class T or of a class of
   3836   //   which T is an unambiguous and accessible base class. [p3: a pointer to
   3837   //   such a class]
   3838   QualType LHSType = LHS.get()->getType();
   3839   if (isIndirect) {
   3840     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
   3841       LHSType = Ptr->getPointeeType();
   3842     else {
   3843       Diag(Loc, diag::err_bad_memptr_lhs)
   3844         << OpSpelling << 1 << LHSType
   3845         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
   3846       return QualType();
   3847     }
   3848   }
   3849 
   3850   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
   3851     // If we want to check the hierarchy, we need a complete type.
   3852     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
   3853                             OpSpelling, (int)isIndirect)) {
   3854       return QualType();
   3855     }
   3856     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   3857                        /*DetectVirtual=*/false);
   3858     // FIXME: Would it be useful to print full ambiguity paths, or is that
   3859     // overkill?
   3860     if (!IsDerivedFrom(LHSType, Class, Paths) ||
   3861         Paths.isAmbiguous(Context.getCanonicalType(Class))) {
   3862       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
   3863         << (int)isIndirect << LHS.get()->getType();
   3864       return QualType();
   3865     }
   3866     // Cast LHS to type of use.
   3867     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
   3868     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
   3869 
   3870     CXXCastPath BasePath;
   3871     BuildBasePathArray(Paths, BasePath);
   3872     LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
   3873                             &BasePath);
   3874   }
   3875 
   3876   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
   3877     // Diagnose use of pointer-to-member type which when used as
   3878     // the functional cast in a pointer-to-member expression.
   3879     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
   3880      return QualType();
   3881   }
   3882 
   3883   // C++ 5.5p2
   3884   //   The result is an object or a function of the type specified by the
   3885   //   second operand.
   3886   // The cv qualifiers are the union of those in the pointer and the left side,
   3887   // in accordance with 5.5p5 and 5.2.5.
   3888   QualType Result = MemPtr->getPointeeType();
   3889   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
   3890 
   3891   // C++0x [expr.mptr.oper]p6:
   3892   //   In a .* expression whose object expression is an rvalue, the program is
   3893   //   ill-formed if the second operand is a pointer to member function with
   3894   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
   3895   //   expression is an lvalue, the program is ill-formed if the second operand
   3896   //   is a pointer to member function with ref-qualifier &&.
   3897   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
   3898     switch (Proto->getRefQualifier()) {
   3899     case RQ_None:
   3900       // Do nothing
   3901       break;
   3902 
   3903     case RQ_LValue:
   3904       if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
   3905         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   3906           << RHSType << 1 << LHS.get()->getSourceRange();
   3907       break;
   3908 
   3909     case RQ_RValue:
   3910       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
   3911         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   3912           << RHSType << 0 << LHS.get()->getSourceRange();
   3913       break;
   3914     }
   3915   }
   3916 
   3917   // C++ [expr.mptr.oper]p6:
   3918   //   The result of a .* expression whose second operand is a pointer
   3919   //   to a data member is of the same value category as its
   3920   //   first operand. The result of a .* expression whose second
   3921   //   operand is a pointer to a member function is a prvalue. The
   3922   //   result of an ->* expression is an lvalue if its second operand
   3923   //   is a pointer to data member and a prvalue otherwise.
   3924   if (Result->isFunctionType()) {
   3925     VK = VK_RValue;
   3926     return Context.BoundMemberTy;
   3927   } else if (isIndirect) {
   3928     VK = VK_LValue;
   3929   } else {
   3930     VK = LHS.get()->getValueKind();
   3931   }
   3932 
   3933   return Result;
   3934 }
   3935 
   3936 /// \brief Try to convert a type to another according to C++0x 5.16p3.
   3937 ///
   3938 /// This is part of the parameter validation for the ? operator. If either
   3939 /// value operand is a class type, the two operands are attempted to be
   3940 /// converted to each other. This function does the conversion in one direction.
   3941 /// It returns true if the program is ill-formed and has already been diagnosed
   3942 /// as such.
   3943 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
   3944                                 SourceLocation QuestionLoc,
   3945                                 bool &HaveConversion,
   3946                                 QualType &ToType) {
   3947   HaveConversion = false;
   3948   ToType = To->getType();
   3949 
   3950   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
   3951                                                            SourceLocation());
   3952   // C++0x 5.16p3
   3953   //   The process for determining whether an operand expression E1 of type T1
   3954   //   can be converted to match an operand expression E2 of type T2 is defined
   3955   //   as follows:
   3956   //   -- If E2 is an lvalue:
   3957   bool ToIsLvalue = To->isLValue();
   3958   if (ToIsLvalue) {
   3959     //   E1 can be converted to match E2 if E1 can be implicitly converted to
   3960     //   type "lvalue reference to T2", subject to the constraint that in the
   3961     //   conversion the reference must bind directly to E1.
   3962     QualType T = Self.Context.getLValueReferenceType(ToType);
   3963     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   3964 
   3965     InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
   3966     if (InitSeq.isDirectReferenceBinding()) {
   3967       ToType = T;
   3968       HaveConversion = true;
   3969       return false;
   3970     }
   3971 
   3972     if (InitSeq.isAmbiguous())
   3973       return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
   3974   }
   3975 
   3976   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
   3977   //      -- if E1 and E2 have class type, and the underlying class types are
   3978   //         the same or one is a base class of the other:
   3979   QualType FTy = From->getType();
   3980   QualType TTy = To->getType();
   3981   const RecordType *FRec = FTy->getAs<RecordType>();
   3982   const RecordType *TRec = TTy->getAs<RecordType>();
   3983   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
   3984                        Self.IsDerivedFrom(FTy, TTy);
   3985   if (FRec && TRec &&
   3986       (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
   3987     //         E1 can be converted to match E2 if the class of T2 is the
   3988     //         same type as, or a base class of, the class of T1, and
   3989     //         [cv2 > cv1].
   3990     if (FRec == TRec || FDerivedFromT) {
   3991       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
   3992         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   3993         InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
   3994         if (InitSeq) {
   3995           HaveConversion = true;
   3996           return false;
   3997         }
   3998 
   3999         if (InitSeq.isAmbiguous())
   4000           return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
   4001       }
   4002     }
   4003 
   4004     return false;
   4005   }
   4006 
   4007   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
   4008   //        implicitly converted to the type that expression E2 would have
   4009   //        if E2 were converted to an rvalue (or the type it has, if E2 is
   4010   //        an rvalue).
   4011   //
   4012   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
   4013   // to the array-to-pointer or function-to-pointer conversions.
   4014   if (!TTy->getAs<TagType>())
   4015     TTy = TTy.getUnqualifiedType();
   4016 
   4017   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   4018   InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
   4019   HaveConversion = !InitSeq.Failed();
   4020   ToType = TTy;
   4021   if (InitSeq.isAmbiguous())
   4022     return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
   4023 
   4024   return false;
   4025 }
   4026 
   4027 /// \brief Try to find a common type for two according to C++0x 5.16p5.
   4028 ///
   4029 /// This is part of the parameter validation for the ? operator. If either
   4030 /// value operand is a class type, overload resolution is used to find a
   4031 /// conversion to a common type.
   4032 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
   4033                                     SourceLocation QuestionLoc) {
   4034   Expr *Args[2] = { LHS.get(), RHS.get() };
   4035   OverloadCandidateSet CandidateSet(QuestionLoc);
   4036   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
   4037                                     CandidateSet);
   4038 
   4039   OverloadCandidateSet::iterator Best;
   4040   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
   4041     case OR_Success: {
   4042       // We found a match. Perform the conversions on the arguments and move on.
   4043       ExprResult LHSRes =
   4044         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
   4045                                        Best->Conversions[0], Sema::AA_Converting);
   4046       if (LHSRes.isInvalid())
   4047         break;
   4048       LHS = LHSRes;
   4049 
   4050       ExprResult RHSRes =
   4051         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
   4052                                        Best->Conversions[1], Sema::AA_Converting);
   4053       if (RHSRes.isInvalid())
   4054         break;
   4055       RHS = RHSRes;
   4056       if (Best->Function)
   4057         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
   4058       return false;
   4059     }
   4060 
   4061     case OR_No_Viable_Function:
   4062 
   4063       // Emit a better diagnostic if one of the expressions is a null pointer
   4064       // constant and the other is a pointer type. In this case, the user most
   4065       // likely forgot to take the address of the other expression.
   4066       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   4067         return true;
   4068 
   4069       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   4070         << LHS.get()->getType() << RHS.get()->getType()
   4071         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4072       return true;
   4073 
   4074     case OR_Ambiguous:
   4075       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
   4076         << LHS.get()->getType() << RHS.get()->getType()
   4077         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4078       // FIXME: Print the possible common types by printing the return types of
   4079       // the viable candidates.
   4080       break;
   4081 
   4082     case OR_Deleted:
   4083       llvm_unreachable("Conditional operator has only built-in overloads");
   4084   }
   4085   return true;
   4086 }
   4087 
   4088 /// \brief Perform an "extended" implicit conversion as returned by
   4089 /// TryClassUnification.
   4090 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
   4091   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   4092   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
   4093                                                            SourceLocation());
   4094   Expr *Arg = E.take();
   4095   InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
   4096   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
   4097   if (Result.isInvalid())
   4098     return true;
   4099 
   4100   E = Result;
   4101   return false;
   4102 }
   4103 
   4104 /// \brief Check the operands of ?: under C++ semantics.
   4105 ///
   4106 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
   4107 /// extension. In this case, LHS == Cond. (But they're not aliases.)
   4108 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
   4109                                            ExprResult &RHS, ExprValueKind &VK,
   4110                                            ExprObjectKind &OK,
   4111                                            SourceLocation QuestionLoc) {
   4112   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
   4113   // interface pointers.
   4114 
   4115   // C++11 [expr.cond]p1
   4116   //   The first expression is contextually converted to bool.
   4117   if (!Cond.get()->isTypeDependent()) {
   4118     ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
   4119     if (CondRes.isInvalid())
   4120       return QualType();
   4121     Cond = CondRes;
   4122   }
   4123 
   4124   // Assume r-value.
   4125   VK = VK_RValue;
   4126   OK = OK_Ordinary;
   4127 
   4128   // Either of the arguments dependent?
   4129   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
   4130     return Context.DependentTy;
   4131 
   4132   // C++11 [expr.cond]p2
   4133   //   If either the second or the third operand has type (cv) void, ...
   4134   QualType LTy = LHS.get()->getType();
   4135   QualType RTy = RHS.get()->getType();
   4136   bool LVoid = LTy->isVoidType();
   4137   bool RVoid = RTy->isVoidType();
   4138   if (LVoid || RVoid) {
   4139     //   ... then the [l2r] conversions are performed on the second and third
   4140     //   operands ...
   4141     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
   4142     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
   4143     if (LHS.isInvalid() || RHS.isInvalid())
   4144       return QualType();
   4145 
   4146     // Finish off the lvalue-to-rvalue conversion by copy-initializing a
   4147     // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
   4148     // do this part for us.
   4149     ExprResult &NonVoid = LVoid ? RHS : LHS;
   4150     if (NonVoid.get()->getType()->isRecordType() &&
   4151         NonVoid.get()->isGLValue()) {
   4152       if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
   4153                              diag::err_allocation_of_abstract_type))
   4154         return QualType();
   4155       InitializedEntity Entity =
   4156           InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
   4157       NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
   4158       if (NonVoid.isInvalid())
   4159         return QualType();
   4160     }
   4161 
   4162     LTy = LHS.get()->getType();
   4163     RTy = RHS.get()->getType();
   4164 
   4165     //   ... and one of the following shall hold:
   4166     //   -- The second or the third operand (but not both) is a throw-
   4167     //      expression; the result is of the type of the other and is a prvalue.
   4168     bool LThrow = isa<CXXThrowExpr>(LHS.get());
   4169     bool RThrow = isa<CXXThrowExpr>(RHS.get());
   4170     if (LThrow && !RThrow)
   4171       return RTy;
   4172     if (RThrow && !LThrow)
   4173       return LTy;
   4174 
   4175     //   -- Both the second and third operands have type void; the result is of
   4176     //      type void and is a prvalue.
   4177     if (LVoid && RVoid)
   4178       return Context.VoidTy;
   4179 
   4180     // Neither holds, error.
   4181     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
   4182       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
   4183       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4184     return QualType();
   4185   }
   4186 
   4187   // Neither is void.
   4188 
   4189   // C++11 [expr.cond]p3
   4190   //   Otherwise, if the second and third operand have different types, and
   4191   //   either has (cv) class type [...] an attempt is made to convert each of
   4192   //   those operands to the type of the other.
   4193   if (!Context.hasSameType(LTy, RTy) &&
   4194       (LTy->isRecordType() || RTy->isRecordType())) {
   4195     ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
   4196     // These return true if a single direction is already ambiguous.
   4197     QualType L2RType, R2LType;
   4198     bool HaveL2R, HaveR2L;
   4199     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
   4200       return QualType();
   4201     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
   4202       return QualType();
   4203 
   4204     //   If both can be converted, [...] the program is ill-formed.
   4205     if (HaveL2R && HaveR2L) {
   4206       Diag(QuestionLoc, diag::err_conditional_ambiguous)
   4207         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4208       return QualType();
   4209     }
   4210 
   4211     //   If exactly one conversion is possible, that conversion is applied to
   4212     //   the chosen operand and the converted operands are used in place of the
   4213     //   original operands for the remainder of this section.
   4214     if (HaveL2R) {
   4215       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
   4216         return QualType();
   4217       LTy = LHS.get()->getType();
   4218     } else if (HaveR2L) {
   4219       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
   4220         return QualType();
   4221       RTy = RHS.get()->getType();
   4222     }
   4223   }
   4224 
   4225   // C++11 [expr.cond]p3
   4226   //   if both are glvalues of the same value category and the same type except
   4227   //   for cv-qualification, an attempt is made to convert each of those
   4228   //   operands to the type of the other.
   4229   ExprValueKind LVK = LHS.get()->getValueKind();
   4230   ExprValueKind RVK = RHS.get()->getValueKind();
   4231   if (!Context.hasSameType(LTy, RTy) &&
   4232       Context.hasSameUnqualifiedType(LTy, RTy) &&
   4233       LVK == RVK && LVK != VK_RValue) {
   4234     // Since the unqualified types are reference-related and we require the
   4235     // result to be as if a reference bound directly, the only conversion
   4236     // we can perform is to add cv-qualifiers.
   4237     Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
   4238     Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
   4239     if (RCVR.isStrictSupersetOf(LCVR)) {
   4240       LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
   4241       LTy = LHS.get()->getType();
   4242     }
   4243     else if (LCVR.isStrictSupersetOf(RCVR)) {
   4244       RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
   4245       RTy = RHS.get()->getType();
   4246     }
   4247   }
   4248 
   4249   // C++11 [expr.cond]p4
   4250   //   If the second and third operands are glvalues of the same value
   4251   //   category and have the same type, the result is of that type and
   4252   //   value category and it is a bit-field if the second or the third
   4253   //   operand is a bit-field, or if both are bit-fields.
   4254   // We only extend this to bitfields, not to the crazy other kinds of
   4255   // l-values.
   4256   bool Same = Context.hasSameType(LTy, RTy);
   4257   if (Same && LVK == RVK && LVK != VK_RValue &&
   4258       LHS.get()->isOrdinaryOrBitFieldObject() &&
   4259       RHS.get()->isOrdinaryOrBitFieldObject()) {
   4260     VK = LHS.get()->getValueKind();
   4261     if (LHS.get()->getObjectKind() == OK_BitField ||
   4262         RHS.get()->getObjectKind() == OK_BitField)
   4263       OK = OK_BitField;
   4264     return LTy;
   4265   }
   4266 
   4267   // C++11 [expr.cond]p5
   4268   //   Otherwise, the result is a prvalue. If the second and third operands
   4269   //   do not have the same type, and either has (cv) class type, ...
   4270   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
   4271     //   ... overload resolution is used to determine the conversions (if any)
   4272     //   to be applied to the operands. If the overload resolution fails, the
   4273     //   program is ill-formed.
   4274     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
   4275       return QualType();
   4276   }
   4277 
   4278   // C++11 [expr.cond]p6
   4279   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
   4280   //   conversions are performed on the second and third operands.
   4281   LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
   4282   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
   4283   if (LHS.isInvalid() || RHS.isInvalid())
   4284     return QualType();
   4285   LTy = LHS.get()->getType();
   4286   RTy = RHS.get()->getType();
   4287 
   4288   //   After those conversions, one of the following shall hold:
   4289   //   -- The second and third operands have the same type; the result
   4290   //      is of that type. If the operands have class type, the result
   4291   //      is a prvalue temporary of the result type, which is
   4292   //      copy-initialized from either the second operand or the third
   4293   //      operand depending on the value of the first operand.
   4294   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
   4295     if (LTy->isRecordType()) {
   4296       // The operands have class type. Make a temporary copy.
   4297       if (RequireNonAbstractType(QuestionLoc, LTy,
   4298                                  diag::err_allocation_of_abstract_type))
   4299         return QualType();
   4300       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
   4301 
   4302       ExprResult LHSCopy = PerformCopyInitialization(Entity,
   4303                                                      SourceLocation(),
   4304                                                      LHS);
   4305       if (LHSCopy.isInvalid())
   4306         return QualType();
   4307 
   4308       ExprResult RHSCopy = PerformCopyInitialization(Entity,
   4309                                                      SourceLocation(),
   4310                                                      RHS);
   4311       if (RHSCopy.isInvalid())
   4312         return QualType();
   4313 
   4314       LHS = LHSCopy;
   4315       RHS = RHSCopy;
   4316     }
   4317 
   4318     return LTy;
   4319   }
   4320 
   4321   // Extension: conditional operator involving vector types.
   4322   if (LTy->isVectorType() || RTy->isVectorType())
   4323     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
   4324 
   4325   //   -- The second and third operands have arithmetic or enumeration type;
   4326   //      the usual arithmetic conversions are performed to bring them to a
   4327   //      common type, and the result is of that type.
   4328   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
   4329     UsualArithmeticConversions(LHS, RHS);
   4330     if (LHS.isInvalid() || RHS.isInvalid())
   4331       return QualType();
   4332     return LHS.get()->getType();
   4333   }
   4334 
   4335   //   -- The second and third operands have pointer type, or one has pointer
   4336   //      type and the other is a null pointer constant, or both are null
   4337   //      pointer constants, at least one of which is non-integral; pointer
   4338   //      conversions and qualification conversions are performed to bring them
   4339   //      to their composite pointer type. The result is of the composite
   4340   //      pointer type.
   4341   //   -- The second and third operands have pointer to member type, or one has
   4342   //      pointer to member type and the other is a null pointer constant;
   4343   //      pointer to member conversions and qualification conversions are
   4344   //      performed to bring them to a common type, whose cv-qualification
   4345   //      shall match the cv-qualification of either the second or the third
   4346   //      operand. The result is of the common type.
   4347   bool NonStandardCompositeType = false;
   4348   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
   4349                               isSFINAEContext()? 0 : &NonStandardCompositeType);
   4350   if (!Composite.isNull()) {
   4351     if (NonStandardCompositeType)
   4352       Diag(QuestionLoc,
   4353            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
   4354         << LTy << RTy << Composite
   4355         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4356 
   4357     return Composite;
   4358   }
   4359 
   4360   // Similarly, attempt to find composite type of two objective-c pointers.
   4361   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
   4362   if (!Composite.isNull())
   4363     return Composite;
   4364 
   4365   // Check if we are using a null with a non-pointer type.
   4366   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   4367     return QualType();
   4368 
   4369   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   4370     << LHS.get()->getType() << RHS.get()->getType()
   4371     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4372   return QualType();
   4373 }
   4374 
   4375 /// \brief Find a merged pointer type and convert the two expressions to it.
   4376 ///
   4377 /// This finds the composite pointer type (or member pointer type) for @p E1
   4378 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
   4379 /// type and returns it.
   4380 /// It does not emit diagnostics.
   4381 ///
   4382 /// \param Loc The location of the operator requiring these two expressions to
   4383 /// be converted to the composite pointer type.
   4384 ///
   4385 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
   4386 /// a non-standard (but still sane) composite type to which both expressions
   4387 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
   4388 /// will be set true.
   4389 QualType Sema::FindCompositePointerType(SourceLocation Loc,
   4390                                         Expr *&E1, Expr *&E2,
   4391                                         bool *NonStandardCompositeType) {
   4392   if (NonStandardCompositeType)
   4393     *NonStandardCompositeType = false;
   4394 
   4395   assert(getLangOpts().CPlusPlus && "This function assumes C++");
   4396   QualType T1 = E1->getType(), T2 = E2->getType();
   4397 
   4398   // C++11 5.9p2
   4399   //   Pointer conversions and qualification conversions are performed on
   4400   //   pointer operands to bring them to their composite pointer type. If
   4401   //   one operand is a null pointer constant, the composite pointer type is
   4402   //   std::nullptr_t if the other operand is also a null pointer constant or,
   4403   //   if the other operand is a pointer, the type of the other operand.
   4404   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
   4405       !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
   4406     if (T1->isNullPtrType() &&
   4407         E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4408       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
   4409       return T1;
   4410     }
   4411     if (T2->isNullPtrType() &&
   4412         E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4413       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
   4414       return T2;
   4415     }
   4416     return QualType();
   4417   }
   4418 
   4419   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4420     if (T2->isMemberPointerType())
   4421       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
   4422     else
   4423       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
   4424     return T2;
   4425   }
   4426   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4427     if (T1->isMemberPointerType())
   4428       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
   4429     else
   4430       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
   4431     return T1;
   4432   }
   4433 
   4434   // Now both have to be pointers or member pointers.
   4435   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
   4436       (!T2->isPointerType() && !T2->isMemberPointerType()))
   4437     return QualType();
   4438 
   4439   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
   4440   //   the other has type "pointer to cv2 T" and the composite pointer type is
   4441   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
   4442   //   Otherwise, the composite pointer type is a pointer type similar to the
   4443   //   type of one of the operands, with a cv-qualification signature that is
   4444   //   the union of the cv-qualification signatures of the operand types.
   4445   // In practice, the first part here is redundant; it's subsumed by the second.
   4446   // What we do here is, we build the two possible composite types, and try the
   4447   // conversions in both directions. If only one works, or if the two composite
   4448   // types are the same, we have succeeded.
   4449   // FIXME: extended qualifiers?
   4450   typedef SmallVector<unsigned, 4> QualifierVector;
   4451   QualifierVector QualifierUnion;
   4452   typedef SmallVector<std::pair<const Type *, const Type *>, 4>
   4453       ContainingClassVector;
   4454   ContainingClassVector MemberOfClass;
   4455   QualType Composite1 = Context.getCanonicalType(T1),
   4456            Composite2 = Context.getCanonicalType(T2);
   4457   unsigned NeedConstBefore = 0;
   4458   do {
   4459     const PointerType *Ptr1, *Ptr2;
   4460     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
   4461         (Ptr2 = Composite2->getAs<PointerType>())) {
   4462       Composite1 = Ptr1->getPointeeType();
   4463       Composite2 = Ptr2->getPointeeType();
   4464 
   4465       // If we're allowed to create a non-standard composite type, keep track
   4466       // of where we need to fill in additional 'const' qualifiers.
   4467       if (NonStandardCompositeType &&
   4468           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   4469         NeedConstBefore = QualifierUnion.size();
   4470 
   4471       QualifierUnion.push_back(
   4472                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   4473       MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
   4474       continue;
   4475     }
   4476 
   4477     const MemberPointerType *MemPtr1, *MemPtr2;
   4478     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
   4479         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
   4480       Composite1 = MemPtr1->getPointeeType();
   4481       Composite2 = MemPtr2->getPointeeType();
   4482 
   4483       // If we're allowed to create a non-standard composite type, keep track
   4484       // of where we need to fill in additional 'const' qualifiers.
   4485       if (NonStandardCompositeType &&
   4486           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   4487         NeedConstBefore = QualifierUnion.size();
   4488 
   4489       QualifierUnion.push_back(
   4490                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   4491       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
   4492                                              MemPtr2->getClass()));
   4493       continue;
   4494     }
   4495 
   4496     // FIXME: block pointer types?
   4497 
   4498     // Cannot unwrap any more types.
   4499     break;
   4500   } while (true);
   4501 
   4502   if (NeedConstBefore && NonStandardCompositeType) {
   4503     // Extension: Add 'const' to qualifiers that come before the first qualifier
   4504     // mismatch, so that our (non-standard!) composite type meets the
   4505     // requirements of C++ [conv.qual]p4 bullet 3.
   4506     for (unsigned I = 0; I != NeedConstBefore; ++I) {
   4507       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
   4508         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
   4509         *NonStandardCompositeType = true;
   4510       }
   4511     }
   4512   }
   4513 
   4514   // Rewrap the composites as pointers or member pointers with the union CVRs.
   4515   ContainingClassVector::reverse_iterator MOC
   4516     = MemberOfClass.rbegin();
   4517   for (QualifierVector::reverse_iterator
   4518          I = QualifierUnion.rbegin(),
   4519          E = QualifierUnion.rend();
   4520        I != E; (void)++I, ++MOC) {
   4521     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
   4522     if (MOC->first && MOC->second) {
   4523       // Rebuild member pointer type
   4524       Composite1 = Context.getMemberPointerType(
   4525                                     Context.getQualifiedType(Composite1, Quals),
   4526                                     MOC->first);
   4527       Composite2 = Context.getMemberPointerType(
   4528                                     Context.getQualifiedType(Composite2, Quals),
   4529                                     MOC->second);
   4530     } else {
   4531       // Rebuild pointer type
   4532       Composite1
   4533         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
   4534       Composite2
   4535         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
   4536     }
   4537   }
   4538 
   4539   // Try to convert to the first composite pointer type.
   4540   InitializedEntity Entity1
   4541     = InitializedEntity::InitializeTemporary(Composite1);
   4542   InitializationKind Kind
   4543     = InitializationKind::CreateCopy(Loc, SourceLocation());
   4544   InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
   4545   InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
   4546 
   4547   if (E1ToC1 && E2ToC1) {
   4548     // Conversion to Composite1 is viable.
   4549     if (!Context.hasSameType(Composite1, Composite2)) {
   4550       // Composite2 is a different type from Composite1. Check whether
   4551       // Composite2 is also viable.
   4552       InitializedEntity Entity2
   4553         = InitializedEntity::InitializeTemporary(Composite2);
   4554       InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
   4555       InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
   4556       if (E1ToC2 && E2ToC2) {
   4557         // Both Composite1 and Composite2 are viable and are different;
   4558         // this is an ambiguity.
   4559         return QualType();
   4560       }
   4561     }
   4562 
   4563     // Convert E1 to Composite1
   4564     ExprResult E1Result
   4565       = E1ToC1.Perform(*this, Entity1, Kind, E1);
   4566     if (E1Result.isInvalid())
   4567       return QualType();
   4568     E1 = E1Result.takeAs<Expr>();
   4569 
   4570     // Convert E2 to Composite1
   4571     ExprResult E2Result
   4572       = E2ToC1.Perform(*this, Entity1, Kind, E2);
   4573     if (E2Result.isInvalid())
   4574       return QualType();
   4575     E2 = E2Result.takeAs<Expr>();
   4576 
   4577     return Composite1;
   4578   }
   4579 
   4580   // Check whether Composite2 is viable.
   4581   InitializedEntity Entity2
   4582     = InitializedEntity::InitializeTemporary(Composite2);
   4583   InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
   4584   InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
   4585   if (!E1ToC2 || !E2ToC2)
   4586     return QualType();
   4587 
   4588   // Convert E1 to Composite2
   4589   ExprResult E1Result
   4590     = E1ToC2.Perform(*this, Entity2, Kind, E1);
   4591   if (E1Result.isInvalid())
   4592     return QualType();
   4593   E1 = E1Result.takeAs<Expr>();
   4594 
   4595   // Convert E2 to Composite2
   4596   ExprResult E2Result
   4597     = E2ToC2.Perform(*this, Entity2, Kind, E2);
   4598   if (E2Result.isInvalid())
   4599     return QualType();
   4600   E2 = E2Result.takeAs<Expr>();
   4601 
   4602   return Composite2;
   4603 }
   4604 
   4605 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
   4606   if (!E)
   4607     return ExprError();
   4608 
   4609   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
   4610 
   4611   // If the result is a glvalue, we shouldn't bind it.
   4612   if (!E->isRValue())
   4613     return Owned(E);
   4614 
   4615   // In ARC, calls that return a retainable type can return retained,
   4616   // in which case we have to insert a consuming cast.
   4617   if (getLangOpts().ObjCAutoRefCount &&
   4618       E->getType()->isObjCRetainableType()) {
   4619 
   4620     bool ReturnsRetained;
   4621 
   4622     // For actual calls, we compute this by examining the type of the
   4623     // called value.
   4624     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
   4625       Expr *Callee = Call->getCallee()->IgnoreParens();
   4626       QualType T = Callee->getType();
   4627 
   4628       if (T == Context.BoundMemberTy) {
   4629         // Handle pointer-to-members.
   4630         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
   4631           T = BinOp->getRHS()->getType();
   4632         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
   4633           T = Mem->getMemberDecl()->getType();
   4634       }
   4635 
   4636       if (const PointerType *Ptr = T->getAs<PointerType>())
   4637         T = Ptr->getPointeeType();
   4638       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
   4639         T = Ptr->getPointeeType();
   4640       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
   4641         T = MemPtr->getPointeeType();
   4642 
   4643       const FunctionType *FTy = T->getAs<FunctionType>();
   4644       assert(FTy && "call to value not of function type?");
   4645       ReturnsRetained = FTy->getExtInfo().getProducesResult();
   4646 
   4647     // ActOnStmtExpr arranges things so that StmtExprs of retainable
   4648     // type always produce a +1 object.
   4649     } else if (isa<StmtExpr>(E)) {
   4650       ReturnsRetained = true;
   4651 
   4652     // We hit this case with the lambda conversion-to-block optimization;
   4653     // we don't want any extra casts here.
   4654     } else if (isa<CastExpr>(E) &&
   4655                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
   4656       return Owned(E);
   4657 
   4658     // For message sends and property references, we try to find an
   4659     // actual method.  FIXME: we should infer retention by selector in
   4660     // cases where we don't have an actual method.
   4661     } else {
   4662       ObjCMethodDecl *D = 0;
   4663       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
   4664         D = Send->getMethodDecl();
   4665       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
   4666         D = BoxedExpr->getBoxingMethod();
   4667       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
   4668         D = ArrayLit->getArrayWithObjectsMethod();
   4669       } else if (ObjCDictionaryLiteral *DictLit
   4670                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
   4671         D = DictLit->getDictWithObjectsMethod();
   4672       }
   4673 
   4674       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
   4675 
   4676       // Don't do reclaims on performSelector calls; despite their
   4677       // return type, the invoked method doesn't necessarily actually
   4678       // return an object.
   4679       if (!ReturnsRetained &&
   4680           D && D->getMethodFamily() == OMF_performSelector)
   4681         return Owned(E);
   4682     }
   4683 
   4684     // Don't reclaim an object of Class type.
   4685     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
   4686       return Owned(E);
   4687 
   4688     ExprNeedsCleanups = true;
   4689 
   4690     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
   4691                                    : CK_ARCReclaimReturnedObject);
   4692     return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
   4693                                           VK_RValue));
   4694   }
   4695 
   4696   if (!getLangOpts().CPlusPlus)
   4697     return Owned(E);
   4698 
   4699   // Search for the base element type (cf. ASTContext::getBaseElementType) with
   4700   // a fast path for the common case that the type is directly a RecordType.
   4701   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
   4702   const RecordType *RT = 0;
   4703   while (!RT) {
   4704     switch (T->getTypeClass()) {
   4705     case Type::Record:
   4706       RT = cast<RecordType>(T);
   4707       break;
   4708     case Type::ConstantArray:
   4709     case Type::IncompleteArray:
   4710     case Type::VariableArray:
   4711     case Type::DependentSizedArray:
   4712       T = cast<ArrayType>(T)->getElementType().getTypePtr();
   4713       break;
   4714     default:
   4715       return Owned(E);
   4716     }
   4717   }
   4718 
   4719   // That should be enough to guarantee that this type is complete, if we're
   4720   // not processing a decltype expression.
   4721   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   4722   if (RD->isInvalidDecl() || RD->isDependentContext())
   4723     return Owned(E);
   4724 
   4725   bool IsDecltype = ExprEvalContexts.back().IsDecltype;
   4726   CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
   4727 
   4728   if (Destructor) {
   4729     MarkFunctionReferenced(E->getExprLoc(), Destructor);
   4730     CheckDestructorAccess(E->getExprLoc(), Destructor,
   4731                           PDiag(diag::err_access_dtor_temp)
   4732                             << E->getType());
   4733     DiagnoseUseOfDecl(Destructor, E->getExprLoc());
   4734 
   4735     // If destructor is trivial, we can avoid the extra copy.
   4736     if (Destructor->isTrivial())
   4737       return Owned(E);
   4738 
   4739     // We need a cleanup, but we don't need to remember the temporary.
   4740     ExprNeedsCleanups = true;
   4741   }
   4742 
   4743   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
   4744   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
   4745 
   4746   if (IsDecltype)
   4747     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
   4748 
   4749   return Owned(Bind);
   4750 }
   4751 
   4752 ExprResult
   4753 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
   4754   if (SubExpr.isInvalid())
   4755     return ExprError();
   4756 
   4757   return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
   4758 }
   4759 
   4760 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
   4761   assert(SubExpr && "sub expression can't be null!");
   4762 
   4763   CleanupVarDeclMarking();
   4764 
   4765   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
   4766   assert(ExprCleanupObjects.size() >= FirstCleanup);
   4767   assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
   4768   if (!ExprNeedsCleanups)
   4769     return SubExpr;
   4770 
   4771   ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
   4772     = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
   4773                          ExprCleanupObjects.size() - FirstCleanup);
   4774 
   4775   Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
   4776   DiscardCleanupsInEvaluationContext();
   4777 
   4778   return E;
   4779 }
   4780 
   4781 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
   4782   assert(SubStmt && "sub statement can't be null!");
   4783 
   4784   CleanupVarDeclMarking();
   4785 
   4786   if (!ExprNeedsCleanups)
   4787     return SubStmt;
   4788 
   4789   // FIXME: In order to attach the temporaries, wrap the statement into
   4790   // a StmtExpr; currently this is only used for asm statements.
   4791   // This is hacky, either create a new CXXStmtWithTemporaries statement or
   4792   // a new AsmStmtWithTemporaries.
   4793   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
   4794                                                       SourceLocation(),
   4795                                                       SourceLocation());
   4796   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
   4797                                    SourceLocation());
   4798   return MaybeCreateExprWithCleanups(E);
   4799 }
   4800 
   4801 /// Process the expression contained within a decltype. For such expressions,
   4802 /// certain semantic checks on temporaries are delayed until this point, and
   4803 /// are omitted for the 'topmost' call in the decltype expression. If the
   4804 /// topmost call bound a temporary, strip that temporary off the expression.
   4805 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
   4806   ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back();
   4807   assert(Rec.IsDecltype && "not in a decltype expression");
   4808 
   4809   // C++11 [expr.call]p11:
   4810   //   If a function call is a prvalue of object type,
   4811   // -- if the function call is either
   4812   //   -- the operand of a decltype-specifier, or
   4813   //   -- the right operand of a comma operator that is the operand of a
   4814   //      decltype-specifier,
   4815   //   a temporary object is not introduced for the prvalue.
   4816 
   4817   // Recursively rebuild ParenExprs and comma expressions to strip out the
   4818   // outermost CXXBindTemporaryExpr, if any.
   4819   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   4820     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
   4821     if (SubExpr.isInvalid())
   4822       return ExprError();
   4823     if (SubExpr.get() == PE->getSubExpr())
   4824       return Owned(E);
   4825     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
   4826   }
   4827   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   4828     if (BO->getOpcode() == BO_Comma) {
   4829       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
   4830       if (RHS.isInvalid())
   4831         return ExprError();
   4832       if (RHS.get() == BO->getRHS())
   4833         return Owned(E);
   4834       return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
   4835                                                 BO_Comma, BO->getType(),
   4836                                                 BO->getValueKind(),
   4837                                                 BO->getObjectKind(),
   4838                                                 BO->getOperatorLoc()));
   4839     }
   4840   }
   4841 
   4842   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
   4843   if (TopBind)
   4844     E = TopBind->getSubExpr();
   4845 
   4846   // Disable the special decltype handling now.
   4847   Rec.IsDecltype = false;
   4848 
   4849   // In MS mode, don't perform any extra checking of call return types within a
   4850   // decltype expression.
   4851   if (getLangOpts().MicrosoftMode)
   4852     return Owned(E);
   4853 
   4854   // Perform the semantic checks we delayed until this point.
   4855   CallExpr *TopCall = dyn_cast<CallExpr>(E);
   4856   for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) {
   4857     CallExpr *Call = Rec.DelayedDecltypeCalls[I];
   4858     if (Call == TopCall)
   4859       continue;
   4860 
   4861     if (CheckCallReturnType(Call->getCallReturnType(),
   4862                             Call->getLocStart(),
   4863                             Call, Call->getDirectCallee()))
   4864       return ExprError();
   4865   }
   4866 
   4867   // Now all relevant types are complete, check the destructors are accessible
   4868   // and non-deleted, and annotate them on the temporaries.
   4869   for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) {
   4870     CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I];
   4871     if (Bind == TopBind)
   4872       continue;
   4873 
   4874     CXXTemporary *Temp = Bind->getTemporary();
   4875 
   4876     CXXRecordDecl *RD =
   4877       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
   4878     CXXDestructorDecl *Destructor = LookupDestructor(RD);
   4879     Temp->setDestructor(Destructor);
   4880 
   4881     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
   4882     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
   4883                           PDiag(diag::err_access_dtor_temp)
   4884                             << Bind->getType());
   4885     DiagnoseUseOfDecl(Destructor, Bind->getExprLoc());
   4886 
   4887     // We need a cleanup, but we don't need to remember the temporary.
   4888     ExprNeedsCleanups = true;
   4889   }
   4890 
   4891   // Possibly strip off the top CXXBindTemporaryExpr.
   4892   return Owned(E);
   4893 }
   4894 
   4895 ExprResult
   4896 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
   4897                                    tok::TokenKind OpKind, ParsedType &ObjectType,
   4898                                    bool &MayBePseudoDestructor) {
   4899   // Since this might be a postfix expression, get rid of ParenListExprs.
   4900   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
   4901   if (Result.isInvalid()) return ExprError();
   4902   Base = Result.get();
   4903 
   4904   Result = CheckPlaceholderExpr(Base);
   4905   if (Result.isInvalid()) return ExprError();
   4906   Base = Result.take();
   4907 
   4908   QualType BaseType = Base->getType();
   4909   MayBePseudoDestructor = false;
   4910   if (BaseType->isDependentType()) {
   4911     // If we have a pointer to a dependent type and are using the -> operator,
   4912     // the object type is the type that the pointer points to. We might still
   4913     // have enough information about that type to do something useful.
   4914     if (OpKind == tok::arrow)
   4915       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
   4916         BaseType = Ptr->getPointeeType();
   4917 
   4918     ObjectType = ParsedType::make(BaseType);
   4919     MayBePseudoDestructor = true;
   4920     return Owned(Base);
   4921   }
   4922 
   4923   // C++ [over.match.oper]p8:
   4924   //   [...] When operator->returns, the operator-> is applied  to the value
   4925   //   returned, with the original second operand.
   4926   if (OpKind == tok::arrow) {
   4927     // The set of types we've considered so far.
   4928     llvm::SmallPtrSet<CanQualType,8> CTypes;
   4929     SmallVector<SourceLocation, 8> Locations;
   4930     CTypes.insert(Context.getCanonicalType(BaseType));
   4931 
   4932     while (BaseType->isRecordType()) {
   4933       Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
   4934       if (Result.isInvalid())
   4935         return ExprError();
   4936       Base = Result.get();
   4937       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
   4938         Locations.push_back(OpCall->getDirectCallee()->getLocation());
   4939       BaseType = Base->getType();
   4940       CanQualType CBaseType = Context.getCanonicalType(BaseType);
   4941       if (!CTypes.insert(CBaseType)) {
   4942         Diag(OpLoc, diag::err_operator_arrow_circular);
   4943         for (unsigned i = 0; i < Locations.size(); i++)
   4944           Diag(Locations[i], diag::note_declared_at);
   4945         return ExprError();
   4946       }
   4947     }
   4948 
   4949     if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
   4950       BaseType = BaseType->getPointeeType();
   4951   }
   4952 
   4953   // Objective-C properties allow "." access on Objective-C pointer types,
   4954   // so adjust the base type to the object type itself.
   4955   if (BaseType->isObjCObjectPointerType())
   4956     BaseType = BaseType->getPointeeType();
   4957 
   4958   // C++ [basic.lookup.classref]p2:
   4959   //   [...] If the type of the object expression is of pointer to scalar
   4960   //   type, the unqualified-id is looked up in the context of the complete
   4961   //   postfix-expression.
   4962   //
   4963   // This also indicates that we could be parsing a pseudo-destructor-name.
   4964   // Note that Objective-C class and object types can be pseudo-destructor
   4965   // expressions or normal member (ivar or property) access expressions.
   4966   if (BaseType->isObjCObjectOrInterfaceType()) {
   4967     MayBePseudoDestructor = true;
   4968   } else if (!BaseType->isRecordType()) {
   4969     ObjectType = ParsedType();
   4970     MayBePseudoDestructor = true;
   4971     return Owned(Base);
   4972   }
   4973 
   4974   // The object type must be complete (or dependent), or
   4975   // C++11 [expr.prim.general]p3:
   4976   //   Unlike the object expression in other contexts, *this is not required to
   4977   //   be of complete type for purposes of class member access (5.2.5) outside
   4978   //   the member function body.
   4979   if (!BaseType->isDependentType() &&
   4980       !isThisOutsideMemberFunctionBody(BaseType) &&
   4981       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
   4982     return ExprError();
   4983 
   4984   // C++ [basic.lookup.classref]p2:
   4985   //   If the id-expression in a class member access (5.2.5) is an
   4986   //   unqualified-id, and the type of the object expression is of a class
   4987   //   type C (or of pointer to a class type C), the unqualified-id is looked
   4988   //   up in the scope of class C. [...]
   4989   ObjectType = ParsedType::make(BaseType);
   4990   return Base;
   4991 }
   4992 
   4993 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
   4994                                                    Expr *MemExpr) {
   4995   SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
   4996   Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
   4997     << isa<CXXPseudoDestructorExpr>(MemExpr)
   4998     << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
   4999 
   5000   return ActOnCallExpr(/*Scope*/ 0,
   5001                        MemExpr,
   5002                        /*LPLoc*/ ExpectedLParenLoc,
   5003                        MultiExprArg(),
   5004                        /*RPLoc*/ ExpectedLParenLoc);
   5005 }
   5006 
   5007 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
   5008                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
   5009   if (Base->hasPlaceholderType()) {
   5010     ExprResult result = S.CheckPlaceholderExpr(Base);
   5011     if (result.isInvalid()) return true;
   5012     Base = result.take();
   5013   }
   5014   ObjectType = Base->getType();
   5015 
   5016   // C++ [expr.pseudo]p2:
   5017   //   The left-hand side of the dot operator shall be of scalar type. The
   5018   //   left-hand side of the arrow operator shall be of pointer to scalar type.
   5019   //   This scalar type is the object type.
   5020   // Note that this is rather different from the normal handling for the
   5021   // arrow operator.
   5022   if (OpKind == tok::arrow) {
   5023     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
   5024       ObjectType = Ptr->getPointeeType();
   5025     } else if (!Base->isTypeDependent()) {
   5026       // The user wrote "p->" when she probably meant "p."; fix it.
   5027       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   5028         << ObjectType << true
   5029         << FixItHint::CreateReplacement(OpLoc, ".");
   5030       if (S.isSFINAEContext())
   5031         return true;
   5032 
   5033       OpKind = tok::period;
   5034     }
   5035   }
   5036 
   5037   return false;
   5038 }
   5039 
   5040 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
   5041                                            SourceLocation OpLoc,
   5042                                            tok::TokenKind OpKind,
   5043                                            const CXXScopeSpec &SS,
   5044                                            TypeSourceInfo *ScopeTypeInfo,
   5045                                            SourceLocation CCLoc,
   5046                                            SourceLocation TildeLoc,
   5047                                          PseudoDestructorTypeStorage Destructed,
   5048                                            bool HasTrailingLParen) {
   5049   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
   5050 
   5051   QualType ObjectType;
   5052   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5053     return ExprError();
   5054 
   5055   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
   5056       !ObjectType->isVectorType()) {
   5057     if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
   5058       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
   5059     else
   5060       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
   5061         << ObjectType << Base->getSourceRange();
   5062     return ExprError();
   5063   }
   5064 
   5065   // C++ [expr.pseudo]p2:
   5066   //   [...] The cv-unqualified versions of the object type and of the type
   5067   //   designated by the pseudo-destructor-name shall be the same type.
   5068   if (DestructedTypeInfo) {
   5069     QualType DestructedType = DestructedTypeInfo->getType();
   5070     SourceLocation DestructedTypeStart
   5071       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
   5072     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
   5073       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
   5074         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
   5075           << ObjectType << DestructedType << Base->getSourceRange()
   5076           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   5077 
   5078         // Recover by setting the destructed type to the object type.
   5079         DestructedType = ObjectType;
   5080         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   5081                                                            DestructedTypeStart);
   5082         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5083       } else if (DestructedType.getObjCLifetime() !=
   5084                                                 ObjectType.getObjCLifetime()) {
   5085 
   5086         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
   5087           // Okay: just pretend that the user provided the correctly-qualified
   5088           // type.
   5089         } else {
   5090           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
   5091             << ObjectType << DestructedType << Base->getSourceRange()
   5092             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   5093         }
   5094 
   5095         // Recover by setting the destructed type to the object type.
   5096         DestructedType = ObjectType;
   5097         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   5098                                                            DestructedTypeStart);
   5099         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5100       }
   5101     }
   5102   }
   5103 
   5104   // C++ [expr.pseudo]p2:
   5105   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
   5106   //   form
   5107   //
   5108   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
   5109   //
   5110   //   shall designate the same scalar type.
   5111   if (ScopeTypeInfo) {
   5112     QualType ScopeType = ScopeTypeInfo->getType();
   5113     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
   5114         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
   5115 
   5116       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
   5117            diag::err_pseudo_dtor_type_mismatch)
   5118         << ObjectType << ScopeType << Base->getSourceRange()
   5119         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
   5120 
   5121       ScopeType = QualType();
   5122       ScopeTypeInfo = 0;
   5123     }
   5124   }
   5125 
   5126   Expr *Result
   5127     = new (Context) CXXPseudoDestructorExpr(Context, Base,
   5128                                             OpKind == tok::arrow, OpLoc,
   5129                                             SS.getWithLocInContext(Context),
   5130                                             ScopeTypeInfo,
   5131                                             CCLoc,
   5132                                             TildeLoc,
   5133                                             Destructed);
   5134 
   5135   if (HasTrailingLParen)
   5136     return Owned(Result);
   5137 
   5138   return DiagnoseDtorReference(Destructed.getLocation(), Result);
   5139 }
   5140 
   5141 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
   5142                                            SourceLocation OpLoc,
   5143                                            tok::TokenKind OpKind,
   5144                                            CXXScopeSpec &SS,
   5145                                            UnqualifiedId &FirstTypeName,
   5146                                            SourceLocation CCLoc,
   5147                                            SourceLocation TildeLoc,
   5148                                            UnqualifiedId &SecondTypeName,
   5149                                            bool HasTrailingLParen) {
   5150   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5151           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   5152          "Invalid first type name in pseudo-destructor");
   5153   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5154           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   5155          "Invalid second type name in pseudo-destructor");
   5156 
   5157   QualType ObjectType;
   5158   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5159     return ExprError();
   5160 
   5161   // Compute the object type that we should use for name lookup purposes. Only
   5162   // record types and dependent types matter.
   5163   ParsedType ObjectTypePtrForLookup;
   5164   if (!SS.isSet()) {
   5165     if (ObjectType->isRecordType())
   5166       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
   5167     else if (ObjectType->isDependentType())
   5168       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
   5169   }
   5170 
   5171   // Convert the name of the type being destructed (following the ~) into a
   5172   // type (with source-location information).
   5173   QualType DestructedType;
   5174   TypeSourceInfo *DestructedTypeInfo = 0;
   5175   PseudoDestructorTypeStorage Destructed;
   5176   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   5177     ParsedType T = getTypeName(*SecondTypeName.Identifier,
   5178                                SecondTypeName.StartLocation,
   5179                                S, &SS, true, false, ObjectTypePtrForLookup);
   5180     if (!T &&
   5181         ((SS.isSet() && !computeDeclContext(SS, false)) ||
   5182          (!SS.isSet() && ObjectType->isDependentType()))) {
   5183       // The name of the type being destroyed is a dependent name, and we
   5184       // couldn't find anything useful in scope. Just store the identifier and
   5185       // it's location, and we'll perform (qualified) name lookup again at
   5186       // template instantiation time.
   5187       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
   5188                                                SecondTypeName.StartLocation);
   5189     } else if (!T) {
   5190       Diag(SecondTypeName.StartLocation,
   5191            diag::err_pseudo_dtor_destructor_non_type)
   5192         << SecondTypeName.Identifier << ObjectType;
   5193       if (isSFINAEContext())
   5194         return ExprError();
   5195 
   5196       // Recover by assuming we had the right type all along.
   5197       DestructedType = ObjectType;
   5198     } else
   5199       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
   5200   } else {
   5201     // Resolve the template-id to a type.
   5202     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
   5203     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   5204                                        TemplateId->NumArgs);
   5205     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   5206                                        TemplateId->TemplateKWLoc,
   5207                                        TemplateId->Template,
   5208                                        TemplateId->TemplateNameLoc,
   5209                                        TemplateId->LAngleLoc,
   5210                                        TemplateArgsPtr,
   5211                                        TemplateId->RAngleLoc);
   5212     if (T.isInvalid() || !T.get()) {
   5213       // Recover by assuming we had the right type all along.
   5214       DestructedType = ObjectType;
   5215     } else
   5216       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
   5217   }
   5218 
   5219   // If we've performed some kind of recovery, (re-)build the type source
   5220   // information.
   5221   if (!DestructedType.isNull()) {
   5222     if (!DestructedTypeInfo)
   5223       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
   5224                                                   SecondTypeName.StartLocation);
   5225     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5226   }
   5227 
   5228   // Convert the name of the scope type (the type prior to '::') into a type.
   5229   TypeSourceInfo *ScopeTypeInfo = 0;
   5230   QualType ScopeType;
   5231   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5232       FirstTypeName.Identifier) {
   5233     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   5234       ParsedType T = getTypeName(*FirstTypeName.Identifier,
   5235                                  FirstTypeName.StartLocation,
   5236                                  S, &SS, true, false, ObjectTypePtrForLookup);
   5237       if (!T) {
   5238         Diag(FirstTypeName.StartLocation,
   5239              diag::err_pseudo_dtor_destructor_non_type)
   5240           << FirstTypeName.Identifier << ObjectType;
   5241 
   5242         if (isSFINAEContext())
   5243           return ExprError();
   5244 
   5245         // Just drop this type. It's unnecessary anyway.
   5246         ScopeType = QualType();
   5247       } else
   5248         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
   5249     } else {
   5250       // Resolve the template-id to a type.
   5251       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
   5252       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   5253                                          TemplateId->NumArgs);
   5254       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   5255                                          TemplateId->TemplateKWLoc,
   5256                                          TemplateId->Template,
   5257                                          TemplateId->TemplateNameLoc,
   5258                                          TemplateId->LAngleLoc,
   5259                                          TemplateArgsPtr,
   5260                                          TemplateId->RAngleLoc);
   5261       if (T.isInvalid() || !T.get()) {
   5262         // Recover by dropping this type.
   5263         ScopeType = QualType();
   5264       } else
   5265         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
   5266     }
   5267   }
   5268 
   5269   if (!ScopeType.isNull() && !ScopeTypeInfo)
   5270     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
   5271                                                   FirstTypeName.StartLocation);
   5272 
   5273 
   5274   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
   5275                                    ScopeTypeInfo, CCLoc, TildeLoc,
   5276                                    Destructed, HasTrailingLParen);
   5277 }
   5278 
   5279 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
   5280                                            SourceLocation OpLoc,
   5281                                            tok::TokenKind OpKind,
   5282                                            SourceLocation TildeLoc,
   5283                                            const DeclSpec& DS,
   5284                                            bool HasTrailingLParen) {
   5285   QualType ObjectType;
   5286   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5287     return ExprError();
   5288 
   5289   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
   5290 
   5291   TypeLocBuilder TLB;
   5292   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
   5293   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
   5294   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
   5295   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
   5296 
   5297   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
   5298                                    0, SourceLocation(), TildeLoc,
   5299                                    Destructed, HasTrailingLParen);
   5300 }
   5301 
   5302 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
   5303                                         CXXConversionDecl *Method,
   5304                                         bool HadMultipleCandidates) {
   5305   if (Method->getParent()->isLambda() &&
   5306       Method->getConversionType()->isBlockPointerType()) {
   5307     // This is a lambda coversion to block pointer; check if the argument
   5308     // is a LambdaExpr.
   5309     Expr *SubE = E;
   5310     CastExpr *CE = dyn_cast<CastExpr>(SubE);
   5311     if (CE && CE->getCastKind() == CK_NoOp)
   5312       SubE = CE->getSubExpr();
   5313     SubE = SubE->IgnoreParens();
   5314     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
   5315       SubE = BE->getSubExpr();
   5316     if (isa<LambdaExpr>(SubE)) {
   5317       // For the conversion to block pointer on a lambda expression, we
   5318       // construct a special BlockLiteral instead; this doesn't really make
   5319       // a difference in ARC, but outside of ARC the resulting block literal
   5320       // follows the normal lifetime rules for block literals instead of being
   5321       // autoreleased.
   5322       DiagnosticErrorTrap Trap(Diags);
   5323       ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
   5324                                                      E->getExprLoc(),
   5325                                                      Method, E);
   5326       if (Exp.isInvalid())
   5327         Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
   5328       return Exp;
   5329     }
   5330   }
   5331 
   5332 
   5333   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
   5334                                           FoundDecl, Method);
   5335   if (Exp.isInvalid())
   5336     return true;
   5337 
   5338   MemberExpr *ME =
   5339       new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
   5340                                SourceLocation(), Context.BoundMemberTy,
   5341                                VK_RValue, OK_Ordinary);
   5342   if (HadMultipleCandidates)
   5343     ME->setHadMultipleCandidates(true);
   5344 
   5345   QualType ResultType = Method->getResultType();
   5346   ExprValueKind VK = Expr::getValueKindForType(ResultType);
   5347   ResultType = ResultType.getNonLValueExprType(Context);
   5348 
   5349   MarkFunctionReferenced(Exp.get()->getLocStart(), Method);
   5350   CXXMemberCallExpr *CE =
   5351     new (Context) CXXMemberCallExpr(Context, ME, MultiExprArg(), ResultType, VK,
   5352                                     Exp.get()->getLocEnd());
   5353   return CE;
   5354 }
   5355 
   5356 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
   5357                                       SourceLocation RParen) {
   5358   CanThrowResult CanThrow = canThrow(Operand);
   5359   return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
   5360                                              CanThrow, KeyLoc, RParen));
   5361 }
   5362 
   5363 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
   5364                                    Expr *Operand, SourceLocation RParen) {
   5365   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
   5366 }
   5367 
   5368 static bool IsSpecialDiscardedValue(Expr *E) {
   5369   // In C++11, discarded-value expressions of a certain form are special,
   5370   // according to [expr]p10:
   5371   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
   5372   //   expression is an lvalue of volatile-qualified type and it has
   5373   //   one of the following forms:
   5374   E = E->IgnoreParens();
   5375 
   5376   //   - id-expression (5.1.1),
   5377   if (isa<DeclRefExpr>(E))
   5378     return true;
   5379 
   5380   //   - subscripting (5.2.1),
   5381   if (isa<ArraySubscriptExpr>(E))
   5382     return true;
   5383 
   5384   //   - class member access (5.2.5),
   5385   if (isa<MemberExpr>(E))
   5386     return true;
   5387 
   5388   //   - indirection (5.3.1),
   5389   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
   5390     if (UO->getOpcode() == UO_Deref)
   5391       return true;
   5392 
   5393   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   5394     //   - pointer-to-member operation (5.5),
   5395     if (BO->isPtrMemOp())
   5396       return true;
   5397 
   5398     //   - comma expression (5.18) where the right operand is one of the above.
   5399     if (BO->getOpcode() == BO_Comma)
   5400       return IsSpecialDiscardedValue(BO->getRHS());
   5401   }
   5402 
   5403   //   - conditional expression (5.16) where both the second and the third
   5404   //     operands are one of the above, or
   5405   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
   5406     return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
   5407            IsSpecialDiscardedValue(CO->getFalseExpr());
   5408   // The related edge case of "*x ?: *x".
   5409   if (BinaryConditionalOperator *BCO =
   5410           dyn_cast<BinaryConditionalOperator>(E)) {
   5411     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
   5412       return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
   5413              IsSpecialDiscardedValue(BCO->getFalseExpr());
   5414   }
   5415 
   5416   // Objective-C++ extensions to the rule.
   5417   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
   5418     return true;
   5419 
   5420   return false;
   5421 }
   5422 
   5423 /// Perform the conversions required for an expression used in a
   5424 /// context that ignores the result.
   5425 ExprResult Sema::IgnoredValueConversions(Expr *E) {
   5426   if (E->hasPlaceholderType()) {
   5427     ExprResult result = CheckPlaceholderExpr(E);
   5428     if (result.isInvalid()) return Owned(E);
   5429     E = result.take();
   5430   }
   5431 
   5432   // C99 6.3.2.1:
   5433   //   [Except in specific positions,] an lvalue that does not have
   5434   //   array type is converted to the value stored in the
   5435   //   designated object (and is no longer an lvalue).
   5436   if (E->isRValue()) {
   5437     // In C, function designators (i.e. expressions of function type)
   5438     // are r-values, but we still want to do function-to-pointer decay
   5439     // on them.  This is both technically correct and convenient for
   5440     // some clients.
   5441     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
   5442       return DefaultFunctionArrayConversion(E);
   5443 
   5444     return Owned(E);
   5445   }
   5446 
   5447   if (getLangOpts().CPlusPlus)  {
   5448     // The C++11 standard defines the notion of a discarded-value expression;
   5449     // normally, we don't need to do anything to handle it, but if it is a
   5450     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
   5451     // conversion.
   5452     if (getLangOpts().CPlusPlus0x && E->isGLValue() &&
   5453         E->getType().isVolatileQualified() &&
   5454         IsSpecialDiscardedValue(E)) {
   5455       ExprResult Res = DefaultLvalueConversion(E);
   5456       if (Res.isInvalid())
   5457         return Owned(E);
   5458       E = Res.take();
   5459     }
   5460     return Owned(E);
   5461   }
   5462 
   5463   // GCC seems to also exclude expressions of incomplete enum type.
   5464   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
   5465     if (!T->getDecl()->isComplete()) {
   5466       // FIXME: stupid workaround for a codegen bug!
   5467       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
   5468       return Owned(E);
   5469     }
   5470   }
   5471 
   5472   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
   5473   if (Res.isInvalid())
   5474     return Owned(E);
   5475   E = Res.take();
   5476 
   5477   if (!E->getType()->isVoidType())
   5478     RequireCompleteType(E->getExprLoc(), E->getType(),
   5479                         diag::err_incomplete_type);
   5480   return Owned(E);
   5481 }
   5482 
   5483 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC) {
   5484   ExprResult FullExpr = Owned(FE);
   5485 
   5486   if (!FullExpr.get())
   5487     return ExprError();
   5488 
   5489   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
   5490     return ExprError();
   5491 
   5492   // Top-level message sends default to 'id' when we're in a debugger.
   5493   if (getLangOpts().DebuggerCastResultToId &&
   5494       FullExpr.get()->getType() == Context.UnknownAnyTy &&
   5495       isa<ObjCMessageExpr>(FullExpr.get())) {
   5496     FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
   5497     if (FullExpr.isInvalid())
   5498       return ExprError();
   5499   }
   5500 
   5501   FullExpr = CheckPlaceholderExpr(FullExpr.take());
   5502   if (FullExpr.isInvalid())
   5503     return ExprError();
   5504 
   5505   FullExpr = IgnoredValueConversions(FullExpr.take());
   5506   if (FullExpr.isInvalid())
   5507     return ExprError();
   5508 
   5509   CheckImplicitConversions(FullExpr.get(), CC);
   5510   return MaybeCreateExprWithCleanups(FullExpr);
   5511 }
   5512 
   5513 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
   5514   if (!FullStmt) return StmtError();
   5515 
   5516   return MaybeCreateStmtWithCleanups(FullStmt);
   5517 }
   5518 
   5519 Sema::IfExistsResult
   5520 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
   5521                                    CXXScopeSpec &SS,
   5522                                    const DeclarationNameInfo &TargetNameInfo) {
   5523   DeclarationName TargetName = TargetNameInfo.getName();
   5524   if (!TargetName)
   5525     return IER_DoesNotExist;
   5526 
   5527   // If the name itself is dependent, then the result is dependent.
   5528   if (TargetName.isDependentName())
   5529     return IER_Dependent;
   5530 
   5531   // Do the redeclaration lookup in the current scope.
   5532   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
   5533                  Sema::NotForRedeclaration);
   5534   LookupParsedName(R, S, &SS);
   5535   R.suppressDiagnostics();
   5536 
   5537   switch (R.getResultKind()) {
   5538   case LookupResult::Found:
   5539   case LookupResult::FoundOverloaded:
   5540   case LookupResult::FoundUnresolvedValue:
   5541   case LookupResult::Ambiguous:
   5542     return IER_Exists;
   5543 
   5544   case LookupResult::NotFound:
   5545     return IER_DoesNotExist;
   5546 
   5547   case LookupResult::NotFoundInCurrentInstantiation:
   5548     return IER_Dependent;
   5549   }
   5550 
   5551   llvm_unreachable("Invalid LookupResult Kind!");
   5552 }
   5553 
   5554 Sema::IfExistsResult
   5555 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
   5556                                    bool IsIfExists, CXXScopeSpec &SS,
   5557                                    UnqualifiedId &Name) {
   5558   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
   5559 
   5560   // Check for unexpanded parameter packs.
   5561   SmallVector<UnexpandedParameterPack, 4> Unexpanded;
   5562   collectUnexpandedParameterPacks(SS, Unexpanded);
   5563   collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
   5564   if (!Unexpanded.empty()) {
   5565     DiagnoseUnexpandedParameterPacks(KeywordLoc,
   5566                                      IsIfExists? UPPC_IfExists
   5567                                                : UPPC_IfNotExists,
   5568                                      Unexpanded);
   5569     return IER_Error;
   5570   }
   5571 
   5572   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
   5573 }
   5574