Home | History | Annotate | Download | only in TableGen
      1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is part of the X86 Disassembler Emitter.
     11 // It contains the implementation of a single recognizable instruction.
     12 // Documentation for the disassembler emitter in general can be found in
     13 //  X86DisasemblerEmitter.h.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "X86DisassemblerShared.h"
     18 #include "X86RecognizableInstr.h"
     19 #include "X86ModRMFilters.h"
     20 
     21 #include "llvm/Support/ErrorHandling.h"
     22 
     23 #include <string>
     24 
     25 using namespace llvm;
     26 
     27 #define MRM_MAPPING     \
     28   MAP(C1, 33)           \
     29   MAP(C2, 34)           \
     30   MAP(C3, 35)           \
     31   MAP(C4, 36)           \
     32   MAP(C8, 37)           \
     33   MAP(C9, 38)           \
     34   MAP(E8, 39)           \
     35   MAP(F0, 40)           \
     36   MAP(F8, 41)           \
     37   MAP(F9, 42)           \
     38   MAP(D0, 45)           \
     39   MAP(D1, 46)           \
     40   MAP(D4, 47)           \
     41   MAP(D8, 48)           \
     42   MAP(D9, 49)           \
     43   MAP(DA, 50)           \
     44   MAP(DB, 51)           \
     45   MAP(DC, 52)           \
     46   MAP(DD, 53)           \
     47   MAP(DE, 54)           \
     48   MAP(DF, 55)
     49 
     50 // A clone of X86 since we can't depend on something that is generated.
     51 namespace X86Local {
     52   enum {
     53     Pseudo      = 0,
     54     RawFrm      = 1,
     55     AddRegFrm   = 2,
     56     MRMDestReg  = 3,
     57     MRMDestMem  = 4,
     58     MRMSrcReg   = 5,
     59     MRMSrcMem   = 6,
     60     MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
     61     MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
     62     MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
     63     MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
     64     MRMInitReg  = 32,
     65     RawFrmImm8  = 43,
     66     RawFrmImm16 = 44,
     67 #define MAP(from, to) MRM_##from = to,
     68     MRM_MAPPING
     69 #undef MAP
     70     lastMRM
     71   };
     72 
     73   enum {
     74     TB  = 1,
     75     REP = 2,
     76     D8 = 3, D9 = 4, DA = 5, DB = 6,
     77     DC = 7, DD = 8, DE = 9, DF = 10,
     78     XD = 11,  XS = 12,
     79     T8 = 13,  P_TA = 14,
     80     A6 = 15,  A7 = 16, T8XD = 17, T8XS = 18, TAXD = 19
     81   };
     82 }
     83 
     84 // If rows are added to the opcode extension tables, then corresponding entries
     85 // must be added here.
     86 //
     87 // If the row corresponds to a single byte (i.e., 8f), then add an entry for
     88 // that byte to ONE_BYTE_EXTENSION_TABLES.
     89 //
     90 // If the row corresponds to two bytes where the first is 0f, add an entry for
     91 // the second byte to TWO_BYTE_EXTENSION_TABLES.
     92 //
     93 // If the row corresponds to some other set of bytes, you will need to modify
     94 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes
     95 // to the X86 TD files, except in two cases: if the first two bytes of such a
     96 // new combination are 0f 38 or 0f 3a, you just have to add maps called
     97 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a
     98 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line
     99 // in RecognizableInstr::emitDecodePath().
    100 
    101 #define ONE_BYTE_EXTENSION_TABLES \
    102   EXTENSION_TABLE(80)             \
    103   EXTENSION_TABLE(81)             \
    104   EXTENSION_TABLE(82)             \
    105   EXTENSION_TABLE(83)             \
    106   EXTENSION_TABLE(8f)             \
    107   EXTENSION_TABLE(c0)             \
    108   EXTENSION_TABLE(c1)             \
    109   EXTENSION_TABLE(c6)             \
    110   EXTENSION_TABLE(c7)             \
    111   EXTENSION_TABLE(d0)             \
    112   EXTENSION_TABLE(d1)             \
    113   EXTENSION_TABLE(d2)             \
    114   EXTENSION_TABLE(d3)             \
    115   EXTENSION_TABLE(f6)             \
    116   EXTENSION_TABLE(f7)             \
    117   EXTENSION_TABLE(fe)             \
    118   EXTENSION_TABLE(ff)
    119 
    120 #define TWO_BYTE_EXTENSION_TABLES \
    121   EXTENSION_TABLE(00)             \
    122   EXTENSION_TABLE(01)             \
    123   EXTENSION_TABLE(18)             \
    124   EXTENSION_TABLE(71)             \
    125   EXTENSION_TABLE(72)             \
    126   EXTENSION_TABLE(73)             \
    127   EXTENSION_TABLE(ae)             \
    128   EXTENSION_TABLE(ba)             \
    129   EXTENSION_TABLE(c7)
    130 
    131 #define THREE_BYTE_38_EXTENSION_TABLES \
    132   EXTENSION_TABLE(F3)
    133 
    134 using namespace X86Disassembler;
    135 
    136 /// needsModRMForDecode - Indicates whether a particular instruction requires a
    137 ///   ModR/M byte for the instruction to be properly decoded.  For example, a
    138 ///   MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to
    139 ///   0b11.
    140 ///
    141 /// @param form - The form of the instruction.
    142 /// @return     - true if the form implies that a ModR/M byte is required, false
    143 ///               otherwise.
    144 static bool needsModRMForDecode(uint8_t form) {
    145   if (form == X86Local::MRMDestReg    ||
    146      form == X86Local::MRMDestMem    ||
    147      form == X86Local::MRMSrcReg     ||
    148      form == X86Local::MRMSrcMem     ||
    149      (form >= X86Local::MRM0r && form <= X86Local::MRM7r) ||
    150      (form >= X86Local::MRM0m && form <= X86Local::MRM7m))
    151     return true;
    152   else
    153     return false;
    154 }
    155 
    156 /// isRegFormat - Indicates whether a particular form requires the Mod field of
    157 ///   the ModR/M byte to be 0b11.
    158 ///
    159 /// @param form - The form of the instruction.
    160 /// @return     - true if the form implies that Mod must be 0b11, false
    161 ///               otherwise.
    162 static bool isRegFormat(uint8_t form) {
    163   if (form == X86Local::MRMDestReg ||
    164      form == X86Local::MRMSrcReg  ||
    165      (form >= X86Local::MRM0r && form <= X86Local::MRM7r))
    166     return true;
    167   else
    168     return false;
    169 }
    170 
    171 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
    172 ///   Useful for switch statements and the like.
    173 ///
    174 /// @param init - A reference to the BitsInit to be decoded.
    175 /// @return     - The field, with the first bit in the BitsInit as the lowest
    176 ///               order bit.
    177 static uint8_t byteFromBitsInit(BitsInit &init) {
    178   int width = init.getNumBits();
    179 
    180   assert(width <= 8 && "Field is too large for uint8_t!");
    181 
    182   int     index;
    183   uint8_t mask = 0x01;
    184 
    185   uint8_t ret = 0;
    186 
    187   for (index = 0; index < width; index++) {
    188     if (static_cast<BitInit*>(init.getBit(index))->getValue())
    189       ret |= mask;
    190 
    191     mask <<= 1;
    192   }
    193 
    194   return ret;
    195 }
    196 
    197 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
    198 ///   name of the field.
    199 ///
    200 /// @param rec  - The record from which to extract the value.
    201 /// @param name - The name of the field in the record.
    202 /// @return     - The field, as translated by byteFromBitsInit().
    203 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
    204   BitsInit* bits = rec->getValueAsBitsInit(name);
    205   return byteFromBitsInit(*bits);
    206 }
    207 
    208 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
    209                                      const CodeGenInstruction &insn,
    210                                      InstrUID uid) {
    211   UID = uid;
    212 
    213   Rec = insn.TheDef;
    214   Name = Rec->getName();
    215   Spec = &tables.specForUID(UID);
    216 
    217   if (!Rec->isSubClassOf("X86Inst")) {
    218     ShouldBeEmitted = false;
    219     return;
    220   }
    221 
    222   Prefix   = byteFromRec(Rec, "Prefix");
    223   Opcode   = byteFromRec(Rec, "Opcode");
    224   Form     = byteFromRec(Rec, "FormBits");
    225   SegOvr   = byteFromRec(Rec, "SegOvrBits");
    226 
    227   HasOpSizePrefix  = Rec->getValueAsBit("hasOpSizePrefix");
    228   HasAdSizePrefix  = Rec->getValueAsBit("hasAdSizePrefix");
    229   HasREX_WPrefix   = Rec->getValueAsBit("hasREX_WPrefix");
    230   HasVEXPrefix     = Rec->getValueAsBit("hasVEXPrefix");
    231   HasVEX_4VPrefix  = Rec->getValueAsBit("hasVEX_4VPrefix");
    232   HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix");
    233   HasVEX_WPrefix   = Rec->getValueAsBit("hasVEX_WPrefix");
    234   HasMemOp4Prefix  = Rec->getValueAsBit("hasMemOp4Prefix");
    235   IgnoresVEX_L     = Rec->getValueAsBit("ignoresVEX_L");
    236   HasLockPrefix    = Rec->getValueAsBit("hasLockPrefix");
    237   IsCodeGenOnly    = Rec->getValueAsBit("isCodeGenOnly");
    238 
    239   Name      = Rec->getName();
    240   AsmString = Rec->getValueAsString("AsmString");
    241 
    242   Operands = &insn.Operands.OperandList;
    243 
    244   IsSSE            = (HasOpSizePrefix && (Name.find("16") == Name.npos)) ||
    245                      (Name.find("CRC32") != Name.npos);
    246   HasFROperands    = hasFROperands();
    247   HasVEX_LPrefix   = has256BitOperands() || Rec->getValueAsBit("hasVEX_L");
    248 
    249   // Check for 64-bit inst which does not require REX
    250   Is32Bit = false;
    251   Is64Bit = false;
    252   // FIXME: Is there some better way to check for In64BitMode?
    253   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
    254   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
    255     if (Predicates[i]->getName().find("32Bit") != Name.npos) {
    256       Is32Bit = true;
    257       break;
    258     }
    259     if (Predicates[i]->getName().find("64Bit") != Name.npos) {
    260       Is64Bit = true;
    261       break;
    262     }
    263   }
    264   // FIXME: These instructions aren't marked as 64-bit in any way
    265   Is64Bit |= Rec->getName() == "JMP64pcrel32" ||
    266              Rec->getName() == "MASKMOVDQU64" ||
    267              Rec->getName() == "POPFS64" ||
    268              Rec->getName() == "POPGS64" ||
    269              Rec->getName() == "PUSHFS64" ||
    270              Rec->getName() == "PUSHGS64" ||
    271              Rec->getName() == "REX64_PREFIX" ||
    272              Rec->getName().find("MOV64") != Name.npos ||
    273              Rec->getName().find("PUSH64") != Name.npos ||
    274              Rec->getName().find("POP64") != Name.npos;
    275 
    276   ShouldBeEmitted  = true;
    277 }
    278 
    279 void RecognizableInstr::processInstr(DisassemblerTables &tables,
    280                                      const CodeGenInstruction &insn,
    281                                      InstrUID uid)
    282 {
    283   // Ignore "asm parser only" instructions.
    284   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
    285     return;
    286 
    287   RecognizableInstr recogInstr(tables, insn, uid);
    288 
    289   recogInstr.emitInstructionSpecifier(tables);
    290 
    291   if (recogInstr.shouldBeEmitted())
    292     recogInstr.emitDecodePath(tables);
    293 }
    294 
    295 InstructionContext RecognizableInstr::insnContext() const {
    296   InstructionContext insnContext;
    297 
    298   if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) {
    299     if (HasVEX_LPrefix && HasVEX_WPrefix) {
    300       if (HasOpSizePrefix)
    301         insnContext = IC_VEX_L_W_OPSIZE;
    302       else
    303         llvm_unreachable("Don't support VEX.L and VEX.W together");
    304     } else if (HasOpSizePrefix && HasVEX_LPrefix)
    305       insnContext = IC_VEX_L_OPSIZE;
    306     else if (HasOpSizePrefix && HasVEX_WPrefix)
    307       insnContext = IC_VEX_W_OPSIZE;
    308     else if (HasOpSizePrefix)
    309       insnContext = IC_VEX_OPSIZE;
    310     else if (HasVEX_LPrefix &&
    311              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    312       insnContext = IC_VEX_L_XS;
    313     else if (HasVEX_LPrefix && (Prefix == X86Local::XD ||
    314                                 Prefix == X86Local::T8XD ||
    315                                 Prefix == X86Local::TAXD))
    316       insnContext = IC_VEX_L_XD;
    317     else if (HasVEX_WPrefix &&
    318              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    319       insnContext = IC_VEX_W_XS;
    320     else if (HasVEX_WPrefix && (Prefix == X86Local::XD ||
    321                                 Prefix == X86Local::T8XD ||
    322                                 Prefix == X86Local::TAXD))
    323       insnContext = IC_VEX_W_XD;
    324     else if (HasVEX_WPrefix)
    325       insnContext = IC_VEX_W;
    326     else if (HasVEX_LPrefix)
    327       insnContext = IC_VEX_L;
    328     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
    329              Prefix == X86Local::TAXD)
    330       insnContext = IC_VEX_XD;
    331     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
    332       insnContext = IC_VEX_XS;
    333     else
    334       insnContext = IC_VEX;
    335   } else if (Is64Bit || HasREX_WPrefix) {
    336     if (HasREX_WPrefix && HasOpSizePrefix)
    337       insnContext = IC_64BIT_REXW_OPSIZE;
    338     else if (HasOpSizePrefix && (Prefix == X86Local::XD ||
    339                                  Prefix == X86Local::T8XD ||
    340                                  Prefix == X86Local::TAXD))
    341       insnContext = IC_64BIT_XD_OPSIZE;
    342     else if (HasOpSizePrefix &&
    343              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    344       insnContext = IC_64BIT_XS_OPSIZE;
    345     else if (HasOpSizePrefix)
    346       insnContext = IC_64BIT_OPSIZE;
    347     else if (HasAdSizePrefix)
    348       insnContext = IC_64BIT_ADSIZE;
    349     else if (HasREX_WPrefix &&
    350              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    351       insnContext = IC_64BIT_REXW_XS;
    352     else if (HasREX_WPrefix && (Prefix == X86Local::XD ||
    353                                 Prefix == X86Local::T8XD ||
    354                                 Prefix == X86Local::TAXD))
    355       insnContext = IC_64BIT_REXW_XD;
    356     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
    357              Prefix == X86Local::TAXD)
    358       insnContext = IC_64BIT_XD;
    359     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS)
    360       insnContext = IC_64BIT_XS;
    361     else if (HasREX_WPrefix)
    362       insnContext = IC_64BIT_REXW;
    363     else
    364       insnContext = IC_64BIT;
    365   } else {
    366     if (HasOpSizePrefix && (Prefix == X86Local::XD ||
    367                             Prefix == X86Local::T8XD ||
    368                             Prefix == X86Local::TAXD))
    369       insnContext = IC_XD_OPSIZE;
    370     else if (HasOpSizePrefix &&
    371              (Prefix == X86Local::XS || Prefix == X86Local::T8XS))
    372       insnContext = IC_XS_OPSIZE;
    373     else if (HasOpSizePrefix)
    374       insnContext = IC_OPSIZE;
    375     else if (HasAdSizePrefix)
    376       insnContext = IC_ADSIZE;
    377     else if (Prefix == X86Local::XD || Prefix == X86Local::T8XD ||
    378              Prefix == X86Local::TAXD)
    379       insnContext = IC_XD;
    380     else if (Prefix == X86Local::XS || Prefix == X86Local::T8XS ||
    381              Prefix == X86Local::REP)
    382       insnContext = IC_XS;
    383     else
    384       insnContext = IC;
    385   }
    386 
    387   return insnContext;
    388 }
    389 
    390 RecognizableInstr::filter_ret RecognizableInstr::filter() const {
    391   ///////////////////
    392   // FILTER_STRONG
    393   //
    394 
    395   // Filter out intrinsics
    396 
    397   assert(Rec->isSubClassOf("X86Inst") && "Can only filter X86 instructions");
    398 
    399   if (Form == X86Local::Pseudo ||
    400       (IsCodeGenOnly && Name.find("_REV") == Name.npos))
    401     return FILTER_STRONG;
    402 
    403 
    404   // Filter out artificial instructions but leave in the LOCK_PREFIX so it is
    405   // printed as a separate "instruction".
    406 
    407   if (Name.find("_Int") != Name.npos       ||
    408       Name.find("Int_") != Name.npos)
    409     return FILTER_STRONG;
    410 
    411   // Filter out instructions with segment override prefixes.
    412   // They're too messy to handle now and we'll special case them if needed.
    413 
    414   if (SegOvr)
    415     return FILTER_STRONG;
    416 
    417 
    418   /////////////////
    419   // FILTER_WEAK
    420   //
    421 
    422 
    423   // Filter out instructions with a LOCK prefix;
    424   //   prefer forms that do not have the prefix
    425   if (HasLockPrefix)
    426     return FILTER_WEAK;
    427 
    428   // Filter out alternate forms of AVX instructions
    429   if (Name.find("_alt") != Name.npos ||
    430       Name.find("XrYr") != Name.npos ||
    431       (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos) ||
    432       Name.find("_64mr") != Name.npos ||
    433       Name.find("Xrr") != Name.npos ||
    434       Name.find("rr64") != Name.npos)
    435     return FILTER_WEAK;
    436 
    437   // Special cases.
    438 
    439   if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI")
    440     return FILTER_WEAK;
    441   if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI")
    442     return FILTER_WEAK;
    443 
    444   if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos)
    445     return FILTER_WEAK;
    446   if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos)
    447     return FILTER_WEAK;
    448   if (Name.find("Fs") != Name.npos)
    449     return FILTER_WEAK;
    450   if (Name == "PUSH64i16"         ||
    451       Name == "MOVPQI2QImr"       ||
    452       Name == "VMOVPQI2QImr"      ||
    453       Name == "MMX_MOVD64rrv164"  ||
    454       Name == "MOV64ri64i32"      ||
    455       Name == "VMASKMOVDQU64"     ||
    456       Name == "VEXTRACTPSrr64"    ||
    457       Name == "VMOVQd64rr"        ||
    458       Name == "VMOVQs64rr")
    459     return FILTER_WEAK;
    460 
    461   if (HasFROperands && Name.find("MOV") != Name.npos &&
    462      ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) ||
    463       (Name.find("to") != Name.npos)))
    464     return FILTER_STRONG;
    465 
    466   return FILTER_NORMAL;
    467 }
    468 
    469 bool RecognizableInstr::hasFROperands() const {
    470   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    471   unsigned numOperands = OperandList.size();
    472 
    473   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    474     const std::string &recName = OperandList[operandIndex].Rec->getName();
    475 
    476     if (recName.find("FR") != recName.npos)
    477       return true;
    478   }
    479   return false;
    480 }
    481 
    482 bool RecognizableInstr::has256BitOperands() const {
    483   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    484   unsigned numOperands = OperandList.size();
    485 
    486   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    487     const std::string &recName = OperandList[operandIndex].Rec->getName();
    488 
    489     if (!recName.compare("VR256")) {
    490       return true;
    491     }
    492   }
    493   return false;
    494 }
    495 
    496 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
    497                                       unsigned &physicalOperandIndex,
    498                                       unsigned &numPhysicalOperands,
    499                                       const unsigned *operandMapping,
    500                                       OperandEncoding (*encodingFromString)
    501                                         (const std::string&,
    502                                          bool hasOpSizePrefix)) {
    503   if (optional) {
    504     if (physicalOperandIndex >= numPhysicalOperands)
    505       return;
    506   } else {
    507     assert(physicalOperandIndex < numPhysicalOperands);
    508   }
    509 
    510   while (operandMapping[operandIndex] != operandIndex) {
    511     Spec->operands[operandIndex].encoding = ENCODING_DUP;
    512     Spec->operands[operandIndex].type =
    513       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
    514     ++operandIndex;
    515   }
    516 
    517   const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
    518 
    519   Spec->operands[operandIndex].encoding = encodingFromString(typeName,
    520                                                               HasOpSizePrefix);
    521   Spec->operands[operandIndex].type = typeFromString(typeName,
    522                                                      IsSSE,
    523                                                      HasREX_WPrefix,
    524                                                      HasOpSizePrefix);
    525 
    526   ++operandIndex;
    527   ++physicalOperandIndex;
    528 }
    529 
    530 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) {
    531   Spec->name       = Name;
    532 
    533   if (!ShouldBeEmitted)
    534     return;
    535 
    536   switch (filter()) {
    537   case FILTER_WEAK:
    538     Spec->filtered = true;
    539     break;
    540   case FILTER_STRONG:
    541     ShouldBeEmitted = false;
    542     return;
    543   case FILTER_NORMAL:
    544     break;
    545   }
    546 
    547   Spec->insnContext = insnContext();
    548 
    549   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    550 
    551   unsigned numOperands = OperandList.size();
    552   unsigned numPhysicalOperands = 0;
    553 
    554   // operandMapping maps from operands in OperandList to their originals.
    555   // If operandMapping[i] != i, then the entry is a duplicate.
    556   unsigned operandMapping[X86_MAX_OPERANDS];
    557   assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
    558 
    559   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    560     if (OperandList[operandIndex].Constraints.size()) {
    561       const CGIOperandList::ConstraintInfo &Constraint =
    562         OperandList[operandIndex].Constraints[0];
    563       if (Constraint.isTied()) {
    564         operandMapping[operandIndex] = operandIndex;
    565         operandMapping[Constraint.getTiedOperand()] = operandIndex;
    566       } else {
    567         ++numPhysicalOperands;
    568         operandMapping[operandIndex] = operandIndex;
    569       }
    570     } else {
    571       ++numPhysicalOperands;
    572       operandMapping[operandIndex] = operandIndex;
    573     }
    574   }
    575 
    576 #define HANDLE_OPERAND(class)               \
    577   handleOperand(false,                      \
    578                 operandIndex,               \
    579                 physicalOperandIndex,       \
    580                 numPhysicalOperands,        \
    581                 operandMapping,             \
    582                 class##EncodingFromString);
    583 
    584 #define HANDLE_OPTIONAL(class)              \
    585   handleOperand(true,                       \
    586                 operandIndex,               \
    587                 physicalOperandIndex,       \
    588                 numPhysicalOperands,        \
    589                 operandMapping,             \
    590                 class##EncodingFromString);
    591 
    592   // operandIndex should always be < numOperands
    593   unsigned operandIndex = 0;
    594   // physicalOperandIndex should always be < numPhysicalOperands
    595   unsigned physicalOperandIndex = 0;
    596 
    597   switch (Form) {
    598   case X86Local::RawFrm:
    599     // Operand 1 (optional) is an address or immediate.
    600     // Operand 2 (optional) is an immediate.
    601     assert(numPhysicalOperands <= 2 &&
    602            "Unexpected number of operands for RawFrm");
    603     HANDLE_OPTIONAL(relocation)
    604     HANDLE_OPTIONAL(immediate)
    605     break;
    606   case X86Local::AddRegFrm:
    607     // Operand 1 is added to the opcode.
    608     // Operand 2 (optional) is an address.
    609     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
    610            "Unexpected number of operands for AddRegFrm");
    611     HANDLE_OPERAND(opcodeModifier)
    612     HANDLE_OPTIONAL(relocation)
    613     break;
    614   case X86Local::MRMDestReg:
    615     // Operand 1 is a register operand in the R/M field.
    616     // Operand 2 is a register operand in the Reg/Opcode field.
    617     // - In AVX, there is a register operand in the VEX.vvvv field here -
    618     // Operand 3 (optional) is an immediate.
    619     if (HasVEX_4VPrefix)
    620       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
    621              "Unexpected number of operands for MRMDestRegFrm with VEX_4V");
    622     else
    623       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    624              "Unexpected number of operands for MRMDestRegFrm");
    625 
    626     HANDLE_OPERAND(rmRegister)
    627 
    628     if (HasVEX_4VPrefix)
    629       // FIXME: In AVX, the register below becomes the one encoded
    630       // in ModRMVEX and the one above the one in the VEX.VVVV field
    631       HANDLE_OPERAND(vvvvRegister)
    632 
    633     HANDLE_OPERAND(roRegister)
    634     HANDLE_OPTIONAL(immediate)
    635     break;
    636   case X86Local::MRMDestMem:
    637     // Operand 1 is a memory operand (possibly SIB-extended)
    638     // Operand 2 is a register operand in the Reg/Opcode field.
    639     // - In AVX, there is a register operand in the VEX.vvvv field here -
    640     // Operand 3 (optional) is an immediate.
    641     if (HasVEX_4VPrefix)
    642       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
    643              "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
    644     else
    645       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    646              "Unexpected number of operands for MRMDestMemFrm");
    647     HANDLE_OPERAND(memory)
    648 
    649     if (HasVEX_4VPrefix)
    650       // FIXME: In AVX, the register below becomes the one encoded
    651       // in ModRMVEX and the one above the one in the VEX.VVVV field
    652       HANDLE_OPERAND(vvvvRegister)
    653 
    654     HANDLE_OPERAND(roRegister)
    655     HANDLE_OPTIONAL(immediate)
    656     break;
    657   case X86Local::MRMSrcReg:
    658     // Operand 1 is a register operand in the Reg/Opcode field.
    659     // Operand 2 is a register operand in the R/M field.
    660     // - In AVX, there is a register operand in the VEX.vvvv field here -
    661     // Operand 3 (optional) is an immediate.
    662     // Operand 4 (optional) is an immediate.
    663 
    664     if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix)
    665       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
    666              "Unexpected number of operands for MRMSrcRegFrm with VEX_4V");
    667     else
    668       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 4 &&
    669              "Unexpected number of operands for MRMSrcRegFrm");
    670 
    671     HANDLE_OPERAND(roRegister)
    672 
    673     if (HasVEX_4VPrefix)
    674       // FIXME: In AVX, the register below becomes the one encoded
    675       // in ModRMVEX and the one above the one in the VEX.VVVV field
    676       HANDLE_OPERAND(vvvvRegister)
    677 
    678     if (HasMemOp4Prefix)
    679       HANDLE_OPERAND(immediate)
    680 
    681     HANDLE_OPERAND(rmRegister)
    682 
    683     if (HasVEX_4VOp3Prefix)
    684       HANDLE_OPERAND(vvvvRegister)
    685 
    686     if (!HasMemOp4Prefix)
    687       HANDLE_OPTIONAL(immediate)
    688     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
    689     HANDLE_OPTIONAL(immediate)
    690     break;
    691   case X86Local::MRMSrcMem:
    692     // Operand 1 is a register operand in the Reg/Opcode field.
    693     // Operand 2 is a memory operand (possibly SIB-extended)
    694     // - In AVX, there is a register operand in the VEX.vvvv field here -
    695     // Operand 3 (optional) is an immediate.
    696 
    697     if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix)
    698       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
    699              "Unexpected number of operands for MRMSrcMemFrm with VEX_4V");
    700     else
    701       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    702              "Unexpected number of operands for MRMSrcMemFrm");
    703 
    704     HANDLE_OPERAND(roRegister)
    705 
    706     if (HasVEX_4VPrefix)
    707       // FIXME: In AVX, the register below becomes the one encoded
    708       // in ModRMVEX and the one above the one in the VEX.VVVV field
    709       HANDLE_OPERAND(vvvvRegister)
    710 
    711     if (HasMemOp4Prefix)
    712       HANDLE_OPERAND(immediate)
    713 
    714     HANDLE_OPERAND(memory)
    715 
    716     if (HasVEX_4VOp3Prefix)
    717       HANDLE_OPERAND(vvvvRegister)
    718 
    719     if (!HasMemOp4Prefix)
    720       HANDLE_OPTIONAL(immediate)
    721     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
    722     break;
    723   case X86Local::MRM0r:
    724   case X86Local::MRM1r:
    725   case X86Local::MRM2r:
    726   case X86Local::MRM3r:
    727   case X86Local::MRM4r:
    728   case X86Local::MRM5r:
    729   case X86Local::MRM6r:
    730   case X86Local::MRM7r:
    731     // Operand 1 is a register operand in the R/M field.
    732     // Operand 2 (optional) is an immediate or relocation.
    733     // Operand 3 (optional) is an immediate.
    734     if (HasVEX_4VPrefix)
    735       assert(numPhysicalOperands <= 3 &&
    736              "Unexpected number of operands for MRMnRFrm with VEX_4V");
    737     else
    738       assert(numPhysicalOperands <= 3 &&
    739              "Unexpected number of operands for MRMnRFrm");
    740     if (HasVEX_4VPrefix)
    741       HANDLE_OPERAND(vvvvRegister)
    742     HANDLE_OPTIONAL(rmRegister)
    743     HANDLE_OPTIONAL(relocation)
    744     HANDLE_OPTIONAL(immediate)
    745     break;
    746   case X86Local::MRM0m:
    747   case X86Local::MRM1m:
    748   case X86Local::MRM2m:
    749   case X86Local::MRM3m:
    750   case X86Local::MRM4m:
    751   case X86Local::MRM5m:
    752   case X86Local::MRM6m:
    753   case X86Local::MRM7m:
    754     // Operand 1 is a memory operand (possibly SIB-extended)
    755     // Operand 2 (optional) is an immediate or relocation.
    756     if (HasVEX_4VPrefix)
    757       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    758              "Unexpected number of operands for MRMnMFrm");
    759     else
    760       assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
    761              "Unexpected number of operands for MRMnMFrm");
    762     if (HasVEX_4VPrefix)
    763       HANDLE_OPERAND(vvvvRegister)
    764     HANDLE_OPERAND(memory)
    765     HANDLE_OPTIONAL(relocation)
    766     break;
    767   case X86Local::RawFrmImm8:
    768     // operand 1 is a 16-bit immediate
    769     // operand 2 is an 8-bit immediate
    770     assert(numPhysicalOperands == 2 &&
    771            "Unexpected number of operands for X86Local::RawFrmImm8");
    772     HANDLE_OPERAND(immediate)
    773     HANDLE_OPERAND(immediate)
    774     break;
    775   case X86Local::RawFrmImm16:
    776     // operand 1 is a 16-bit immediate
    777     // operand 2 is a 16-bit immediate
    778     HANDLE_OPERAND(immediate)
    779     HANDLE_OPERAND(immediate)
    780     break;
    781   case X86Local::MRMInitReg:
    782     // Ignored.
    783     break;
    784   }
    785 
    786   #undef HANDLE_OPERAND
    787   #undef HANDLE_OPTIONAL
    788 }
    789 
    790 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
    791   // Special cases where the LLVM tables are not complete
    792 
    793 #define MAP(from, to)                     \
    794   case X86Local::MRM_##from:              \
    795     filter = new ExactFilter(0x##from);   \
    796     break;
    797 
    798   OpcodeType    opcodeType  = (OpcodeType)-1;
    799 
    800   ModRMFilter*  filter      = NULL;
    801   uint8_t       opcodeToSet = 0;
    802 
    803   switch (Prefix) {
    804   // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f
    805   case X86Local::XD:
    806   case X86Local::XS:
    807   case X86Local::TB:
    808     opcodeType = TWOBYTE;
    809 
    810     switch (Opcode) {
    811     default:
    812       if (needsModRMForDecode(Form))
    813         filter = new ModFilter(isRegFormat(Form));
    814       else
    815         filter = new DumbFilter();
    816       break;
    817 #define EXTENSION_TABLE(n) case 0x##n:
    818     TWO_BYTE_EXTENSION_TABLES
    819 #undef EXTENSION_TABLE
    820       switch (Form) {
    821       default:
    822         llvm_unreachable("Unhandled two-byte extended opcode");
    823       case X86Local::MRM0r:
    824       case X86Local::MRM1r:
    825       case X86Local::MRM2r:
    826       case X86Local::MRM3r:
    827       case X86Local::MRM4r:
    828       case X86Local::MRM5r:
    829       case X86Local::MRM6r:
    830       case X86Local::MRM7r:
    831         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
    832         break;
    833       case X86Local::MRM0m:
    834       case X86Local::MRM1m:
    835       case X86Local::MRM2m:
    836       case X86Local::MRM3m:
    837       case X86Local::MRM4m:
    838       case X86Local::MRM5m:
    839       case X86Local::MRM6m:
    840       case X86Local::MRM7m:
    841         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
    842         break;
    843       MRM_MAPPING
    844       } // switch (Form)
    845       break;
    846     } // switch (Opcode)
    847     opcodeToSet = Opcode;
    848     break;
    849   case X86Local::T8:
    850   case X86Local::T8XD:
    851   case X86Local::T8XS:
    852     opcodeType = THREEBYTE_38;
    853     switch (Opcode) {
    854     default:
    855       if (needsModRMForDecode(Form))
    856         filter = new ModFilter(isRegFormat(Form));
    857       else
    858         filter = new DumbFilter();
    859       break;
    860 #define EXTENSION_TABLE(n) case 0x##n:
    861     THREE_BYTE_38_EXTENSION_TABLES
    862 #undef EXTENSION_TABLE
    863       switch (Form) {
    864       default:
    865         llvm_unreachable("Unhandled two-byte extended opcode");
    866       case X86Local::MRM0r:
    867       case X86Local::MRM1r:
    868       case X86Local::MRM2r:
    869       case X86Local::MRM3r:
    870       case X86Local::MRM4r:
    871       case X86Local::MRM5r:
    872       case X86Local::MRM6r:
    873       case X86Local::MRM7r:
    874         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
    875         break;
    876       case X86Local::MRM0m:
    877       case X86Local::MRM1m:
    878       case X86Local::MRM2m:
    879       case X86Local::MRM3m:
    880       case X86Local::MRM4m:
    881       case X86Local::MRM5m:
    882       case X86Local::MRM6m:
    883       case X86Local::MRM7m:
    884         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
    885         break;
    886       MRM_MAPPING
    887       } // switch (Form)
    888       break;
    889     } // switch (Opcode)
    890     opcodeToSet = Opcode;
    891     break;
    892   case X86Local::P_TA:
    893   case X86Local::TAXD:
    894     opcodeType = THREEBYTE_3A;
    895     if (needsModRMForDecode(Form))
    896       filter = new ModFilter(isRegFormat(Form));
    897     else
    898       filter = new DumbFilter();
    899     opcodeToSet = Opcode;
    900     break;
    901   case X86Local::A6:
    902     opcodeType = THREEBYTE_A6;
    903     if (needsModRMForDecode(Form))
    904       filter = new ModFilter(isRegFormat(Form));
    905     else
    906       filter = new DumbFilter();
    907     opcodeToSet = Opcode;
    908     break;
    909   case X86Local::A7:
    910     opcodeType = THREEBYTE_A7;
    911     if (needsModRMForDecode(Form))
    912       filter = new ModFilter(isRegFormat(Form));
    913     else
    914       filter = new DumbFilter();
    915     opcodeToSet = Opcode;
    916     break;
    917   case X86Local::D8:
    918   case X86Local::D9:
    919   case X86Local::DA:
    920   case X86Local::DB:
    921   case X86Local::DC:
    922   case X86Local::DD:
    923   case X86Local::DE:
    924   case X86Local::DF:
    925     assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode");
    926     opcodeType = ONEBYTE;
    927     if (Form == X86Local::AddRegFrm) {
    928       Spec->modifierType = MODIFIER_MODRM;
    929       Spec->modifierBase = Opcode;
    930       filter = new AddRegEscapeFilter(Opcode);
    931     } else {
    932       filter = new EscapeFilter(true, Opcode);
    933     }
    934     opcodeToSet = 0xd8 + (Prefix - X86Local::D8);
    935     break;
    936   case X86Local::REP:
    937   default:
    938     opcodeType = ONEBYTE;
    939     switch (Opcode) {
    940 #define EXTENSION_TABLE(n) case 0x##n:
    941     ONE_BYTE_EXTENSION_TABLES
    942 #undef EXTENSION_TABLE
    943       switch (Form) {
    944       default:
    945         llvm_unreachable("Fell through the cracks of a single-byte "
    946                          "extended opcode");
    947       case X86Local::MRM0r:
    948       case X86Local::MRM1r:
    949       case X86Local::MRM2r:
    950       case X86Local::MRM3r:
    951       case X86Local::MRM4r:
    952       case X86Local::MRM5r:
    953       case X86Local::MRM6r:
    954       case X86Local::MRM7r:
    955         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
    956         break;
    957       case X86Local::MRM0m:
    958       case X86Local::MRM1m:
    959       case X86Local::MRM2m:
    960       case X86Local::MRM3m:
    961       case X86Local::MRM4m:
    962       case X86Local::MRM5m:
    963       case X86Local::MRM6m:
    964       case X86Local::MRM7m:
    965         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
    966         break;
    967       MRM_MAPPING
    968       } // switch (Form)
    969       break;
    970     case 0xd8:
    971     case 0xd9:
    972     case 0xda:
    973     case 0xdb:
    974     case 0xdc:
    975     case 0xdd:
    976     case 0xde:
    977     case 0xdf:
    978       filter = new EscapeFilter(false, Form - X86Local::MRM0m);
    979       break;
    980     default:
    981       if (needsModRMForDecode(Form))
    982         filter = new ModFilter(isRegFormat(Form));
    983       else
    984         filter = new DumbFilter();
    985       break;
    986     } // switch (Opcode)
    987     opcodeToSet = Opcode;
    988   } // switch (Prefix)
    989 
    990   assert(opcodeType != (OpcodeType)-1 &&
    991          "Opcode type not set");
    992   assert(filter && "Filter not set");
    993 
    994   if (Form == X86Local::AddRegFrm) {
    995     if(Spec->modifierType != MODIFIER_MODRM) {
    996       assert(opcodeToSet < 0xf9 &&
    997              "Not enough room for all ADDREG_FRM operands");
    998 
    999       uint8_t currentOpcode;
   1000 
   1001       for (currentOpcode = opcodeToSet;
   1002            currentOpcode < opcodeToSet + 8;
   1003            ++currentOpcode)
   1004         tables.setTableFields(opcodeType,
   1005                               insnContext(),
   1006                               currentOpcode,
   1007                               *filter,
   1008                               UID, Is32Bit, IgnoresVEX_L);
   1009 
   1010       Spec->modifierType = MODIFIER_OPCODE;
   1011       Spec->modifierBase = opcodeToSet;
   1012     } else {
   1013       // modifierBase was set where MODIFIER_MODRM was set
   1014       tables.setTableFields(opcodeType,
   1015                             insnContext(),
   1016                             opcodeToSet,
   1017                             *filter,
   1018                             UID, Is32Bit, IgnoresVEX_L);
   1019     }
   1020   } else {
   1021     tables.setTableFields(opcodeType,
   1022                           insnContext(),
   1023                           opcodeToSet,
   1024                           *filter,
   1025                           UID, Is32Bit, IgnoresVEX_L);
   1026 
   1027     Spec->modifierType = MODIFIER_NONE;
   1028     Spec->modifierBase = opcodeToSet;
   1029   }
   1030 
   1031   delete filter;
   1032 
   1033 #undef MAP
   1034 }
   1035 
   1036 #define TYPE(str, type) if (s == str) return type;
   1037 OperandType RecognizableInstr::typeFromString(const std::string &s,
   1038                                               bool isSSE,
   1039                                               bool hasREX_WPrefix,
   1040                                               bool hasOpSizePrefix) {
   1041   if (isSSE) {
   1042     // For SSE instructions, we ignore the OpSize prefix and force operand
   1043     // sizes.
   1044     TYPE("GR16",              TYPE_R16)
   1045     TYPE("GR32",              TYPE_R32)
   1046     TYPE("GR64",              TYPE_R64)
   1047   }
   1048   if(hasREX_WPrefix) {
   1049     // For instructions with a REX_W prefix, a declared 32-bit register encoding
   1050     // is special.
   1051     TYPE("GR32",              TYPE_R32)
   1052   }
   1053   if(!hasOpSizePrefix) {
   1054     // For instructions without an OpSize prefix, a declared 16-bit register or
   1055     // immediate encoding is special.
   1056     TYPE("GR16",              TYPE_R16)
   1057     TYPE("i16imm",            TYPE_IMM16)
   1058   }
   1059   TYPE("i16mem",              TYPE_Mv)
   1060   TYPE("i16imm",              TYPE_IMMv)
   1061   TYPE("i16i8imm",            TYPE_IMMv)
   1062   TYPE("GR16",                TYPE_Rv)
   1063   TYPE("i32mem",              TYPE_Mv)
   1064   TYPE("i32imm",              TYPE_IMMv)
   1065   TYPE("i32i8imm",            TYPE_IMM32)
   1066   TYPE("u32u8imm",            TYPE_IMM32)
   1067   TYPE("GR32",                TYPE_Rv)
   1068   TYPE("i64mem",              TYPE_Mv)
   1069   TYPE("i64i32imm",           TYPE_IMM64)
   1070   TYPE("i64i8imm",            TYPE_IMM64)
   1071   TYPE("GR64",                TYPE_R64)
   1072   TYPE("i8mem",               TYPE_M8)
   1073   TYPE("i8imm",               TYPE_IMM8)
   1074   TYPE("GR8",                 TYPE_R8)
   1075   TYPE("VR128",               TYPE_XMM128)
   1076   TYPE("f128mem",             TYPE_M128)
   1077   TYPE("f256mem",             TYPE_M256)
   1078   TYPE("FR64",                TYPE_XMM64)
   1079   TYPE("f64mem",              TYPE_M64FP)
   1080   TYPE("sdmem",               TYPE_M64FP)
   1081   TYPE("FR32",                TYPE_XMM32)
   1082   TYPE("f32mem",              TYPE_M32FP)
   1083   TYPE("ssmem",               TYPE_M32FP)
   1084   TYPE("RST",                 TYPE_ST)
   1085   TYPE("i128mem",             TYPE_M128)
   1086   TYPE("i256mem",             TYPE_M256)
   1087   TYPE("i64i32imm_pcrel",     TYPE_REL64)
   1088   TYPE("i16imm_pcrel",        TYPE_REL16)
   1089   TYPE("i32imm_pcrel",        TYPE_REL32)
   1090   TYPE("SSECC",               TYPE_IMM3)
   1091   TYPE("AVXCC",               TYPE_IMM5)
   1092   TYPE("brtarget",            TYPE_RELv)
   1093   TYPE("uncondbrtarget",      TYPE_RELv)
   1094   TYPE("brtarget8",           TYPE_REL8)
   1095   TYPE("f80mem",              TYPE_M80FP)
   1096   TYPE("lea32mem",            TYPE_LEA)
   1097   TYPE("lea64_32mem",         TYPE_LEA)
   1098   TYPE("lea64mem",            TYPE_LEA)
   1099   TYPE("VR64",                TYPE_MM64)
   1100   TYPE("i64imm",              TYPE_IMMv)
   1101   TYPE("opaque32mem",         TYPE_M1616)
   1102   TYPE("opaque48mem",         TYPE_M1632)
   1103   TYPE("opaque80mem",         TYPE_M1664)
   1104   TYPE("opaque512mem",        TYPE_M512)
   1105   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
   1106   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
   1107   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
   1108   TYPE("offset8",             TYPE_MOFFS8)
   1109   TYPE("offset16",            TYPE_MOFFS16)
   1110   TYPE("offset32",            TYPE_MOFFS32)
   1111   TYPE("offset64",            TYPE_MOFFS64)
   1112   TYPE("VR256",               TYPE_XMM256)
   1113   TYPE("GR16_NOAX",           TYPE_Rv)
   1114   TYPE("GR32_NOAX",           TYPE_Rv)
   1115   TYPE("GR64_NOAX",           TYPE_R64)
   1116   TYPE("vx32mem",             TYPE_M32)
   1117   TYPE("vy32mem",             TYPE_M32)
   1118   TYPE("vx64mem",             TYPE_M64)
   1119   TYPE("vy64mem",             TYPE_M64)
   1120   errs() << "Unhandled type string " << s << "\n";
   1121   llvm_unreachable("Unhandled type string");
   1122 }
   1123 #undef TYPE
   1124 
   1125 #define ENCODING(str, encoding) if (s == str) return encoding;
   1126 OperandEncoding RecognizableInstr::immediateEncodingFromString
   1127   (const std::string &s,
   1128    bool hasOpSizePrefix) {
   1129   if(!hasOpSizePrefix) {
   1130     // For instructions without an OpSize prefix, a declared 16-bit register or
   1131     // immediate encoding is special.
   1132     ENCODING("i16imm",        ENCODING_IW)
   1133   }
   1134   ENCODING("i32i8imm",        ENCODING_IB)
   1135   ENCODING("u32u8imm",        ENCODING_IB)
   1136   ENCODING("SSECC",           ENCODING_IB)
   1137   ENCODING("AVXCC",           ENCODING_IB)
   1138   ENCODING("i16imm",          ENCODING_Iv)
   1139   ENCODING("i16i8imm",        ENCODING_IB)
   1140   ENCODING("i32imm",          ENCODING_Iv)
   1141   ENCODING("i64i32imm",       ENCODING_ID)
   1142   ENCODING("i64i8imm",        ENCODING_IB)
   1143   ENCODING("i8imm",           ENCODING_IB)
   1144   // This is not a typo.  Instructions like BLENDVPD put
   1145   // register IDs in 8-bit immediates nowadays.
   1146   ENCODING("VR256",           ENCODING_IB)
   1147   ENCODING("VR128",           ENCODING_IB)
   1148   ENCODING("FR32",            ENCODING_IB)
   1149   ENCODING("FR64",            ENCODING_IB)
   1150   errs() << "Unhandled immediate encoding " << s << "\n";
   1151   llvm_unreachable("Unhandled immediate encoding");
   1152 }
   1153 
   1154 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString
   1155   (const std::string &s,
   1156    bool hasOpSizePrefix) {
   1157   ENCODING("GR16",            ENCODING_RM)
   1158   ENCODING("GR32",            ENCODING_RM)
   1159   ENCODING("GR64",            ENCODING_RM)
   1160   ENCODING("GR8",             ENCODING_RM)
   1161   ENCODING("VR128",           ENCODING_RM)
   1162   ENCODING("FR64",            ENCODING_RM)
   1163   ENCODING("FR32",            ENCODING_RM)
   1164   ENCODING("VR64",            ENCODING_RM)
   1165   ENCODING("VR256",           ENCODING_RM)
   1166   errs() << "Unhandled R/M register encoding " << s << "\n";
   1167   llvm_unreachable("Unhandled R/M register encoding");
   1168 }
   1169 
   1170 OperandEncoding RecognizableInstr::roRegisterEncodingFromString
   1171   (const std::string &s,
   1172    bool hasOpSizePrefix) {
   1173   ENCODING("GR16",            ENCODING_REG)
   1174   ENCODING("GR32",            ENCODING_REG)
   1175   ENCODING("GR64",            ENCODING_REG)
   1176   ENCODING("GR8",             ENCODING_REG)
   1177   ENCODING("VR128",           ENCODING_REG)
   1178   ENCODING("FR64",            ENCODING_REG)
   1179   ENCODING("FR32",            ENCODING_REG)
   1180   ENCODING("VR64",            ENCODING_REG)
   1181   ENCODING("SEGMENT_REG",     ENCODING_REG)
   1182   ENCODING("DEBUG_REG",       ENCODING_REG)
   1183   ENCODING("CONTROL_REG",     ENCODING_REG)
   1184   ENCODING("VR256",           ENCODING_REG)
   1185   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
   1186   llvm_unreachable("Unhandled reg/opcode register encoding");
   1187 }
   1188 
   1189 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString
   1190   (const std::string &s,
   1191    bool hasOpSizePrefix) {
   1192   ENCODING("GR32",            ENCODING_VVVV)
   1193   ENCODING("GR64",            ENCODING_VVVV)
   1194   ENCODING("FR32",            ENCODING_VVVV)
   1195   ENCODING("FR64",            ENCODING_VVVV)
   1196   ENCODING("VR128",           ENCODING_VVVV)
   1197   ENCODING("VR256",           ENCODING_VVVV)
   1198   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
   1199   llvm_unreachable("Unhandled VEX.vvvv register encoding");
   1200 }
   1201 
   1202 OperandEncoding RecognizableInstr::memoryEncodingFromString
   1203   (const std::string &s,
   1204    bool hasOpSizePrefix) {
   1205   ENCODING("i16mem",          ENCODING_RM)
   1206   ENCODING("i32mem",          ENCODING_RM)
   1207   ENCODING("i64mem",          ENCODING_RM)
   1208   ENCODING("i8mem",           ENCODING_RM)
   1209   ENCODING("ssmem",           ENCODING_RM)
   1210   ENCODING("sdmem",           ENCODING_RM)
   1211   ENCODING("f128mem",         ENCODING_RM)
   1212   ENCODING("f256mem",         ENCODING_RM)
   1213   ENCODING("f64mem",          ENCODING_RM)
   1214   ENCODING("f32mem",          ENCODING_RM)
   1215   ENCODING("i128mem",         ENCODING_RM)
   1216   ENCODING("i256mem",         ENCODING_RM)
   1217   ENCODING("f80mem",          ENCODING_RM)
   1218   ENCODING("lea32mem",        ENCODING_RM)
   1219   ENCODING("lea64_32mem",     ENCODING_RM)
   1220   ENCODING("lea64mem",        ENCODING_RM)
   1221   ENCODING("opaque32mem",     ENCODING_RM)
   1222   ENCODING("opaque48mem",     ENCODING_RM)
   1223   ENCODING("opaque80mem",     ENCODING_RM)
   1224   ENCODING("opaque512mem",    ENCODING_RM)
   1225   ENCODING("vx32mem",         ENCODING_RM)
   1226   ENCODING("vy32mem",         ENCODING_RM)
   1227   ENCODING("vx64mem",         ENCODING_RM)
   1228   ENCODING("vy64mem",         ENCODING_RM)
   1229   errs() << "Unhandled memory encoding " << s << "\n";
   1230   llvm_unreachable("Unhandled memory encoding");
   1231 }
   1232 
   1233 OperandEncoding RecognizableInstr::relocationEncodingFromString
   1234   (const std::string &s,
   1235    bool hasOpSizePrefix) {
   1236   if(!hasOpSizePrefix) {
   1237     // For instructions without an OpSize prefix, a declared 16-bit register or
   1238     // immediate encoding is special.
   1239     ENCODING("i16imm",        ENCODING_IW)
   1240   }
   1241   ENCODING("i16imm",          ENCODING_Iv)
   1242   ENCODING("i16i8imm",        ENCODING_IB)
   1243   ENCODING("i32imm",          ENCODING_Iv)
   1244   ENCODING("i32i8imm",        ENCODING_IB)
   1245   ENCODING("i64i32imm",       ENCODING_ID)
   1246   ENCODING("i64i8imm",        ENCODING_IB)
   1247   ENCODING("i8imm",           ENCODING_IB)
   1248   ENCODING("i64i32imm_pcrel", ENCODING_ID)
   1249   ENCODING("i16imm_pcrel",    ENCODING_IW)
   1250   ENCODING("i32imm_pcrel",    ENCODING_ID)
   1251   ENCODING("brtarget",        ENCODING_Iv)
   1252   ENCODING("brtarget8",       ENCODING_IB)
   1253   ENCODING("i64imm",          ENCODING_IO)
   1254   ENCODING("offset8",         ENCODING_Ia)
   1255   ENCODING("offset16",        ENCODING_Ia)
   1256   ENCODING("offset32",        ENCODING_Ia)
   1257   ENCODING("offset64",        ENCODING_Ia)
   1258   errs() << "Unhandled relocation encoding " << s << "\n";
   1259   llvm_unreachable("Unhandled relocation encoding");
   1260 }
   1261 
   1262 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString
   1263   (const std::string &s,
   1264    bool hasOpSizePrefix) {
   1265   ENCODING("RST",             ENCODING_I)
   1266   ENCODING("GR32",            ENCODING_Rv)
   1267   ENCODING("GR64",            ENCODING_RO)
   1268   ENCODING("GR16",            ENCODING_Rv)
   1269   ENCODING("GR8",             ENCODING_RB)
   1270   ENCODING("GR16_NOAX",       ENCODING_Rv)
   1271   ENCODING("GR32_NOAX",       ENCODING_Rv)
   1272   ENCODING("GR64_NOAX",       ENCODING_RO)
   1273   errs() << "Unhandled opcode modifier encoding " << s << "\n";
   1274   llvm_unreachable("Unhandled opcode modifier encoding");
   1275 }
   1276 #undef ENCODING
   1277