Home | History | Annotate | Download | only in dsp
      1 // Copyright 2011 Google Inc. All Rights Reserved.
      2 //
      3 // This code is licensed under the same terms as WebM:
      4 //  Software License Agreement:  http://www.webmproject.org/license/software/
      5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
      6 // -----------------------------------------------------------------------------
      7 //
      8 // SSE2 version of speed-critical encoding functions.
      9 //
     10 // Author: Christian Duvivier (cduvivier (at) google.com)
     11 
     12 #include "./dsp.h"
     13 
     14 #if defined(WEBP_USE_SSE2)
     15 #include <stdlib.h>  // for abs()
     16 #include <emmintrin.h>
     17 
     18 #include "../enc/vp8enci.h"
     19 
     20 #if defined(__cplusplus) || defined(c_plusplus)
     21 extern "C" {
     22 #endif
     23 
     24 //------------------------------------------------------------------------------
     25 // Compute susceptibility based on DCT-coeff histograms:
     26 // the higher, the "easier" the macroblock is to compress.
     27 
     28 static int CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
     29                                 int start_block, int end_block) {
     30   int histo[MAX_COEFF_THRESH + 1] = { 0 };
     31   int16_t out[16];
     32   int j, k;
     33   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
     34   for (j = start_block; j < end_block; ++j) {
     35     VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
     36 
     37     // Convert coefficients to bin (within out[]).
     38     {
     39       // Load.
     40       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
     41       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
     42       // sign(out) = out >> 15  (0x0000 if positive, 0xffff if negative)
     43       const __m128i sign0 = _mm_srai_epi16(out0, 15);
     44       const __m128i sign1 = _mm_srai_epi16(out1, 15);
     45       // abs(out) = (out ^ sign) - sign
     46       const __m128i xor0 = _mm_xor_si128(out0, sign0);
     47       const __m128i xor1 = _mm_xor_si128(out1, sign1);
     48       const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
     49       const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
     50       // v = abs(out) >> 2
     51       const __m128i v0 = _mm_srai_epi16(abs0, 2);
     52       const __m128i v1 = _mm_srai_epi16(abs1, 2);
     53       // bin = min(v, MAX_COEFF_THRESH)
     54       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
     55       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
     56       // Store.
     57       _mm_storeu_si128((__m128i*)&out[0], bin0);
     58       _mm_storeu_si128((__m128i*)&out[8], bin1);
     59     }
     60 
     61     // Use bin to update histogram.
     62     for (k = 0; k < 16; ++k) {
     63       histo[out[k]]++;
     64     }
     65   }
     66 
     67   return VP8GetAlpha(histo);
     68 }
     69 
     70 //------------------------------------------------------------------------------
     71 // Transforms (Paragraph 14.4)
     72 
     73 // Does one or two inverse transforms.
     74 static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
     75                            int do_two) {
     76   // This implementation makes use of 16-bit fixed point versions of two
     77   // multiply constants:
     78   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
     79   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
     80   //
     81   // To be able to use signed 16-bit integers, we use the following trick to
     82   // have constants within range:
     83   // - Associated constants are obtained by subtracting the 16-bit fixed point
     84   //   version of one:
     85   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
     86   //      K1 = 85267  =>  k1 =  20091
     87   //      K2 = 35468  =>  k2 = -30068
     88   // - The multiplication of a variable by a constant become the sum of the
     89   //   variable and the multiplication of that variable by the associated
     90   //   constant:
     91   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
     92   const __m128i k1 = _mm_set1_epi16(20091);
     93   const __m128i k2 = _mm_set1_epi16(-30068);
     94   __m128i T0, T1, T2, T3;
     95 
     96   // Load and concatenate the transform coefficients (we'll do two inverse
     97   // transforms in parallel). In the case of only one inverse transform, the
     98   // second half of the vectors will just contain random value we'll never
     99   // use nor store.
    100   __m128i in0, in1, in2, in3;
    101   {
    102     in0 = _mm_loadl_epi64((__m128i*)&in[0]);
    103     in1 = _mm_loadl_epi64((__m128i*)&in[4]);
    104     in2 = _mm_loadl_epi64((__m128i*)&in[8]);
    105     in3 = _mm_loadl_epi64((__m128i*)&in[12]);
    106     // a00 a10 a20 a30   x x x x
    107     // a01 a11 a21 a31   x x x x
    108     // a02 a12 a22 a32   x x x x
    109     // a03 a13 a23 a33   x x x x
    110     if (do_two) {
    111       const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
    112       const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
    113       const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
    114       const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
    115       in0 = _mm_unpacklo_epi64(in0, inB0);
    116       in1 = _mm_unpacklo_epi64(in1, inB1);
    117       in2 = _mm_unpacklo_epi64(in2, inB2);
    118       in3 = _mm_unpacklo_epi64(in3, inB3);
    119       // a00 a10 a20 a30   b00 b10 b20 b30
    120       // a01 a11 a21 a31   b01 b11 b21 b31
    121       // a02 a12 a22 a32   b02 b12 b22 b32
    122       // a03 a13 a23 a33   b03 b13 b23 b33
    123     }
    124   }
    125 
    126   // Vertical pass and subsequent transpose.
    127   {
    128     // First pass, c and d calculations are longer because of the "trick"
    129     // multiplications.
    130     const __m128i a = _mm_add_epi16(in0, in2);
    131     const __m128i b = _mm_sub_epi16(in0, in2);
    132     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
    133     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
    134     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
    135     const __m128i c3 = _mm_sub_epi16(in1, in3);
    136     const __m128i c4 = _mm_sub_epi16(c1, c2);
    137     const __m128i c = _mm_add_epi16(c3, c4);
    138     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
    139     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
    140     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
    141     const __m128i d3 = _mm_add_epi16(in1, in3);
    142     const __m128i d4 = _mm_add_epi16(d1, d2);
    143     const __m128i d = _mm_add_epi16(d3, d4);
    144 
    145     // Second pass.
    146     const __m128i tmp0 = _mm_add_epi16(a, d);
    147     const __m128i tmp1 = _mm_add_epi16(b, c);
    148     const __m128i tmp2 = _mm_sub_epi16(b, c);
    149     const __m128i tmp3 = _mm_sub_epi16(a, d);
    150 
    151     // Transpose the two 4x4.
    152     // a00 a01 a02 a03   b00 b01 b02 b03
    153     // a10 a11 a12 a13   b10 b11 b12 b13
    154     // a20 a21 a22 a23   b20 b21 b22 b23
    155     // a30 a31 a32 a33   b30 b31 b32 b33
    156     const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
    157     const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
    158     const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
    159     const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
    160     // a00 a10 a01 a11   a02 a12 a03 a13
    161     // a20 a30 a21 a31   a22 a32 a23 a33
    162     // b00 b10 b01 b11   b02 b12 b03 b13
    163     // b20 b30 b21 b31   b22 b32 b23 b33
    164     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    165     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    166     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    167     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    168     // a00 a10 a20 a30 a01 a11 a21 a31
    169     // b00 b10 b20 b30 b01 b11 b21 b31
    170     // a02 a12 a22 a32 a03 a13 a23 a33
    171     // b02 b12 a22 b32 b03 b13 b23 b33
    172     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    173     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    174     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    175     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    176     // a00 a10 a20 a30   b00 b10 b20 b30
    177     // a01 a11 a21 a31   b01 b11 b21 b31
    178     // a02 a12 a22 a32   b02 b12 b22 b32
    179     // a03 a13 a23 a33   b03 b13 b23 b33
    180   }
    181 
    182   // Horizontal pass and subsequent transpose.
    183   {
    184     // First pass, c and d calculations are longer because of the "trick"
    185     // multiplications.
    186     const __m128i four = _mm_set1_epi16(4);
    187     const __m128i dc = _mm_add_epi16(T0, four);
    188     const __m128i a =  _mm_add_epi16(dc, T2);
    189     const __m128i b =  _mm_sub_epi16(dc, T2);
    190     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
    191     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
    192     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
    193     const __m128i c3 = _mm_sub_epi16(T1, T3);
    194     const __m128i c4 = _mm_sub_epi16(c1, c2);
    195     const __m128i c = _mm_add_epi16(c3, c4);
    196     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
    197     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
    198     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
    199     const __m128i d3 = _mm_add_epi16(T1, T3);
    200     const __m128i d4 = _mm_add_epi16(d1, d2);
    201     const __m128i d = _mm_add_epi16(d3, d4);
    202 
    203     // Second pass.
    204     const __m128i tmp0 = _mm_add_epi16(a, d);
    205     const __m128i tmp1 = _mm_add_epi16(b, c);
    206     const __m128i tmp2 = _mm_sub_epi16(b, c);
    207     const __m128i tmp3 = _mm_sub_epi16(a, d);
    208     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
    209     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
    210     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
    211     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
    212 
    213     // Transpose the two 4x4.
    214     // a00 a01 a02 a03   b00 b01 b02 b03
    215     // a10 a11 a12 a13   b10 b11 b12 b13
    216     // a20 a21 a22 a23   b20 b21 b22 b23
    217     // a30 a31 a32 a33   b30 b31 b32 b33
    218     const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
    219     const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
    220     const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
    221     const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
    222     // a00 a10 a01 a11   a02 a12 a03 a13
    223     // a20 a30 a21 a31   a22 a32 a23 a33
    224     // b00 b10 b01 b11   b02 b12 b03 b13
    225     // b20 b30 b21 b31   b22 b32 b23 b33
    226     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    227     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    228     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    229     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    230     // a00 a10 a20 a30 a01 a11 a21 a31
    231     // b00 b10 b20 b30 b01 b11 b21 b31
    232     // a02 a12 a22 a32 a03 a13 a23 a33
    233     // b02 b12 a22 b32 b03 b13 b23 b33
    234     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    235     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    236     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    237     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    238     // a00 a10 a20 a30   b00 b10 b20 b30
    239     // a01 a11 a21 a31   b01 b11 b21 b31
    240     // a02 a12 a22 a32   b02 b12 b22 b32
    241     // a03 a13 a23 a33   b03 b13 b23 b33
    242   }
    243 
    244   // Add inverse transform to 'ref' and store.
    245   {
    246     const __m128i zero = _mm_set1_epi16(0);
    247     // Load the reference(s).
    248     __m128i ref0, ref1, ref2, ref3;
    249     if (do_two) {
    250       // Load eight bytes/pixels per line.
    251       ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
    252       ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
    253       ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
    254       ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
    255     } else {
    256       // Load four bytes/pixels per line.
    257       ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
    258       ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
    259       ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
    260       ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
    261     }
    262     // Convert to 16b.
    263     ref0 = _mm_unpacklo_epi8(ref0, zero);
    264     ref1 = _mm_unpacklo_epi8(ref1, zero);
    265     ref2 = _mm_unpacklo_epi8(ref2, zero);
    266     ref3 = _mm_unpacklo_epi8(ref3, zero);
    267     // Add the inverse transform(s).
    268     ref0 = _mm_add_epi16(ref0, T0);
    269     ref1 = _mm_add_epi16(ref1, T1);
    270     ref2 = _mm_add_epi16(ref2, T2);
    271     ref3 = _mm_add_epi16(ref3, T3);
    272     // Unsigned saturate to 8b.
    273     ref0 = _mm_packus_epi16(ref0, ref0);
    274     ref1 = _mm_packus_epi16(ref1, ref1);
    275     ref2 = _mm_packus_epi16(ref2, ref2);
    276     ref3 = _mm_packus_epi16(ref3, ref3);
    277     // Store the results.
    278     if (do_two) {
    279       // Store eight bytes/pixels per line.
    280       _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
    281       _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
    282       _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
    283       _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
    284     } else {
    285       // Store four bytes/pixels per line.
    286       *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
    287       *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
    288       *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
    289       *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
    290     }
    291   }
    292 }
    293 
    294 static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
    295                            int16_t* out) {
    296   const __m128i zero = _mm_setzero_si128();
    297   const __m128i seven = _mm_set1_epi16(7);
    298   const __m128i k7500 = _mm_set1_epi32(7500);
    299   const __m128i k14500 = _mm_set1_epi32(14500);
    300   const __m128i k51000 = _mm_set1_epi32(51000);
    301   const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
    302   const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
    303                                            5352,  2217, 5352,  2217);
    304   const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
    305                                            2217, -5352, 2217, -5352);
    306 
    307   __m128i v01, v32;
    308 
    309   // Difference between src and ref and initial transpose.
    310   {
    311     // Load src and convert to 16b.
    312     const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
    313     const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
    314     const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
    315     const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
    316     const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
    317     const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
    318     const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
    319     const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
    320     // Load ref and convert to 16b.
    321     const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
    322     const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
    323     const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
    324     const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
    325     const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
    326     const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
    327     const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
    328     const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
    329     // Compute difference.
    330     const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
    331     const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
    332     const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
    333     const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
    334 
    335     // Transpose.
    336     // 00 01 02 03   0 0 0 0
    337     // 10 11 12 13   0 0 0 0
    338     // 20 21 22 23   0 0 0 0
    339     // 30 31 32 33   0 0 0 0
    340     const __m128i transpose0_0 = _mm_unpacklo_epi16(diff0, diff1);
    341     const __m128i transpose0_1 = _mm_unpacklo_epi16(diff2, diff3);
    342     // 00 10 01 11   02 12 03 13
    343     // 20 30 21 31   22 32 23 33
    344     const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    345     v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    346     v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
    347     // a02 a12 a22 a32   a03 a13 a23 a33
    348     // a00 a10 a20 a30   a01 a11 a21 a31
    349     // a03 a13 a23 a33   a02 a12 a22 a32
    350   }
    351 
    352   // First pass and subsequent transpose.
    353   {
    354     // Same operations are done on the (0,3) and (1,2) pairs.
    355     // b0 = (a0 + a3) << 3
    356     // b1 = (a1 + a2) << 3
    357     // b3 = (a0 - a3) << 3
    358     // b2 = (a1 - a2) << 3
    359     const __m128i a01 = _mm_add_epi16(v01, v32);
    360     const __m128i a32 = _mm_sub_epi16(v01, v32);
    361     const __m128i b01 = _mm_slli_epi16(a01, 3);
    362     const __m128i b32 = _mm_slli_epi16(a32, 3);
    363     const __m128i b11 = _mm_unpackhi_epi64(b01, b01);
    364     const __m128i b22 = _mm_unpackhi_epi64(b32, b32);
    365 
    366     // e0 = b0 + b1
    367     // e2 = b0 - b1
    368     const __m128i e0 = _mm_add_epi16(b01, b11);
    369     const __m128i e2 = _mm_sub_epi16(b01, b11);
    370     const __m128i e02 = _mm_unpacklo_epi64(e0, e2);
    371 
    372     // e1 = (b3 * 5352 + b2 * 2217 + 14500) >> 12
    373     // e3 = (b3 * 2217 - b2 * 5352 +  7500) >> 12
    374     const __m128i b23 = _mm_unpacklo_epi16(b22, b32);
    375     const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
    376     const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
    377     const __m128i d1 = _mm_add_epi32(c1, k14500);
    378     const __m128i d3 = _mm_add_epi32(c3, k7500);
    379     const __m128i e1 = _mm_srai_epi32(d1, 12);
    380     const __m128i e3 = _mm_srai_epi32(d3, 12);
    381     const __m128i e13 = _mm_packs_epi32(e1, e3);
    382 
    383     // Transpose.
    384     // 00 01 02 03  20 21 22 23
    385     // 10 11 12 13  30 31 32 33
    386     const __m128i transpose0_0 = _mm_unpacklo_epi16(e02, e13);
    387     const __m128i transpose0_1 = _mm_unpackhi_epi16(e02, e13);
    388     // 00 10 01 11   02 12 03 13
    389     // 20 30 21 31   22 32 23 33
    390     const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    391     v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    392     v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
    393     // 02 12 22 32   03 13 23 33
    394     // 00 10 20 30   01 11 21 31
    395     // 03 13 23 33   02 12 22 32
    396   }
    397 
    398   // Second pass
    399   {
    400     // Same operations are done on the (0,3) and (1,2) pairs.
    401     // a0 = v0 + v3
    402     // a1 = v1 + v2
    403     // a3 = v0 - v3
    404     // a2 = v1 - v2
    405     const __m128i a01 = _mm_add_epi16(v01, v32);
    406     const __m128i a32 = _mm_sub_epi16(v01, v32);
    407     const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
    408     const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
    409 
    410     // d0 = (a0 + a1 + 7) >> 4;
    411     // d2 = (a0 - a1 + 7) >> 4;
    412     const __m128i b0 = _mm_add_epi16(a01, a11);
    413     const __m128i b2 = _mm_sub_epi16(a01, a11);
    414     const __m128i c0 = _mm_add_epi16(b0, seven);
    415     const __m128i c2 = _mm_add_epi16(b2, seven);
    416     const __m128i d0 = _mm_srai_epi16(c0, 4);
    417     const __m128i d2 = _mm_srai_epi16(c2, 4);
    418 
    419     // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
    420     // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
    421     const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
    422     const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
    423     const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
    424     const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
    425     const __m128i d3 = _mm_add_epi32(c3, k51000);
    426     const __m128i e1 = _mm_srai_epi32(d1, 16);
    427     const __m128i e3 = _mm_srai_epi32(d3, 16);
    428     const __m128i f1 = _mm_packs_epi32(e1, e1);
    429     const __m128i f3 = _mm_packs_epi32(e3, e3);
    430     // f1 = f1 + (a3 != 0);
    431     // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
    432     // desired (0, 1), we add one earlier through k12000_plus_one.
    433     const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
    434 
    435     _mm_storel_epi64((__m128i*)&out[ 0], d0);
    436     _mm_storel_epi64((__m128i*)&out[ 4], g1);
    437     _mm_storel_epi64((__m128i*)&out[ 8], d2);
    438     _mm_storel_epi64((__m128i*)&out[12], f3);
    439   }
    440 }
    441 
    442 //------------------------------------------------------------------------------
    443 // Metric
    444 
    445 static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
    446   const __m128i zero = _mm_set1_epi16(0);
    447 
    448   // Load values.
    449   const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
    450   const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
    451   const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
    452   const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
    453   const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
    454   const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
    455   const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
    456   const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
    457 
    458   // Combine pair of lines and convert to 16b.
    459   const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
    460   const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
    461   const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
    462   const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
    463   const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
    464   const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
    465   const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
    466   const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
    467 
    468   // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
    469   // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
    470   //                  need absolute values, there is no need to do calculation
    471   //                  in 8bit as we are already in 16bit, ... Yet this is what
    472   //                  benchmarks the fastest!
    473   const __m128i d0 = _mm_subs_epu8(a01s, b01s);
    474   const __m128i d1 = _mm_subs_epu8(b01s, a01s);
    475   const __m128i d2 = _mm_subs_epu8(a23s, b23s);
    476   const __m128i d3 = _mm_subs_epu8(b23s, a23s);
    477 
    478   // Square and add them all together.
    479   const __m128i madd0 = _mm_madd_epi16(d0, d0);
    480   const __m128i madd1 = _mm_madd_epi16(d1, d1);
    481   const __m128i madd2 = _mm_madd_epi16(d2, d2);
    482   const __m128i madd3 = _mm_madd_epi16(d3, d3);
    483   const __m128i sum0 = _mm_add_epi32(madd0, madd1);
    484   const __m128i sum1 = _mm_add_epi32(madd2, madd3);
    485   const __m128i sum2 = _mm_add_epi32(sum0, sum1);
    486   int32_t tmp[4];
    487   _mm_storeu_si128((__m128i*)tmp, sum2);
    488   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
    489 }
    490 
    491 //------------------------------------------------------------------------------
    492 // Texture distortion
    493 //
    494 // We try to match the spectral content (weighted) between source and
    495 // reconstructed samples.
    496 
    497 // Hadamard transform
    498 // Returns the difference between the weighted sum of the absolute value of
    499 // transformed coefficients.
    500 static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
    501                           const uint16_t* const w) {
    502   int32_t sum[4];
    503   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
    504   const __m128i zero = _mm_setzero_si128();
    505   const __m128i one = _mm_set1_epi16(1);
    506   const __m128i three = _mm_set1_epi16(3);
    507 
    508   // Load, combine and tranpose inputs.
    509   {
    510     const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
    511     const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
    512     const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
    513     const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
    514     const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
    515     const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
    516     const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
    517     const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
    518 
    519     // Combine inA and inB (we'll do two transforms in parallel).
    520     const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
    521     const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
    522     const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
    523     const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
    524     // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
    525     // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
    526     // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
    527     // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
    528 
    529     // Transpose the two 4x4, discarding the filling zeroes.
    530     const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
    531     const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
    532     // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
    533     // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
    534     const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
    535     const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
    536     // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
    537     // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
    538 
    539     // Convert to 16b.
    540     tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
    541     tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
    542     tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
    543     tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
    544     // a00 a10 a20 a30   b00 b10 b20 b30
    545     // a01 a11 a21 a31   b01 b11 b21 b31
    546     // a02 a12 a22 a32   b02 b12 b22 b32
    547     // a03 a13 a23 a33   b03 b13 b23 b33
    548   }
    549 
    550   // Horizontal pass and subsequent transpose.
    551   {
    552     // Calculate a and b (two 4x4 at once).
    553     const __m128i a0 = _mm_slli_epi16(_mm_add_epi16(tmp_0, tmp_2), 2);
    554     const __m128i a1 = _mm_slli_epi16(_mm_add_epi16(tmp_1, tmp_3), 2);
    555     const __m128i a2 = _mm_slli_epi16(_mm_sub_epi16(tmp_1, tmp_3), 2);
    556     const __m128i a3 = _mm_slli_epi16(_mm_sub_epi16(tmp_0, tmp_2), 2);
    557     // b0_extra = (a0 != 0);
    558     const __m128i b0_extra = _mm_andnot_si128(_mm_cmpeq_epi16 (a0, zero), one);
    559     const __m128i b0_base = _mm_add_epi16(a0, a1);
    560     const __m128i b1 = _mm_add_epi16(a3, a2);
    561     const __m128i b2 = _mm_sub_epi16(a3, a2);
    562     const __m128i b3 = _mm_sub_epi16(a0, a1);
    563     const __m128i b0 = _mm_add_epi16(b0_base, b0_extra);
    564     // a00 a01 a02 a03   b00 b01 b02 b03
    565     // a10 a11 a12 a13   b10 b11 b12 b13
    566     // a20 a21 a22 a23   b20 b21 b22 b23
    567     // a30 a31 a32 a33   b30 b31 b32 b33
    568 
    569     // Transpose the two 4x4.
    570     const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
    571     const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
    572     const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
    573     const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
    574     // a00 a10 a01 a11   a02 a12 a03 a13
    575     // a20 a30 a21 a31   a22 a32 a23 a33
    576     // b00 b10 b01 b11   b02 b12 b03 b13
    577     // b20 b30 b21 b31   b22 b32 b23 b33
    578     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    579     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    580     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    581     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    582     // a00 a10 a20 a30 a01 a11 a21 a31
    583     // b00 b10 b20 b30 b01 b11 b21 b31
    584     // a02 a12 a22 a32 a03 a13 a23 a33
    585     // b02 b12 a22 b32 b03 b13 b23 b33
    586     tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    587     tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    588     tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    589     tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    590     // a00 a10 a20 a30   b00 b10 b20 b30
    591     // a01 a11 a21 a31   b01 b11 b21 b31
    592     // a02 a12 a22 a32   b02 b12 b22 b32
    593     // a03 a13 a23 a33   b03 b13 b23 b33
    594   }
    595 
    596   // Vertical pass and difference of weighted sums.
    597   {
    598     // Load all inputs.
    599     // TODO(cduvivier): Make variable declarations and allocations aligned so
    600     //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
    601     const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
    602     const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
    603 
    604     // Calculate a and b (two 4x4 at once).
    605     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    606     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    607     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    608     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    609     const __m128i b0 = _mm_add_epi16(a0, a1);
    610     const __m128i b1 = _mm_add_epi16(a3, a2);
    611     const __m128i b2 = _mm_sub_epi16(a3, a2);
    612     const __m128i b3 = _mm_sub_epi16(a0, a1);
    613 
    614     // Separate the transforms of inA and inB.
    615     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
    616     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
    617     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
    618     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
    619 
    620     {
    621       // sign(b) = b >> 15  (0x0000 if positive, 0xffff if negative)
    622       const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
    623       const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
    624       const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
    625       const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
    626 
    627       // b = abs(b) = (b ^ sign) - sign
    628       A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
    629       A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
    630       B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
    631       B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
    632       A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
    633       A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
    634       B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
    635       B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
    636     }
    637 
    638     // b = abs(b) + 3
    639     A_b0 = _mm_add_epi16(A_b0, three);
    640     A_b2 = _mm_add_epi16(A_b2, three);
    641     B_b0 = _mm_add_epi16(B_b0, three);
    642     B_b2 = _mm_add_epi16(B_b2, three);
    643 
    644     // abs((b + (b<0) + 3) >> 3) = (abs(b) + 3) >> 3
    645     // b = (abs(b) + 3) >> 3
    646     A_b0 = _mm_srai_epi16(A_b0, 3);
    647     A_b2 = _mm_srai_epi16(A_b2, 3);
    648     B_b0 = _mm_srai_epi16(B_b0, 3);
    649     B_b2 = _mm_srai_epi16(B_b2, 3);
    650 
    651     // weighted sums
    652     A_b0 = _mm_madd_epi16(A_b0, w_0);
    653     A_b2 = _mm_madd_epi16(A_b2, w_8);
    654     B_b0 = _mm_madd_epi16(B_b0, w_0);
    655     B_b2 = _mm_madd_epi16(B_b2, w_8);
    656     A_b0 = _mm_add_epi32(A_b0, A_b2);
    657     B_b0 = _mm_add_epi32(B_b0, B_b2);
    658 
    659     // difference of weighted sums
    660     A_b0 = _mm_sub_epi32(A_b0, B_b0);
    661     _mm_storeu_si128((__m128i*)&sum[0], A_b0);
    662   }
    663   return sum[0] + sum[1] + sum[2] + sum[3];
    664 }
    665 
    666 static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
    667                         const uint16_t* const w) {
    668   const int diff_sum = TTransformSSE2(a, b, w);
    669   return (abs(diff_sum) + 8) >> 4;
    670 }
    671 
    672 static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
    673                           const uint16_t* const w) {
    674   int D = 0;
    675   int x, y;
    676   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
    677     for (x = 0; x < 16; x += 4) {
    678       D += Disto4x4SSE2(a + x + y, b + x + y, w);
    679     }
    680   }
    681   return D;
    682 }
    683 
    684 
    685 //------------------------------------------------------------------------------
    686 // Quantization
    687 //
    688 
    689 // Simple quantization
    690 static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
    691                              int n, const VP8Matrix* const mtx) {
    692   const __m128i max_coeff_2047 = _mm_set1_epi16(2047);
    693   const __m128i zero = _mm_set1_epi16(0);
    694   __m128i sign0, sign8;
    695   __m128i coeff0, coeff8;
    696   __m128i out0, out8;
    697   __m128i packed_out;
    698 
    699   // Load all inputs.
    700   // TODO(cduvivier): Make variable declarations and allocations aligned so that
    701   //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
    702   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
    703   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
    704   const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
    705   const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
    706   const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
    707   const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
    708   const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
    709   const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
    710   const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
    711   const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
    712   const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]);
    713   const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]);
    714 
    715   // sign(in) = in >> 15  (0x0000 if positive, 0xffff if negative)
    716   sign0 = _mm_srai_epi16(in0, 15);
    717   sign8 = _mm_srai_epi16(in8, 15);
    718 
    719   // coeff = abs(in) = (in ^ sign) - sign
    720   coeff0 = _mm_xor_si128(in0, sign0);
    721   coeff8 = _mm_xor_si128(in8, sign8);
    722   coeff0 = _mm_sub_epi16(coeff0, sign0);
    723   coeff8 = _mm_sub_epi16(coeff8, sign8);
    724 
    725   // coeff = abs(in) + sharpen
    726   coeff0 = _mm_add_epi16(coeff0, sharpen0);
    727   coeff8 = _mm_add_epi16(coeff8, sharpen8);
    728 
    729   // if (coeff > 2047) coeff = 2047
    730   coeff0 = _mm_min_epi16(coeff0, max_coeff_2047);
    731   coeff8 = _mm_min_epi16(coeff8, max_coeff_2047);
    732 
    733   // out = (coeff * iQ + B) >> QFIX;
    734   {
    735     // doing calculations with 32b precision (QFIX=17)
    736     // out = (coeff * iQ)
    737     __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
    738     __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
    739     __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
    740     __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
    741     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
    742     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
    743     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
    744     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
    745     // expand bias from 16b to 32b
    746     __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
    747     __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
    748     __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
    749     __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
    750     // out = (coeff * iQ + B)
    751     out_00 = _mm_add_epi32(out_00, bias_00);
    752     out_04 = _mm_add_epi32(out_04, bias_04);
    753     out_08 = _mm_add_epi32(out_08, bias_08);
    754     out_12 = _mm_add_epi32(out_12, bias_12);
    755     // out = (coeff * iQ + B) >> QFIX;
    756     out_00 = _mm_srai_epi32(out_00, QFIX);
    757     out_04 = _mm_srai_epi32(out_04, QFIX);
    758     out_08 = _mm_srai_epi32(out_08, QFIX);
    759     out_12 = _mm_srai_epi32(out_12, QFIX);
    760     // pack result as 16b
    761     out0 = _mm_packs_epi32(out_00, out_04);
    762     out8 = _mm_packs_epi32(out_08, out_12);
    763   }
    764 
    765   // get sign back (if (sign[j]) out_n = -out_n)
    766   out0 = _mm_xor_si128(out0, sign0);
    767   out8 = _mm_xor_si128(out8, sign8);
    768   out0 = _mm_sub_epi16(out0, sign0);
    769   out8 = _mm_sub_epi16(out8, sign8);
    770 
    771   // in = out * Q
    772   in0 = _mm_mullo_epi16(out0, q0);
    773   in8 = _mm_mullo_epi16(out8, q8);
    774 
    775   // if (coeff <= mtx->zthresh_) {in=0; out=0;}
    776   {
    777     __m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0);
    778     __m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8);
    779     in0 = _mm_and_si128(in0, cmp0);
    780     in8 = _mm_and_si128(in8, cmp8);
    781     _mm_storeu_si128((__m128i*)&in[0], in0);
    782     _mm_storeu_si128((__m128i*)&in[8], in8);
    783     out0 = _mm_and_si128(out0, cmp0);
    784     out8 = _mm_and_si128(out8, cmp8);
    785   }
    786 
    787   // zigzag the output before storing it.
    788   //
    789   // The zigzag pattern can almost be reproduced with a small sequence of
    790   // shuffles. After it, we only need to swap the 7th (ending up in third
    791   // position instead of twelfth) and 8th values.
    792   {
    793     __m128i outZ0, outZ8;
    794     outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
    795     outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
    796     outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
    797     outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
    798     outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
    799     outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
    800     _mm_storeu_si128((__m128i*)&out[0], outZ0);
    801     _mm_storeu_si128((__m128i*)&out[8], outZ8);
    802     packed_out = _mm_packs_epi16(outZ0, outZ8);
    803   }
    804   {
    805     const int16_t outZ_12 = out[12];
    806     const int16_t outZ_3 = out[3];
    807     out[3] = outZ_12;
    808     out[12] = outZ_3;
    809   }
    810 
    811   // detect if all 'out' values are zeroes or not
    812   {
    813     int32_t tmp[4];
    814     _mm_storeu_si128((__m128i*)tmp, packed_out);
    815     if (n) {
    816       tmp[0] &= ~0xff;
    817     }
    818     return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
    819   }
    820 }
    821 
    822 extern void VP8EncDspInitSSE2(void);
    823 void VP8EncDspInitSSE2(void) {
    824   VP8CollectHistogram = CollectHistogramSSE2;
    825   VP8EncQuantizeBlock = QuantizeBlockSSE2;
    826   VP8ITransform = ITransformSSE2;
    827   VP8FTransform = FTransformSSE2;
    828   VP8SSE4x4 = SSE4x4SSE2;
    829   VP8TDisto4x4 = Disto4x4SSE2;
    830   VP8TDisto16x16 = Disto16x16SSE2;
    831 }
    832 
    833 #if defined(__cplusplus) || defined(c_plusplus)
    834 }    // extern "C"
    835 #endif
    836 
    837 #endif   // WEBP_USE_SSE2
    838