Home | History | Annotate | Download | only in Vectorize
      1 //===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a basic-block vectorization pass. The algorithm was
     11 // inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
     12 // et al. It works by looking for chains of pairable operations and then
     13 // pairing them.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define BBV_NAME "bb-vectorize"
     18 #define DEBUG_TYPE BBV_NAME
     19 #include "llvm/Constants.h"
     20 #include "llvm/DerivedTypes.h"
     21 #include "llvm/Function.h"
     22 #include "llvm/Instructions.h"
     23 #include "llvm/IntrinsicInst.h"
     24 #include "llvm/Intrinsics.h"
     25 #include "llvm/LLVMContext.h"
     26 #include "llvm/Metadata.h"
     27 #include "llvm/Pass.h"
     28 #include "llvm/Type.h"
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/ADT/DenseSet.h"
     31 #include "llvm/ADT/SmallVector.h"
     32 #include "llvm/ADT/Statistic.h"
     33 #include "llvm/ADT/STLExtras.h"
     34 #include "llvm/ADT/StringExtras.h"
     35 #include "llvm/Analysis/AliasAnalysis.h"
     36 #include "llvm/Analysis/AliasSetTracker.h"
     37 #include "llvm/Analysis/ScalarEvolution.h"
     38 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     39 #include "llvm/Analysis/ValueTracking.h"
     40 #include "llvm/Support/CommandLine.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/Support/ValueHandle.h"
     44 #include "llvm/Target/TargetData.h"
     45 #include "llvm/Transforms/Utils/Local.h"
     46 #include "llvm/Transforms/Vectorize.h"
     47 #include <algorithm>
     48 #include <map>
     49 using namespace llvm;
     50 
     51 static cl::opt<unsigned>
     52 ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
     53   cl::desc("The required chain depth for vectorization"));
     54 
     55 static cl::opt<unsigned>
     56 SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
     57   cl::desc("The maximum search distance for instruction pairs"));
     58 
     59 static cl::opt<bool>
     60 SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
     61   cl::desc("Replicating one element to a pair breaks the chain"));
     62 
     63 static cl::opt<unsigned>
     64 VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
     65   cl::desc("The size of the native vector registers"));
     66 
     67 static cl::opt<unsigned>
     68 MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
     69   cl::desc("The maximum number of pairing iterations"));
     70 
     71 static cl::opt<bool>
     72 Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
     73   cl::desc("Don't try to form non-2^n-length vectors"));
     74 
     75 static cl::opt<unsigned>
     76 MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
     77   cl::desc("The maximum number of pairable instructions per group"));
     78 
     79 static cl::opt<unsigned>
     80 MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
     81   cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
     82                        " a full cycle check"));
     83 
     84 static cl::opt<bool>
     85 NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
     86   cl::desc("Don't try to vectorize boolean (i1) values"));
     87 
     88 static cl::opt<bool>
     89 NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
     90   cl::desc("Don't try to vectorize integer values"));
     91 
     92 static cl::opt<bool>
     93 NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
     94   cl::desc("Don't try to vectorize floating-point values"));
     95 
     96 static cl::opt<bool>
     97 NoPointers("bb-vectorize-no-pointers", cl::init(false), cl::Hidden,
     98   cl::desc("Don't try to vectorize pointer values"));
     99 
    100 static cl::opt<bool>
    101 NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
    102   cl::desc("Don't try to vectorize casting (conversion) operations"));
    103 
    104 static cl::opt<bool>
    105 NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
    106   cl::desc("Don't try to vectorize floating-point math intrinsics"));
    107 
    108 static cl::opt<bool>
    109 NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
    110   cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
    111 
    112 static cl::opt<bool>
    113 NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
    114   cl::desc("Don't try to vectorize select instructions"));
    115 
    116 static cl::opt<bool>
    117 NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
    118   cl::desc("Don't try to vectorize comparison instructions"));
    119 
    120 static cl::opt<bool>
    121 NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
    122   cl::desc("Don't try to vectorize getelementptr instructions"));
    123 
    124 static cl::opt<bool>
    125 NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
    126   cl::desc("Don't try to vectorize loads and stores"));
    127 
    128 static cl::opt<bool>
    129 AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
    130   cl::desc("Only generate aligned loads and stores"));
    131 
    132 static cl::opt<bool>
    133 NoMemOpBoost("bb-vectorize-no-mem-op-boost",
    134   cl::init(false), cl::Hidden,
    135   cl::desc("Don't boost the chain-depth contribution of loads and stores"));
    136 
    137 static cl::opt<bool>
    138 FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
    139   cl::desc("Use a fast instruction dependency analysis"));
    140 
    141 #ifndef NDEBUG
    142 static cl::opt<bool>
    143 DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
    144   cl::init(false), cl::Hidden,
    145   cl::desc("When debugging is enabled, output information on the"
    146            " instruction-examination process"));
    147 static cl::opt<bool>
    148 DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
    149   cl::init(false), cl::Hidden,
    150   cl::desc("When debugging is enabled, output information on the"
    151            " candidate-selection process"));
    152 static cl::opt<bool>
    153 DebugPairSelection("bb-vectorize-debug-pair-selection",
    154   cl::init(false), cl::Hidden,
    155   cl::desc("When debugging is enabled, output information on the"
    156            " pair-selection process"));
    157 static cl::opt<bool>
    158 DebugCycleCheck("bb-vectorize-debug-cycle-check",
    159   cl::init(false), cl::Hidden,
    160   cl::desc("When debugging is enabled, output information on the"
    161            " cycle-checking process"));
    162 #endif
    163 
    164 STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
    165 
    166 namespace {
    167   struct BBVectorize : public BasicBlockPass {
    168     static char ID; // Pass identification, replacement for typeid
    169 
    170     const VectorizeConfig Config;
    171 
    172     BBVectorize(const VectorizeConfig &C = VectorizeConfig())
    173       : BasicBlockPass(ID), Config(C) {
    174       initializeBBVectorizePass(*PassRegistry::getPassRegistry());
    175     }
    176 
    177     BBVectorize(Pass *P, const VectorizeConfig &C)
    178       : BasicBlockPass(ID), Config(C) {
    179       AA = &P->getAnalysis<AliasAnalysis>();
    180       SE = &P->getAnalysis<ScalarEvolution>();
    181       TD = P->getAnalysisIfAvailable<TargetData>();
    182     }
    183 
    184     typedef std::pair<Value *, Value *> ValuePair;
    185     typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
    186     typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
    187     typedef std::pair<std::multimap<Value *, Value *>::iterator,
    188               std::multimap<Value *, Value *>::iterator> VPIteratorPair;
    189     typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
    190               std::multimap<ValuePair, ValuePair>::iterator>
    191                 VPPIteratorPair;
    192 
    193     AliasAnalysis *AA;
    194     ScalarEvolution *SE;
    195     TargetData *TD;
    196 
    197     // FIXME: const correct?
    198 
    199     bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
    200 
    201     bool getCandidatePairs(BasicBlock &BB,
    202                        BasicBlock::iterator &Start,
    203                        std::multimap<Value *, Value *> &CandidatePairs,
    204                        std::vector<Value *> &PairableInsts, bool NonPow2Len);
    205 
    206     void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
    207                        std::vector<Value *> &PairableInsts,
    208                        std::multimap<ValuePair, ValuePair> &ConnectedPairs);
    209 
    210     void buildDepMap(BasicBlock &BB,
    211                        std::multimap<Value *, Value *> &CandidatePairs,
    212                        std::vector<Value *> &PairableInsts,
    213                        DenseSet<ValuePair> &PairableInstUsers);
    214 
    215     void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
    216                         std::vector<Value *> &PairableInsts,
    217                         std::multimap<ValuePair, ValuePair> &ConnectedPairs,
    218                         DenseSet<ValuePair> &PairableInstUsers,
    219                         DenseMap<Value *, Value *>& ChosenPairs);
    220 
    221     void fuseChosenPairs(BasicBlock &BB,
    222                      std::vector<Value *> &PairableInsts,
    223                      DenseMap<Value *, Value *>& ChosenPairs);
    224 
    225     bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
    226 
    227     bool areInstsCompatible(Instruction *I, Instruction *J,
    228                        bool IsSimpleLoadStore, bool NonPow2Len);
    229 
    230     bool trackUsesOfI(DenseSet<Value *> &Users,
    231                       AliasSetTracker &WriteSet, Instruction *I,
    232                       Instruction *J, bool UpdateUsers = true,
    233                       std::multimap<Value *, Value *> *LoadMoveSet = 0);
    234 
    235     void computePairsConnectedTo(
    236                       std::multimap<Value *, Value *> &CandidatePairs,
    237                       std::vector<Value *> &PairableInsts,
    238                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
    239                       ValuePair P);
    240 
    241     bool pairsConflict(ValuePair P, ValuePair Q,
    242                  DenseSet<ValuePair> &PairableInstUsers,
    243                  std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
    244 
    245     bool pairWillFormCycle(ValuePair P,
    246                        std::multimap<ValuePair, ValuePair> &PairableInstUsers,
    247                        DenseSet<ValuePair> &CurrentPairs);
    248 
    249     void pruneTreeFor(
    250                       std::multimap<Value *, Value *> &CandidatePairs,
    251                       std::vector<Value *> &PairableInsts,
    252                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
    253                       DenseSet<ValuePair> &PairableInstUsers,
    254                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
    255                       DenseMap<Value *, Value *> &ChosenPairs,
    256                       DenseMap<ValuePair, size_t> &Tree,
    257                       DenseSet<ValuePair> &PrunedTree, ValuePair J,
    258                       bool UseCycleCheck);
    259 
    260     void buildInitialTreeFor(
    261                       std::multimap<Value *, Value *> &CandidatePairs,
    262                       std::vector<Value *> &PairableInsts,
    263                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
    264                       DenseSet<ValuePair> &PairableInstUsers,
    265                       DenseMap<Value *, Value *> &ChosenPairs,
    266                       DenseMap<ValuePair, size_t> &Tree, ValuePair J);
    267 
    268     void findBestTreeFor(
    269                       std::multimap<Value *, Value *> &CandidatePairs,
    270                       std::vector<Value *> &PairableInsts,
    271                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
    272                       DenseSet<ValuePair> &PairableInstUsers,
    273                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
    274                       DenseMap<Value *, Value *> &ChosenPairs,
    275                       DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
    276                       size_t &BestEffSize, VPIteratorPair ChoiceRange,
    277                       bool UseCycleCheck);
    278 
    279     Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
    280                      Instruction *J, unsigned o, bool FlipMemInputs);
    281 
    282     void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
    283                      unsigned MaskOffset, unsigned NumInElem,
    284                      unsigned NumInElem1, unsigned IdxOffset,
    285                      std::vector<Constant*> &Mask);
    286 
    287     Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
    288                      Instruction *J);
    289 
    290     bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
    291                        unsigned o, Value *&LOp, unsigned numElemL,
    292                        Type *ArgTypeL, Type *ArgTypeR,
    293                        unsigned IdxOff = 0);
    294 
    295     Value *getReplacementInput(LLVMContext& Context, Instruction *I,
    296                      Instruction *J, unsigned o, bool FlipMemInputs);
    297 
    298     void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
    299                      Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
    300                      bool FlipMemInputs);
    301 
    302     void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
    303                      Instruction *J, Instruction *K,
    304                      Instruction *&InsertionPt, Instruction *&K1,
    305                      Instruction *&K2, bool FlipMemInputs);
    306 
    307     void collectPairLoadMoveSet(BasicBlock &BB,
    308                      DenseMap<Value *, Value *> &ChosenPairs,
    309                      std::multimap<Value *, Value *> &LoadMoveSet,
    310                      Instruction *I);
    311 
    312     void collectLoadMoveSet(BasicBlock &BB,
    313                      std::vector<Value *> &PairableInsts,
    314                      DenseMap<Value *, Value *> &ChosenPairs,
    315                      std::multimap<Value *, Value *> &LoadMoveSet);
    316 
    317     void collectPtrInfo(std::vector<Value *> &PairableInsts,
    318                         DenseMap<Value *, Value *> &ChosenPairs,
    319                         DenseSet<Value *> &LowPtrInsts);
    320 
    321     bool canMoveUsesOfIAfterJ(BasicBlock &BB,
    322                      std::multimap<Value *, Value *> &LoadMoveSet,
    323                      Instruction *I, Instruction *J);
    324 
    325     void moveUsesOfIAfterJ(BasicBlock &BB,
    326                      std::multimap<Value *, Value *> &LoadMoveSet,
    327                      Instruction *&InsertionPt,
    328                      Instruction *I, Instruction *J);
    329 
    330     void combineMetadata(Instruction *K, const Instruction *J);
    331 
    332     bool vectorizeBB(BasicBlock &BB) {
    333       bool changed = false;
    334       // Iterate a sufficient number of times to merge types of size 1 bit,
    335       // then 2 bits, then 4, etc. up to half of the target vector width of the
    336       // target vector register.
    337       unsigned n = 1;
    338       for (unsigned v = 2;
    339            v <= Config.VectorBits && (!Config.MaxIter || n <= Config.MaxIter);
    340            v *= 2, ++n) {
    341         DEBUG(dbgs() << "BBV: fusing loop #" << n <<
    342               " for " << BB.getName() << " in " <<
    343               BB.getParent()->getName() << "...\n");
    344         if (vectorizePairs(BB))
    345           changed = true;
    346         else
    347           break;
    348       }
    349 
    350       if (changed && !Pow2LenOnly) {
    351         ++n;
    352         for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
    353           DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
    354                 n << " for " << BB.getName() << " in " <<
    355                 BB.getParent()->getName() << "...\n");
    356           if (!vectorizePairs(BB, true)) break;
    357         }
    358       }
    359 
    360       DEBUG(dbgs() << "BBV: done!\n");
    361       return changed;
    362     }
    363 
    364     virtual bool runOnBasicBlock(BasicBlock &BB) {
    365       AA = &getAnalysis<AliasAnalysis>();
    366       SE = &getAnalysis<ScalarEvolution>();
    367       TD = getAnalysisIfAvailable<TargetData>();
    368 
    369       return vectorizeBB(BB);
    370     }
    371 
    372     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    373       BasicBlockPass::getAnalysisUsage(AU);
    374       AU.addRequired<AliasAnalysis>();
    375       AU.addRequired<ScalarEvolution>();
    376       AU.addPreserved<AliasAnalysis>();
    377       AU.addPreserved<ScalarEvolution>();
    378       AU.setPreservesCFG();
    379     }
    380 
    381     static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
    382       assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
    383              "Cannot form vector from incompatible scalar types");
    384       Type *STy = ElemTy->getScalarType();
    385 
    386       unsigned numElem;
    387       if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
    388         numElem = VTy->getNumElements();
    389       } else {
    390         numElem = 1;
    391       }
    392 
    393       if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
    394         numElem += VTy->getNumElements();
    395       } else {
    396         numElem += 1;
    397       }
    398 
    399       return VectorType::get(STy, numElem);
    400     }
    401 
    402     static inline void getInstructionTypes(Instruction *I,
    403                                            Type *&T1, Type *&T2) {
    404       if (isa<StoreInst>(I)) {
    405         // For stores, it is the value type, not the pointer type that matters
    406         // because the value is what will come from a vector register.
    407 
    408         Value *IVal = cast<StoreInst>(I)->getValueOperand();
    409         T1 = IVal->getType();
    410       } else {
    411         T1 = I->getType();
    412       }
    413 
    414       if (I->isCast())
    415         T2 = cast<CastInst>(I)->getSrcTy();
    416       else
    417         T2 = T1;
    418     }
    419 
    420     // Returns the weight associated with the provided value. A chain of
    421     // candidate pairs has a length given by the sum of the weights of its
    422     // members (one weight per pair; the weight of each member of the pair
    423     // is assumed to be the same). This length is then compared to the
    424     // chain-length threshold to determine if a given chain is significant
    425     // enough to be vectorized. The length is also used in comparing
    426     // candidate chains where longer chains are considered to be better.
    427     // Note: when this function returns 0, the resulting instructions are
    428     // not actually fused.
    429     inline size_t getDepthFactor(Value *V) {
    430       // InsertElement and ExtractElement have a depth factor of zero. This is
    431       // for two reasons: First, they cannot be usefully fused. Second, because
    432       // the pass generates a lot of these, they can confuse the simple metric
    433       // used to compare the trees in the next iteration. Thus, giving them a
    434       // weight of zero allows the pass to essentially ignore them in
    435       // subsequent iterations when looking for vectorization opportunities
    436       // while still tracking dependency chains that flow through those
    437       // instructions.
    438       if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
    439         return 0;
    440 
    441       // Give a load or store half of the required depth so that load/store
    442       // pairs will vectorize.
    443       if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
    444         return Config.ReqChainDepth/2;
    445 
    446       return 1;
    447     }
    448 
    449     // This determines the relative offset of two loads or stores, returning
    450     // true if the offset could be determined to be some constant value.
    451     // For example, if OffsetInElmts == 1, then J accesses the memory directly
    452     // after I; if OffsetInElmts == -1 then I accesses the memory
    453     // directly after J.
    454     bool getPairPtrInfo(Instruction *I, Instruction *J,
    455         Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
    456         int64_t &OffsetInElmts) {
    457       OffsetInElmts = 0;
    458       if (isa<LoadInst>(I)) {
    459         IPtr = cast<LoadInst>(I)->getPointerOperand();
    460         JPtr = cast<LoadInst>(J)->getPointerOperand();
    461         IAlignment = cast<LoadInst>(I)->getAlignment();
    462         JAlignment = cast<LoadInst>(J)->getAlignment();
    463       } else {
    464         IPtr = cast<StoreInst>(I)->getPointerOperand();
    465         JPtr = cast<StoreInst>(J)->getPointerOperand();
    466         IAlignment = cast<StoreInst>(I)->getAlignment();
    467         JAlignment = cast<StoreInst>(J)->getAlignment();
    468       }
    469 
    470       const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
    471       const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
    472 
    473       // If this is a trivial offset, then we'll get something like
    474       // 1*sizeof(type). With target data, which we need anyway, this will get
    475       // constant folded into a number.
    476       const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
    477       if (const SCEVConstant *ConstOffSCEV =
    478             dyn_cast<SCEVConstant>(OffsetSCEV)) {
    479         ConstantInt *IntOff = ConstOffSCEV->getValue();
    480         int64_t Offset = IntOff->getSExtValue();
    481 
    482         Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
    483         int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
    484 
    485         Type *VTy2 = cast<PointerType>(JPtr->getType())->getElementType();
    486         if (VTy != VTy2 && Offset < 0) {
    487           int64_t VTy2TSS = (int64_t) TD->getTypeStoreSize(VTy2);
    488           OffsetInElmts = Offset/VTy2TSS;
    489           return (abs64(Offset) % VTy2TSS) == 0;
    490         }
    491 
    492         OffsetInElmts = Offset/VTyTSS;
    493         return (abs64(Offset) % VTyTSS) == 0;
    494       }
    495 
    496       return false;
    497     }
    498 
    499     // Returns true if the provided CallInst represents an intrinsic that can
    500     // be vectorized.
    501     bool isVectorizableIntrinsic(CallInst* I) {
    502       Function *F = I->getCalledFunction();
    503       if (!F) return false;
    504 
    505       unsigned IID = F->getIntrinsicID();
    506       if (!IID) return false;
    507 
    508       switch(IID) {
    509       default:
    510         return false;
    511       case Intrinsic::sqrt:
    512       case Intrinsic::powi:
    513       case Intrinsic::sin:
    514       case Intrinsic::cos:
    515       case Intrinsic::log:
    516       case Intrinsic::log2:
    517       case Intrinsic::log10:
    518       case Intrinsic::exp:
    519       case Intrinsic::exp2:
    520       case Intrinsic::pow:
    521         return Config.VectorizeMath;
    522       case Intrinsic::fma:
    523         return Config.VectorizeFMA;
    524       }
    525     }
    526 
    527     // Returns true if J is the second element in some pair referenced by
    528     // some multimap pair iterator pair.
    529     template <typename V>
    530     bool isSecondInIteratorPair(V J, std::pair<
    531            typename std::multimap<V, V>::iterator,
    532            typename std::multimap<V, V>::iterator> PairRange) {
    533       for (typename std::multimap<V, V>::iterator K = PairRange.first;
    534            K != PairRange.second; ++K)
    535         if (K->second == J) return true;
    536 
    537       return false;
    538     }
    539   };
    540 
    541   // This function implements one vectorization iteration on the provided
    542   // basic block. It returns true if the block is changed.
    543   bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
    544     bool ShouldContinue;
    545     BasicBlock::iterator Start = BB.getFirstInsertionPt();
    546 
    547     std::vector<Value *> AllPairableInsts;
    548     DenseMap<Value *, Value *> AllChosenPairs;
    549 
    550     do {
    551       std::vector<Value *> PairableInsts;
    552       std::multimap<Value *, Value *> CandidatePairs;
    553       ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
    554                                          PairableInsts, NonPow2Len);
    555       if (PairableInsts.empty()) continue;
    556 
    557       // Now we have a map of all of the pairable instructions and we need to
    558       // select the best possible pairing. A good pairing is one such that the
    559       // users of the pair are also paired. This defines a (directed) forest
    560       // over the pairs such that two pairs are connected iff the second pair
    561       // uses the first.
    562 
    563       // Note that it only matters that both members of the second pair use some
    564       // element of the first pair (to allow for splatting).
    565 
    566       std::multimap<ValuePair, ValuePair> ConnectedPairs;
    567       computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
    568       if (ConnectedPairs.empty()) continue;
    569 
    570       // Build the pairable-instruction dependency map
    571       DenseSet<ValuePair> PairableInstUsers;
    572       buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
    573 
    574       // There is now a graph of the connected pairs. For each variable, pick
    575       // the pairing with the largest tree meeting the depth requirement on at
    576       // least one branch. Then select all pairings that are part of that tree
    577       // and remove them from the list of available pairings and pairable
    578       // variables.
    579 
    580       DenseMap<Value *, Value *> ChosenPairs;
    581       choosePairs(CandidatePairs, PairableInsts, ConnectedPairs,
    582         PairableInstUsers, ChosenPairs);
    583 
    584       if (ChosenPairs.empty()) continue;
    585       AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
    586                               PairableInsts.end());
    587       AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
    588     } while (ShouldContinue);
    589 
    590     if (AllChosenPairs.empty()) return false;
    591     NumFusedOps += AllChosenPairs.size();
    592 
    593     // A set of pairs has now been selected. It is now necessary to replace the
    594     // paired instructions with vector instructions. For this procedure each
    595     // operand must be replaced with a vector operand. This vector is formed
    596     // by using build_vector on the old operands. The replaced values are then
    597     // replaced with a vector_extract on the result.  Subsequent optimization
    598     // passes should coalesce the build/extract combinations.
    599 
    600     fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs);
    601 
    602     // It is important to cleanup here so that future iterations of this
    603     // function have less work to do.
    604     (void) SimplifyInstructionsInBlock(&BB, TD, AA->getTargetLibraryInfo());
    605     return true;
    606   }
    607 
    608   // This function returns true if the provided instruction is capable of being
    609   // fused into a vector instruction. This determination is based only on the
    610   // type and other attributes of the instruction.
    611   bool BBVectorize::isInstVectorizable(Instruction *I,
    612                                          bool &IsSimpleLoadStore) {
    613     IsSimpleLoadStore = false;
    614 
    615     if (CallInst *C = dyn_cast<CallInst>(I)) {
    616       if (!isVectorizableIntrinsic(C))
    617         return false;
    618     } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    619       // Vectorize simple loads if possbile:
    620       IsSimpleLoadStore = L->isSimple();
    621       if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
    622         return false;
    623     } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
    624       // Vectorize simple stores if possbile:
    625       IsSimpleLoadStore = S->isSimple();
    626       if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
    627         return false;
    628     } else if (CastInst *C = dyn_cast<CastInst>(I)) {
    629       // We can vectorize casts, but not casts of pointer types, etc.
    630       if (!Config.VectorizeCasts)
    631         return false;
    632 
    633       Type *SrcTy = C->getSrcTy();
    634       if (!SrcTy->isSingleValueType())
    635         return false;
    636 
    637       Type *DestTy = C->getDestTy();
    638       if (!DestTy->isSingleValueType())
    639         return false;
    640     } else if (isa<SelectInst>(I)) {
    641       if (!Config.VectorizeSelect)
    642         return false;
    643     } else if (isa<CmpInst>(I)) {
    644       if (!Config.VectorizeCmp)
    645         return false;
    646     } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
    647       if (!Config.VectorizeGEP)
    648         return false;
    649 
    650       // Currently, vector GEPs exist only with one index.
    651       if (G->getNumIndices() != 1)
    652         return false;
    653     } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
    654         isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
    655       return false;
    656     }
    657 
    658     // We can't vectorize memory operations without target data
    659     if (TD == 0 && IsSimpleLoadStore)
    660       return false;
    661 
    662     Type *T1, *T2;
    663     getInstructionTypes(I, T1, T2);
    664 
    665     // Not every type can be vectorized...
    666     if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
    667         !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
    668       return false;
    669 
    670     if (T1->getScalarSizeInBits() == 1 && T2->getScalarSizeInBits() == 1) {
    671       if (!Config.VectorizeBools)
    672         return false;
    673     } else {
    674       if (!Config.VectorizeInts
    675           && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy()))
    676         return false;
    677     }
    678 
    679     if (!Config.VectorizeFloats
    680         && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
    681       return false;
    682 
    683     // Don't vectorize target-specific types.
    684     if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
    685       return false;
    686     if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
    687       return false;
    688 
    689     if ((!Config.VectorizePointers || TD == 0) &&
    690         (T1->getScalarType()->isPointerTy() ||
    691          T2->getScalarType()->isPointerTy()))
    692       return false;
    693 
    694     if (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
    695         T2->getPrimitiveSizeInBits() >= Config.VectorBits)
    696       return false;
    697 
    698     return true;
    699   }
    700 
    701   // This function returns true if the two provided instructions are compatible
    702   // (meaning that they can be fused into a vector instruction). This assumes
    703   // that I has already been determined to be vectorizable and that J is not
    704   // in the use tree of I.
    705   bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
    706                        bool IsSimpleLoadStore, bool NonPow2Len) {
    707     DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
    708                      " <-> " << *J << "\n");
    709 
    710     // Loads and stores can be merged if they have different alignments,
    711     // but are otherwise the same.
    712     if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
    713                       (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
    714       return false;
    715 
    716     Type *IT1, *IT2, *JT1, *JT2;
    717     getInstructionTypes(I, IT1, IT2);
    718     getInstructionTypes(J, JT1, JT2);
    719     unsigned MaxTypeBits = std::max(
    720       IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
    721       IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
    722     if (MaxTypeBits > Config.VectorBits)
    723       return false;
    724 
    725     // FIXME: handle addsub-type operations!
    726 
    727     if (IsSimpleLoadStore) {
    728       Value *IPtr, *JPtr;
    729       unsigned IAlignment, JAlignment;
    730       int64_t OffsetInElmts = 0;
    731       if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
    732             OffsetInElmts) && abs64(OffsetInElmts) == 1) {
    733         if (Config.AlignedOnly) {
    734           Type *aTypeI = isa<StoreInst>(I) ?
    735             cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
    736           Type *aTypeJ = isa<StoreInst>(J) ?
    737             cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
    738 
    739           // An aligned load or store is possible only if the instruction
    740           // with the lower offset has an alignment suitable for the
    741           // vector type.
    742 
    743           unsigned BottomAlignment = IAlignment;
    744           if (OffsetInElmts < 0) BottomAlignment = JAlignment;
    745 
    746           Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
    747           unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
    748           if (BottomAlignment < VecAlignment)
    749             return false;
    750         }
    751       } else {
    752         return false;
    753       }
    754     }
    755 
    756     // The powi intrinsic is special because only the first argument is
    757     // vectorized, the second arguments must be equal.
    758     CallInst *CI = dyn_cast<CallInst>(I);
    759     Function *FI;
    760     if (CI && (FI = CI->getCalledFunction()) &&
    761         FI->getIntrinsicID() == Intrinsic::powi) {
    762 
    763       Value *A1I = CI->getArgOperand(1),
    764             *A1J = cast<CallInst>(J)->getArgOperand(1);
    765       const SCEV *A1ISCEV = SE->getSCEV(A1I),
    766                  *A1JSCEV = SE->getSCEV(A1J);
    767       return (A1ISCEV == A1JSCEV);
    768     }
    769 
    770     return true;
    771   }
    772 
    773   // Figure out whether or not J uses I and update the users and write-set
    774   // structures associated with I. Specifically, Users represents the set of
    775   // instructions that depend on I. WriteSet represents the set
    776   // of memory locations that are dependent on I. If UpdateUsers is true,
    777   // and J uses I, then Users is updated to contain J and WriteSet is updated
    778   // to contain any memory locations to which J writes. The function returns
    779   // true if J uses I. By default, alias analysis is used to determine
    780   // whether J reads from memory that overlaps with a location in WriteSet.
    781   // If LoadMoveSet is not null, then it is a previously-computed multimap
    782   // where the key is the memory-based user instruction and the value is
    783   // the instruction to be compared with I. So, if LoadMoveSet is provided,
    784   // then the alias analysis is not used. This is necessary because this
    785   // function is called during the process of moving instructions during
    786   // vectorization and the results of the alias analysis are not stable during
    787   // that process.
    788   bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
    789                        AliasSetTracker &WriteSet, Instruction *I,
    790                        Instruction *J, bool UpdateUsers,
    791                        std::multimap<Value *, Value *> *LoadMoveSet) {
    792     bool UsesI = false;
    793 
    794     // This instruction may already be marked as a user due, for example, to
    795     // being a member of a selected pair.
    796     if (Users.count(J))
    797       UsesI = true;
    798 
    799     if (!UsesI)
    800       for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
    801            JU != JE; ++JU) {
    802         Value *V = *JU;
    803         if (I == V || Users.count(V)) {
    804           UsesI = true;
    805           break;
    806         }
    807       }
    808     if (!UsesI && J->mayReadFromMemory()) {
    809       if (LoadMoveSet) {
    810         VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
    811         UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
    812       } else {
    813         for (AliasSetTracker::iterator W = WriteSet.begin(),
    814              WE = WriteSet.end(); W != WE; ++W) {
    815           if (W->aliasesUnknownInst(J, *AA)) {
    816             UsesI = true;
    817             break;
    818           }
    819         }
    820       }
    821     }
    822 
    823     if (UsesI && UpdateUsers) {
    824       if (J->mayWriteToMemory()) WriteSet.add(J);
    825       Users.insert(J);
    826     }
    827 
    828     return UsesI;
    829   }
    830 
    831   // This function iterates over all instruction pairs in the provided
    832   // basic block and collects all candidate pairs for vectorization.
    833   bool BBVectorize::getCandidatePairs(BasicBlock &BB,
    834                        BasicBlock::iterator &Start,
    835                        std::multimap<Value *, Value *> &CandidatePairs,
    836                        std::vector<Value *> &PairableInsts, bool NonPow2Len) {
    837     BasicBlock::iterator E = BB.end();
    838     if (Start == E) return false;
    839 
    840     bool ShouldContinue = false, IAfterStart = false;
    841     for (BasicBlock::iterator I = Start++; I != E; ++I) {
    842       if (I == Start) IAfterStart = true;
    843 
    844       bool IsSimpleLoadStore;
    845       if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
    846 
    847       // Look for an instruction with which to pair instruction *I...
    848       DenseSet<Value *> Users;
    849       AliasSetTracker WriteSet(*AA);
    850       bool JAfterStart = IAfterStart;
    851       BasicBlock::iterator J = llvm::next(I);
    852       for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
    853         if (J == Start) JAfterStart = true;
    854 
    855         // Determine if J uses I, if so, exit the loop.
    856         bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
    857         if (Config.FastDep) {
    858           // Note: For this heuristic to be effective, independent operations
    859           // must tend to be intermixed. This is likely to be true from some
    860           // kinds of grouped loop unrolling (but not the generic LLVM pass),
    861           // but otherwise may require some kind of reordering pass.
    862 
    863           // When using fast dependency analysis,
    864           // stop searching after first use:
    865           if (UsesI) break;
    866         } else {
    867           if (UsesI) continue;
    868         }
    869 
    870         // J does not use I, and comes before the first use of I, so it can be
    871         // merged with I if the instructions are compatible.
    872         if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len)) continue;
    873 
    874         // J is a candidate for merging with I.
    875         if (!PairableInsts.size() ||
    876              PairableInsts[PairableInsts.size()-1] != I) {
    877           PairableInsts.push_back(I);
    878         }
    879 
    880         CandidatePairs.insert(ValuePair(I, J));
    881 
    882         // The next call to this function must start after the last instruction
    883         // selected during this invocation.
    884         if (JAfterStart) {
    885           Start = llvm::next(J);
    886           IAfterStart = JAfterStart = false;
    887         }
    888 
    889         DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
    890                      << *I << " <-> " << *J << "\n");
    891 
    892         // If we have already found too many pairs, break here and this function
    893         // will be called again starting after the last instruction selected
    894         // during this invocation.
    895         if (PairableInsts.size() >= Config.MaxInsts) {
    896           ShouldContinue = true;
    897           break;
    898         }
    899       }
    900 
    901       if (ShouldContinue)
    902         break;
    903     }
    904 
    905     DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
    906            << " instructions with candidate pairs\n");
    907 
    908     return ShouldContinue;
    909   }
    910 
    911   // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
    912   // it looks for pairs such that both members have an input which is an
    913   // output of PI or PJ.
    914   void BBVectorize::computePairsConnectedTo(
    915                       std::multimap<Value *, Value *> &CandidatePairs,
    916                       std::vector<Value *> &PairableInsts,
    917                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
    918                       ValuePair P) {
    919     StoreInst *SI, *SJ;
    920 
    921     // For each possible pairing for this variable, look at the uses of
    922     // the first value...
    923     for (Value::use_iterator I = P.first->use_begin(),
    924          E = P.first->use_end(); I != E; ++I) {
    925       if (isa<LoadInst>(*I)) {
    926         // A pair cannot be connected to a load because the load only takes one
    927         // operand (the address) and it is a scalar even after vectorization.
    928         continue;
    929       } else if ((SI = dyn_cast<StoreInst>(*I)) &&
    930                  P.first == SI->getPointerOperand()) {
    931         // Similarly, a pair cannot be connected to a store through its
    932         // pointer operand.
    933         continue;
    934       }
    935 
    936       VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
    937 
    938       // For each use of the first variable, look for uses of the second
    939       // variable...
    940       for (Value::use_iterator J = P.second->use_begin(),
    941            E2 = P.second->use_end(); J != E2; ++J) {
    942         if ((SJ = dyn_cast<StoreInst>(*J)) &&
    943             P.second == SJ->getPointerOperand())
    944           continue;
    945 
    946         VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
    947 
    948         // Look for <I, J>:
    949         if (isSecondInIteratorPair<Value*>(*J, IPairRange))
    950           ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
    951 
    952         // Look for <J, I>:
    953         if (isSecondInIteratorPair<Value*>(*I, JPairRange))
    954           ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
    955       }
    956 
    957       if (Config.SplatBreaksChain) continue;
    958       // Look for cases where just the first value in the pair is used by
    959       // both members of another pair (splatting).
    960       for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
    961         if ((SJ = dyn_cast<StoreInst>(*J)) &&
    962             P.first == SJ->getPointerOperand())
    963           continue;
    964 
    965         if (isSecondInIteratorPair<Value*>(*J, IPairRange))
    966           ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
    967       }
    968     }
    969 
    970     if (Config.SplatBreaksChain) return;
    971     // Look for cases where just the second value in the pair is used by
    972     // both members of another pair (splatting).
    973     for (Value::use_iterator I = P.second->use_begin(),
    974          E = P.second->use_end(); I != E; ++I) {
    975       if (isa<LoadInst>(*I))
    976         continue;
    977       else if ((SI = dyn_cast<StoreInst>(*I)) &&
    978                P.second == SI->getPointerOperand())
    979         continue;
    980 
    981       VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
    982 
    983       for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
    984         if ((SJ = dyn_cast<StoreInst>(*J)) &&
    985             P.second == SJ->getPointerOperand())
    986           continue;
    987 
    988         if (isSecondInIteratorPair<Value*>(*J, IPairRange))
    989           ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
    990       }
    991     }
    992   }
    993 
    994   // This function figures out which pairs are connected.  Two pairs are
    995   // connected if some output of the first pair forms an input to both members
    996   // of the second pair.
    997   void BBVectorize::computeConnectedPairs(
    998                       std::multimap<Value *, Value *> &CandidatePairs,
    999                       std::vector<Value *> &PairableInsts,
   1000                       std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
   1001 
   1002     for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
   1003          PE = PairableInsts.end(); PI != PE; ++PI) {
   1004       VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
   1005 
   1006       for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
   1007            P != choiceRange.second; ++P)
   1008         computePairsConnectedTo(CandidatePairs, PairableInsts,
   1009                                 ConnectedPairs, *P);
   1010     }
   1011 
   1012     DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
   1013                  << " pair connections.\n");
   1014   }
   1015 
   1016   // This function builds a set of use tuples such that <A, B> is in the set
   1017   // if B is in the use tree of A. If B is in the use tree of A, then B
   1018   // depends on the output of A.
   1019   void BBVectorize::buildDepMap(
   1020                       BasicBlock &BB,
   1021                       std::multimap<Value *, Value *> &CandidatePairs,
   1022                       std::vector<Value *> &PairableInsts,
   1023                       DenseSet<ValuePair> &PairableInstUsers) {
   1024     DenseSet<Value *> IsInPair;
   1025     for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
   1026          E = CandidatePairs.end(); C != E; ++C) {
   1027       IsInPair.insert(C->first);
   1028       IsInPair.insert(C->second);
   1029     }
   1030 
   1031     // Iterate through the basic block, recording all Users of each
   1032     // pairable instruction.
   1033 
   1034     BasicBlock::iterator E = BB.end();
   1035     for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
   1036       if (IsInPair.find(I) == IsInPair.end()) continue;
   1037 
   1038       DenseSet<Value *> Users;
   1039       AliasSetTracker WriteSet(*AA);
   1040       for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
   1041         (void) trackUsesOfI(Users, WriteSet, I, J);
   1042 
   1043       for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
   1044            U != E; ++U)
   1045         PairableInstUsers.insert(ValuePair(I, *U));
   1046     }
   1047   }
   1048 
   1049   // Returns true if an input to pair P is an output of pair Q and also an
   1050   // input of pair Q is an output of pair P. If this is the case, then these
   1051   // two pairs cannot be simultaneously fused.
   1052   bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
   1053                      DenseSet<ValuePair> &PairableInstUsers,
   1054                      std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
   1055     // Two pairs are in conflict if they are mutual Users of eachother.
   1056     bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
   1057                   PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
   1058                   PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
   1059                   PairableInstUsers.count(ValuePair(P.second, Q.second));
   1060     bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
   1061                   PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
   1062                   PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
   1063                   PairableInstUsers.count(ValuePair(Q.second, P.second));
   1064     if (PairableInstUserMap) {
   1065       // FIXME: The expensive part of the cycle check is not so much the cycle
   1066       // check itself but this edge insertion procedure. This needs some
   1067       // profiling and probably a different data structure (same is true of
   1068       // most uses of std::multimap).
   1069       if (PUsesQ) {
   1070         VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
   1071         if (!isSecondInIteratorPair(P, QPairRange))
   1072           PairableInstUserMap->insert(VPPair(Q, P));
   1073       }
   1074       if (QUsesP) {
   1075         VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
   1076         if (!isSecondInIteratorPair(Q, PPairRange))
   1077           PairableInstUserMap->insert(VPPair(P, Q));
   1078       }
   1079     }
   1080 
   1081     return (QUsesP && PUsesQ);
   1082   }
   1083 
   1084   // This function walks the use graph of current pairs to see if, starting
   1085   // from P, the walk returns to P.
   1086   bool BBVectorize::pairWillFormCycle(ValuePair P,
   1087                        std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
   1088                        DenseSet<ValuePair> &CurrentPairs) {
   1089     DEBUG(if (DebugCycleCheck)
   1090             dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
   1091                    << *P.second << "\n");
   1092     // A lookup table of visisted pairs is kept because the PairableInstUserMap
   1093     // contains non-direct associations.
   1094     DenseSet<ValuePair> Visited;
   1095     SmallVector<ValuePair, 32> Q;
   1096     // General depth-first post-order traversal:
   1097     Q.push_back(P);
   1098     do {
   1099       ValuePair QTop = Q.pop_back_val();
   1100       Visited.insert(QTop);
   1101 
   1102       DEBUG(if (DebugCycleCheck)
   1103               dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
   1104                      << *QTop.second << "\n");
   1105       VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
   1106       for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
   1107            C != QPairRange.second; ++C) {
   1108         if (C->second == P) {
   1109           DEBUG(dbgs()
   1110                  << "BBV: rejected to prevent non-trivial cycle formation: "
   1111                  << *C->first.first << " <-> " << *C->first.second << "\n");
   1112           return true;
   1113         }
   1114 
   1115         if (CurrentPairs.count(C->second) && !Visited.count(C->second))
   1116           Q.push_back(C->second);
   1117       }
   1118     } while (!Q.empty());
   1119 
   1120     return false;
   1121   }
   1122 
   1123   // This function builds the initial tree of connected pairs with the
   1124   // pair J at the root.
   1125   void BBVectorize::buildInitialTreeFor(
   1126                       std::multimap<Value *, Value *> &CandidatePairs,
   1127                       std::vector<Value *> &PairableInsts,
   1128                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
   1129                       DenseSet<ValuePair> &PairableInstUsers,
   1130                       DenseMap<Value *, Value *> &ChosenPairs,
   1131                       DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
   1132     // Each of these pairs is viewed as the root node of a Tree. The Tree
   1133     // is then walked (depth-first). As this happens, we keep track of
   1134     // the pairs that compose the Tree and the maximum depth of the Tree.
   1135     SmallVector<ValuePairWithDepth, 32> Q;
   1136     // General depth-first post-order traversal:
   1137     Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
   1138     do {
   1139       ValuePairWithDepth QTop = Q.back();
   1140 
   1141       // Push each child onto the queue:
   1142       bool MoreChildren = false;
   1143       size_t MaxChildDepth = QTop.second;
   1144       VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
   1145       for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
   1146            k != qtRange.second; ++k) {
   1147         // Make sure that this child pair is still a candidate:
   1148         bool IsStillCand = false;
   1149         VPIteratorPair checkRange =
   1150           CandidatePairs.equal_range(k->second.first);
   1151         for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
   1152              m != checkRange.second; ++m) {
   1153           if (m->second == k->second.second) {
   1154             IsStillCand = true;
   1155             break;
   1156           }
   1157         }
   1158 
   1159         if (IsStillCand) {
   1160           DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
   1161           if (C == Tree.end()) {
   1162             size_t d = getDepthFactor(k->second.first);
   1163             Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
   1164             MoreChildren = true;
   1165           } else {
   1166             MaxChildDepth = std::max(MaxChildDepth, C->second);
   1167           }
   1168         }
   1169       }
   1170 
   1171       if (!MoreChildren) {
   1172         // Record the current pair as part of the Tree:
   1173         Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
   1174         Q.pop_back();
   1175       }
   1176     } while (!Q.empty());
   1177   }
   1178 
   1179   // Given some initial tree, prune it by removing conflicting pairs (pairs
   1180   // that cannot be simultaneously chosen for vectorization).
   1181   void BBVectorize::pruneTreeFor(
   1182                       std::multimap<Value *, Value *> &CandidatePairs,
   1183                       std::vector<Value *> &PairableInsts,
   1184                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
   1185                       DenseSet<ValuePair> &PairableInstUsers,
   1186                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
   1187                       DenseMap<Value *, Value *> &ChosenPairs,
   1188                       DenseMap<ValuePair, size_t> &Tree,
   1189                       DenseSet<ValuePair> &PrunedTree, ValuePair J,
   1190                       bool UseCycleCheck) {
   1191     SmallVector<ValuePairWithDepth, 32> Q;
   1192     // General depth-first post-order traversal:
   1193     Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
   1194     do {
   1195       ValuePairWithDepth QTop = Q.pop_back_val();
   1196       PrunedTree.insert(QTop.first);
   1197 
   1198       // Visit each child, pruning as necessary...
   1199       DenseMap<ValuePair, size_t> BestChildren;
   1200       VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
   1201       for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
   1202            K != QTopRange.second; ++K) {
   1203         DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
   1204         if (C == Tree.end()) continue;
   1205 
   1206         // This child is in the Tree, now we need to make sure it is the
   1207         // best of any conflicting children. There could be multiple
   1208         // conflicting children, so first, determine if we're keeping
   1209         // this child, then delete conflicting children as necessary.
   1210 
   1211         // It is also necessary to guard against pairing-induced
   1212         // dependencies. Consider instructions a .. x .. y .. b
   1213         // such that (a,b) are to be fused and (x,y) are to be fused
   1214         // but a is an input to x and b is an output from y. This
   1215         // means that y cannot be moved after b but x must be moved
   1216         // after b for (a,b) to be fused. In other words, after
   1217         // fusing (a,b) we have y .. a/b .. x where y is an input
   1218         // to a/b and x is an output to a/b: x and y can no longer
   1219         // be legally fused. To prevent this condition, we must
   1220         // make sure that a child pair added to the Tree is not
   1221         // both an input and output of an already-selected pair.
   1222 
   1223         // Pairing-induced dependencies can also form from more complicated
   1224         // cycles. The pair vs. pair conflicts are easy to check, and so
   1225         // that is done explicitly for "fast rejection", and because for
   1226         // child vs. child conflicts, we may prefer to keep the current
   1227         // pair in preference to the already-selected child.
   1228         DenseSet<ValuePair> CurrentPairs;
   1229 
   1230         bool CanAdd = true;
   1231         for (DenseMap<ValuePair, size_t>::iterator C2
   1232               = BestChildren.begin(), E2 = BestChildren.end();
   1233              C2 != E2; ++C2) {
   1234           if (C2->first.first == C->first.first ||
   1235               C2->first.first == C->first.second ||
   1236               C2->first.second == C->first.first ||
   1237               C2->first.second == C->first.second ||
   1238               pairsConflict(C2->first, C->first, PairableInstUsers,
   1239                             UseCycleCheck ? &PairableInstUserMap : 0)) {
   1240             if (C2->second >= C->second) {
   1241               CanAdd = false;
   1242               break;
   1243             }
   1244 
   1245             CurrentPairs.insert(C2->first);
   1246           }
   1247         }
   1248         if (!CanAdd) continue;
   1249 
   1250         // Even worse, this child could conflict with another node already
   1251         // selected for the Tree. If that is the case, ignore this child.
   1252         for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
   1253              E2 = PrunedTree.end(); T != E2; ++T) {
   1254           if (T->first == C->first.first ||
   1255               T->first == C->first.second ||
   1256               T->second == C->first.first ||
   1257               T->second == C->first.second ||
   1258               pairsConflict(*T, C->first, PairableInstUsers,
   1259                             UseCycleCheck ? &PairableInstUserMap : 0)) {
   1260             CanAdd = false;
   1261             break;
   1262           }
   1263 
   1264           CurrentPairs.insert(*T);
   1265         }
   1266         if (!CanAdd) continue;
   1267 
   1268         // And check the queue too...
   1269         for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
   1270              E2 = Q.end(); C2 != E2; ++C2) {
   1271           if (C2->first.first == C->first.first ||
   1272               C2->first.first == C->first.second ||
   1273               C2->first.second == C->first.first ||
   1274               C2->first.second == C->first.second ||
   1275               pairsConflict(C2->first, C->first, PairableInstUsers,
   1276                             UseCycleCheck ? &PairableInstUserMap : 0)) {
   1277             CanAdd = false;
   1278             break;
   1279           }
   1280 
   1281           CurrentPairs.insert(C2->first);
   1282         }
   1283         if (!CanAdd) continue;
   1284 
   1285         // Last but not least, check for a conflict with any of the
   1286         // already-chosen pairs.
   1287         for (DenseMap<Value *, Value *>::iterator C2 =
   1288               ChosenPairs.begin(), E2 = ChosenPairs.end();
   1289              C2 != E2; ++C2) {
   1290           if (pairsConflict(*C2, C->first, PairableInstUsers,
   1291                             UseCycleCheck ? &PairableInstUserMap : 0)) {
   1292             CanAdd = false;
   1293             break;
   1294           }
   1295 
   1296           CurrentPairs.insert(*C2);
   1297         }
   1298         if (!CanAdd) continue;
   1299 
   1300         // To check for non-trivial cycles formed by the addition of the
   1301         // current pair we've formed a list of all relevant pairs, now use a
   1302         // graph walk to check for a cycle. We start from the current pair and
   1303         // walk the use tree to see if we again reach the current pair. If we
   1304         // do, then the current pair is rejected.
   1305 
   1306         // FIXME: It may be more efficient to use a topological-ordering
   1307         // algorithm to improve the cycle check. This should be investigated.
   1308         if (UseCycleCheck &&
   1309             pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
   1310           continue;
   1311 
   1312         // This child can be added, but we may have chosen it in preference
   1313         // to an already-selected child. Check for this here, and if a
   1314         // conflict is found, then remove the previously-selected child
   1315         // before adding this one in its place.
   1316         for (DenseMap<ValuePair, size_t>::iterator C2
   1317               = BestChildren.begin(); C2 != BestChildren.end();) {
   1318           if (C2->first.first == C->first.first ||
   1319               C2->first.first == C->first.second ||
   1320               C2->first.second == C->first.first ||
   1321               C2->first.second == C->first.second ||
   1322               pairsConflict(C2->first, C->first, PairableInstUsers))
   1323             BestChildren.erase(C2++);
   1324           else
   1325             ++C2;
   1326         }
   1327 
   1328         BestChildren.insert(ValuePairWithDepth(C->first, C->second));
   1329       }
   1330 
   1331       for (DenseMap<ValuePair, size_t>::iterator C
   1332             = BestChildren.begin(), E2 = BestChildren.end();
   1333            C != E2; ++C) {
   1334         size_t DepthF = getDepthFactor(C->first.first);
   1335         Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
   1336       }
   1337     } while (!Q.empty());
   1338   }
   1339 
   1340   // This function finds the best tree of mututally-compatible connected
   1341   // pairs, given the choice of root pairs as an iterator range.
   1342   void BBVectorize::findBestTreeFor(
   1343                       std::multimap<Value *, Value *> &CandidatePairs,
   1344                       std::vector<Value *> &PairableInsts,
   1345                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
   1346                       DenseSet<ValuePair> &PairableInstUsers,
   1347                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
   1348                       DenseMap<Value *, Value *> &ChosenPairs,
   1349                       DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
   1350                       size_t &BestEffSize, VPIteratorPair ChoiceRange,
   1351                       bool UseCycleCheck) {
   1352     for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
   1353          J != ChoiceRange.second; ++J) {
   1354 
   1355       // Before going any further, make sure that this pair does not
   1356       // conflict with any already-selected pairs (see comment below
   1357       // near the Tree pruning for more details).
   1358       DenseSet<ValuePair> ChosenPairSet;
   1359       bool DoesConflict = false;
   1360       for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
   1361            E = ChosenPairs.end(); C != E; ++C) {
   1362         if (pairsConflict(*C, *J, PairableInstUsers,
   1363                           UseCycleCheck ? &PairableInstUserMap : 0)) {
   1364           DoesConflict = true;
   1365           break;
   1366         }
   1367 
   1368         ChosenPairSet.insert(*C);
   1369       }
   1370       if (DoesConflict) continue;
   1371 
   1372       if (UseCycleCheck &&
   1373           pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
   1374         continue;
   1375 
   1376       DenseMap<ValuePair, size_t> Tree;
   1377       buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
   1378                           PairableInstUsers, ChosenPairs, Tree, *J);
   1379 
   1380       // Because we'll keep the child with the largest depth, the largest
   1381       // depth is still the same in the unpruned Tree.
   1382       size_t MaxDepth = Tree.lookup(*J);
   1383 
   1384       DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
   1385                    << *J->first << " <-> " << *J->second << "} of depth " <<
   1386                    MaxDepth << " and size " << Tree.size() << "\n");
   1387 
   1388       // At this point the Tree has been constructed, but, may contain
   1389       // contradictory children (meaning that different children of
   1390       // some tree node may be attempting to fuse the same instruction).
   1391       // So now we walk the tree again, in the case of a conflict,
   1392       // keep only the child with the largest depth. To break a tie,
   1393       // favor the first child.
   1394 
   1395       DenseSet<ValuePair> PrunedTree;
   1396       pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
   1397                    PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
   1398                    PrunedTree, *J, UseCycleCheck);
   1399 
   1400       size_t EffSize = 0;
   1401       for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
   1402            E = PrunedTree.end(); S != E; ++S)
   1403         EffSize += getDepthFactor(S->first);
   1404 
   1405       DEBUG(if (DebugPairSelection)
   1406              dbgs() << "BBV: found pruned Tree for pair {"
   1407              << *J->first << " <-> " << *J->second << "} of depth " <<
   1408              MaxDepth << " and size " << PrunedTree.size() <<
   1409             " (effective size: " << EffSize << ")\n");
   1410       if (MaxDepth >= Config.ReqChainDepth && EffSize > BestEffSize) {
   1411         BestMaxDepth = MaxDepth;
   1412         BestEffSize = EffSize;
   1413         BestTree = PrunedTree;
   1414       }
   1415     }
   1416   }
   1417 
   1418   // Given the list of candidate pairs, this function selects those
   1419   // that will be fused into vector instructions.
   1420   void BBVectorize::choosePairs(
   1421                       std::multimap<Value *, Value *> &CandidatePairs,
   1422                       std::vector<Value *> &PairableInsts,
   1423                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
   1424                       DenseSet<ValuePair> &PairableInstUsers,
   1425                       DenseMap<Value *, Value *>& ChosenPairs) {
   1426     bool UseCycleCheck =
   1427      CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
   1428     std::multimap<ValuePair, ValuePair> PairableInstUserMap;
   1429     for (std::vector<Value *>::iterator I = PairableInsts.begin(),
   1430          E = PairableInsts.end(); I != E; ++I) {
   1431       // The number of possible pairings for this variable:
   1432       size_t NumChoices = CandidatePairs.count(*I);
   1433       if (!NumChoices) continue;
   1434 
   1435       VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
   1436 
   1437       // The best pair to choose and its tree:
   1438       size_t BestMaxDepth = 0, BestEffSize = 0;
   1439       DenseSet<ValuePair> BestTree;
   1440       findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
   1441                       PairableInstUsers, PairableInstUserMap, ChosenPairs,
   1442                       BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
   1443                       UseCycleCheck);
   1444 
   1445       // A tree has been chosen (or not) at this point. If no tree was
   1446       // chosen, then this instruction, I, cannot be paired (and is no longer
   1447       // considered).
   1448 
   1449       DEBUG(if (BestTree.size() > 0)
   1450               dbgs() << "BBV: selected pairs in the best tree for: "
   1451                      << *cast<Instruction>(*I) << "\n");
   1452 
   1453       for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
   1454            SE2 = BestTree.end(); S != SE2; ++S) {
   1455         // Insert the members of this tree into the list of chosen pairs.
   1456         ChosenPairs.insert(ValuePair(S->first, S->second));
   1457         DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
   1458                *S->second << "\n");
   1459 
   1460         // Remove all candidate pairs that have values in the chosen tree.
   1461         for (std::multimap<Value *, Value *>::iterator K =
   1462                CandidatePairs.begin(); K != CandidatePairs.end();) {
   1463           if (K->first == S->first || K->second == S->first ||
   1464               K->second == S->second || K->first == S->second) {
   1465             // Don't remove the actual pair chosen so that it can be used
   1466             // in subsequent tree selections.
   1467             if (!(K->first == S->first && K->second == S->second))
   1468               CandidatePairs.erase(K++);
   1469             else
   1470               ++K;
   1471           } else {
   1472             ++K;
   1473           }
   1474         }
   1475       }
   1476     }
   1477 
   1478     DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
   1479   }
   1480 
   1481   std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
   1482                      unsigned n = 0) {
   1483     if (!I->hasName())
   1484       return "";
   1485 
   1486     return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
   1487              (n > 0 ? "." + utostr(n) : "")).str();
   1488   }
   1489 
   1490   // Returns the value that is to be used as the pointer input to the vector
   1491   // instruction that fuses I with J.
   1492   Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
   1493                      Instruction *I, Instruction *J, unsigned o,
   1494                      bool FlipMemInputs) {
   1495     Value *IPtr, *JPtr;
   1496     unsigned IAlignment, JAlignment;
   1497     int64_t OffsetInElmts;
   1498 
   1499     // Note: the analysis might fail here, that is why FlipMemInputs has
   1500     // been precomputed (OffsetInElmts must be unused here).
   1501     (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
   1502                           OffsetInElmts);
   1503 
   1504     // The pointer value is taken to be the one with the lowest offset.
   1505     Value *VPtr;
   1506     if (!FlipMemInputs) {
   1507       VPtr = IPtr;
   1508     } else {
   1509       VPtr = JPtr;
   1510     }
   1511 
   1512     Type *ArgTypeI = cast<PointerType>(IPtr->getType())->getElementType();
   1513     Type *ArgTypeJ = cast<PointerType>(JPtr->getType())->getElementType();
   1514     Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
   1515     Type *VArgPtrType = PointerType::get(VArgType,
   1516       cast<PointerType>(IPtr->getType())->getAddressSpace());
   1517     return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
   1518                         /* insert before */ FlipMemInputs ? J : I);
   1519   }
   1520 
   1521   void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
   1522                      unsigned MaskOffset, unsigned NumInElem,
   1523                      unsigned NumInElem1, unsigned IdxOffset,
   1524                      std::vector<Constant*> &Mask) {
   1525     unsigned NumElem1 = cast<VectorType>(J->getType())->getNumElements();
   1526     for (unsigned v = 0; v < NumElem1; ++v) {
   1527       int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
   1528       if (m < 0) {
   1529         Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
   1530       } else {
   1531         unsigned mm = m + (int) IdxOffset;
   1532         if (m >= (int) NumInElem1)
   1533           mm += (int) NumInElem;
   1534 
   1535         Mask[v+MaskOffset] =
   1536           ConstantInt::get(Type::getInt32Ty(Context), mm);
   1537       }
   1538     }
   1539   }
   1540 
   1541   // Returns the value that is to be used as the vector-shuffle mask to the
   1542   // vector instruction that fuses I with J.
   1543   Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
   1544                      Instruction *I, Instruction *J) {
   1545     // This is the shuffle mask. We need to append the second
   1546     // mask to the first, and the numbers need to be adjusted.
   1547 
   1548     Type *ArgTypeI = I->getType();
   1549     Type *ArgTypeJ = J->getType();
   1550     Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
   1551 
   1552     unsigned NumElemI = cast<VectorType>(ArgTypeI)->getNumElements();
   1553 
   1554     // Get the total number of elements in the fused vector type.
   1555     // By definition, this must equal the number of elements in
   1556     // the final mask.
   1557     unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
   1558     std::vector<Constant*> Mask(NumElem);
   1559 
   1560     Type *OpTypeI = I->getOperand(0)->getType();
   1561     unsigned NumInElemI = cast<VectorType>(OpTypeI)->getNumElements();
   1562     Type *OpTypeJ = J->getOperand(0)->getType();
   1563     unsigned NumInElemJ = cast<VectorType>(OpTypeJ)->getNumElements();
   1564 
   1565     // The fused vector will be:
   1566     // -----------------------------------------------------
   1567     // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
   1568     // -----------------------------------------------------
   1569     // from which we'll extract NumElem total elements (where the first NumElemI
   1570     // of them come from the mask in I and the remainder come from the mask
   1571     // in J.
   1572 
   1573     // For the mask from the first pair...
   1574     fillNewShuffleMask(Context, I, 0,        NumInElemJ, NumInElemI,
   1575                        0,          Mask);
   1576 
   1577     // For the mask from the second pair...
   1578     fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
   1579                        NumInElemI, Mask);
   1580 
   1581     return ConstantVector::get(Mask);
   1582   }
   1583 
   1584   bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
   1585                                   Instruction *J, unsigned o, Value *&LOp,
   1586                                   unsigned numElemL,
   1587                                   Type *ArgTypeL, Type *ArgTypeH,
   1588                                   unsigned IdxOff) {
   1589     bool ExpandedIEChain = false;
   1590     if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
   1591       // If we have a pure insertelement chain, then this can be rewritten
   1592       // into a chain that directly builds the larger type.
   1593       bool PureChain = true;
   1594       InsertElementInst *LIENext = LIE;
   1595       do {
   1596         if (!isa<UndefValue>(LIENext->getOperand(0)) &&
   1597             !isa<InsertElementInst>(LIENext->getOperand(0))) {
   1598           PureChain = false;
   1599           break;
   1600         }
   1601       } while ((LIENext =
   1602                  dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
   1603 
   1604       if (PureChain) {
   1605         SmallVector<Value *, 8> VectElemts(numElemL,
   1606           UndefValue::get(ArgTypeL->getScalarType()));
   1607         InsertElementInst *LIENext = LIE;
   1608         do {
   1609           unsigned Idx =
   1610             cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
   1611           VectElemts[Idx] = LIENext->getOperand(1);
   1612         } while ((LIENext =
   1613                    dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
   1614 
   1615         LIENext = 0;
   1616         Value *LIEPrev = UndefValue::get(ArgTypeH);
   1617         for (unsigned i = 0; i < numElemL; ++i) {
   1618           if (isa<UndefValue>(VectElemts[i])) continue;
   1619           LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
   1620                              ConstantInt::get(Type::getInt32Ty(Context),
   1621                                               i + IdxOff),
   1622                              getReplacementName(I, true, o, i+1));
   1623           LIENext->insertBefore(J);
   1624           LIEPrev = LIENext;
   1625         }
   1626 
   1627         LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
   1628         ExpandedIEChain = true;
   1629       }
   1630     }
   1631 
   1632     return ExpandedIEChain;
   1633   }
   1634 
   1635   // Returns the value to be used as the specified operand of the vector
   1636   // instruction that fuses I with J.
   1637   Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
   1638                      Instruction *J, unsigned o, bool FlipMemInputs) {
   1639     Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
   1640     Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
   1641 
   1642     // Compute the fused vector type for this operand
   1643     Type *ArgTypeI = I->getOperand(o)->getType();
   1644     Type *ArgTypeJ = J->getOperand(o)->getType();
   1645     VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
   1646 
   1647     Instruction *L = I, *H = J;
   1648     Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
   1649     if (FlipMemInputs) {
   1650       L = J;
   1651       H = I;
   1652       ArgTypeL = ArgTypeJ;
   1653       ArgTypeH = ArgTypeI;
   1654     }
   1655 
   1656     unsigned numElemL;
   1657     if (ArgTypeL->isVectorTy())
   1658       numElemL = cast<VectorType>(ArgTypeL)->getNumElements();
   1659     else
   1660       numElemL = 1;
   1661 
   1662     unsigned numElemH;
   1663     if (ArgTypeH->isVectorTy())
   1664       numElemH = cast<VectorType>(ArgTypeH)->getNumElements();
   1665     else
   1666       numElemH = 1;
   1667 
   1668     Value *LOp = L->getOperand(o);
   1669     Value *HOp = H->getOperand(o);
   1670     unsigned numElem = VArgType->getNumElements();
   1671 
   1672     // First, we check if we can reuse the "original" vector outputs (if these
   1673     // exist). We might need a shuffle.
   1674     ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
   1675     ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
   1676     ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
   1677     ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
   1678 
   1679     // FIXME: If we're fusing shuffle instructions, then we can't apply this
   1680     // optimization. The input vectors to the shuffle might be a different
   1681     // length from the shuffle outputs. Unfortunately, the replacement
   1682     // shuffle mask has already been formed, and the mask entries are sensitive
   1683     // to the sizes of the inputs.
   1684     bool IsSizeChangeShuffle =
   1685       isa<ShuffleVectorInst>(L) &&
   1686         (LOp->getType() != L->getType() || HOp->getType() != H->getType());
   1687 
   1688     if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
   1689       // We can have at most two unique vector inputs.
   1690       bool CanUseInputs = true;
   1691       Value *I1, *I2 = 0;
   1692       if (LEE) {
   1693         I1 = LEE->getOperand(0);
   1694       } else {
   1695         I1 = LSV->getOperand(0);
   1696         I2 = LSV->getOperand(1);
   1697         if (I2 == I1 || isa<UndefValue>(I2))
   1698           I2 = 0;
   1699       }
   1700 
   1701       if (HEE) {
   1702         Value *I3 = HEE->getOperand(0);
   1703         if (!I2 && I3 != I1)
   1704           I2 = I3;
   1705         else if (I3 != I1 && I3 != I2)
   1706           CanUseInputs = false;
   1707       } else {
   1708         Value *I3 = HSV->getOperand(0);
   1709         if (!I2 && I3 != I1)
   1710           I2 = I3;
   1711         else if (I3 != I1 && I3 != I2)
   1712           CanUseInputs = false;
   1713 
   1714         if (CanUseInputs) {
   1715           Value *I4 = HSV->getOperand(1);
   1716           if (!isa<UndefValue>(I4)) {
   1717             if (!I2 && I4 != I1)
   1718               I2 = I4;
   1719             else if (I4 != I1 && I4 != I2)
   1720               CanUseInputs = false;
   1721           }
   1722         }
   1723       }
   1724 
   1725       if (CanUseInputs) {
   1726         unsigned LOpElem =
   1727           cast<VectorType>(cast<Instruction>(LOp)->getOperand(0)->getType())
   1728             ->getNumElements();
   1729         unsigned HOpElem =
   1730           cast<VectorType>(cast<Instruction>(HOp)->getOperand(0)->getType())
   1731             ->getNumElements();
   1732 
   1733         // We have one or two input vectors. We need to map each index of the
   1734         // operands to the index of the original vector.
   1735         SmallVector<std::pair<int, int>, 8>  II(numElem);
   1736         for (unsigned i = 0; i < numElemL; ++i) {
   1737           int Idx, INum;
   1738           if (LEE) {
   1739             Idx =
   1740               cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
   1741             INum = LEE->getOperand(0) == I1 ? 0 : 1;
   1742           } else {
   1743             Idx = LSV->getMaskValue(i);
   1744             if (Idx < (int) LOpElem) {
   1745               INum = LSV->getOperand(0) == I1 ? 0 : 1;
   1746             } else {
   1747               Idx -= LOpElem;
   1748               INum = LSV->getOperand(1) == I1 ? 0 : 1;
   1749             }
   1750           }
   1751 
   1752           II[i] = std::pair<int, int>(Idx, INum);
   1753         }
   1754         for (unsigned i = 0; i < numElemH; ++i) {
   1755           int Idx, INum;
   1756           if (HEE) {
   1757             Idx =
   1758               cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
   1759             INum = HEE->getOperand(0) == I1 ? 0 : 1;
   1760           } else {
   1761             Idx = HSV->getMaskValue(i);
   1762             if (Idx < (int) HOpElem) {
   1763               INum = HSV->getOperand(0) == I1 ? 0 : 1;
   1764             } else {
   1765               Idx -= HOpElem;
   1766               INum = HSV->getOperand(1) == I1 ? 0 : 1;
   1767             }
   1768           }
   1769 
   1770           II[i + numElemL] = std::pair<int, int>(Idx, INum);
   1771         }
   1772 
   1773         // We now have an array which tells us from which index of which
   1774         // input vector each element of the operand comes.
   1775         VectorType *I1T = cast<VectorType>(I1->getType());
   1776         unsigned I1Elem = I1T->getNumElements();
   1777 
   1778         if (!I2) {
   1779           // In this case there is only one underlying vector input. Check for
   1780           // the trivial case where we can use the input directly.
   1781           if (I1Elem == numElem) {
   1782             bool ElemInOrder = true;
   1783             for (unsigned i = 0; i < numElem; ++i) {
   1784               if (II[i].first != (int) i && II[i].first != -1) {
   1785                 ElemInOrder = false;
   1786                 break;
   1787               }
   1788             }
   1789 
   1790             if (ElemInOrder)
   1791               return I1;
   1792           }
   1793 
   1794           // A shuffle is needed.
   1795           std::vector<Constant *> Mask(numElem);
   1796           for (unsigned i = 0; i < numElem; ++i) {
   1797             int Idx = II[i].first;
   1798             if (Idx == -1)
   1799               Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
   1800             else
   1801               Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
   1802           }
   1803 
   1804           Instruction *S =
   1805             new ShuffleVectorInst(I1, UndefValue::get(I1T),
   1806                                   ConstantVector::get(Mask),
   1807                                   getReplacementName(I, true, o));
   1808           S->insertBefore(J);
   1809           return S;
   1810         }
   1811 
   1812         VectorType *I2T = cast<VectorType>(I2->getType());
   1813         unsigned I2Elem = I2T->getNumElements();
   1814 
   1815         // This input comes from two distinct vectors. The first step is to
   1816         // make sure that both vectors are the same length. If not, the
   1817         // smaller one will need to grow before they can be shuffled together.
   1818         if (I1Elem < I2Elem) {
   1819           std::vector<Constant *> Mask(I2Elem);
   1820           unsigned v = 0;
   1821           for (; v < I1Elem; ++v)
   1822             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   1823           for (; v < I2Elem; ++v)
   1824             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
   1825 
   1826           Instruction *NewI1 =
   1827             new ShuffleVectorInst(I1, UndefValue::get(I1T),
   1828                                   ConstantVector::get(Mask),
   1829                                   getReplacementName(I, true, o, 1));
   1830           NewI1->insertBefore(J);
   1831           I1 = NewI1;
   1832           I1T = I2T;
   1833           I1Elem = I2Elem;
   1834         } else if (I1Elem > I2Elem) {
   1835           std::vector<Constant *> Mask(I1Elem);
   1836           unsigned v = 0;
   1837           for (; v < I2Elem; ++v)
   1838             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   1839           for (; v < I1Elem; ++v)
   1840             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
   1841 
   1842           Instruction *NewI2 =
   1843             new ShuffleVectorInst(I2, UndefValue::get(I2T),
   1844                                   ConstantVector::get(Mask),
   1845                                   getReplacementName(I, true, o, 1));
   1846           NewI2->insertBefore(J);
   1847           I2 = NewI2;
   1848           I2T = I1T;
   1849           I2Elem = I1Elem;
   1850         }
   1851 
   1852         // Now that both I1 and I2 are the same length we can shuffle them
   1853         // together (and use the result).
   1854         std::vector<Constant *> Mask(numElem);
   1855         for (unsigned v = 0; v < numElem; ++v) {
   1856           if (II[v].first == -1) {
   1857             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
   1858           } else {
   1859             int Idx = II[v].first + II[v].second * I1Elem;
   1860             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
   1861           }
   1862         }
   1863 
   1864         Instruction *NewOp =
   1865           new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
   1866                                 getReplacementName(I, true, o));
   1867         NewOp->insertBefore(J);
   1868         return NewOp;
   1869       }
   1870     }
   1871 
   1872     Type *ArgType = ArgTypeL;
   1873     if (numElemL < numElemH) {
   1874       if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
   1875                                          ArgTypeL, VArgType, 1)) {
   1876         // This is another short-circuit case: we're combining a scalar into
   1877         // a vector that is formed by an IE chain. We've just expanded the IE
   1878         // chain, now insert the scalar and we're done.
   1879 
   1880         Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
   1881                                                getReplacementName(I, true, o));
   1882         S->insertBefore(J);
   1883         return S;
   1884       } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
   1885                                 ArgTypeH)) {
   1886         // The two vector inputs to the shuffle must be the same length,
   1887         // so extend the smaller vector to be the same length as the larger one.
   1888         Instruction *NLOp;
   1889         if (numElemL > 1) {
   1890 
   1891           std::vector<Constant *> Mask(numElemH);
   1892           unsigned v = 0;
   1893           for (; v < numElemL; ++v)
   1894             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   1895           for (; v < numElemH; ++v)
   1896             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
   1897 
   1898           NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
   1899                                        ConstantVector::get(Mask),
   1900                                        getReplacementName(I, true, o, 1));
   1901         } else {
   1902           NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
   1903                                            getReplacementName(I, true, o, 1));
   1904         }
   1905 
   1906         NLOp->insertBefore(J);
   1907         LOp = NLOp;
   1908       }
   1909 
   1910       ArgType = ArgTypeH;
   1911     } else if (numElemL > numElemH) {
   1912       if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
   1913                                          ArgTypeH, VArgType)) {
   1914         Instruction *S =
   1915           InsertElementInst::Create(LOp, HOp,
   1916                                     ConstantInt::get(Type::getInt32Ty(Context),
   1917                                                      numElemL),
   1918                                     getReplacementName(I, true, o));
   1919         S->insertBefore(J);
   1920         return S;
   1921       } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
   1922                                 ArgTypeL)) {
   1923         Instruction *NHOp;
   1924         if (numElemH > 1) {
   1925           std::vector<Constant *> Mask(numElemL);
   1926           unsigned v = 0;
   1927           for (; v < numElemH; ++v)
   1928             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   1929           for (; v < numElemL; ++v)
   1930             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
   1931 
   1932           NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
   1933                                        ConstantVector::get(Mask),
   1934                                        getReplacementName(I, true, o, 1));
   1935         } else {
   1936           NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
   1937                                            getReplacementName(I, true, o, 1));
   1938         }
   1939 
   1940         NHOp->insertBefore(J);
   1941         HOp = NHOp;
   1942       }
   1943     }
   1944 
   1945     if (ArgType->isVectorTy()) {
   1946       unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
   1947       std::vector<Constant*> Mask(numElem);
   1948       for (unsigned v = 0; v < numElem; ++v) {
   1949         unsigned Idx = v;
   1950         // If the low vector was expanded, we need to skip the extra
   1951         // undefined entries.
   1952         if (v >= numElemL && numElemH > numElemL)
   1953           Idx += (numElemH - numElemL);
   1954         Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
   1955       }
   1956 
   1957       Instruction *BV = new ShuffleVectorInst(LOp, HOp,
   1958                                               ConstantVector::get(Mask),
   1959                                               getReplacementName(I, true, o));
   1960       BV->insertBefore(J);
   1961       return BV;
   1962     }
   1963 
   1964     Instruction *BV1 = InsertElementInst::Create(
   1965                                           UndefValue::get(VArgType), LOp, CV0,
   1966                                           getReplacementName(I, true, o, 1));
   1967     BV1->insertBefore(I);
   1968     Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
   1969                                           getReplacementName(I, true, o, 2));
   1970     BV2->insertBefore(J);
   1971     return BV2;
   1972   }
   1973 
   1974   // This function creates an array of values that will be used as the inputs
   1975   // to the vector instruction that fuses I with J.
   1976   void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
   1977                      Instruction *I, Instruction *J,
   1978                      SmallVector<Value *, 3> &ReplacedOperands,
   1979                      bool FlipMemInputs) {
   1980     unsigned NumOperands = I->getNumOperands();
   1981 
   1982     for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
   1983       // Iterate backward so that we look at the store pointer
   1984       // first and know whether or not we need to flip the inputs.
   1985 
   1986       if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
   1987         // This is the pointer for a load/store instruction.
   1988         ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
   1989                                 FlipMemInputs);
   1990         continue;
   1991       } else if (isa<CallInst>(I)) {
   1992         Function *F = cast<CallInst>(I)->getCalledFunction();
   1993         unsigned IID = F->getIntrinsicID();
   1994         if (o == NumOperands-1) {
   1995           BasicBlock &BB = *I->getParent();
   1996 
   1997           Module *M = BB.getParent()->getParent();
   1998           Type *ArgTypeI = I->getType();
   1999           Type *ArgTypeJ = J->getType();
   2000           Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
   2001 
   2002           ReplacedOperands[o] = Intrinsic::getDeclaration(M,
   2003             (Intrinsic::ID) IID, VArgType);
   2004           continue;
   2005         } else if (IID == Intrinsic::powi && o == 1) {
   2006           // The second argument of powi is a single integer and we've already
   2007           // checked that both arguments are equal. As a result, we just keep
   2008           // I's second argument.
   2009           ReplacedOperands[o] = I->getOperand(o);
   2010           continue;
   2011         }
   2012       } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
   2013         ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
   2014         continue;
   2015       }
   2016 
   2017       ReplacedOperands[o] =
   2018         getReplacementInput(Context, I, J, o, FlipMemInputs);
   2019     }
   2020   }
   2021 
   2022   // This function creates two values that represent the outputs of the
   2023   // original I and J instructions. These are generally vector shuffles
   2024   // or extracts. In many cases, these will end up being unused and, thus,
   2025   // eliminated by later passes.
   2026   void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
   2027                      Instruction *J, Instruction *K,
   2028                      Instruction *&InsertionPt,
   2029                      Instruction *&K1, Instruction *&K2,
   2030                      bool FlipMemInputs) {
   2031     if (isa<StoreInst>(I)) {
   2032       AA->replaceWithNewValue(I, K);
   2033       AA->replaceWithNewValue(J, K);
   2034     } else {
   2035       Type *IType = I->getType();
   2036       Type *JType = J->getType();
   2037 
   2038       VectorType *VType = getVecTypeForPair(IType, JType);
   2039       unsigned numElem = VType->getNumElements();
   2040 
   2041       unsigned numElemI, numElemJ;
   2042       if (IType->isVectorTy())
   2043         numElemI = cast<VectorType>(IType)->getNumElements();
   2044       else
   2045         numElemI = 1;
   2046 
   2047       if (JType->isVectorTy())
   2048         numElemJ = cast<VectorType>(JType)->getNumElements();
   2049       else
   2050         numElemJ = 1;
   2051 
   2052       if (IType->isVectorTy()) {
   2053         std::vector<Constant*> Mask1(numElemI), Mask2(numElemI);
   2054         for (unsigned v = 0; v < numElemI; ++v) {
   2055           Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   2056           Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ+v);
   2057         }
   2058 
   2059         K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
   2060                                    ConstantVector::get(
   2061                                      FlipMemInputs ? Mask2 : Mask1),
   2062                                    getReplacementName(K, false, 1));
   2063       } else {
   2064         Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
   2065         Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
   2066         K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
   2067                                           getReplacementName(K, false, 1));
   2068       }
   2069 
   2070       if (JType->isVectorTy()) {
   2071         std::vector<Constant*> Mask1(numElemJ), Mask2(numElemJ);
   2072         for (unsigned v = 0; v < numElemJ; ++v) {
   2073           Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   2074           Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI+v);
   2075         }
   2076 
   2077         K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
   2078                                    ConstantVector::get(
   2079                                      FlipMemInputs ? Mask1 : Mask2),
   2080                                    getReplacementName(K, false, 2));
   2081       } else {
   2082         Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
   2083         Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
   2084         K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
   2085                                           getReplacementName(K, false, 2));
   2086       }
   2087 
   2088       K1->insertAfter(K);
   2089       K2->insertAfter(K1);
   2090       InsertionPt = K2;
   2091     }
   2092   }
   2093 
   2094   // Move all uses of the function I (including pairing-induced uses) after J.
   2095   bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
   2096                      std::multimap<Value *, Value *> &LoadMoveSet,
   2097                      Instruction *I, Instruction *J) {
   2098     // Skip to the first instruction past I.
   2099     BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
   2100 
   2101     DenseSet<Value *> Users;
   2102     AliasSetTracker WriteSet(*AA);
   2103     for (; cast<Instruction>(L) != J; ++L)
   2104       (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
   2105 
   2106     assert(cast<Instruction>(L) == J &&
   2107       "Tracking has not proceeded far enough to check for dependencies");
   2108     // If J is now in the use set of I, then trackUsesOfI will return true
   2109     // and we have a dependency cycle (and the fusing operation must abort).
   2110     return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
   2111   }
   2112 
   2113   // Move all uses of the function I (including pairing-induced uses) after J.
   2114   void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
   2115                      std::multimap<Value *, Value *> &LoadMoveSet,
   2116                      Instruction *&InsertionPt,
   2117                      Instruction *I, Instruction *J) {
   2118     // Skip to the first instruction past I.
   2119     BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
   2120 
   2121     DenseSet<Value *> Users;
   2122     AliasSetTracker WriteSet(*AA);
   2123     for (; cast<Instruction>(L) != J;) {
   2124       if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
   2125         // Move this instruction
   2126         Instruction *InstToMove = L; ++L;
   2127 
   2128         DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
   2129                         " to after " << *InsertionPt << "\n");
   2130         InstToMove->removeFromParent();
   2131         InstToMove->insertAfter(InsertionPt);
   2132         InsertionPt = InstToMove;
   2133       } else {
   2134         ++L;
   2135       }
   2136     }
   2137   }
   2138 
   2139   // Collect all load instruction that are in the move set of a given first
   2140   // pair member.  These loads depend on the first instruction, I, and so need
   2141   // to be moved after J (the second instruction) when the pair is fused.
   2142   void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
   2143                      DenseMap<Value *, Value *> &ChosenPairs,
   2144                      std::multimap<Value *, Value *> &LoadMoveSet,
   2145                      Instruction *I) {
   2146     // Skip to the first instruction past I.
   2147     BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
   2148 
   2149     DenseSet<Value *> Users;
   2150     AliasSetTracker WriteSet(*AA);
   2151 
   2152     // Note: We cannot end the loop when we reach J because J could be moved
   2153     // farther down the use chain by another instruction pairing. Also, J
   2154     // could be before I if this is an inverted input.
   2155     for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
   2156       if (trackUsesOfI(Users, WriteSet, I, L)) {
   2157         if (L->mayReadFromMemory())
   2158           LoadMoveSet.insert(ValuePair(L, I));
   2159       }
   2160     }
   2161   }
   2162 
   2163   // In cases where both load/stores and the computation of their pointers
   2164   // are chosen for vectorization, we can end up in a situation where the
   2165   // aliasing analysis starts returning different query results as the
   2166   // process of fusing instruction pairs continues. Because the algorithm
   2167   // relies on finding the same use trees here as were found earlier, we'll
   2168   // need to precompute the necessary aliasing information here and then
   2169   // manually update it during the fusion process.
   2170   void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
   2171                      std::vector<Value *> &PairableInsts,
   2172                      DenseMap<Value *, Value *> &ChosenPairs,
   2173                      std::multimap<Value *, Value *> &LoadMoveSet) {
   2174     for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
   2175          PIE = PairableInsts.end(); PI != PIE; ++PI) {
   2176       DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
   2177       if (P == ChosenPairs.end()) continue;
   2178 
   2179       Instruction *I = cast<Instruction>(P->first);
   2180       collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
   2181     }
   2182   }
   2183 
   2184   // As with the aliasing information, SCEV can also change because of
   2185   // vectorization. This information is used to compute relative pointer
   2186   // offsets; the necessary information will be cached here prior to
   2187   // fusion.
   2188   void BBVectorize::collectPtrInfo(std::vector<Value *> &PairableInsts,
   2189                                    DenseMap<Value *, Value *> &ChosenPairs,
   2190                                    DenseSet<Value *> &LowPtrInsts) {
   2191     for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
   2192       PIE = PairableInsts.end(); PI != PIE; ++PI) {
   2193       DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
   2194       if (P == ChosenPairs.end()) continue;
   2195 
   2196       Instruction *I = cast<Instruction>(P->first);
   2197       Instruction *J = cast<Instruction>(P->second);
   2198 
   2199       if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
   2200         continue;
   2201 
   2202       Value *IPtr, *JPtr;
   2203       unsigned IAlignment, JAlignment;
   2204       int64_t OffsetInElmts;
   2205       if (!getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
   2206                           OffsetInElmts) || abs64(OffsetInElmts) != 1)
   2207         llvm_unreachable("Pre-fusion pointer analysis failed");
   2208 
   2209       Value *LowPI = (OffsetInElmts > 0) ? I : J;
   2210       LowPtrInsts.insert(LowPI);
   2211     }
   2212   }
   2213 
   2214   // When the first instruction in each pair is cloned, it will inherit its
   2215   // parent's metadata. This metadata must be combined with that of the other
   2216   // instruction in a safe way.
   2217   void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) {
   2218     SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
   2219     K->getAllMetadataOtherThanDebugLoc(Metadata);
   2220     for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
   2221       unsigned Kind = Metadata[i].first;
   2222       MDNode *JMD = J->getMetadata(Kind);
   2223       MDNode *KMD = Metadata[i].second;
   2224 
   2225       switch (Kind) {
   2226       default:
   2227         K->setMetadata(Kind, 0); // Remove unknown metadata
   2228         break;
   2229       case LLVMContext::MD_tbaa:
   2230         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
   2231         break;
   2232       case LLVMContext::MD_fpmath:
   2233         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
   2234         break;
   2235       }
   2236     }
   2237   }
   2238 
   2239   // This function fuses the chosen instruction pairs into vector instructions,
   2240   // taking care preserve any needed scalar outputs and, then, it reorders the
   2241   // remaining instructions as needed (users of the first member of the pair
   2242   // need to be moved to after the location of the second member of the pair
   2243   // because the vector instruction is inserted in the location of the pair's
   2244   // second member).
   2245   void BBVectorize::fuseChosenPairs(BasicBlock &BB,
   2246                      std::vector<Value *> &PairableInsts,
   2247                      DenseMap<Value *, Value *> &ChosenPairs) {
   2248     LLVMContext& Context = BB.getContext();
   2249 
   2250     // During the vectorization process, the order of the pairs to be fused
   2251     // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
   2252     // list. After a pair is fused, the flipped pair is removed from the list.
   2253     std::vector<ValuePair> FlippedPairs;
   2254     FlippedPairs.reserve(ChosenPairs.size());
   2255     for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
   2256          E = ChosenPairs.end(); P != E; ++P)
   2257       FlippedPairs.push_back(ValuePair(P->second, P->first));
   2258     for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
   2259          E = FlippedPairs.end(); P != E; ++P)
   2260       ChosenPairs.insert(*P);
   2261 
   2262     std::multimap<Value *, Value *> LoadMoveSet;
   2263     collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
   2264 
   2265     DenseSet<Value *> LowPtrInsts;
   2266     collectPtrInfo(PairableInsts, ChosenPairs, LowPtrInsts);
   2267 
   2268     DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
   2269 
   2270     for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
   2271       DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
   2272       if (P == ChosenPairs.end()) {
   2273         ++PI;
   2274         continue;
   2275       }
   2276 
   2277       if (getDepthFactor(P->first) == 0) {
   2278         // These instructions are not really fused, but are tracked as though
   2279         // they are. Any case in which it would be interesting to fuse them
   2280         // will be taken care of by InstCombine.
   2281         --NumFusedOps;
   2282         ++PI;
   2283         continue;
   2284       }
   2285 
   2286       Instruction *I = cast<Instruction>(P->first),
   2287         *J = cast<Instruction>(P->second);
   2288 
   2289       DEBUG(dbgs() << "BBV: fusing: " << *I <<
   2290              " <-> " << *J << "\n");
   2291 
   2292       // Remove the pair and flipped pair from the list.
   2293       DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
   2294       assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
   2295       ChosenPairs.erase(FP);
   2296       ChosenPairs.erase(P);
   2297 
   2298       if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
   2299         DEBUG(dbgs() << "BBV: fusion of: " << *I <<
   2300                " <-> " << *J <<
   2301                " aborted because of non-trivial dependency cycle\n");
   2302         --NumFusedOps;
   2303         ++PI;
   2304         continue;
   2305       }
   2306 
   2307       bool FlipMemInputs = false;
   2308       if (isa<LoadInst>(I) || isa<StoreInst>(I))
   2309         FlipMemInputs = (LowPtrInsts.find(I) == LowPtrInsts.end());
   2310 
   2311       unsigned NumOperands = I->getNumOperands();
   2312       SmallVector<Value *, 3> ReplacedOperands(NumOperands);
   2313       getReplacementInputsForPair(Context, I, J, ReplacedOperands,
   2314         FlipMemInputs);
   2315 
   2316       // Make a copy of the original operation, change its type to the vector
   2317       // type and replace its operands with the vector operands.
   2318       Instruction *K = I->clone();
   2319       if (I->hasName()) K->takeName(I);
   2320 
   2321       if (!isa<StoreInst>(K))
   2322         K->mutateType(getVecTypeForPair(I->getType(), J->getType()));
   2323 
   2324       combineMetadata(K, J);
   2325 
   2326       for (unsigned o = 0; o < NumOperands; ++o)
   2327         K->setOperand(o, ReplacedOperands[o]);
   2328 
   2329       // If we've flipped the memory inputs, make sure that we take the correct
   2330       // alignment.
   2331       if (FlipMemInputs) {
   2332         if (isa<StoreInst>(K))
   2333           cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
   2334         else
   2335           cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
   2336       }
   2337 
   2338       K->insertAfter(J);
   2339 
   2340       // Instruction insertion point:
   2341       Instruction *InsertionPt = K;
   2342       Instruction *K1 = 0, *K2 = 0;
   2343       replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
   2344         FlipMemInputs);
   2345 
   2346       // The use tree of the first original instruction must be moved to after
   2347       // the location of the second instruction. The entire use tree of the
   2348       // first instruction is disjoint from the input tree of the second
   2349       // (by definition), and so commutes with it.
   2350 
   2351       moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
   2352 
   2353       if (!isa<StoreInst>(I)) {
   2354         I->replaceAllUsesWith(K1);
   2355         J->replaceAllUsesWith(K2);
   2356         AA->replaceWithNewValue(I, K1);
   2357         AA->replaceWithNewValue(J, K2);
   2358       }
   2359 
   2360       // Instructions that may read from memory may be in the load move set.
   2361       // Once an instruction is fused, we no longer need its move set, and so
   2362       // the values of the map never need to be updated. However, when a load
   2363       // is fused, we need to merge the entries from both instructions in the
   2364       // pair in case those instructions were in the move set of some other
   2365       // yet-to-be-fused pair. The loads in question are the keys of the map.
   2366       if (I->mayReadFromMemory()) {
   2367         std::vector<ValuePair> NewSetMembers;
   2368         VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
   2369         VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
   2370         for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
   2371              N != IPairRange.second; ++N)
   2372           NewSetMembers.push_back(ValuePair(K, N->second));
   2373         for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
   2374              N != JPairRange.second; ++N)
   2375           NewSetMembers.push_back(ValuePair(K, N->second));
   2376         for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
   2377              AE = NewSetMembers.end(); A != AE; ++A)
   2378           LoadMoveSet.insert(*A);
   2379       }
   2380 
   2381       // Before removing I, set the iterator to the next instruction.
   2382       PI = llvm::next(BasicBlock::iterator(I));
   2383       if (cast<Instruction>(PI) == J)
   2384         ++PI;
   2385 
   2386       SE->forgetValue(I);
   2387       SE->forgetValue(J);
   2388       I->eraseFromParent();
   2389       J->eraseFromParent();
   2390     }
   2391 
   2392     DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
   2393   }
   2394 }
   2395 
   2396 char BBVectorize::ID = 0;
   2397 static const char bb_vectorize_name[] = "Basic-Block Vectorization";
   2398 INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
   2399 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
   2400 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
   2401 INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
   2402 
   2403 BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
   2404   return new BBVectorize(C);
   2405 }
   2406 
   2407 bool
   2408 llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
   2409   BBVectorize BBVectorizer(P, C);
   2410   return BBVectorizer.vectorizeBB(BB);
   2411 }
   2412 
   2413 //===----------------------------------------------------------------------===//
   2414 VectorizeConfig::VectorizeConfig() {
   2415   VectorBits = ::VectorBits;
   2416   VectorizeBools = !::NoBools;
   2417   VectorizeInts = !::NoInts;
   2418   VectorizeFloats = !::NoFloats;
   2419   VectorizePointers = !::NoPointers;
   2420   VectorizeCasts = !::NoCasts;
   2421   VectorizeMath = !::NoMath;
   2422   VectorizeFMA = !::NoFMA;
   2423   VectorizeSelect = !::NoSelect;
   2424   VectorizeCmp = !::NoCmp;
   2425   VectorizeGEP = !::NoGEP;
   2426   VectorizeMemOps = !::NoMemOps;
   2427   AlignedOnly = ::AlignedOnly;
   2428   ReqChainDepth= ::ReqChainDepth;
   2429   SearchLimit = ::SearchLimit;
   2430   MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
   2431   SplatBreaksChain = ::SplatBreaksChain;
   2432   MaxInsts = ::MaxInsts;
   2433   MaxIter = ::MaxIter;
   2434   Pow2LenOnly = ::Pow2LenOnly;
   2435   NoMemOpBoost = ::NoMemOpBoost;
   2436   FastDep = ::FastDep;
   2437 }
   2438