1 // Copyright 2011 Google Inc. All Rights Reserved. 2 // 3 // This code is licensed under the same terms as WebM: 4 // Software License Agreement: http://www.webmproject.org/license/software/ 5 // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ 6 // ----------------------------------------------------------------------------- 7 // 8 // Macroblock analysis 9 // 10 // Author: Skal (pascal.massimino (at) gmail.com) 11 12 #include <stdlib.h> 13 #include <string.h> 14 #include <assert.h> 15 16 #include "./vp8enci.h" 17 #include "./cost.h" 18 #include "../utils/utils.h" 19 20 #if defined(__cplusplus) || defined(c_plusplus) 21 extern "C" { 22 #endif 23 24 #define MAX_ITERS_K_MEANS 6 25 26 static int ClipAlpha(int alpha) { 27 return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha; 28 } 29 30 //------------------------------------------------------------------------------ 31 // Smooth the segment map by replacing isolated block by the majority of its 32 // neighbours. 33 34 static void SmoothSegmentMap(VP8Encoder* const enc) { 35 int n, x, y; 36 const int w = enc->mb_w_; 37 const int h = enc->mb_h_; 38 const int majority_cnt_3_x_3_grid = 5; 39 uint8_t* const tmp = (uint8_t*)WebPSafeMalloc((uint64_t)w * h, sizeof(*tmp)); 40 assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec 41 42 if (tmp == NULL) return; 43 for (y = 1; y < h - 1; ++y) { 44 for (x = 1; x < w - 1; ++x) { 45 int cnt[NUM_MB_SEGMENTS] = { 0 }; 46 const VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; 47 int majority_seg = mb->segment_; 48 // Check the 8 neighbouring segment values. 49 cnt[mb[-w - 1].segment_]++; // top-left 50 cnt[mb[-w + 0].segment_]++; // top 51 cnt[mb[-w + 1].segment_]++; // top-right 52 cnt[mb[ - 1].segment_]++; // left 53 cnt[mb[ + 1].segment_]++; // right 54 cnt[mb[ w - 1].segment_]++; // bottom-left 55 cnt[mb[ w + 0].segment_]++; // bottom 56 cnt[mb[ w + 1].segment_]++; // bottom-right 57 for (n = 0; n < NUM_MB_SEGMENTS; ++n) { 58 if (cnt[n] >= majority_cnt_3_x_3_grid) { 59 majority_seg = n; 60 } 61 } 62 tmp[x + y * w] = majority_seg; 63 } 64 } 65 for (y = 1; y < h - 1; ++y) { 66 for (x = 1; x < w - 1; ++x) { 67 VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; 68 mb->segment_ = tmp[x + y * w]; 69 } 70 } 71 free(tmp); 72 } 73 74 //------------------------------------------------------------------------------ 75 // Finalize Segment probability based on the coding tree 76 77 static int GetProba(int a, int b) { 78 int proba; 79 const int total = a + b; 80 if (total == 0) return 255; // that's the default probability. 81 proba = (255 * a + total / 2) / total; 82 return proba; 83 } 84 85 static void SetSegmentProbas(VP8Encoder* const enc) { 86 int p[NUM_MB_SEGMENTS] = { 0 }; 87 int n; 88 89 for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { 90 const VP8MBInfo* const mb = &enc->mb_info_[n]; 91 p[mb->segment_]++; 92 } 93 if (enc->pic_->stats) { 94 for (n = 0; n < NUM_MB_SEGMENTS; ++n) { 95 enc->pic_->stats->segment_size[n] = p[n]; 96 } 97 } 98 if (enc->segment_hdr_.num_segments_ > 1) { 99 uint8_t* const probas = enc->proba_.segments_; 100 probas[0] = GetProba(p[0] + p[1], p[2] + p[3]); 101 probas[1] = GetProba(p[0], p[1]); 102 probas[2] = GetProba(p[2], p[3]); 103 104 enc->segment_hdr_.update_map_ = 105 (probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255); 106 enc->segment_hdr_.size_ = 107 p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) + 108 p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) + 109 p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) + 110 p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2])); 111 } else { 112 enc->segment_hdr_.update_map_ = 0; 113 enc->segment_hdr_.size_ = 0; 114 } 115 } 116 117 static WEBP_INLINE int clip(int v, int m, int M) { 118 return v < m ? m : v > M ? M : v; 119 } 120 121 static void SetSegmentAlphas(VP8Encoder* const enc, 122 const int centers[NUM_MB_SEGMENTS], 123 int mid) { 124 const int nb = enc->segment_hdr_.num_segments_; 125 int min = centers[0], max = centers[0]; 126 int n; 127 128 if (nb > 1) { 129 for (n = 0; n < nb; ++n) { 130 if (min > centers[n]) min = centers[n]; 131 if (max < centers[n]) max = centers[n]; 132 } 133 } 134 if (max == min) max = min + 1; 135 assert(mid <= max && mid >= min); 136 for (n = 0; n < nb; ++n) { 137 const int alpha = 255 * (centers[n] - mid) / (max - min); 138 const int beta = 255 * (centers[n] - min) / (max - min); 139 enc->dqm_[n].alpha_ = clip(alpha, -127, 127); 140 enc->dqm_[n].beta_ = clip(beta, 0, 255); 141 } 142 } 143 144 //------------------------------------------------------------------------------ 145 // Simplified k-Means, to assign Nb segments based on alpha-histogram 146 147 static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) { 148 const int nb = enc->segment_hdr_.num_segments_; 149 int centers[NUM_MB_SEGMENTS]; 150 int weighted_average = 0; 151 int map[256]; 152 int a, n, k; 153 int min_a = 0, max_a = 255, range_a; 154 // 'int' type is ok for histo, and won't overflow 155 int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS]; 156 157 // bracket the input 158 for (n = 0; n < 256 && alphas[n] == 0; ++n) {} 159 min_a = n; 160 for (n = 255; n > min_a && alphas[n] == 0; --n) {} 161 max_a = n; 162 range_a = max_a - min_a; 163 164 // Spread initial centers evenly 165 for (n = 1, k = 0; n < 2 * nb; n += 2) { 166 centers[k++] = min_a + (n * range_a) / (2 * nb); 167 } 168 169 for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough 170 int total_weight; 171 int displaced; 172 // Reset stats 173 for (n = 0; n < nb; ++n) { 174 accum[n] = 0; 175 dist_accum[n] = 0; 176 } 177 // Assign nearest center for each 'a' 178 n = 0; // track the nearest center for current 'a' 179 for (a = min_a; a <= max_a; ++a) { 180 if (alphas[a]) { 181 while (n < nb - 1 && abs(a - centers[n + 1]) < abs(a - centers[n])) { 182 n++; 183 } 184 map[a] = n; 185 // accumulate contribution into best centroid 186 dist_accum[n] += a * alphas[a]; 187 accum[n] += alphas[a]; 188 } 189 } 190 // All point are classified. Move the centroids to the 191 // center of their respective cloud. 192 displaced = 0; 193 weighted_average = 0; 194 total_weight = 0; 195 for (n = 0; n < nb; ++n) { 196 if (accum[n]) { 197 const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n]; 198 displaced += abs(centers[n] - new_center); 199 centers[n] = new_center; 200 weighted_average += new_center * accum[n]; 201 total_weight += accum[n]; 202 } 203 } 204 weighted_average = (weighted_average + total_weight / 2) / total_weight; 205 if (displaced < 5) break; // no need to keep on looping... 206 } 207 208 // Map each original value to the closest centroid 209 for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { 210 VP8MBInfo* const mb = &enc->mb_info_[n]; 211 const int alpha = mb->alpha_; 212 mb->segment_ = map[alpha]; 213 mb->alpha_ = centers[map[alpha]]; // just for the record. 214 } 215 216 if (nb > 1) { 217 const int smooth = (enc->config_->preprocessing & 1); 218 if (smooth) SmoothSegmentMap(enc); 219 } 220 221 SetSegmentProbas(enc); // Assign final proba 222 SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas. 223 } 224 225 //------------------------------------------------------------------------------ 226 // Macroblock analysis: collect histogram for each mode, deduce the maximal 227 // susceptibility and set best modes for this macroblock. 228 // Segment assignment is done later. 229 230 // Number of modes to inspect for alpha_ evaluation. For high-quality settings, 231 // we don't need to test all the possible modes during the analysis phase. 232 #define MAX_INTRA16_MODE 2 233 #define MAX_INTRA4_MODE 2 234 #define MAX_UV_MODE 2 235 236 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) { 237 const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA16_MODE : 4; 238 int mode; 239 int best_alpha = -1; 240 int best_mode = 0; 241 242 VP8MakeLuma16Preds(it); 243 for (mode = 0; mode < max_mode; ++mode) { 244 const int alpha = VP8CollectHistogram(it->yuv_in_ + Y_OFF, 245 it->yuv_p_ + VP8I16ModeOffsets[mode], 246 0, 16); 247 if (alpha > best_alpha) { 248 best_alpha = alpha; 249 best_mode = mode; 250 } 251 } 252 VP8SetIntra16Mode(it, best_mode); 253 return best_alpha; 254 } 255 256 static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it, 257 int best_alpha) { 258 uint8_t modes[16]; 259 const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA4_MODE : NUM_BMODES; 260 int i4_alpha = 0; 261 VP8IteratorStartI4(it); 262 do { 263 int mode; 264 int best_mode_alpha = -1; 265 const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; 266 267 VP8MakeIntra4Preds(it); 268 for (mode = 0; mode < max_mode; ++mode) { 269 const int alpha = VP8CollectHistogram(src, 270 it->yuv_p_ + VP8I4ModeOffsets[mode], 271 0, 1); 272 if (alpha > best_mode_alpha) { 273 best_mode_alpha = alpha; 274 modes[it->i4_] = mode; 275 } 276 } 277 i4_alpha += best_mode_alpha; 278 // Note: we reuse the original samples for predictors 279 } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF)); 280 281 if (i4_alpha > best_alpha) { 282 VP8SetIntra4Mode(it, modes); 283 best_alpha = ClipAlpha(i4_alpha); 284 } 285 return best_alpha; 286 } 287 288 static int MBAnalyzeBestUVMode(VP8EncIterator* const it) { 289 int best_alpha = -1; 290 int best_mode = 0; 291 const int max_mode = (it->enc_->method_ >= 3) ? MAX_UV_MODE : 4; 292 int mode; 293 VP8MakeChroma8Preds(it); 294 for (mode = 0; mode < max_mode; ++mode) { 295 const int alpha = VP8CollectHistogram(it->yuv_in_ + U_OFF, 296 it->yuv_p_ + VP8UVModeOffsets[mode], 297 16, 16 + 4 + 4); 298 if (alpha > best_alpha) { 299 best_alpha = alpha; 300 best_mode = mode; 301 } 302 } 303 VP8SetIntraUVMode(it, best_mode); 304 return best_alpha; 305 } 306 307 static void MBAnalyze(VP8EncIterator* const it, 308 int alphas[256], int* const uv_alpha) { 309 const VP8Encoder* const enc = it->enc_; 310 int best_alpha, best_uv_alpha; 311 312 VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED 313 VP8SetSkip(it, 0); // not skipped 314 VP8SetSegment(it, 0); // default segment, spec-wise. 315 316 best_alpha = MBAnalyzeBestIntra16Mode(it); 317 if (enc->method_ != 3) { 318 // We go and make a fast decision for intra4/intra16. 319 // It's usually not a good and definitive pick, but helps seeding the stats 320 // about level bit-cost. 321 // TODO(skal): improve criterion. 322 best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha); 323 } 324 best_uv_alpha = MBAnalyzeBestUVMode(it); 325 326 // Final susceptibility mix 327 best_alpha = (best_alpha + best_uv_alpha + 1) / 2; 328 alphas[best_alpha]++; 329 *uv_alpha += best_uv_alpha; 330 it->mb_->alpha_ = best_alpha; // Informative only. 331 } 332 333 //------------------------------------------------------------------------------ 334 // Main analysis loop: 335 // Collect all susceptibilities for each macroblock and record their 336 // distribution in alphas[]. Segments is assigned a-posteriori, based on 337 // this histogram. 338 // We also pick an intra16 prediction mode, which shouldn't be considered 339 // final except for fast-encode settings. We can also pick some intra4 modes 340 // and decide intra4/intra16, but that's usually almost always a bad choice at 341 // this stage. 342 343 int VP8EncAnalyze(VP8Encoder* const enc) { 344 int ok = 1; 345 int alphas[256] = { 0 }; 346 VP8EncIterator it; 347 348 VP8IteratorInit(enc, &it); 349 enc->uv_alpha_ = 0; 350 do { 351 VP8IteratorImport(&it); 352 MBAnalyze(&it, alphas, &enc->uv_alpha_); 353 ok = VP8IteratorProgress(&it, 20); 354 // Let's pretend we have perfect lossless reconstruction. 355 } while (ok && VP8IteratorNext(&it, it.yuv_in_)); 356 enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_; 357 if (ok) AssignSegments(enc, alphas); 358 359 return ok; 360 } 361 362 #if defined(__cplusplus) || defined(c_plusplus) 363 } // extern "C" 364 #endif 365