1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 #include "accessors.h" 30 31 #include "cctest.h" 32 33 34 using namespace v8::internal; 35 36 37 static MaybeObject* AllocateAfterFailures() { 38 static int attempts = 0; 39 if (++attempts < 3) return Failure::RetryAfterGC(); 40 Heap* heap = Isolate::Current()->heap(); 41 42 // New space. 43 NewSpace* new_space = heap->new_space(); 44 static const int kNewSpaceFillerSize = ByteArray::SizeFor(0); 45 while (new_space->Available() > kNewSpaceFillerSize) { 46 int available_before = static_cast<int>(new_space->Available()); 47 CHECK(!heap->AllocateByteArray(0)->IsFailure()); 48 if (available_before == new_space->Available()) { 49 // It seems that we are avoiding new space allocations when 50 // allocation is forced, so no need to fill up new space 51 // in order to make the test harder. 52 break; 53 } 54 } 55 CHECK(!heap->AllocateByteArray(100)->IsFailure()); 56 CHECK(!heap->AllocateFixedArray(100, NOT_TENURED)->IsFailure()); 57 58 // Make sure we can allocate through optimized allocation functions 59 // for specific kinds. 60 CHECK(!heap->AllocateFixedArray(100)->IsFailure()); 61 CHECK(!heap->AllocateHeapNumber(0.42)->IsFailure()); 62 CHECK(!heap->AllocateArgumentsObject(Smi::FromInt(87), 10)->IsFailure()); 63 Object* object = heap->AllocateJSObject( 64 *Isolate::Current()->object_function())->ToObjectChecked(); 65 CHECK(!heap->CopyJSObject(JSObject::cast(object))->IsFailure()); 66 67 // Old data space. 68 OldSpace* old_data_space = heap->old_data_space(); 69 static const int kOldDataSpaceFillerSize = ByteArray::SizeFor(0); 70 while (old_data_space->Available() > kOldDataSpaceFillerSize) { 71 CHECK(!heap->AllocateByteArray(0, TENURED)->IsFailure()); 72 } 73 CHECK(!heap->AllocateRawAsciiString(100, TENURED)->IsFailure()); 74 75 // Old pointer space. 76 OldSpace* old_pointer_space = heap->old_pointer_space(); 77 static const int kOldPointerSpaceFillerLength = 10000; 78 static const int kOldPointerSpaceFillerSize = FixedArray::SizeFor( 79 kOldPointerSpaceFillerLength); 80 while (old_pointer_space->Available() > kOldPointerSpaceFillerSize) { 81 CHECK(!heap->AllocateFixedArray(kOldPointerSpaceFillerLength, TENURED)-> 82 IsFailure()); 83 } 84 CHECK(!heap->AllocateFixedArray(kOldPointerSpaceFillerLength, TENURED)-> 85 IsFailure()); 86 87 // Large object space. 88 static const int kLargeObjectSpaceFillerLength = 300000; 89 static const int kLargeObjectSpaceFillerSize = FixedArray::SizeFor( 90 kLargeObjectSpaceFillerLength); 91 ASSERT(kLargeObjectSpaceFillerSize > heap->old_pointer_space()->AreaSize()); 92 while (heap->OldGenerationSpaceAvailable() > kLargeObjectSpaceFillerSize) { 93 CHECK(!heap->AllocateFixedArray(kLargeObjectSpaceFillerLength, TENURED)-> 94 IsFailure()); 95 } 96 CHECK(!heap->AllocateFixedArray(kLargeObjectSpaceFillerLength, TENURED)-> 97 IsFailure()); 98 99 // Map space. 100 MapSpace* map_space = heap->map_space(); 101 static const int kMapSpaceFillerSize = Map::kSize; 102 InstanceType instance_type = JS_OBJECT_TYPE; 103 int instance_size = JSObject::kHeaderSize; 104 while (map_space->Available() > kMapSpaceFillerSize) { 105 CHECK(!heap->AllocateMap(instance_type, instance_size)->IsFailure()); 106 } 107 CHECK(!heap->AllocateMap(instance_type, instance_size)->IsFailure()); 108 109 // Test that we can allocate in old pointer space and code space. 110 CHECK(!heap->AllocateFixedArray(100, TENURED)->IsFailure()); 111 CHECK(!heap->CopyCode(Isolate::Current()->builtins()->builtin( 112 Builtins::kIllegal))->IsFailure()); 113 114 // Return success. 115 return Smi::FromInt(42); 116 } 117 118 119 static Handle<Object> Test() { 120 CALL_HEAP_FUNCTION(ISOLATE, AllocateAfterFailures(), Object); 121 } 122 123 124 TEST(StressHandles) { 125 v8::Persistent<v8::Context> env = v8::Context::New(); 126 v8::HandleScope scope; 127 env->Enter(); 128 Handle<Object> o = Test(); 129 CHECK(o->IsSmi() && Smi::cast(*o)->value() == 42); 130 env->Exit(); 131 } 132 133 134 static MaybeObject* TestAccessorGet(Object* object, void*) { 135 return AllocateAfterFailures(); 136 } 137 138 139 const AccessorDescriptor kDescriptor = { 140 TestAccessorGet, 141 0, 142 0 143 }; 144 145 146 TEST(StressJS) { 147 v8::Persistent<v8::Context> env = v8::Context::New(); 148 v8::HandleScope scope; 149 env->Enter(); 150 Handle<JSFunction> function = 151 FACTORY->NewFunction(FACTORY->function_symbol(), FACTORY->null_value()); 152 // Force the creation of an initial map and set the code to 153 // something empty. 154 FACTORY->NewJSObject(function); 155 function->ReplaceCode(Isolate::Current()->builtins()->builtin( 156 Builtins::kEmptyFunction)); 157 // Patch the map to have an accessor for "get". 158 Handle<Map> map(function->initial_map()); 159 Handle<DescriptorArray> instance_descriptors(map->instance_descriptors()); 160 Handle<Foreign> foreign = FACTORY->NewForeign(&kDescriptor); 161 instance_descriptors = FACTORY->CopyAppendForeignDescriptor( 162 instance_descriptors, 163 FACTORY->NewStringFromAscii(Vector<const char>("get", 3)), 164 foreign, 165 static_cast<PropertyAttributes>(0)); 166 map->set_instance_descriptors(*instance_descriptors); 167 // Add the Foo constructor the global object. 168 env->Global()->Set(v8::String::New("Foo"), v8::Utils::ToLocal(function)); 169 // Call the accessor through JavaScript. 170 v8::Handle<v8::Value> result = 171 v8::Script::Compile(v8::String::New("(new Foo).get"))->Run(); 172 CHECK_EQ(42, result->Int32Value()); 173 env->Exit(); 174 } 175 176 177 // CodeRange test. 178 // Tests memory management in a CodeRange by allocating and freeing blocks, 179 // using a pseudorandom generator to choose block sizes geometrically 180 // distributed between 2 * Page::kPageSize and 2^5 + 1 * Page::kPageSize. 181 // Ensure that the freed chunks are collected and reused by allocating (in 182 // total) more than the size of the CodeRange. 183 184 // This pseudorandom generator does not need to be particularly good. 185 // Use the lower half of the V8::Random() generator. 186 unsigned int Pseudorandom() { 187 static uint32_t lo = 2345; 188 lo = 18273 * (lo & 0xFFFF) + (lo >> 16); // Provably not 0. 189 return lo & 0xFFFF; 190 } 191 192 193 // Plain old data class. Represents a block of allocated memory. 194 class Block { 195 public: 196 Block(Address base_arg, int size_arg) 197 : base(base_arg), size(size_arg) {} 198 199 Address base; 200 int size; 201 }; 202 203 204 TEST(CodeRange) { 205 const int code_range_size = 32*MB; 206 OS::SetUp(); 207 Isolate::Current()->InitializeLoggingAndCounters(); 208 CodeRange* code_range = new CodeRange(Isolate::Current()); 209 code_range->SetUp(code_range_size); 210 int current_allocated = 0; 211 int total_allocated = 0; 212 List<Block> blocks(1000); 213 214 while (total_allocated < 5 * code_range_size) { 215 if (current_allocated < code_range_size / 10) { 216 // Allocate a block. 217 // Geometrically distributed sizes, greater than 218 // Page::kMaxNonCodeHeapObjectSize (which is greater than code page area). 219 // TODO(gc): instead of using 3 use some contant based on code_range_size 220 // kMaxHeapObjectSize. 221 size_t requested = 222 (Page::kMaxNonCodeHeapObjectSize << (Pseudorandom() % 3)) + 223 Pseudorandom() % 5000 + 1; 224 size_t allocated = 0; 225 Address base = code_range->AllocateRawMemory(requested, &allocated); 226 CHECK(base != NULL); 227 blocks.Add(Block(base, static_cast<int>(allocated))); 228 current_allocated += static_cast<int>(allocated); 229 total_allocated += static_cast<int>(allocated); 230 } else { 231 // Free a block. 232 int index = Pseudorandom() % blocks.length(); 233 code_range->FreeRawMemory(blocks[index].base, blocks[index].size); 234 current_allocated -= blocks[index].size; 235 if (index < blocks.length() - 1) { 236 blocks[index] = blocks.RemoveLast(); 237 } else { 238 blocks.RemoveLast(); 239 } 240 } 241 } 242 243 code_range->TearDown(); 244 delete code_range; 245 } 246