Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <vector>
      6 
      7 #include "base/eintr_wrapper.h"
      8 #include "base/logging.h"
      9 #include "base/memory/ref_counted.h"
     10 #include "base/message_loop.h"
     11 #include "base/task.h"
     12 #include "base/threading/platform_thread.h"
     13 #include "base/threading/thread.h"
     14 #include "testing/gtest/include/gtest/gtest.h"
     15 
     16 #if defined(OS_WIN)
     17 #include "base/message_pump_win.h"
     18 #include "base/win/scoped_handle.h"
     19 #endif
     20 #if defined(OS_POSIX)
     21 #include "base/message_pump_libevent.h"
     22 #endif
     23 
     24 using base::PlatformThread;
     25 using base::Thread;
     26 using base::Time;
     27 using base::TimeDelta;
     28 
     29 // TODO(darin): Platform-specific MessageLoop tests should be grouped together
     30 // to avoid chopping this file up with so many #ifdefs.
     31 
     32 namespace {
     33 
     34 class MessageLoopTest : public testing::Test {};
     35 
     36 class Foo : public base::RefCounted<Foo> {
     37  public:
     38   Foo() : test_count_(0) {
     39   }
     40 
     41   void Test0() {
     42     ++test_count_;
     43   }
     44 
     45   void Test1ConstRef(const std::string& a) {
     46     ++test_count_;
     47     result_.append(a);
     48   }
     49 
     50   void Test1Ptr(std::string* a) {
     51     ++test_count_;
     52     result_.append(*a);
     53   }
     54 
     55   void Test1Int(int a) {
     56     test_count_ += a;
     57   }
     58 
     59   void Test2Ptr(std::string* a, std::string* b) {
     60     ++test_count_;
     61     result_.append(*a);
     62     result_.append(*b);
     63   }
     64 
     65   void Test2Mixed(const std::string& a, std::string* b) {
     66     ++test_count_;
     67     result_.append(a);
     68     result_.append(*b);
     69   }
     70 
     71   int test_count() const { return test_count_; }
     72   const std::string& result() const { return result_; }
     73 
     74  private:
     75   friend class base::RefCounted<Foo>;
     76 
     77   ~Foo() {}
     78 
     79   int test_count_;
     80   std::string result_;
     81 };
     82 
     83 class QuitMsgLoop : public base::RefCounted<QuitMsgLoop> {
     84  public:
     85   void QuitNow() {
     86     MessageLoop::current()->Quit();
     87   }
     88 
     89  private:
     90   friend class base::RefCounted<QuitMsgLoop>;
     91 
     92   ~QuitMsgLoop() {}
     93 };
     94 
     95 void RunTest_PostTask(MessageLoop::Type message_loop_type) {
     96   MessageLoop loop(message_loop_type);
     97 
     98   // Add tests to message loop
     99   scoped_refptr<Foo> foo(new Foo());
    100   std::string a("a"), b("b"), c("c"), d("d");
    101   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    102       foo.get(), &Foo::Test0));
    103   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    104     foo.get(), &Foo::Test1ConstRef, a));
    105   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    106       foo.get(), &Foo::Test1Ptr, &b));
    107   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    108       foo.get(), &Foo::Test1Int, 100));
    109   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    110       foo.get(), &Foo::Test2Ptr, &a, &c));
    111   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    112     foo.get(), &Foo::Test2Mixed, a, &d));
    113 
    114   // After all tests, post a message that will shut down the message loop
    115   scoped_refptr<QuitMsgLoop> quit(new QuitMsgLoop());
    116   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    117       quit.get(), &QuitMsgLoop::QuitNow));
    118 
    119   // Now kick things off
    120   MessageLoop::current()->Run();
    121 
    122   EXPECT_EQ(foo->test_count(), 105);
    123   EXPECT_EQ(foo->result(), "abacad");
    124 }
    125 
    126 void RunTest_PostTask_SEH(MessageLoop::Type message_loop_type) {
    127   MessageLoop loop(message_loop_type);
    128 
    129   // Add tests to message loop
    130   scoped_refptr<Foo> foo(new Foo());
    131   std::string a("a"), b("b"), c("c"), d("d");
    132   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    133       foo.get(), &Foo::Test0));
    134   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    135       foo.get(), &Foo::Test1ConstRef, a));
    136   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    137       foo.get(), &Foo::Test1Ptr, &b));
    138   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    139       foo.get(), &Foo::Test1Int, 100));
    140   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    141       foo.get(), &Foo::Test2Ptr, &a, &c));
    142   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    143       foo.get(), &Foo::Test2Mixed, a, &d));
    144 
    145   // After all tests, post a message that will shut down the message loop
    146   scoped_refptr<QuitMsgLoop> quit(new QuitMsgLoop());
    147   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    148       quit.get(), &QuitMsgLoop::QuitNow));
    149 
    150   // Now kick things off with the SEH block active.
    151   MessageLoop::current()->set_exception_restoration(true);
    152   MessageLoop::current()->Run();
    153   MessageLoop::current()->set_exception_restoration(false);
    154 
    155   EXPECT_EQ(foo->test_count(), 105);
    156   EXPECT_EQ(foo->result(), "abacad");
    157 }
    158 
    159 // This class runs slowly to simulate a large amount of work being done.
    160 class SlowTask : public Task {
    161  public:
    162   SlowTask(int pause_ms, int* quit_counter)
    163       : pause_ms_(pause_ms), quit_counter_(quit_counter) {
    164   }
    165   virtual void Run() {
    166     PlatformThread::Sleep(pause_ms_);
    167     if (--(*quit_counter_) == 0)
    168       MessageLoop::current()->Quit();
    169   }
    170  private:
    171   int pause_ms_;
    172   int* quit_counter_;
    173 };
    174 
    175 // This class records the time when Run was called in a Time object, which is
    176 // useful for building a variety of MessageLoop tests.
    177 class RecordRunTimeTask : public SlowTask {
    178  public:
    179   RecordRunTimeTask(Time* run_time, int* quit_counter)
    180       : SlowTask(10, quit_counter), run_time_(run_time) {
    181   }
    182   virtual void Run() {
    183     *run_time_ = Time::Now();
    184     // Cause our Run function to take some time to execute.  As a result we can
    185     // count on subsequent RecordRunTimeTask objects running at a future time,
    186     // without worry about the resolution of our system clock being an issue.
    187     SlowTask::Run();
    188   }
    189  private:
    190   Time* run_time_;
    191 };
    192 
    193 void RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type) {
    194   MessageLoop loop(message_loop_type);
    195 
    196   // Test that PostDelayedTask results in a delayed task.
    197 
    198   const int kDelayMS = 100;
    199 
    200   int num_tasks = 1;
    201   Time run_time;
    202 
    203   loop.PostDelayedTask(
    204       FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), kDelayMS);
    205 
    206   Time time_before_run = Time::Now();
    207   loop.Run();
    208   Time time_after_run = Time::Now();
    209 
    210   EXPECT_EQ(0, num_tasks);
    211   EXPECT_LT(kDelayMS, (time_after_run - time_before_run).InMilliseconds());
    212 }
    213 
    214 void RunTest_PostDelayedTask_InDelayOrder(MessageLoop::Type message_loop_type) {
    215   MessageLoop loop(message_loop_type);
    216 
    217   // Test that two tasks with different delays run in the right order.
    218 
    219   int num_tasks = 2;
    220   Time run_time1, run_time2;
    221 
    222   loop.PostDelayedTask(
    223       FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 200);
    224   // If we get a large pause in execution (due to a context switch) here, this
    225   // test could fail.
    226   loop.PostDelayedTask(
    227       FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
    228 
    229   loop.Run();
    230   EXPECT_EQ(0, num_tasks);
    231 
    232   EXPECT_TRUE(run_time2 < run_time1);
    233 }
    234 
    235 void RunTest_PostDelayedTask_InPostOrder(MessageLoop::Type message_loop_type) {
    236   MessageLoop loop(message_loop_type);
    237 
    238   // Test that two tasks with the same delay run in the order in which they
    239   // were posted.
    240   //
    241   // NOTE: This is actually an approximate test since the API only takes a
    242   // "delay" parameter, so we are not exactly simulating two tasks that get
    243   // posted at the exact same time.  It would be nice if the API allowed us to
    244   // specify the desired run time.
    245 
    246   const int kDelayMS = 100;
    247 
    248   int num_tasks = 2;
    249   Time run_time1, run_time2;
    250 
    251   loop.PostDelayedTask(
    252       FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), kDelayMS);
    253   loop.PostDelayedTask(
    254       FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), kDelayMS);
    255 
    256   loop.Run();
    257   EXPECT_EQ(0, num_tasks);
    258 
    259   EXPECT_TRUE(run_time1 < run_time2);
    260 }
    261 
    262 void RunTest_PostDelayedTask_InPostOrder_2(
    263     MessageLoop::Type message_loop_type) {
    264   MessageLoop loop(message_loop_type);
    265 
    266   // Test that a delayed task still runs after a normal tasks even if the
    267   // normal tasks take a long time to run.
    268 
    269   const int kPauseMS = 50;
    270 
    271   int num_tasks = 2;
    272   Time run_time;
    273 
    274   loop.PostTask(
    275       FROM_HERE, new SlowTask(kPauseMS, &num_tasks));
    276   loop.PostDelayedTask(
    277       FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 10);
    278 
    279   Time time_before_run = Time::Now();
    280   loop.Run();
    281   Time time_after_run = Time::Now();
    282 
    283   EXPECT_EQ(0, num_tasks);
    284 
    285   EXPECT_LT(kPauseMS, (time_after_run - time_before_run).InMilliseconds());
    286 }
    287 
    288 void RunTest_PostDelayedTask_InPostOrder_3(
    289     MessageLoop::Type message_loop_type) {
    290   MessageLoop loop(message_loop_type);
    291 
    292   // Test that a delayed task still runs after a pile of normal tasks.  The key
    293   // difference between this test and the previous one is that here we return
    294   // the MessageLoop a lot so we give the MessageLoop plenty of opportunities
    295   // to maybe run the delayed task.  It should know not to do so until the
    296   // delayed task's delay has passed.
    297 
    298   int num_tasks = 11;
    299   Time run_time1, run_time2;
    300 
    301   // Clutter the ML with tasks.
    302   for (int i = 1; i < num_tasks; ++i)
    303     loop.PostTask(FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks));
    304 
    305   loop.PostDelayedTask(
    306       FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 1);
    307 
    308   loop.Run();
    309   EXPECT_EQ(0, num_tasks);
    310 
    311   EXPECT_TRUE(run_time2 > run_time1);
    312 }
    313 
    314 void RunTest_PostDelayedTask_SharedTimer(MessageLoop::Type message_loop_type) {
    315   MessageLoop loop(message_loop_type);
    316 
    317   // Test that the interval of the timer, used to run the next delayed task, is
    318   // set to a value corresponding to when the next delayed task should run.
    319 
    320   // By setting num_tasks to 1, we ensure that the first task to run causes the
    321   // run loop to exit.
    322   int num_tasks = 1;
    323   Time run_time1, run_time2;
    324 
    325   loop.PostDelayedTask(
    326       FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 1000000);
    327   loop.PostDelayedTask(
    328       FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
    329 
    330   Time start_time = Time::Now();
    331 
    332   loop.Run();
    333   EXPECT_EQ(0, num_tasks);
    334 
    335   // Ensure that we ran in far less time than the slower timer.
    336   TimeDelta total_time = Time::Now() - start_time;
    337   EXPECT_GT(5000, total_time.InMilliseconds());
    338 
    339   // In case both timers somehow run at nearly the same time, sleep a little
    340   // and then run all pending to force them both to have run.  This is just
    341   // encouraging flakiness if there is any.
    342   PlatformThread::Sleep(100);
    343   loop.RunAllPending();
    344 
    345   EXPECT_TRUE(run_time1.is_null());
    346   EXPECT_FALSE(run_time2.is_null());
    347 }
    348 
    349 #if defined(OS_WIN)
    350 
    351 class SubPumpTask : public Task {
    352  public:
    353   virtual void Run() {
    354     MessageLoop::current()->SetNestableTasksAllowed(true);
    355     MSG msg;
    356     while (GetMessage(&msg, NULL, 0, 0)) {
    357       TranslateMessage(&msg);
    358       DispatchMessage(&msg);
    359     }
    360     MessageLoop::current()->Quit();
    361   }
    362 };
    363 
    364 class SubPumpQuitTask : public Task {
    365  public:
    366   SubPumpQuitTask() {
    367   }
    368   virtual void Run() {
    369     PostQuitMessage(0);
    370   }
    371 };
    372 
    373 void RunTest_PostDelayedTask_SharedTimer_SubPump() {
    374   MessageLoop loop(MessageLoop::TYPE_UI);
    375 
    376   // Test that the interval of the timer, used to run the next delayed task, is
    377   // set to a value corresponding to when the next delayed task should run.
    378 
    379   // By setting num_tasks to 1, we ensure that the first task to run causes the
    380   // run loop to exit.
    381   int num_tasks = 1;
    382   Time run_time;
    383 
    384   loop.PostTask(FROM_HERE, new SubPumpTask());
    385 
    386   // This very delayed task should never run.
    387   loop.PostDelayedTask(
    388       FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 1000000);
    389 
    390   // This slightly delayed task should run from within SubPumpTask::Run().
    391   loop.PostDelayedTask(
    392       FROM_HERE, new SubPumpQuitTask(), 10);
    393 
    394   Time start_time = Time::Now();
    395 
    396   loop.Run();
    397   EXPECT_EQ(1, num_tasks);
    398 
    399   // Ensure that we ran in far less time than the slower timer.
    400   TimeDelta total_time = Time::Now() - start_time;
    401   EXPECT_GT(5000, total_time.InMilliseconds());
    402 
    403   // In case both timers somehow run at nearly the same time, sleep a little
    404   // and then run all pending to force them both to have run.  This is just
    405   // encouraging flakiness if there is any.
    406   PlatformThread::Sleep(100);
    407   loop.RunAllPending();
    408 
    409   EXPECT_TRUE(run_time.is_null());
    410 }
    411 
    412 #endif  // defined(OS_WIN)
    413 
    414 class RecordDeletionTask : public Task {
    415  public:
    416   RecordDeletionTask(Task* post_on_delete, bool* was_deleted)
    417       : post_on_delete_(post_on_delete), was_deleted_(was_deleted) {
    418   }
    419   ~RecordDeletionTask() {
    420     *was_deleted_ = true;
    421     if (post_on_delete_)
    422       MessageLoop::current()->PostTask(FROM_HERE, post_on_delete_);
    423   }
    424   virtual void Run() {}
    425  private:
    426   Task* post_on_delete_;
    427   bool* was_deleted_;
    428 };
    429 
    430 void RunTest_EnsureTaskDeletion(MessageLoop::Type message_loop_type) {
    431   bool a_was_deleted = false;
    432   bool b_was_deleted = false;
    433   {
    434     MessageLoop loop(message_loop_type);
    435     loop.PostTask(
    436         FROM_HERE, new RecordDeletionTask(NULL, &a_was_deleted));
    437     loop.PostDelayedTask(
    438         FROM_HERE, new RecordDeletionTask(NULL, &b_was_deleted), 1000);
    439   }
    440   EXPECT_TRUE(a_was_deleted);
    441   EXPECT_TRUE(b_was_deleted);
    442 }
    443 
    444 void RunTest_EnsureTaskDeletion_Chain(MessageLoop::Type message_loop_type) {
    445   bool a_was_deleted = false;
    446   bool b_was_deleted = false;
    447   bool c_was_deleted = false;
    448   {
    449     MessageLoop loop(message_loop_type);
    450     RecordDeletionTask* a = new RecordDeletionTask(NULL, &a_was_deleted);
    451     RecordDeletionTask* b = new RecordDeletionTask(a, &b_was_deleted);
    452     RecordDeletionTask* c = new RecordDeletionTask(b, &c_was_deleted);
    453     loop.PostTask(FROM_HERE, c);
    454   }
    455   EXPECT_TRUE(a_was_deleted);
    456   EXPECT_TRUE(b_was_deleted);
    457   EXPECT_TRUE(c_was_deleted);
    458 }
    459 
    460 class NestingTest : public Task {
    461  public:
    462   explicit NestingTest(int* depth) : depth_(depth) {
    463   }
    464   void Run() {
    465     if (*depth_ > 0) {
    466       *depth_ -= 1;
    467       MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(depth_));
    468 
    469       MessageLoop::current()->SetNestableTasksAllowed(true);
    470       MessageLoop::current()->Run();
    471     }
    472     MessageLoop::current()->Quit();
    473   }
    474  private:
    475   int* depth_;
    476 };
    477 
    478 #if defined(OS_WIN)
    479 
    480 LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) {
    481   ADD_FAILURE() << "bad exception handler";
    482   ::ExitProcess(ex_info->ExceptionRecord->ExceptionCode);
    483   return EXCEPTION_EXECUTE_HANDLER;
    484 }
    485 
    486 // This task throws an SEH exception: initially write to an invalid address.
    487 // If the right SEH filter is installed, it will fix the error.
    488 class CrasherTask : public Task {
    489  public:
    490   // Ctor. If trash_SEH_handler is true, the task will override the unhandled
    491   // exception handler with one sure to crash this test.
    492   explicit CrasherTask(bool trash_SEH_handler)
    493       : trash_SEH_handler_(trash_SEH_handler) {
    494   }
    495   void Run() {
    496     PlatformThread::Sleep(1);
    497     if (trash_SEH_handler_)
    498       ::SetUnhandledExceptionFilter(&BadExceptionHandler);
    499     // Generate a SEH fault. We do it in asm to make sure we know how to undo
    500     // the damage.
    501 
    502 #if defined(_M_IX86)
    503 
    504     __asm {
    505       mov eax, dword ptr [CrasherTask::bad_array_]
    506       mov byte ptr [eax], 66
    507     }
    508 
    509 #elif defined(_M_X64)
    510 
    511     bad_array_[0] = 66;
    512 
    513 #else
    514 #error "needs architecture support"
    515 #endif
    516 
    517     MessageLoop::current()->Quit();
    518   }
    519   // Points the bad array to a valid memory location.
    520   static void FixError() {
    521     bad_array_ = &valid_store_;
    522   }
    523 
    524  private:
    525   bool trash_SEH_handler_;
    526   static volatile char* bad_array_;
    527   static char valid_store_;
    528 };
    529 
    530 volatile char* CrasherTask::bad_array_ = 0;
    531 char CrasherTask::valid_store_ = 0;
    532 
    533 // This SEH filter fixes the problem and retries execution. Fixing requires
    534 // that the last instruction: mov eax, [CrasherTask::bad_array_] to be retried
    535 // so we move the instruction pointer 5 bytes back.
    536 LONG WINAPI HandleCrasherTaskException(EXCEPTION_POINTERS *ex_info) {
    537   if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
    538     return EXCEPTION_EXECUTE_HANDLER;
    539 
    540   CrasherTask::FixError();
    541 
    542 #if defined(_M_IX86)
    543 
    544   ex_info->ContextRecord->Eip -= 5;
    545 
    546 #elif defined(_M_X64)
    547 
    548   ex_info->ContextRecord->Rip -= 5;
    549 
    550 #endif
    551 
    552   return EXCEPTION_CONTINUE_EXECUTION;
    553 }
    554 
    555 void RunTest_Crasher(MessageLoop::Type message_loop_type) {
    556   MessageLoop loop(message_loop_type);
    557 
    558   if (::IsDebuggerPresent())
    559     return;
    560 
    561   LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
    562       ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
    563 
    564   MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(false));
    565   MessageLoop::current()->set_exception_restoration(true);
    566   MessageLoop::current()->Run();
    567   MessageLoop::current()->set_exception_restoration(false);
    568 
    569   ::SetUnhandledExceptionFilter(old_SEH_filter);
    570 }
    571 
    572 void RunTest_CrasherNasty(MessageLoop::Type message_loop_type) {
    573   MessageLoop loop(message_loop_type);
    574 
    575   if (::IsDebuggerPresent())
    576     return;
    577 
    578   LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
    579       ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
    580 
    581   MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(true));
    582   MessageLoop::current()->set_exception_restoration(true);
    583   MessageLoop::current()->Run();
    584   MessageLoop::current()->set_exception_restoration(false);
    585 
    586   ::SetUnhandledExceptionFilter(old_SEH_filter);
    587 }
    588 
    589 #endif  // defined(OS_WIN)
    590 
    591 void RunTest_Nesting(MessageLoop::Type message_loop_type) {
    592   MessageLoop loop(message_loop_type);
    593 
    594   int depth = 100;
    595   MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(&depth));
    596   MessageLoop::current()->Run();
    597   EXPECT_EQ(depth, 0);
    598 }
    599 
    600 const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test";
    601 
    602 enum TaskType {
    603   MESSAGEBOX,
    604   ENDDIALOG,
    605   RECURSIVE,
    606   TIMEDMESSAGELOOP,
    607   QUITMESSAGELOOP,
    608   ORDERERD,
    609   PUMPS,
    610   SLEEP,
    611 };
    612 
    613 // Saves the order in which the tasks executed.
    614 struct TaskItem {
    615   TaskItem(TaskType t, int c, bool s)
    616       : type(t),
    617         cookie(c),
    618         start(s) {
    619   }
    620 
    621   TaskType type;
    622   int cookie;
    623   bool start;
    624 
    625   bool operator == (const TaskItem& other) const {
    626     return type == other.type && cookie == other.cookie && start == other.start;
    627   }
    628 };
    629 
    630 typedef std::vector<TaskItem> TaskList;
    631 
    632 std::ostream& operator <<(std::ostream& os, TaskType type) {
    633   switch (type) {
    634   case MESSAGEBOX:        os << "MESSAGEBOX"; break;
    635   case ENDDIALOG:         os << "ENDDIALOG"; break;
    636   case RECURSIVE:         os << "RECURSIVE"; break;
    637   case TIMEDMESSAGELOOP:  os << "TIMEDMESSAGELOOP"; break;
    638   case QUITMESSAGELOOP:   os << "QUITMESSAGELOOP"; break;
    639   case ORDERERD:          os << "ORDERERD"; break;
    640   case PUMPS:             os << "PUMPS"; break;
    641   case SLEEP:             os << "SLEEP"; break;
    642   default:
    643     NOTREACHED();
    644     os << "Unknown TaskType";
    645     break;
    646   }
    647   return os;
    648 }
    649 
    650 std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
    651   if (item.start)
    652     return os << item.type << " " << item.cookie << " starts";
    653   else
    654     return os << item.type << " " << item.cookie << " ends";
    655 }
    656 
    657 // Saves the order the tasks ran.
    658 class OrderedTasks : public Task {
    659  public:
    660   OrderedTasks(TaskList* order, int cookie)
    661       : order_(order),
    662         type_(ORDERERD),
    663         cookie_(cookie) {
    664   }
    665   OrderedTasks(TaskList* order, TaskType type, int cookie)
    666       : order_(order),
    667         type_(type),
    668         cookie_(cookie) {
    669   }
    670 
    671   void RunStart() {
    672     TaskItem item(type_, cookie_, true);
    673     DVLOG(1) << item;
    674     order_->push_back(item);
    675   }
    676   void RunEnd() {
    677     TaskItem item(type_, cookie_, false);
    678     DVLOG(1) << item;
    679     order_->push_back(item);
    680   }
    681 
    682   virtual void Run() {
    683     RunStart();
    684     RunEnd();
    685   }
    686 
    687  protected:
    688   TaskList* order() const {
    689     return order_;
    690   }
    691 
    692   int cookie() const {
    693     return cookie_;
    694   }
    695 
    696  private:
    697   TaskList* order_;
    698   TaskType type_;
    699   int cookie_;
    700 };
    701 
    702 #if defined(OS_WIN)
    703 
    704 // MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
    705 // common controls (like OpenFile) and StartDoc printing function can cause
    706 // implicit message loops.
    707 class MessageBoxTask : public OrderedTasks {
    708  public:
    709   MessageBoxTask(TaskList* order, int cookie, bool is_reentrant)
    710       : OrderedTasks(order, MESSAGEBOX, cookie),
    711         is_reentrant_(is_reentrant) {
    712   }
    713 
    714   virtual void Run() {
    715     RunStart();
    716     if (is_reentrant_)
    717       MessageLoop::current()->SetNestableTasksAllowed(true);
    718     MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
    719     RunEnd();
    720   }
    721 
    722  private:
    723   bool is_reentrant_;
    724 };
    725 
    726 // Will end the MessageBox.
    727 class EndDialogTask : public OrderedTasks {
    728  public:
    729   EndDialogTask(TaskList* order, int cookie)
    730       : OrderedTasks(order, ENDDIALOG, cookie) {
    731   }
    732 
    733   virtual void Run() {
    734     RunStart();
    735     HWND window = GetActiveWindow();
    736     if (window != NULL) {
    737       EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
    738       // Cheap way to signal that the window wasn't found if RunEnd() isn't
    739       // called.
    740       RunEnd();
    741     }
    742   }
    743 };
    744 
    745 #endif  // defined(OS_WIN)
    746 
    747 class RecursiveTask : public OrderedTasks {
    748  public:
    749   RecursiveTask(int depth, TaskList* order, int cookie, bool is_reentrant)
    750       : OrderedTasks(order, RECURSIVE, cookie),
    751         depth_(depth),
    752         is_reentrant_(is_reentrant) {
    753   }
    754 
    755   virtual void Run() {
    756     RunStart();
    757     if (depth_ > 0) {
    758       if (is_reentrant_)
    759         MessageLoop::current()->SetNestableTasksAllowed(true);
    760       MessageLoop::current()->PostTask(FROM_HERE,
    761           new RecursiveTask(depth_ - 1, order(), cookie(), is_reentrant_));
    762     }
    763     RunEnd();
    764   }
    765 
    766  private:
    767   int depth_;
    768   bool is_reentrant_;
    769 };
    770 
    771 class RecursiveSlowTask : public RecursiveTask {
    772  public:
    773   RecursiveSlowTask(int depth, TaskList* order, int cookie, bool is_reentrant)
    774       : RecursiveTask(depth, order, cookie, is_reentrant) {
    775   }
    776 
    777   virtual void Run() {
    778     RecursiveTask::Run();
    779     PlatformThread::Sleep(10);  // milliseconds
    780   }
    781 };
    782 
    783 class QuitTask : public OrderedTasks {
    784  public:
    785   QuitTask(TaskList* order, int cookie)
    786       : OrderedTasks(order, QUITMESSAGELOOP, cookie) {
    787   }
    788 
    789   virtual void Run() {
    790     RunStart();
    791     MessageLoop::current()->Quit();
    792     RunEnd();
    793   }
    794 };
    795 
    796 class SleepTask : public OrderedTasks {
    797  public:
    798   SleepTask(TaskList* order, int cookie, int ms)
    799       : OrderedTasks(order, SLEEP, cookie), ms_(ms) {
    800   }
    801 
    802   virtual void Run() {
    803     RunStart();
    804     PlatformThread::Sleep(ms_);
    805     RunEnd();
    806   }
    807 
    808  private:
    809   int ms_;
    810 };
    811 
    812 #if defined(OS_WIN)
    813 
    814 class Recursive2Tasks : public Task {
    815  public:
    816   Recursive2Tasks(MessageLoop* target,
    817                   HANDLE event,
    818                   bool expect_window,
    819                   TaskList* order,
    820                   bool is_reentrant)
    821       : target_(target),
    822         event_(event),
    823         expect_window_(expect_window),
    824         order_(order),
    825         is_reentrant_(is_reentrant) {
    826   }
    827 
    828   virtual void Run() {
    829     target_->PostTask(FROM_HERE,
    830                       new RecursiveTask(2, order_, 1, is_reentrant_));
    831     target_->PostTask(FROM_HERE,
    832                       new MessageBoxTask(order_, 2, is_reentrant_));
    833     target_->PostTask(FROM_HERE,
    834                       new RecursiveTask(2, order_, 3, is_reentrant_));
    835     // The trick here is that for recursive task processing, this task will be
    836     // ran _inside_ the MessageBox message loop, dismissing the MessageBox
    837     // without a chance.
    838     // For non-recursive task processing, this will be executed _after_ the
    839     // MessageBox will have been dismissed by the code below, where
    840     // expect_window_ is true.
    841     target_->PostTask(FROM_HERE, new EndDialogTask(order_, 4));
    842     target_->PostTask(FROM_HERE, new QuitTask(order_, 5));
    843 
    844     // Enforce that every tasks are sent before starting to run the main thread
    845     // message loop.
    846     ASSERT_TRUE(SetEvent(event_));
    847 
    848     // Poll for the MessageBox. Don't do this at home! At the speed we do it,
    849     // you will never realize one MessageBox was shown.
    850     for (; expect_window_;) {
    851       HWND window = FindWindow(L"#32770", kMessageBoxTitle);
    852       if (window) {
    853         // Dismiss it.
    854         for (;;) {
    855           HWND button = FindWindowEx(window, NULL, L"Button", NULL);
    856           if (button != NULL) {
    857             EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
    858             EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
    859             break;
    860           }
    861         }
    862         break;
    863       }
    864     }
    865   }
    866 
    867  private:
    868   MessageLoop* target_;
    869   HANDLE event_;
    870   TaskList* order_;
    871   bool expect_window_;
    872   bool is_reentrant_;
    873 };
    874 
    875 #endif  // defined(OS_WIN)
    876 
    877 void RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type) {
    878   MessageLoop loop(message_loop_type);
    879 
    880   EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
    881   TaskList order;
    882   MessageLoop::current()->PostTask(FROM_HERE,
    883                                    new RecursiveTask(2, &order, 1, false));
    884   MessageLoop::current()->PostTask(FROM_HERE,
    885                                    new RecursiveTask(2, &order, 2, false));
    886   MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
    887 
    888   MessageLoop::current()->Run();
    889 
    890   // FIFO order.
    891   ASSERT_EQ(14U, order.size());
    892   EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
    893   EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
    894   EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
    895   EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
    896   EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
    897   EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
    898   EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
    899   EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
    900   EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
    901   EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
    902   EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
    903   EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
    904   EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
    905   EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
    906 }
    907 
    908 void RunTest_RecursiveDenial3(MessageLoop::Type message_loop_type) {
    909   MessageLoop loop(message_loop_type);
    910 
    911   EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
    912   TaskList order;
    913   MessageLoop::current()->PostTask(FROM_HERE,
    914                                    new RecursiveSlowTask(2, &order, 1, false));
    915   MessageLoop::current()->PostTask(FROM_HERE,
    916                                    new RecursiveSlowTask(2, &order, 2, false));
    917   MessageLoop::current()->PostDelayedTask(FROM_HERE,
    918                                           new OrderedTasks(&order, 3), 5);
    919   MessageLoop::current()->PostDelayedTask(FROM_HERE,
    920                                           new QuitTask(&order, 4), 5);
    921 
    922   MessageLoop::current()->Run();
    923 
    924   // FIFO order.
    925   ASSERT_EQ(16U, order.size());
    926   EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
    927   EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
    928   EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
    929   EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
    930   EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 1, true));
    931   EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 1, false));
    932   EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 3, true));
    933   EXPECT_EQ(order[ 7], TaskItem(ORDERERD, 3, false));
    934   EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
    935   EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
    936   EXPECT_EQ(order[10], TaskItem(QUITMESSAGELOOP, 4, true));
    937   EXPECT_EQ(order[11], TaskItem(QUITMESSAGELOOP, 4, false));
    938   EXPECT_EQ(order[12], TaskItem(RECURSIVE, 1, true));
    939   EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, false));
    940   EXPECT_EQ(order[14], TaskItem(RECURSIVE, 2, true));
    941   EXPECT_EQ(order[15], TaskItem(RECURSIVE, 2, false));
    942 }
    943 
    944 void RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type) {
    945   MessageLoop loop(message_loop_type);
    946 
    947   TaskList order;
    948   MessageLoop::current()->PostTask(FROM_HERE,
    949                                    new RecursiveTask(2, &order, 1, true));
    950   MessageLoop::current()->PostTask(FROM_HERE,
    951                                    new RecursiveTask(2, &order, 2, true));
    952   MessageLoop::current()->PostTask(FROM_HERE,
    953                                    new QuitTask(&order, 3));
    954 
    955   MessageLoop::current()->Run();
    956 
    957   // FIFO order.
    958   ASSERT_EQ(14U, order.size());
    959   EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
    960   EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
    961   EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
    962   EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
    963   EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
    964   EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
    965   EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
    966   EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
    967   EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
    968   EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
    969   EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
    970   EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
    971   EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
    972   EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
    973 }
    974 
    975 #if defined(OS_WIN)
    976 // TODO(darin): These tests need to be ported since they test critical
    977 // message loop functionality.
    978 
    979 // A side effect of this test is the generation a beep. Sorry.
    980 void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
    981   MessageLoop loop(message_loop_type);
    982 
    983   Thread worker("RecursiveDenial2_worker");
    984   Thread::Options options;
    985   options.message_loop_type = message_loop_type;
    986   ASSERT_EQ(true, worker.StartWithOptions(options));
    987   TaskList order;
    988   base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
    989   worker.message_loop()->PostTask(FROM_HERE,
    990                                   new Recursive2Tasks(MessageLoop::current(),
    991                                                       event,
    992                                                       true,
    993                                                       &order,
    994                                                       false));
    995   // Let the other thread execute.
    996   WaitForSingleObject(event, INFINITE);
    997   MessageLoop::current()->Run();
    998 
    999   ASSERT_EQ(order.size(), 17);
   1000   EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
   1001   EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
   1002   EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
   1003   EXPECT_EQ(order[ 3], TaskItem(MESSAGEBOX, 2, false));
   1004   EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, true));
   1005   EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 3, false));
   1006   // When EndDialogTask is processed, the window is already dismissed, hence no
   1007   // "end" entry.
   1008   EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, true));
   1009   EXPECT_EQ(order[ 7], TaskItem(QUITMESSAGELOOP, 5, true));
   1010   EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, false));
   1011   EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 1, true));
   1012   EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, false));
   1013   EXPECT_EQ(order[11], TaskItem(RECURSIVE, 3, true));
   1014   EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, false));
   1015   EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, true));
   1016   EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, false));
   1017   EXPECT_EQ(order[15], TaskItem(RECURSIVE, 3, true));
   1018   EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, false));
   1019 }
   1020 
   1021 // A side effect of this test is the generation a beep. Sorry.  This test also
   1022 // needs to process windows messages on the current thread.
   1023 void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
   1024   MessageLoop loop(message_loop_type);
   1025 
   1026   Thread worker("RecursiveSupport2_worker");
   1027   Thread::Options options;
   1028   options.message_loop_type = message_loop_type;
   1029   ASSERT_EQ(true, worker.StartWithOptions(options));
   1030   TaskList order;
   1031   base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
   1032   worker.message_loop()->PostTask(FROM_HERE,
   1033                                   new Recursive2Tasks(MessageLoop::current(),
   1034                                                       event,
   1035                                                       false,
   1036                                                       &order,
   1037                                                       true));
   1038   // Let the other thread execute.
   1039   WaitForSingleObject(event, INFINITE);
   1040   MessageLoop::current()->Run();
   1041 
   1042   ASSERT_EQ(order.size(), 18);
   1043   EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
   1044   EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
   1045   EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
   1046   // Note that this executes in the MessageBox modal loop.
   1047   EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 3, true));
   1048   EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, false));
   1049   EXPECT_EQ(order[ 5], TaskItem(ENDDIALOG, 4, true));
   1050   EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, false));
   1051   EXPECT_EQ(order[ 7], TaskItem(MESSAGEBOX, 2, false));
   1052   /* The order can subtly change here. The reason is that when RecursiveTask(1)
   1053      is called in the main thread, if it is faster than getting to the
   1054      PostTask(FROM_HERE, QuitTask) execution, the order of task execution can
   1055      change. We don't care anyway that the order isn't correct.
   1056   EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true));
   1057   EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false));
   1058   EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
   1059   EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
   1060   */
   1061   EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, true));
   1062   EXPECT_EQ(order[13], TaskItem(RECURSIVE, 3, false));
   1063   EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, true));
   1064   EXPECT_EQ(order[15], TaskItem(RECURSIVE, 1, false));
   1065   EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, true));
   1066   EXPECT_EQ(order[17], TaskItem(RECURSIVE, 3, false));
   1067 }
   1068 
   1069 #endif  // defined(OS_WIN)
   1070 
   1071 class TaskThatPumps : public OrderedTasks {
   1072  public:
   1073   TaskThatPumps(TaskList* order, int cookie)
   1074       : OrderedTasks(order, PUMPS, cookie) {
   1075   }
   1076 
   1077   virtual void Run() {
   1078     RunStart();
   1079     bool old_state = MessageLoop::current()->NestableTasksAllowed();
   1080     MessageLoop::current()->SetNestableTasksAllowed(true);
   1081     MessageLoop::current()->RunAllPending();
   1082     MessageLoop::current()->SetNestableTasksAllowed(old_state);
   1083     RunEnd();
   1084   }
   1085 };
   1086 
   1087 // Tests that non nestable tasks run in FIFO if there are no nested loops.
   1088 void RunTest_NonNestableWithNoNesting(MessageLoop::Type message_loop_type) {
   1089   MessageLoop loop(message_loop_type);
   1090 
   1091   TaskList order;
   1092 
   1093   Task* task = new OrderedTasks(&order, 1);
   1094   MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
   1095   MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 2));
   1096   MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
   1097   MessageLoop::current()->Run();
   1098 
   1099   // FIFO order.
   1100   ASSERT_EQ(6U, order.size());
   1101   EXPECT_EQ(order[ 0], TaskItem(ORDERERD, 1, true));
   1102   EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 1, false));
   1103   EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 2, true));
   1104   EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 2, false));
   1105   EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
   1106   EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
   1107 }
   1108 
   1109 // Tests that non nestable tasks don't run when there's code in the call stack.
   1110 void RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type,
   1111                                      bool use_delayed) {
   1112   MessageLoop loop(message_loop_type);
   1113 
   1114   TaskList order;
   1115 
   1116   MessageLoop::current()->PostTask(FROM_HERE,
   1117                                    new TaskThatPumps(&order, 1));
   1118   Task* task = new OrderedTasks(&order, 2);
   1119   if (use_delayed) {
   1120     MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE, task, 1);
   1121   } else {
   1122     MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
   1123   }
   1124   MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 3));
   1125   MessageLoop::current()->PostTask(FROM_HERE, new SleepTask(&order, 4, 50));
   1126   MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 5));
   1127   Task* non_nestable_quit = new QuitTask(&order, 6);
   1128   if (use_delayed) {
   1129     MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE,
   1130                                                        non_nestable_quit,
   1131                                                        2);
   1132   } else {
   1133     MessageLoop::current()->PostNonNestableTask(FROM_HERE, non_nestable_quit);
   1134   }
   1135 
   1136   MessageLoop::current()->Run();
   1137 
   1138   // FIFO order.
   1139   ASSERT_EQ(12U, order.size());
   1140   EXPECT_EQ(order[ 0], TaskItem(PUMPS, 1, true));
   1141   EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 3, true));
   1142   EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 3, false));
   1143   EXPECT_EQ(order[ 3], TaskItem(SLEEP, 4, true));
   1144   EXPECT_EQ(order[ 4], TaskItem(SLEEP, 4, false));
   1145   EXPECT_EQ(order[ 5], TaskItem(ORDERERD, 5, true));
   1146   EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 5, false));
   1147   EXPECT_EQ(order[ 7], TaskItem(PUMPS, 1, false));
   1148   EXPECT_EQ(order[ 8], TaskItem(ORDERERD, 2, true));
   1149   EXPECT_EQ(order[ 9], TaskItem(ORDERERD, 2, false));
   1150   EXPECT_EQ(order[10], TaskItem(QUITMESSAGELOOP, 6, true));
   1151   EXPECT_EQ(order[11], TaskItem(QUITMESSAGELOOP, 6, false));
   1152 }
   1153 
   1154 #if defined(OS_WIN)
   1155 
   1156 class DispatcherImpl : public MessageLoopForUI::Dispatcher {
   1157  public:
   1158   DispatcherImpl() : dispatch_count_(0) {}
   1159 
   1160   virtual bool Dispatch(const MSG& msg) {
   1161     ::TranslateMessage(&msg);
   1162     ::DispatchMessage(&msg);
   1163     // Do not count WM_TIMER since it is not what we post and it will cause
   1164     // flakiness.
   1165     if (msg.message != WM_TIMER)
   1166       ++dispatch_count_;
   1167     // We treat WM_LBUTTONUP as the last message.
   1168     return msg.message != WM_LBUTTONUP;
   1169   }
   1170 
   1171   int dispatch_count_;
   1172 };
   1173 
   1174 void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
   1175   MessageLoop loop(message_loop_type);
   1176 
   1177   class MyTask : public Task {
   1178   public:
   1179     virtual void Run() {
   1180       PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
   1181       PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
   1182     }
   1183   };
   1184   Task* task = new MyTask();
   1185   MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
   1186   DispatcherImpl dispatcher;
   1187   MessageLoopForUI::current()->Run(&dispatcher);
   1188   ASSERT_EQ(2, dispatcher.dispatch_count_);
   1189 }
   1190 
   1191 LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
   1192   if (code == base::MessagePumpForUI::kMessageFilterCode) {
   1193     MSG* msg = reinterpret_cast<MSG*>(lparam);
   1194     if (msg->message == WM_LBUTTONDOWN)
   1195       return TRUE;
   1196   }
   1197   return FALSE;
   1198 }
   1199 
   1200 void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
   1201   MessageLoop loop(message_loop_type);
   1202 
   1203   class MyTask : public Task {
   1204   public:
   1205     virtual void Run() {
   1206       PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
   1207       PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
   1208     }
   1209   };
   1210   Task* task = new MyTask();
   1211   MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
   1212   HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
   1213                                     MsgFilterProc,
   1214                                     NULL,
   1215                                     GetCurrentThreadId());
   1216   DispatcherImpl dispatcher;
   1217   MessageLoopForUI::current()->Run(&dispatcher);
   1218   ASSERT_EQ(1, dispatcher.dispatch_count_);
   1219   UnhookWindowsHookEx(msg_hook);
   1220 }
   1221 
   1222 class TestIOHandler : public MessageLoopForIO::IOHandler {
   1223  public:
   1224   TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
   1225 
   1226   virtual void OnIOCompleted(MessageLoopForIO::IOContext* context,
   1227                              DWORD bytes_transfered, DWORD error);
   1228 
   1229   void Init();
   1230   void WaitForIO();
   1231   OVERLAPPED* context() { return &context_.overlapped; }
   1232   DWORD size() { return sizeof(buffer_); }
   1233 
   1234  private:
   1235   char buffer_[48];
   1236   MessageLoopForIO::IOContext context_;
   1237   HANDLE signal_;
   1238   base::win::ScopedHandle file_;
   1239   bool wait_;
   1240 };
   1241 
   1242 TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
   1243     : signal_(signal), wait_(wait) {
   1244   memset(buffer_, 0, sizeof(buffer_));
   1245   memset(&context_, 0, sizeof(context_));
   1246   context_.handler = this;
   1247 
   1248   file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
   1249                        FILE_FLAG_OVERLAPPED, NULL));
   1250   EXPECT_TRUE(file_.IsValid());
   1251 }
   1252 
   1253 void TestIOHandler::Init() {
   1254   MessageLoopForIO::current()->RegisterIOHandler(file_, this);
   1255 
   1256   DWORD read;
   1257   EXPECT_FALSE(ReadFile(file_, buffer_, size(), &read, context()));
   1258   EXPECT_EQ(ERROR_IO_PENDING, GetLastError());
   1259   if (wait_)
   1260     WaitForIO();
   1261 }
   1262 
   1263 void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
   1264                                   DWORD bytes_transfered, DWORD error) {
   1265   ASSERT_TRUE(context == &context_);
   1266   ASSERT_TRUE(SetEvent(signal_));
   1267 }
   1268 
   1269 void TestIOHandler::WaitForIO() {
   1270   EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
   1271   EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
   1272 }
   1273 
   1274 class IOHandlerTask : public Task {
   1275  public:
   1276   explicit IOHandlerTask(TestIOHandler* handler) : handler_(handler) {}
   1277   virtual void Run() {
   1278     handler_->Init();
   1279   }
   1280 
   1281  private:
   1282   TestIOHandler* handler_;
   1283 };
   1284 
   1285 void RunTest_IOHandler() {
   1286   base::win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
   1287   ASSERT_TRUE(callback_called.IsValid());
   1288 
   1289   const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
   1290   base::win::ScopedHandle server(
   1291       CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
   1292   ASSERT_TRUE(server.IsValid());
   1293 
   1294   Thread thread("IOHandler test");
   1295   Thread::Options options;
   1296   options.message_loop_type = MessageLoop::TYPE_IO;
   1297   ASSERT_TRUE(thread.StartWithOptions(options));
   1298 
   1299   MessageLoop* thread_loop = thread.message_loop();
   1300   ASSERT_TRUE(NULL != thread_loop);
   1301 
   1302   TestIOHandler handler(kPipeName, callback_called, false);
   1303   IOHandlerTask* task = new IOHandlerTask(&handler);
   1304   thread_loop->PostTask(FROM_HERE, task);
   1305   Sleep(100);  // Make sure the thread runs and sleeps for lack of work.
   1306 
   1307   const char buffer[] = "Hello there!";
   1308   DWORD written;
   1309   EXPECT_TRUE(WriteFile(server, buffer, sizeof(buffer), &written, NULL));
   1310 
   1311   DWORD result = WaitForSingleObject(callback_called, 1000);
   1312   EXPECT_EQ(WAIT_OBJECT_0, result);
   1313 
   1314   thread.Stop();
   1315 }
   1316 
   1317 void RunTest_WaitForIO() {
   1318   base::win::ScopedHandle callback1_called(
   1319       CreateEvent(NULL, TRUE, FALSE, NULL));
   1320   base::win::ScopedHandle callback2_called(
   1321       CreateEvent(NULL, TRUE, FALSE, NULL));
   1322   ASSERT_TRUE(callback1_called.IsValid());
   1323   ASSERT_TRUE(callback2_called.IsValid());
   1324 
   1325   const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
   1326   const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
   1327   base::win::ScopedHandle server1(
   1328       CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
   1329   base::win::ScopedHandle server2(
   1330       CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
   1331   ASSERT_TRUE(server1.IsValid());
   1332   ASSERT_TRUE(server2.IsValid());
   1333 
   1334   Thread thread("IOHandler test");
   1335   Thread::Options options;
   1336   options.message_loop_type = MessageLoop::TYPE_IO;
   1337   ASSERT_TRUE(thread.StartWithOptions(options));
   1338 
   1339   MessageLoop* thread_loop = thread.message_loop();
   1340   ASSERT_TRUE(NULL != thread_loop);
   1341 
   1342   TestIOHandler handler1(kPipeName1, callback1_called, false);
   1343   TestIOHandler handler2(kPipeName2, callback2_called, true);
   1344   IOHandlerTask* task1 = new IOHandlerTask(&handler1);
   1345   IOHandlerTask* task2 = new IOHandlerTask(&handler2);
   1346   thread_loop->PostTask(FROM_HERE, task1);
   1347   Sleep(100);  // Make sure the thread runs and sleeps for lack of work.
   1348   thread_loop->PostTask(FROM_HERE, task2);
   1349   Sleep(100);
   1350 
   1351   // At this time handler1 is waiting to be called, and the thread is waiting
   1352   // on the Init method of handler2, filtering only handler2 callbacks.
   1353 
   1354   const char buffer[] = "Hello there!";
   1355   DWORD written;
   1356   EXPECT_TRUE(WriteFile(server1, buffer, sizeof(buffer), &written, NULL));
   1357   Sleep(200);
   1358   EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called, 0)) <<
   1359       "handler1 has not been called";
   1360 
   1361   EXPECT_TRUE(WriteFile(server2, buffer, sizeof(buffer), &written, NULL));
   1362 
   1363   HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
   1364   DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
   1365   EXPECT_EQ(WAIT_OBJECT_0, result);
   1366 
   1367   thread.Stop();
   1368 }
   1369 
   1370 #endif  // defined(OS_WIN)
   1371 
   1372 }  // namespace
   1373 
   1374 //-----------------------------------------------------------------------------
   1375 // Each test is run against each type of MessageLoop.  That way we are sure
   1376 // that message loops work properly in all configurations.  Of course, in some
   1377 // cases, a unit test may only be for a particular type of loop.
   1378 
   1379 TEST(MessageLoopTest, PostTask) {
   1380   RunTest_PostTask(MessageLoop::TYPE_DEFAULT);
   1381   RunTest_PostTask(MessageLoop::TYPE_UI);
   1382   RunTest_PostTask(MessageLoop::TYPE_IO);
   1383 }
   1384 
   1385 TEST(MessageLoopTest, PostTask_SEH) {
   1386   RunTest_PostTask_SEH(MessageLoop::TYPE_DEFAULT);
   1387   RunTest_PostTask_SEH(MessageLoop::TYPE_UI);
   1388   RunTest_PostTask_SEH(MessageLoop::TYPE_IO);
   1389 }
   1390 
   1391 TEST(MessageLoopTest, PostDelayedTask_Basic) {
   1392   RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_DEFAULT);
   1393   RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_UI);
   1394   RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_IO);
   1395 }
   1396 
   1397 TEST(MessageLoopTest, PostDelayedTask_InDelayOrder) {
   1398   RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_DEFAULT);
   1399   RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_UI);
   1400   RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_IO);
   1401 }
   1402 
   1403 TEST(MessageLoopTest, PostDelayedTask_InPostOrder) {
   1404   RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_DEFAULT);
   1405   RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_UI);
   1406   RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_IO);
   1407 }
   1408 
   1409 TEST(MessageLoopTest, PostDelayedTask_InPostOrder_2) {
   1410   RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_DEFAULT);
   1411   RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_UI);
   1412   RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_IO);
   1413 }
   1414 
   1415 TEST(MessageLoopTest, PostDelayedTask_InPostOrder_3) {
   1416   RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_DEFAULT);
   1417   RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_UI);
   1418   RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_IO);
   1419 }
   1420 
   1421 TEST(MessageLoopTest, PostDelayedTask_SharedTimer) {
   1422   RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_DEFAULT);
   1423   RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_UI);
   1424   RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_IO);
   1425 }
   1426 
   1427 #if defined(OS_WIN)
   1428 TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
   1429   RunTest_PostDelayedTask_SharedTimer_SubPump();
   1430 }
   1431 #endif
   1432 
   1433 // TODO(darin): MessageLoop does not support deleting all tasks in the
   1434 // destructor.
   1435 // Fails, http://crbug.com/50272.
   1436 TEST(MessageLoopTest, FAILS_EnsureTaskDeletion) {
   1437   RunTest_EnsureTaskDeletion(MessageLoop::TYPE_DEFAULT);
   1438   RunTest_EnsureTaskDeletion(MessageLoop::TYPE_UI);
   1439   RunTest_EnsureTaskDeletion(MessageLoop::TYPE_IO);
   1440 }
   1441 
   1442 // TODO(darin): MessageLoop does not support deleting all tasks in the
   1443 // destructor.
   1444 // Fails, http://crbug.com/50272.
   1445 TEST(MessageLoopTest, FAILS_EnsureTaskDeletion_Chain) {
   1446   RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_DEFAULT);
   1447   RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_UI);
   1448   RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_IO);
   1449 }
   1450 
   1451 #if defined(OS_WIN)
   1452 TEST(MessageLoopTest, Crasher) {
   1453   RunTest_Crasher(MessageLoop::TYPE_DEFAULT);
   1454   RunTest_Crasher(MessageLoop::TYPE_UI);
   1455   RunTest_Crasher(MessageLoop::TYPE_IO);
   1456 }
   1457 
   1458 TEST(MessageLoopTest, CrasherNasty) {
   1459   RunTest_CrasherNasty(MessageLoop::TYPE_DEFAULT);
   1460   RunTest_CrasherNasty(MessageLoop::TYPE_UI);
   1461   RunTest_CrasherNasty(MessageLoop::TYPE_IO);
   1462 }
   1463 #endif  // defined(OS_WIN)
   1464 
   1465 TEST(MessageLoopTest, Nesting) {
   1466   RunTest_Nesting(MessageLoop::TYPE_DEFAULT);
   1467   RunTest_Nesting(MessageLoop::TYPE_UI);
   1468   RunTest_Nesting(MessageLoop::TYPE_IO);
   1469 }
   1470 
   1471 TEST(MessageLoopTest, RecursiveDenial1) {
   1472   RunTest_RecursiveDenial1(MessageLoop::TYPE_DEFAULT);
   1473   RunTest_RecursiveDenial1(MessageLoop::TYPE_UI);
   1474   RunTest_RecursiveDenial1(MessageLoop::TYPE_IO);
   1475 }
   1476 
   1477 TEST(MessageLoopTest, RecursiveDenial3) {
   1478   RunTest_RecursiveDenial3(MessageLoop::TYPE_DEFAULT);
   1479   RunTest_RecursiveDenial3(MessageLoop::TYPE_UI);
   1480   RunTest_RecursiveDenial3(MessageLoop::TYPE_IO);
   1481 }
   1482 
   1483 TEST(MessageLoopTest, RecursiveSupport1) {
   1484   RunTest_RecursiveSupport1(MessageLoop::TYPE_DEFAULT);
   1485   RunTest_RecursiveSupport1(MessageLoop::TYPE_UI);
   1486   RunTest_RecursiveSupport1(MessageLoop::TYPE_IO);
   1487 }
   1488 
   1489 #if defined(OS_WIN)
   1490 // This test occasionally hangs http://crbug.com/44567
   1491 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
   1492   RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
   1493   RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
   1494   RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
   1495 }
   1496 
   1497 TEST(MessageLoopTest, RecursiveSupport2) {
   1498   // This test requires a UI loop
   1499   RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
   1500 }
   1501 #endif  // defined(OS_WIN)
   1502 
   1503 TEST(MessageLoopTest, NonNestableWithNoNesting) {
   1504   RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_DEFAULT);
   1505   RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_UI);
   1506   RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_IO);
   1507 }
   1508 
   1509 TEST(MessageLoopTest, NonNestableInNestedLoop) {
   1510   RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, false);
   1511   RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, false);
   1512   RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, false);
   1513 }
   1514 
   1515 TEST(MessageLoopTest, NonNestableDelayedInNestedLoop) {
   1516   RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, true);
   1517   RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, true);
   1518   RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, true);
   1519 }
   1520 
   1521 class DummyTask : public Task {
   1522  public:
   1523   explicit DummyTask(int num_tasks) : num_tasks_(num_tasks) {}
   1524 
   1525   virtual void Run() {
   1526     if (num_tasks_ > 1) {
   1527       MessageLoop::current()->PostTask(
   1528           FROM_HERE,
   1529           new DummyTask(num_tasks_ - 1));
   1530     } else {
   1531       MessageLoop::current()->Quit();
   1532     }
   1533   }
   1534 
   1535  private:
   1536   const int num_tasks_;
   1537 };
   1538 
   1539 class DummyTaskObserver : public MessageLoop::TaskObserver {
   1540  public:
   1541   explicit DummyTaskObserver(int num_tasks)
   1542       : num_tasks_started_(0),
   1543         num_tasks_processed_(0),
   1544         num_tasks_(num_tasks) {}
   1545 
   1546   virtual ~DummyTaskObserver() {}
   1547 
   1548   virtual void WillProcessTask(const Task* task) {
   1549     num_tasks_started_++;
   1550     EXPECT_TRUE(task != NULL);
   1551     EXPECT_LE(num_tasks_started_, num_tasks_);
   1552     EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
   1553   }
   1554 
   1555   virtual void DidProcessTask(const Task* task) {
   1556     num_tasks_processed_++;
   1557     EXPECT_TRUE(task != NULL);
   1558     EXPECT_LE(num_tasks_started_, num_tasks_);
   1559     EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
   1560   }
   1561 
   1562   int num_tasks_started() const { return num_tasks_started_; }
   1563   int num_tasks_processed() const { return num_tasks_processed_; }
   1564 
   1565  private:
   1566   int num_tasks_started_;
   1567   int num_tasks_processed_;
   1568   const int num_tasks_;
   1569 
   1570   DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
   1571 };
   1572 
   1573 TEST(MessageLoopTest, TaskObserver) {
   1574   const int kNumTasks = 6;
   1575   DummyTaskObserver observer(kNumTasks);
   1576 
   1577   MessageLoop loop;
   1578   loop.AddTaskObserver(&observer);
   1579   loop.PostTask(FROM_HERE, new DummyTask(kNumTasks));
   1580   loop.Run();
   1581   loop.RemoveTaskObserver(&observer);
   1582 
   1583   EXPECT_EQ(kNumTasks, observer.num_tasks_started());
   1584   EXPECT_EQ(kNumTasks, observer.num_tasks_processed());
   1585 }
   1586 
   1587 #if defined(OS_WIN)
   1588 TEST(MessageLoopTest, Dispatcher) {
   1589   // This test requires a UI loop
   1590   RunTest_Dispatcher(MessageLoop::TYPE_UI);
   1591 }
   1592 
   1593 TEST(MessageLoopTest, DispatcherWithMessageHook) {
   1594   // This test requires a UI loop
   1595   RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
   1596 }
   1597 
   1598 TEST(MessageLoopTest, IOHandler) {
   1599   RunTest_IOHandler();
   1600 }
   1601 
   1602 TEST(MessageLoopTest, WaitForIO) {
   1603   RunTest_WaitForIO();
   1604 }
   1605 
   1606 TEST(MessageLoopTest, HighResolutionTimer) {
   1607   MessageLoop loop;
   1608 
   1609   const int kFastTimerMs = 5;
   1610   const int kSlowTimerMs = 100;
   1611 
   1612   EXPECT_FALSE(loop.high_resolution_timers_enabled());
   1613 
   1614   // Post a fast task to enable the high resolution timers.
   1615   loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kFastTimerMs);
   1616   loop.Run();
   1617   EXPECT_TRUE(loop.high_resolution_timers_enabled());
   1618 
   1619   // Post a slow task and verify high resolution timers
   1620   // are still enabled.
   1621   loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
   1622   loop.Run();
   1623   EXPECT_TRUE(loop.high_resolution_timers_enabled());
   1624 
   1625   // Wait for a while so that high-resolution mode elapses.
   1626   Sleep(MessageLoop::kHighResolutionTimerModeLeaseTimeMs);
   1627 
   1628   // Post a slow task to disable the high resolution timers.
   1629   loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
   1630   loop.Run();
   1631   EXPECT_FALSE(loop.high_resolution_timers_enabled());
   1632 }
   1633 
   1634 #endif  // defined(OS_WIN)
   1635 
   1636 #if defined(OS_POSIX) && !defined(OS_NACL)
   1637 
   1638 namespace {
   1639 
   1640 class QuitDelegate : public base::MessagePumpLibevent::Watcher {
   1641  public:
   1642   virtual void OnFileCanWriteWithoutBlocking(int fd) {
   1643     MessageLoop::current()->Quit();
   1644   }
   1645   virtual void OnFileCanReadWithoutBlocking(int fd) {
   1646     MessageLoop::current()->Quit();
   1647   }
   1648 };
   1649 
   1650 TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
   1651   // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
   1652   // This could happen when people use the Singleton pattern or atexit.
   1653 
   1654   // Create a file descriptor.  Doesn't need to be readable or writable,
   1655   // as we don't need to actually get any notifications.
   1656   // pipe() is just the easiest way to do it.
   1657   int pipefds[2];
   1658   int err = pipe(pipefds);
   1659   ASSERT_EQ(0, err);
   1660   int fd = pipefds[1];
   1661   {
   1662     // Arrange for controller to live longer than message loop.
   1663     base::MessagePumpLibevent::FileDescriptorWatcher controller;
   1664     {
   1665       MessageLoopForIO message_loop;
   1666 
   1667       QuitDelegate delegate;
   1668       message_loop.WatchFileDescriptor(fd,
   1669           true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
   1670       // and don't run the message loop, just destroy it.
   1671     }
   1672   }
   1673   if (HANDLE_EINTR(close(pipefds[0])) < 0)
   1674     PLOG(ERROR) << "close";
   1675   if (HANDLE_EINTR(close(pipefds[1])) < 0)
   1676     PLOG(ERROR) << "close";
   1677 }
   1678 
   1679 TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
   1680   // Verify that it's ok to call StopWatchingFileDescriptor().
   1681   // (Errors only showed up in valgrind.)
   1682   int pipefds[2];
   1683   int err = pipe(pipefds);
   1684   ASSERT_EQ(0, err);
   1685   int fd = pipefds[1];
   1686   {
   1687     // Arrange for message loop to live longer than controller.
   1688     MessageLoopForIO message_loop;
   1689     {
   1690       base::MessagePumpLibevent::FileDescriptorWatcher controller;
   1691 
   1692       QuitDelegate delegate;
   1693       message_loop.WatchFileDescriptor(fd,
   1694           true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
   1695       controller.StopWatchingFileDescriptor();
   1696     }
   1697   }
   1698   if (HANDLE_EINTR(close(pipefds[0])) < 0)
   1699     PLOG(ERROR) << "close";
   1700   if (HANDLE_EINTR(close(pipefds[1])) < 0)
   1701     PLOG(ERROR) << "close";
   1702 }
   1703 
   1704 }  // namespace
   1705 
   1706 #endif  // defined(OS_POSIX) && !defined(OS_NACL)
   1707 
   1708 namespace {
   1709 class RunAtDestructionTask : public Task {
   1710  public:
   1711   RunAtDestructionTask(bool* task_destroyed, bool* destruction_observer_called)
   1712       : task_destroyed_(task_destroyed),
   1713         destruction_observer_called_(destruction_observer_called) {
   1714   }
   1715   ~RunAtDestructionTask() {
   1716     EXPECT_FALSE(*destruction_observer_called_);
   1717     *task_destroyed_ = true;
   1718   }
   1719   virtual void Run() {
   1720     // This task should never run.
   1721     ADD_FAILURE();
   1722   }
   1723  private:
   1724   bool* task_destroyed_;
   1725   bool* destruction_observer_called_;
   1726 };
   1727 
   1728 class MLDestructionObserver : public MessageLoop::DestructionObserver {
   1729  public:
   1730   MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
   1731       : task_destroyed_(task_destroyed),
   1732         destruction_observer_called_(destruction_observer_called),
   1733         task_destroyed_before_message_loop_(false) {
   1734   }
   1735   virtual void WillDestroyCurrentMessageLoop() {
   1736     task_destroyed_before_message_loop_ = *task_destroyed_;
   1737     *destruction_observer_called_ = true;
   1738   }
   1739   bool task_destroyed_before_message_loop() const {
   1740     return task_destroyed_before_message_loop_;
   1741   }
   1742  private:
   1743   bool* task_destroyed_;
   1744   bool* destruction_observer_called_;
   1745   bool task_destroyed_before_message_loop_;
   1746 };
   1747 
   1748 }  // namespace
   1749 
   1750 TEST(MessageLoopTest, DestructionObserverTest) {
   1751   // Verify that the destruction observer gets called at the very end (after
   1752   // all the pending tasks have been destroyed).
   1753   MessageLoop* loop = new MessageLoop;
   1754   const int kDelayMS = 100;
   1755 
   1756   bool task_destroyed = false;
   1757   bool destruction_observer_called = false;
   1758 
   1759   MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
   1760   loop->AddDestructionObserver(&observer);
   1761   loop->PostDelayedTask(
   1762       FROM_HERE,
   1763       new RunAtDestructionTask(&task_destroyed, &destruction_observer_called),
   1764       kDelayMS);
   1765   delete loop;
   1766   EXPECT_TRUE(observer.task_destroyed_before_message_loop());
   1767   // The task should have been destroyed when we deleted the loop.
   1768   EXPECT_TRUE(task_destroyed);
   1769   EXPECT_TRUE(destruction_observer_called);
   1770 }
   1771