Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 
      2           "http://www.w3.org/TR/html4/strict.dtd">
      3 <!-- Material used from: HTML 4.01 specs: http://www.w3.org/TR/html401/ -->
      4 <html>
      5 <head>
      6   <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
      7   <title>Clang Language Extensions</title>
      8   <link type="text/css" rel="stylesheet" href="../menu.css">
      9   <link type="text/css" rel="stylesheet" href="../content.css">
     10   <style type="text/css">
     11     td {
     12             vertical-align: top;
     13     }
     14     th { background-color: #ffddaa; }
     15   </style>
     16 </head>
     17 <body>
     18 
     19 <!--#include virtual="../menu.html.incl"-->
     20 
     21 <div id="content">
     22 
     23 <h1>Clang Language Extensions</h1>
     24 
     25 <ul>
     26 <li><a href="#intro">Introduction</a></li>
     27 <li><a href="#feature_check">Feature Checking Macros</a></li>
     28 <li><a href="#has_include">Include File Checking Macros</a></li>
     29 <li><a href="#builtinmacros">Builtin Macros</a></li>
     30 <li><a href="#vectors">Vectors and Extended Vectors</a></li>
     31 <li><a href="#deprecated">Messages on <tt>deprecated</tt> and <tt>unavailable</tt> attributes</a></li>
     32 <li><a href="#attributes-on-enumerators">Attributes on enumerators</a></li>
     33 <li><a href="#user_specified_system_framework">'User-Specified' System Frameworks</a></li>
     34 <li><a href="#availability">Availability attribute</a></li>
     35 <li><a href="#checking_language_features">Checks for Standard Language Features</a>
     36   <ul>
     37   <li><a href="#cxx98">C++98</a>
     38     <ul>
     39     <li><a href="#cxx_exceptions">C++ exceptions</a></li>
     40     <li><a href="#cxx_rtti">C++ RTTI</a></li>
     41   </ul></li>
     42   <li><a href="#cxx11">C++11</a>
     43     <ul>
     44     <li><a href="#cxx_access_control_sfinae">C++11 SFINAE includes access control</a></li>
     45     <li><a href="#cxx_alias_templates">C++11 alias templates</a></li>
     46     <li><a href="#cxx_alignas">C++11 alignment specifiers</a></li>
     47     <li><a href="#cxx_attributes">C++11 attributes</a></li>
     48     <li><a href="#cxx_constexpr">C++11 generalized constant expressions</a></li>
     49     <li><a href="#cxx_decltype">C++11 <tt>decltype()</tt></a></li>
     50     <li><a href="#cxx_default_function_template_args">C++11 default template arguments in function templates</a></li>
     51     <li><a href="#cxx_defaulted_functions">C++11 defaulted functions</a></li>
     52     <li><a href="#cxx_delegating_constructor">C++11 delegating constructors</a></li>
     53     <li><a href="#cxx_deleted_functions">C++11 deleted functions</a></li>
     54     <li><a href="#cxx_explicit_conversions">C++11 explicit conversion functions</a></li>
     55     <li><a href="#cxx_generalized_initializers">C++11 generalized initializers</a></li>
     56     <li><a href="#cxx_implicit_moves">C++11 implicit move constructors/assignment operators</a></li>
     57     <li><a href="#cxx_inheriting_constructors">C++11 inheriting constructors</a></li>
     58     <li><a href="#cxx_inline_namespaces">C++11 inline namespaces</a></li>
     59     <li><a href="#cxx_lambdas">C++11 lambdas</a></li>
     60     <li><a href="#cxx_local_type_template_args">C++11 local and unnamed types as template arguments</a></li>
     61     <li><a href="#cxx_noexcept">C++11 noexcept specification</a></li>
     62     <li><a href="#cxx_nonstatic_member_init">C++11 in-class non-static data member initialization</a></li>
     63     <li><a href="#cxx_nullptr">C++11 nullptr</a></li>
     64     <li><a href="#cxx_override_control">C++11 override control</a></li>
     65     <li><a href="#cxx_range_for">C++11 range-based for loop</a></li>
     66     <li><a href="#cxx_raw_string_literals">C++11 raw string literals</a></li>
     67     <li><a href="#cxx_rvalue_references">C++11 rvalue references</a></li>
     68     <li><a href="#cxx_reference_qualified_functions">C++11 reference-qualified functions</a></li>
     69     <li><a href="#cxx_static_assert">C++11 <tt>static_assert()</tt></a></li>
     70     <li><a href="#cxx_auto_type">C++11 type inference</a></li>
     71     <li><a href="#cxx_strong_enums">C++11 strongly-typed enumerations</a></li>
     72     <li><a href="#cxx_trailing_return">C++11 trailing return type</a></li>
     73     <li><a href="#cxx_unicode_literals">C++11 Unicode string literals</a></li>
     74     <li><a href="#cxx_unrestricted_unions">C++11 unrestricted unions</a></li>
     75     <li><a href="#cxx_user_literals">C++11 user-defined literals</a></li>
     76     <li><a href="#cxx_variadic_templates">C++11 variadic templates</a></li>
     77   </ul></li>
     78   <li><a href="#c11">C11</a>
     79     <ul>
     80     <li><a href="#c_alignas">C11 alignment specifiers</a></li>
     81     <li><a href="#c_atomic">C11 atomic operations</a></li>
     82     <li><a href="#c_generic_selections">C11 generic selections</a></li>
     83     <li><a href="#c_static_assert">C11 <tt>_Static_assert()</tt></a></li>
     84   </ul></li>
     85 </ul></li>
     86 <li><a href="#checking_type_traits">Checks for Type Traits</a></li>
     87 <li><a href="#blocks">Blocks</a></li>
     88 <li><a href="#objc_features">Objective-C Features</a>
     89   <ul>
     90     <li><a href="#objc_instancetype">Related result types</a></li>
     91     <li><a href="#objc_arc">Automatic reference counting</a></li>
     92     <li><a href="#objc_fixed_enum">Enumerations with a fixed underlying type</a></li>
     93     <li><a href="#objc_lambdas">Interoperability with C++11 lambdas</a></li>
     94     <li><a href="#objc_object_literals_subscripting">Object Literals and Subscripting</a></li>
     95   </ul>
     96 </li>
     97 <li><a href="#overloading-in-c">Function Overloading in C</a></li>
     98 <li><a href="#complex-list-init">Initializer lists for complex numbers in C</a></li>
     99 <li><a href="#builtins">Builtin Functions</a>
    100   <ul>
    101   <li><a href="#__builtin_readcyclecounter">__builtin_readcyclecounter</a></li>
    102   <li><a href="#__builtin_shufflevector">__builtin_shufflevector</a></li>
    103   <li><a href="#__builtin_unreachable">__builtin_unreachable</a></li>
    104   <li><a href="#__sync_swap">__sync_swap</a></li>
    105  </ul>
    106 </li>
    107 <li><a href="#non-standard-attributes">Non-standard C++11 Attributes</a>
    108 <ul>
    109   <li><a href="#clang__fallthrough">The <tt>clang::fallthrough</tt> attribute</a></li>
    110 </ul>
    111 </li>
    112 <li><a href="#targetspecific">Target-Specific Extensions</a>
    113   <ul>
    114   <li><a href="#x86-specific">X86/X86-64 Language Extensions</a></li>
    115   </ul>
    116 </li>
    117 <li><a href="#analyzerspecific">Static Analysis-Specific Extensions</a></li>
    118 <li><a href="#dynamicanalyzerspecific">Dynamic Analysis-Specific Extensions</a>
    119   <ul>
    120   <li><a href="#address_sanitizer">AddressSanitizer</a></li>
    121   </ul>
    122 </li>
    123 <li><a href="#threadsafety">Thread Safety Annotation Checking</a>
    124     <ul>
    125     <li><a href="#ts_noanal"><tt>no_thread_safety_analysis</tt></a></li>   
    126     <li><a href="#ts_lockable"><tt>lockable</tt></a></li>  
    127     <li><a href="#ts_scopedlockable"><tt>scoped_lockable</tt></a></li>  
    128     <li><a href="#ts_guardedvar"><tt>guarded_var</tt></a></li>
    129     <li><a href="#ts_ptguardedvar"><tt>pt_guarded_var</tt></a></li>
    130     <li><a href="#ts_guardedby"><tt>guarded_by(l)</tt></a></li>
    131     <li><a href="#ts_ptguardedby"><tt>pt_guarded_by(l)</tt></a></li>  
    132     <li><a href="#ts_acquiredbefore"><tt>acquired_before(...)</tt></a></li>  
    133     <li><a href="#ts_acquiredafter"><tt>acquired_after(...)</tt></a></li>    
    134     <li><a href="#ts_elf"><tt>exclusive_lock_function(...)</tt></a></li>   
    135     <li><a href="#ts_slf"><tt>shared_lock_function(...)</tt></a></li>   
    136     <li><a href="#ts_etf"><tt>exclusive_trylock_function(...)</tt></a></li>   
    137     <li><a href="#ts_stf"><tt>shared_trylock_function(...)</tt></a></li>   
    138     <li><a href="#ts_uf"><tt>unlock_function(...)</tt></a></li>   
    139     <li><a href="#ts_lr"><tt>lock_returned(l)</tt></a></li>   
    140     <li><a href="#ts_le"><tt>locks_excluded(...)</tt></a></li>   
    141     <li><a href="#ts_elr"><tt>exclusive_locks_required(...)</tt></a></li>   
    142     <li><a href="#ts_slr"><tt>shared_locks_required(...)</tt></a></li>   
    143     </ul>
    144 </li>
    145 <li><a href="#type_safety">Type Safety Checking</a>
    146   <ul>
    147   <li><a href="#argument_with_type_tag"><tt>argument_with_type_tag(...)</tt></a></li>
    148   <li><a href="#pointer_with_type_tag"><tt>pointer_with_type_tag(...)</tt></a></li>
    149   <li><a href="#type_tag_for_datatype"><tt>type_tag_for_datatype(...)</tt></a></li>
    150   </ul>
    151 </li>
    152 </ul>
    153 
    154 <!-- ======================================================================= -->
    155 <h2 id="intro">Introduction</h2>
    156 <!-- ======================================================================= -->
    157 
    158 <p>This document describes the language extensions provided by Clang.  In
    159 addition to the language extensions listed here, Clang aims to support a broad
    160 range of GCC extensions.  Please see the <a 
    161 href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for
    162 more information on these extensions.</p>
    163 
    164 <!-- ======================================================================= -->
    165 <h2 id="feature_check">Feature Checking Macros</h2>
    166 <!-- ======================================================================= -->
    167 
    168 <p>Language extensions can be very useful, but only if you know you can depend
    169 on them.  In order to allow fine-grain features checks, we support three builtin
    170 function-like macros.  This allows you to directly test for a feature in your
    171 code without having to resort to something like autoconf or fragile "compiler
    172 version checks".</p>
    173 
    174 <!-- ======================================================================= -->
    175 <h3><a name="__has_builtin">__has_builtin</a></h3>
    176 <!-- ======================================================================= -->
    177 
    178 <p>This function-like macro takes a single identifier argument that is the name
    179 of a builtin function.  It evaluates to 1 if the builtin is supported or 0 if
    180 not.  It can be used like this:</p>
    181 
    182 <blockquote>
    183 <pre>
    184 #ifndef __has_builtin         // Optional of course.
    185   #define __has_builtin(x) 0  // Compatibility with non-clang compilers.
    186 #endif
    187 
    188 ...
    189 #if __has_builtin(__builtin_trap)
    190   __builtin_trap();
    191 #else
    192   abort();
    193 #endif
    194 ...
    195 </pre>
    196 </blockquote>
    197 
    198 
    199 <!-- ======================================================================= -->
    200 <h3><a name="__has_feature_extension"> __has_feature and __has_extension</a></h3>
    201 <!-- ======================================================================= -->
    202 
    203 <p>These function-like macros take a single identifier argument that is the
    204 name of a feature.  <code>__has_feature</code> evaluates to 1 if the feature
    205 is both supported by Clang and standardized in the current language standard
    206 or 0 if not (but see <a href="#has_feature_back_compat">below</a>), while
    207 <code>__has_extension</code> evaluates to 1 if the feature is supported by
    208 Clang in the current language (either as a language extension or a standard
    209 language feature) or 0 if not.  They can be used like this:</p>
    210 
    211 <blockquote>
    212 <pre>
    213 #ifndef __has_feature         // Optional of course.
    214   #define __has_feature(x) 0  // Compatibility with non-clang compilers.
    215 #endif
    216 #ifndef __has_extension
    217   #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
    218 #endif
    219 
    220 ...
    221 #if __has_feature(cxx_rvalue_references)
    222 // This code will only be compiled with the -std=c++11 and -std=gnu++11
    223 // options, because rvalue references are only standardized in C++11.
    224 #endif
    225 
    226 #if __has_extension(cxx_rvalue_references)
    227 // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
    228 // and -std=gnu++98 options, because rvalue references are supported as a
    229 // language extension in C++98.
    230 #endif
    231 </pre>
    232 </blockquote>
    233 
    234 <p id="has_feature_back_compat">For backwards compatibility reasons,
    235 <code>__has_feature</code> can also be used to test for support for
    236 non-standardized features, i.e. features not prefixed <code>c_</code>,
    237 <code>cxx_</code> or <code>objc_</code>.</p>
    238 
    239 <p id="has_feature_for_non_language_features">
    240 Another use of <code>__has_feature</code> is to check for compiler features
    241 not related to the language standard, such as e.g.
    242 <a href="AddressSanitizer.html">AddressSanitizer</a>.
    243 
    244 <p>If the <code>-pedantic-errors</code> option is given,
    245 <code>__has_extension</code> is equivalent to <code>__has_feature</code>.</p>
    246 
    247 <p>The feature tag is described along with the language feature below.</p>
    248 
    249 <p>The feature name or extension name can also be specified with a preceding and
    250 following <code>__</code> (double underscore) to avoid interference from a macro
    251 with the same name. For instance, <code>__cxx_rvalue_references__</code> can be
    252 used instead of <code>cxx_rvalue_references</code>.</p>
    253 
    254 <!-- ======================================================================= -->
    255 <h3><a name="__has_attribute">__has_attribute</a></h3>
    256 <!-- ======================================================================= -->
    257 
    258 <p>This function-like macro takes a single identifier argument that is the name
    259 of an attribute.  It evaluates to 1 if the attribute is supported or 0 if not.  It
    260 can be used like this:</p>
    261 
    262 <blockquote>
    263 <pre>
    264 #ifndef __has_attribute         // Optional of course.
    265   #define __has_attribute(x) 0  // Compatibility with non-clang compilers.
    266 #endif
    267 
    268 ...
    269 #if __has_attribute(always_inline)
    270 #define ALWAYS_INLINE __attribute__((always_inline))
    271 #else
    272 #define ALWAYS_INLINE
    273 #endif
    274 ...
    275 </pre>
    276 </blockquote>
    277 
    278 <p>The attribute name can also be specified with a preceding and
    279 following <code>__</code> (double underscore) to avoid interference from a macro
    280 with the same name. For instance, <code>__always_inline__</code> can be used
    281 instead of <code>always_inline</code>.</p>
    282 
    283 <!-- ======================================================================= -->
    284 <h2 id="has_include">Include File Checking Macros</h2>
    285 <!-- ======================================================================= -->
    286 
    287 <p>Not all developments systems have the same include files.
    288 The <a href="#__has_include">__has_include</a> and
    289 <a href="#__has_include_next">__has_include_next</a> macros allow you to
    290 check for the existence of an include file before doing
    291 a possibly failing #include directive.</p>
    292 
    293 <!-- ======================================================================= -->
    294 <h3><a name="__has_include">__has_include</a></h3>
    295 <!-- ======================================================================= -->
    296 
    297 <p>This function-like macro takes a single file name string argument that
    298 is the name of an include file.  It evaluates to 1 if the file can
    299 be found using the include paths, or 0 otherwise:</p>
    300 
    301 <blockquote>
    302 <pre>
    303 // Note the two possible file name string formats.
    304 #if __has_include("myinclude.h") &amp;&amp; __has_include(&lt;stdint.h&gt;)
    305 # include "myinclude.h"
    306 #endif
    307 
    308 // To avoid problem with non-clang compilers not having this macro.
    309 #if defined(__has_include) &amp;&amp; __has_include("myinclude.h")
    310 # include "myinclude.h"
    311 #endif
    312 </pre>
    313 </blockquote>
    314 
    315 <p>To test for this feature, use #if defined(__has_include).</p>
    316 
    317 <!-- ======================================================================= -->
    318 <h3><a name="__has_include_next">__has_include_next</a></h3>
    319 <!-- ======================================================================= -->
    320 
    321 <p>This function-like macro takes a single file name string argument that
    322 is the name of an include file.  It is like __has_include except that it
    323 looks for the second instance of the given file found in the include
    324 paths.  It evaluates to 1 if the second instance of the file can
    325 be found using the include paths, or 0 otherwise:</p>
    326 
    327 <blockquote>
    328 <pre>
    329 // Note the two possible file name string formats.
    330 #if __has_include_next("myinclude.h") &amp;&amp; __has_include_next(&lt;stdint.h&gt;)
    331 # include_next "myinclude.h"
    332 #endif
    333 
    334 // To avoid problem with non-clang compilers not having this macro.
    335 #if defined(__has_include_next) &amp;&amp; __has_include_next("myinclude.h")
    336 # include_next "myinclude.h"
    337 #endif
    338 </pre>
    339 </blockquote>
    340 
    341 <p>Note that __has_include_next, like the GNU extension
    342 #include_next directive, is intended for use in headers only,
    343 and will issue a warning if used in the top-level compilation
    344 file.  A warning will also be issued if an absolute path
    345 is used in the file argument.</p>
    346 
    347 
    348 <!-- ======================================================================= -->
    349 <h3><a name="__has_warning">__has_warning</a></h3>
    350 <!-- ======================================================================= -->
    351 
    352 <p>This function-like macro takes a string literal that represents a command
    353   line option for a warning and returns true if that is a valid warning
    354   option.</p>
    355   
    356 <blockquote>
    357 <pre>
    358 #if __has_warning("-Wformat")
    359 ...
    360 #endif
    361 </pre>
    362 </blockquote>
    363 
    364 <!-- ======================================================================= -->
    365 <h2 id="builtinmacros">Builtin Macros</h2>
    366 <!-- ======================================================================= -->
    367 
    368 <dl>
    369   <dt><code>__BASE_FILE__</code></dt>
    370   <dd>Defined to a string that contains the name of the main input
    371   file passed to Clang.</dd> 
    372 
    373   <dt><code>__COUNTER__</code></dt>
    374   <dd>Defined to an integer value that starts at zero and is
    375   incremented each time the <code>__COUNTER__</code> macro is
    376   expanded.</dd> 
    377     
    378   <dt><code>__INCLUDE_LEVEL__</code></dt>
    379   <dd>Defined to an integral value that is the include depth of the
    380   file currently being translated. For the main file, this value is
    381   zero.</dd> 
    382 
    383   <dt><code>__TIMESTAMP__</code></dt>
    384   <dd>Defined to the date and time of the last modification of the
    385   current source file.</dd> 
    386     
    387   <dt><code>__clang__</code></dt>
    388   <dd>Defined when compiling with Clang</dd>
    389 
    390   <dt><code>__clang_major__</code></dt>
    391   <dd>Defined to the major marketing version number of Clang (e.g., the 
    392   2 in 2.0.1).  Note that marketing version numbers should not be used to 
    393   check for language features, as different vendors use different numbering
    394   schemes.  Instead, use the <a href="#feature_check">feature checking
    395   macros</a>.</dd> 
    396 
    397   <dt><code>__clang_minor__</code></dt>
    398   <dd>Defined to the minor version number of Clang (e.g., the 0 in
    399   2.0.1).  Note that marketing version numbers should not be used to 
    400   check for language features, as different vendors use different numbering
    401   schemes.  Instead, use the <a href="#feature_check">feature checking
    402   macros</a>.</dd> 
    403 
    404   <dt><code>__clang_patchlevel__</code></dt>
    405   <dd>Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).</dd>
    406 
    407   <dt><code>__clang_version__</code></dt>
    408   <dd>Defined to a string that captures the Clang marketing version, including
    409   the Subversion tag or revision number, e.g., "1.5 (trunk 102332)".</dd> 
    410 </dl>
    411 
    412 <!-- ======================================================================= -->
    413 <h2 id="vectors">Vectors and Extended Vectors</h2>
    414 <!-- ======================================================================= -->
    415 
    416 <p>Supports the GCC, OpenCL, AltiVec and NEON vector extensions.</p>
    417 
    418 <p>OpenCL vector types are created using <tt>ext_vector_type</tt> attribute. It
    419 support for <tt>V.xyzw</tt> syntax and other tidbits as seen in OpenCL. An
    420 example is:</p>
    421 
    422 <blockquote>
    423 <pre>
    424 typedef float float4 <b>__attribute__((ext_vector_type(4)))</b>;
    425 typedef float float2 <b>__attribute__((ext_vector_type(2)))</b>;
    426 
    427 float4 foo(float2 a, float2 b) {
    428   float4 c;
    429   c.xz = a;
    430   c.yw = b;
    431   return c;
    432 }
    433 </pre>
    434 </blockquote>
    435 
    436 <p>Query for this feature with
    437 <tt>__has_extension(attribute_ext_vector_type)</tt>.</p>
    438 
    439 <p>Giving <tt>-faltivec</tt> option to clang enables support for AltiVec vector
    440 syntax and functions. For example:</p>
    441 
    442 <blockquote>
    443 <pre>
    444 vector float foo(vector int a) { 
    445   vector int b;
    446   b = vec_add(a, a) + a; 
    447   return (vector float)b;
    448 }
    449 </pre>
    450 </blockquote>
    451 
    452 <p>NEON vector types are created using <tt>neon_vector_type</tt> and 
    453 <tt>neon_polyvector_type</tt> attributes. For example:</p>
    454 
    455 <blockquote>
    456 <pre>
    457 typedef <b>__attribute__((neon_vector_type(8)))</b> int8_t int8x8_t;
    458 typedef <b>__attribute__((neon_polyvector_type(16)))</b> poly8_t poly8x16_t;
    459 
    460 int8x8_t foo(int8x8_t a) {
    461   int8x8_t v;
    462   v = a;
    463   return v;
    464 }
    465 </pre>
    466 </blockquote>
    467 
    468 <!-- ======================================================================= -->
    469 <h3><a name="vector_literals">Vector Literals</a></h3>
    470 <!-- ======================================================================= -->
    471 
    472 <p>Vector literals can be used to create vectors from a set of scalars, or 
    473 vectors. Either parentheses or braces form can be used. In the parentheses form 
    474 the number of literal values specified must be one, i.e. referring to a scalar 
    475 value, or must match the size of the vector type being created. If a single 
    476 scalar literal value is specified, the scalar literal value will be replicated 
    477 to all the components of the vector type. In the brackets form any number of 
    478 literals can be specified. For example:</p>
    479 
    480 <blockquote>
    481 <pre>
    482 typedef int v4si __attribute__((__vector_size__(16)));
    483 typedef float float4 __attribute__((ext_vector_type(4)));
    484 typedef float float2 __attribute__((ext_vector_type(2)));
    485 
    486 v4si vsi = (v4si){1, 2, 3, 4};
    487 float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
    488 vector int vi1 = (vector int)(1);    // vi1 will be (1, 1, 1, 1).
    489 vector int vi2 = (vector int){1};    // vi2 will be (1, 0, 0, 0).
    490 vector int vi3 = (vector int)(1, 2); // error
    491 vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
    492 vector int vi5 = (vector int)(1, 2, 3, 4);
    493 float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
    494 </pre>
    495 </blockquote>
    496 
    497 <!-- ======================================================================= -->
    498 <h3><a name="vector_operations">Vector Operations</a></h3>
    499 <!-- ======================================================================= -->
    500 
    501 <p>The table below shows the support for each operation by vector extension.
    502 A dash indicates that an operation is not accepted according to a corresponding 
    503 specification.</p>
    504 
    505 <table width="500" border="1" cellspacing="0">
    506  <tr>
    507     <th>Operator</th>
    508     <th>OpenCL</th>
    509     <th>AltiVec</th>
    510     <th>GCC</th>
    511     <th>NEON</th>
    512  </tr>
    513      <tr>
    514       <td>[]</td>
    515       <td align="center">yes</td>
    516       <td align="center">yes</td>
    517       <td align="center">yes</td>
    518       <td align="center">-</td>
    519     </tr>
    520     <tr>
    521       <td>unary operators +, -</td>
    522       <td align="center">yes</td>
    523       <td align="center">yes</td>
    524       <td align="center">yes</td>
    525       <td align="center">-</td>
    526     </tr>
    527     <tr>
    528       <td>++, --</td>
    529       <td align="center">yes</td>
    530       <td align="center">yes</td>
    531       <td align="center">-</td>
    532       <td align="center">-</td>
    533     </tr>
    534     <tr>
    535       <td>+, -, *, /, %</td>
    536       <td align="center">yes</td>
    537       <td align="center">yes</td>
    538       <td align="center">yes</td>
    539       <td align="center">-</td>
    540     </tr>
    541     <tr>
    542       <td>bitwise operators &, |, ^, ~</td>
    543       <td align="center">yes</td>
    544       <td align="center">yes</td>
    545       <td align="center">yes</td>
    546       <td align="center">-</td>
    547     </tr>
    548     <tr>
    549       <td>&gt&gt, &lt&lt</td>
    550       <td align="center">yes</td>
    551       <td align="center">yes</td>
    552       <td align="center">yes</td>
    553       <td align="center">-</td>
    554     </tr>
    555     <tr>
    556       <td>!, &&,||</td>
    557       <td align="center">no</td>
    558       <td align="center">-</td>
    559       <td align="center">-</td>
    560       <td align="center">-</td>
    561     </tr>
    562     <tr>
    563       <td>==,!=, >, <, >=, <=</td>
    564       <td align="center">yes</td>
    565       <td align="center">yes</td>
    566       <td align="center">-</td>
    567       <td align="center">-</td>
    568     </tr>
    569     <tr>
    570       <td>=</td>
    571       <td align="center">yes</td>
    572       <td align="center">yes</td>
    573       <td align="center">yes</td>
    574       <td align="center">yes</td>
    575     </tr>
    576     <tr>
    577       <td>:?</td>
    578       <td align="center">yes</td>
    579       <td align="center">-</td>
    580       <td align="center">-</td>
    581       <td align="center">-</td>
    582     </tr>
    583     <tr>
    584       <td>sizeof</td>
    585       <td align="center">yes</td>
    586       <td align="center">yes</td>
    587       <td align="center">yes</td>
    588       <td align="center">yes</td>
    589     </tr>
    590 </table>
    591 
    592 <p>See also <a href="#__builtin_shufflevector">__builtin_shufflevector</a>.</p>
    593 
    594 <!-- ======================================================================= -->
    595 <h2 id="deprecated">Messages on <tt>deprecated</tt> and <tt>unavailable</tt> Attributes</h2>
    596 <!-- ======================================================================= -->
    597 
    598 <p>An optional string message can be added to the <tt>deprecated</tt>
    599 and <tt>unavailable</tt> attributes.  For example:</p>
    600 
    601 <blockquote>
    602 <pre>void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));</pre>
    603 </blockquote>
    604 
    605 <p>If the deprecated or unavailable declaration is used, the message
    606 will be incorporated into the appropriate diagnostic:</p>
    607 
    608 <blockquote>
    609 <pre>harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
    610       [-Wdeprecated-declarations]
    611   explode();
    612   ^</pre>
    613 </blockquote>
    614 
    615 <p>Query for this feature
    616 with <tt>__has_extension(attribute_deprecated_with_message)</tt>
    617 and <tt>__has_extension(attribute_unavailable_with_message)</tt>.</p>
    618 
    619 <!-- ======================================================================= -->
    620 <h2 id="attributes-on-enumerators">Attributes on Enumerators</h2>
    621 <!-- ======================================================================= -->
    622 
    623 <p>Clang allows attributes to be written on individual enumerators.
    624 This allows enumerators to be deprecated, made unavailable, etc.  The
    625 attribute must appear after the enumerator name and before any
    626 initializer, like so:</p>
    627 
    628 <blockquote>
    629 <pre>enum OperationMode {
    630   OM_Invalid,
    631   OM_Normal,
    632   OM_Terrified __attribute__((deprecated)),
    633   OM_AbortOnError __attribute__((deprecated)) = 4
    634 };</pre>
    635 </blockquote>
    636 
    637 <p>Attributes on the <tt>enum</tt> declaration do not apply to
    638 individual enumerators.</p>
    639 
    640 <p>Query for this feature with <tt>__has_extension(enumerator_attributes)</tt>.</p>
    641 
    642 <!-- ======================================================================= -->
    643 <h2 id="user_specified_system_framework">'User-Specified' System Frameworks</h2>
    644 <!-- ======================================================================= -->
    645 
    646 <p>Clang provides a mechanism by which frameworks can be built in such a way
    647 that they will always be treated as being 'system frameworks', even if they are
    648 not present in a system framework directory. This can be useful to system
    649 framework developers who want to be able to test building other applications
    650 with development builds of their framework, including the manner in which the
    651 compiler changes warning behavior for system headers.</p>
    652 
    653 <p>Framework developers can opt-in to this mechanism by creating a
    654 '.system_framework' file at the top-level of their framework. That is, the
    655 framework should have contents like:</p>
    656 
    657 <pre>
    658  .../TestFramework.framework
    659  .../TestFramework.framework/.system_framework
    660  .../TestFramework.framework/Headers
    661  .../TestFramework.framework/Headers/TestFramework.h
    662  ...
    663 </pre>
    664 
    665 <p>Clang will treat the presence of this file as an indicator that the framework
    666 should be treated as a system framework, regardless of how it was found in the
    667 framework search path. For consistency, we recommend that such files never be
    668 included in installed versions of the framework.</p>
    669 
    670 <!-- ======================================================================= -->
    671 <h2 id="availability">Availability attribute</h2>
    672 <!-- ======================================================================= -->
    673 
    674 <p>Clang introduces the <code>availability</code> attribute, which can
    675 be placed on declarations to describe the lifecycle of that
    676 declaration relative to operating system versions. Consider the function declaration for a hypothetical function <code>f</code>:</p>
    677 
    678 <pre>
    679 void f(void) __attribute__((availability(macosx,introduced=10.4,deprecated=10.6,obsoleted=10.7)));
    680 </pre>
    681 
    682 <p>The availability attribute states that <code>f</code> was introduced in Mac OS X 10.4, deprecated in Mac OS X 10.6, and obsoleted in Mac OS X 10.7. This information is used by Clang to determine when it is safe to use <code>f</code>: for example, if Clang is instructed to compile code for Mac OS X 10.5, a call to <code>f()</code> succeeds. If Clang is instructed to compile code for Mac OS X 10.6, the call succeeds but Clang emits a warning specifying that the function is deprecated. Finally, if Clang is instructed to compile code for Mac OS X 10.7, the call fails because <code>f()</code> is no longer available.</p>
    683 
    684 <p>The availablility attribute is a comma-separated list starting with the platform name and then including clauses specifying important milestones in the declaration's lifetime (in any order) along with additional information. Those clauses can be:</p>
    685 
    686 <dl>
    687   <dt>introduced=<i>version</i></dt>
    688   <dd>The first version in which this declaration was introduced.</dd>
    689 
    690   <dt>deprecated=<i>version</i></dt>
    691   <dd>The first version in which this declaration was deprecated, meaning that users should migrate away from this API.</dd>
    692 
    693   <dt>obsoleted=<i>version</i></dt>
    694   <dd>The first version in which this declaration was obsoleted, meaning that it was removed completely and can no longer be used.</dd>
    695 
    696   <dt>unavailable</dt>
    697   <dd>This declaration is never available on this platform.</dd>
    698 
    699   <dt>message=<i>string-literal</i></dt>
    700   <dd>Additional message text that Clang will provide when emitting a warning or error about use of a deprecated or obsoleted declaration. Useful to direct users to replacement APIs.</dd>
    701 </dl>
    702 
    703 <p>Multiple availability attributes can be placed on a declaration, which may correspond to different platforms. Only the availability attribute with the platform corresponding to the target platform will be used; any others will be ignored. If no availability attribute specifies availability for the current target platform, the availability attributes are ignored. Supported platforms are:</p>
    704 
    705 <dl>
    706   <dt>ios</dt>
    707   <dd>Apple's iOS operating system. The minimum deployment target is specified by the <code>-mios-version-min=<i>version</i></code> or <code>-miphoneos-version-min=<i>version</i></code> command-line arguments.</dd>
    708 
    709   <dt>macosx</dt>
    710   <dd>Apple's Mac OS X operating system. The minimum deployment target is specified by the <code>-mmacosx-version-min=<i>version</i></code> command-line argument.</dd>
    711 </dl>
    712 
    713 <p>A declaration can be used even when deploying back to a platform
    714 version prior to when the declaration was introduced. When this
    715 happens, the declaration is <a
    716  href="https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html">weakly
    717 linked</a>, as if the <code>weak_import</code> attribute were added to the declaration. A weakly-linked declaration may or may not be present a run-time, and a program can determine whether the declaration is present by checking whether the address of that declaration is non-NULL.</p>
    718 
    719 <!-- ======================================================================= -->
    720 <h2 id="checking_language_features">Checks for Standard Language Features</h2>
    721 <!-- ======================================================================= -->
    722 
    723 <p>The <tt>__has_feature</tt> macro can be used to query if certain standard
    724 language features are enabled.  The <tt>__has_extension</tt> macro can be used
    725 to query if language features are available as an extension when compiling for
    726 a standard which does not provide them. The features which can be tested are
    727 listed here.</p>
    728 
    729 <h3 id="cxx98">C++98</h3>
    730 
    731 <p>The features listed below are part of the C++98 standard. These features are
    732 enabled by default when compiling C++ code.</p>
    733 
    734 <h4 id="cxx_exceptions">C++ exceptions</h4>
    735 
    736 <p>Use <tt>__has_feature(cxx_exceptions)</tt> to determine if C++ exceptions have been enabled. For
    737 example, compiling code with <tt>-fno-exceptions</tt> disables C++ exceptions.</p>
    738 
    739 <h4 id="cxx_rtti">C++ RTTI</h4>
    740 
    741 <p>Use <tt>__has_feature(cxx_rtti)</tt> to determine if C++ RTTI has been enabled. For example,
    742 compiling code with <tt>-fno-rtti</tt> disables the use of RTTI.</p>
    743 
    744 <h3 id="cxx11">C++11</h3>
    745 
    746 <p>The features listed below are part of the C++11 standard. As a result, all
    747 these features are enabled with the <tt>-std=c++11</tt> or <tt>-std=gnu++11</tt>
    748 option when compiling C++ code.</p>
    749 
    750 <h4 id="cxx_access_control_sfinae">C++11 SFINAE includes access control</h4>
    751 
    752 <p>Use <tt>__has_feature(cxx_access_control_sfinae)</tt> or <tt>__has_extension(cxx_access_control_sfinae)</tt> to determine whether access-control errors (e.g., calling a private constructor) are considered to be template argument deduction errors (aka SFINAE errors), per <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170">C++ DR1170</a>.</p>
    753 
    754 <h4 id="cxx_alias_templates">C++11 alias templates</h4>
    755 
    756 <p>Use <tt>__has_feature(cxx_alias_templates)</tt> or
    757 <tt>__has_extension(cxx_alias_templates)</tt> to determine if support for
    758 C++11's alias declarations and alias templates is enabled.</p>
    759 
    760 <h4 id="cxx_alignas">C++11 alignment specifiers</h4>
    761 
    762 <p>Use <tt>__has_feature(cxx_alignas)</tt> or
    763 <tt>__has_extension(cxx_alignas)</tt> to determine if support for alignment
    764 specifiers using <tt>alignas</tt> is enabled.</p>
    765 
    766 <h4 id="cxx_attributes">C++11 attributes</h4>
    767 
    768 <p>Use <tt>__has_feature(cxx_attributes)</tt> or
    769 <tt>__has_extension(cxx_attributes)</tt> to determine if support for attribute
    770 parsing with C++11's square bracket notation is enabled.</p>
    771 
    772 <h4 id="cxx_constexpr">C++11 generalized constant expressions</h4>
    773 
    774 <p>Use <tt>__has_feature(cxx_constexpr)</tt> to determine if support
    775 for generalized constant expressions (e.g., <tt>constexpr</tt>) is
    776 enabled.</p>
    777 
    778 <h4 id="cxx_decltype">C++11 <tt>decltype()</tt></h4>
    779 
    780 <p>Use <tt>__has_feature(cxx_decltype)</tt> or
    781 <tt>__has_extension(cxx_decltype)</tt> to determine if support for the
    782 <tt>decltype()</tt> specifier is enabled. C++11's <tt>decltype</tt>
    783 does not require type-completeness of a function call expression.
    784 Use <tt>__has_feature(cxx_decltype_incomplete_return_types)</tt>
    785 or <tt>__has_extension(cxx_decltype_incomplete_return_types)</tt>
    786 to determine if support for this feature is enabled.</p>
    787 
    788 <h4 id="cxx_default_function_template_args">C++11 default template arguments in function templates</h4>
    789 
    790 <p>Use <tt>__has_feature(cxx_default_function_template_args)</tt> or
    791 <tt>__has_extension(cxx_default_function_template_args)</tt> to determine
    792 if support for default template arguments in function templates is enabled.</p>
    793 
    794 <h4 id="cxx_defaulted_functions">C++11 <tt>default</tt>ed functions</h4>
    795 
    796 <p>Use <tt>__has_feature(cxx_defaulted_functions)</tt> or
    797 <tt>__has_extension(cxx_defaulted_functions)</tt> to determine if support for
    798 defaulted function definitions (with <tt>= default</tt>) is enabled.</p>
    799 
    800 <h4 id="cxx_delegating_constructors">C++11 delegating constructors</h4>
    801 
    802 <p>Use <tt>__has_feature(cxx_delegating_constructors)</tt> to determine if
    803 support for delegating constructors is enabled.</p>
    804 
    805 <h4 id="cxx_deleted_functions">C++11 <tt>delete</tt>d functions</h4>
    806 
    807 <p>Use <tt>__has_feature(cxx_deleted_functions)</tt> or
    808 <tt>__has_extension(cxx_deleted_functions)</tt> to determine if support for
    809 deleted function definitions (with <tt>= delete</tt>) is enabled.</p>
    810 
    811 <h4 id="cxx_explicit_conversions">C++11 explicit conversion functions</h4>
    812 <p>Use <tt>__has_feature(cxx_explicit_conversions)</tt> to determine if support for <tt>explicit</tt> conversion functions is enabled.</p>
    813 
    814 <h4 id="cxx_generalized_initializers">C++11 generalized initializers</h4>
    815 
    816 <p>Use <tt>__has_feature(cxx_generalized_initializers)</tt> to determine if
    817 support for generalized initializers (using braced lists and
    818 <tt>std::initializer_list</tt>) is enabled.</p>
    819 
    820 <h4 id="cxx_implicit_moves">C++11 implicit move constructors/assignment operators</h4>
    821 
    822 <p>Use <tt>__has_feature(cxx_implicit_moves)</tt> to determine if Clang will
    823 implicitly generate move constructors and move assignment operators where needed.</p>
    824 
    825 <h4 id="cxx_inheriting_constructors">C++11 inheriting constructors</h4>
    826 
    827 <p>Use <tt>__has_feature(cxx_inheriting_constructors)</tt> to determine if support for inheriting constructors is enabled. Clang does not currently implement this feature.</p>
    828 
    829 <h4 id="cxx_inline_namespaces">C++11 inline namespaces</h4>
    830 
    831 <p>Use <tt>__has_feature(cxx_inline_namespaces)</tt> or
    832 <tt>__has_extension(cxx_inline_namespaces)</tt> to determine if support for
    833 inline namespaces is enabled.</p>
    834 
    835 <h4 id="cxx_lambdas">C++11 lambdas</h4>
    836 
    837 <p>Use <tt>__has_feature(cxx_lambdas)</tt> or
    838 <tt>__has_extension(cxx_lambdas)</tt> to determine if support for lambdas
    839 is enabled. </p>
    840 
    841 <h4 id="cxx_local_type_template_args">C++11 local and unnamed types as template arguments</h4>
    842 
    843 <p>Use <tt>__has_feature(cxx_local_type_template_args)</tt> or
    844 <tt>__has_extension(cxx_local_type_template_args)</tt> to determine if
    845 support for local and unnamed types as template arguments is enabled.</p>
    846 
    847 <h4 id="cxx_noexcept">C++11 noexcept</h4>
    848 
    849 <p>Use <tt>__has_feature(cxx_noexcept)</tt> or
    850 <tt>__has_extension(cxx_noexcept)</tt> to determine if support for noexcept
    851 exception specifications is enabled.</p>
    852 
    853 <h4 id="cxx_nonstatic_member_init">C++11 in-class non-static data member initialization</h4>
    854 
    855 <p>Use <tt>__has_feature(cxx_nonstatic_member_init)</tt> to determine whether in-class initialization of non-static data members is enabled.</p>
    856 
    857 <h4 id="cxx_nullptr">C++11 <tt>nullptr</tt></h4>
    858 
    859 <p>Use <tt>__has_feature(cxx_nullptr)</tt> or
    860 <tt>__has_extension(cxx_nullptr)</tt> to determine if support for
    861 <tt>nullptr</tt> is enabled.</p>
    862 
    863 <h4 id="cxx_override_control">C++11 <tt>override control</tt></h4>
    864 
    865 <p>Use <tt>__has_feature(cxx_override_control)</tt> or
    866 <tt>__has_extension(cxx_override_control)</tt> to determine if support for
    867 the override control keywords is enabled.</p>
    868 
    869 <h4 id="cxx_reference_qualified_functions">C++11 reference-qualified functions</h4>
    870 <p>Use <tt>__has_feature(cxx_reference_qualified_functions)</tt> or
    871 <tt>__has_extension(cxx_reference_qualified_functions)</tt> to determine
    872 if support for reference-qualified functions (e.g., member functions with
    873 <code>&amp;</code> or <code>&amp;&amp;</code> applied to <code>*this</code>)
    874 is enabled.</p>
    875 
    876 <h4 id="cxx_range_for">C++11 range-based <tt>for</tt> loop</h4>
    877 
    878 <p>Use <tt>__has_feature(cxx_range_for)</tt> or
    879 <tt>__has_extension(cxx_range_for)</tt> to determine if support for the
    880 range-based for loop is enabled. </p>
    881 
    882 <h4 id="cxx_raw_string_literals">C++11 raw string literals</h4>
    883 <p>Use <tt>__has_feature(cxx_raw_string_literals)</tt> to determine if support
    884 for raw string literals (e.g., <tt>R"x(foo\bar)x"</tt>) is enabled.</p>
    885 
    886 <h4 id="cxx_rvalue_references">C++11 rvalue references</h4>
    887 
    888 <p>Use <tt>__has_feature(cxx_rvalue_references)</tt> or
    889 <tt>__has_extension(cxx_rvalue_references)</tt> to determine if support for
    890 rvalue references is enabled. </p>
    891 
    892 <h4 id="cxx_static_assert">C++11 <tt>static_assert()</tt></h4>
    893 
    894 <p>Use <tt>__has_feature(cxx_static_assert)</tt> or
    895 <tt>__has_extension(cxx_static_assert)</tt> to determine if support for
    896 compile-time assertions using <tt>static_assert</tt> is enabled.</p>
    897 
    898 <h4 id="cxx_auto_type">C++11 type inference</h4>
    899 
    900 <p>Use <tt>__has_feature(cxx_auto_type)</tt> or
    901 <tt>__has_extension(cxx_auto_type)</tt> to determine C++11 type inference is
    902 supported using the <tt>auto</tt> specifier. If this is disabled, <tt>auto</tt>
    903 will instead be a storage class specifier, as in C or C++98.</p>
    904 
    905 <h4 id="cxx_strong_enums">C++11 strongly typed enumerations</h4>
    906 
    907 <p>Use <tt>__has_feature(cxx_strong_enums)</tt> or
    908 <tt>__has_extension(cxx_strong_enums)</tt> to determine if support for
    909 strongly typed, scoped enumerations is enabled.</p>
    910 
    911 <h4 id="cxx_trailing_return">C++11 trailing return type</h4>
    912 
    913 <p>Use <tt>__has_feature(cxx_trailing_return)</tt> or
    914 <tt>__has_extension(cxx_trailing_return)</tt> to determine if support for the
    915 alternate function declaration syntax with trailing return type is enabled.</p>
    916 
    917 <h4 id="cxx_unicode_literals">C++11 Unicode string literals</h4>
    918 <p>Use <tt>__has_feature(cxx_unicode_literals)</tt> to determine if
    919 support for Unicode string literals is enabled.</p>
    920 
    921 <h4 id="cxx_unrestricted_unions">C++11 unrestricted unions</h4>
    922 
    923 <p>Use <tt>__has_feature(cxx_unrestricted_unions)</tt> to determine if support for unrestricted unions is enabled.</p>
    924 
    925 <h4 id="cxx_user_literals">C++11 user-defined literals</h4>
    926 
    927 <p>Use <tt>__has_feature(cxx_user_literals)</tt> to determine if support for user-defined literals is enabled.</p>
    928 
    929 <h4 id="cxx_variadic_templates">C++11 variadic templates</h4>
    930 
    931 <p>Use <tt>__has_feature(cxx_variadic_templates)</tt> or
    932 <tt>__has_extension(cxx_variadic_templates)</tt> to determine if support
    933 for variadic templates is enabled.</p>
    934 
    935 <h3 id="c11">C11</h3>
    936 
    937 <p>The features listed below are part of the C11 standard. As a result, all
    938 these features are enabled with the <tt>-std=c11</tt> or <tt>-std=gnu11</tt>
    939 option when compiling C code. Additionally, because these features are all
    940 backward-compatible, they are available as extensions in all language modes.</p>
    941 
    942 <h4 id="c_alignas">C11 alignment specifiers</h4>
    943 
    944 <p>Use <tt>__has_feature(c_alignas)</tt> or <tt>__has_extension(c_alignas)</tt>
    945 to determine if support for alignment specifiers using <tt>_Alignas</tt>
    946 is enabled.</p>
    947 
    948 <h4 id="c_atomic">C11 atomic operations</h4>
    949 
    950 <p>Use <tt>__has_feature(c_atomic)</tt> or <tt>__has_extension(c_atomic)</tt>
    951 to determine if support for atomic types using <tt>_Atomic</tt> is enabled.
    952 Clang also provides <a href="#__c11_atomic">a set of builtins</a> which can be
    953 used to implement the <tt>&lt;stdatomic.h&gt;</tt> operations on
    954 <tt>_Atomic</tt> types.</p>
    955 
    956 <h4 id="c_generic_selections">C11 generic selections</h4>
    957 
    958 <p>Use <tt>__has_feature(c_generic_selections)</tt> or
    959 <tt>__has_extension(c_generic_selections)</tt> to determine if support for
    960 generic selections is enabled.</p>
    961 
    962 <p>As an extension, the C11 generic selection expression is available in all
    963 languages supported by Clang.  The syntax is the same as that given in the
    964 C11 standard.</p>
    965 
    966 <p>In C, type compatibility is decided according to the rules given in the
    967 appropriate standard, but in C++, which lacks the type compatibility rules
    968 used in C, types are considered compatible only if they are equivalent.</p>
    969 
    970 <h4 id="c_static_assert">C11 <tt>_Static_assert()</tt></h4>
    971 
    972 <p>Use <tt>__has_feature(c_static_assert)</tt> or
    973 <tt>__has_extension(c_static_assert)</tt> to determine if support for
    974 compile-time assertions using <tt>_Static_assert</tt> is enabled.</p>
    975 
    976 <!-- ======================================================================= -->
    977 <h2 id="checking_type_traits">Checks for Type Traits</h2>
    978 <!-- ======================================================================= -->
    979 
    980 <p>Clang supports the <a href="http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html">GNU C++ type traits</a> and a subset of the <a href="http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx">Microsoft Visual C++ Type traits</a>. For each supported type trait <code>__X</code>, <code>__has_extension(X)</code> indicates the presence of the type trait. For example:
    981 <blockquote>
    982 <pre>
    983 #if __has_extension(is_convertible_to)
    984 template&lt;typename From, typename To&gt;
    985 struct is_convertible_to {
    986   static const bool value = __is_convertible_to(From, To);
    987 };
    988 #else
    989 // Emulate type trait
    990 #endif
    991 </pre>
    992 </blockquote>
    993 
    994 <p>The following type traits are supported by Clang:</p>
    995 <ul>
    996   <li><code>__has_nothrow_assign</code> (GNU, Microsoft)</li>
    997   <li><code>__has_nothrow_copy</code> (GNU, Microsoft)</li>
    998   <li><code>__has_nothrow_constructor</code> (GNU, Microsoft)</li>
    999   <li><code>__has_trivial_assign</code> (GNU, Microsoft)</li>
   1000   <li><code>__has_trivial_copy</code> (GNU, Microsoft)</li>
   1001   <li><code>__has_trivial_constructor</code> (GNU, Microsoft)</li>
   1002   <li><code>__has_trivial_destructor</code> (GNU, Microsoft)</li>
   1003   <li><code>__has_virtual_destructor</code> (GNU, Microsoft)</li>
   1004   <li><code>__is_abstract</code> (GNU, Microsoft)</li>
   1005   <li><code>__is_base_of</code> (GNU, Microsoft)</li>
   1006   <li><code>__is_class</code> (GNU, Microsoft)</li>
   1007   <li><code>__is_convertible_to</code> (Microsoft)</li>
   1008   <li><code>__is_empty</code> (GNU, Microsoft)</li>
   1009   <li><code>__is_enum</code> (GNU, Microsoft)</li>
   1010   <li><code>__is_pod</code> (GNU, Microsoft)</li>
   1011   <li><code>__is_polymorphic</code> (GNU, Microsoft)</li>
   1012   <li><code>__is_union</code> (GNU, Microsoft)</li>
   1013   <li><code>__is_literal(type)</code>: Determines whether the given type is a literal type</li>
   1014   <li><code>__is_final</code>: Determines whether the given type is declared with a <code>final</code> class-virt-specifier.</li>
   1015   <li><code>__underlying_type(type)</code>: Retrieves the underlying type for a given <code>enum</code> type. This trait is required to implement the C++11 standard library.</li>
   1016   <li><code>__is_trivially_assignable(totype, fromtype)</code>: Determines whether a value of type <tt>totype</tt> can be assigned to from a value of type <tt>fromtype</tt> such that no non-trivial functions are called as part of that assignment. This trait is required to implement the C++11 standard library.</li>
   1017   <li><code>__is_trivially_constructible(type, argtypes...)</code>: Determines whether a value of type <tt>type</tt> can be direct-initialized with arguments of types <tt>argtypes...</tt> such that no non-trivial functions are called as part of that initialization. This trait is required to implement the C++11 standard library.</li>
   1018 </ul>
   1019 
   1020 <!-- ======================================================================= -->
   1021 <h2 id="blocks">Blocks</h2>
   1022 <!-- ======================================================================= -->
   1023 
   1024 <p>The syntax and high level language feature description is in <a
   1025 href="BlockLanguageSpec.txt">BlockLanguageSpec.txt</a>.  Implementation and ABI
   1026 details for the clang implementation are in <a 
   1027 href="Block-ABI-Apple.txt">Block-ABI-Apple.txt</a>.</p>
   1028 
   1029 
   1030 <p>Query for this feature with __has_extension(blocks).</p>
   1031 
   1032 <!-- ======================================================================= -->
   1033 <h2 id="objc_features">Objective-C Features</h2>
   1034 <!-- ======================================================================= -->
   1035 
   1036 <h3 id="objc_instancetype">Related result types</h3>
   1037 
   1038 <p>According to Cocoa conventions, Objective-C methods with certain names ("init", "alloc", etc.) always return objects that are an instance of the receiving class's type. Such methods are said to have a "related result type", meaning that a message send to one of these methods will have the same static type as an instance of the receiver class. For example, given the following classes:</p>
   1039 
   1040 <blockquote>
   1041 <pre>
   1042 @interface NSObject
   1043 + (id)alloc;
   1044 - (id)init;
   1045 @end
   1046 
   1047 @interface NSArray : NSObject
   1048 @end
   1049 </pre>
   1050 </blockquote>
   1051 
   1052 <p>and this common initialization pattern</p>
   1053 
   1054 <blockquote>
   1055 <pre>
   1056 NSArray *array = [[NSArray alloc] init];
   1057 </pre>
   1058 </blockquote>
   1059 
   1060 <p>the type of the expression <code>[NSArray alloc]</code> is
   1061 <code>NSArray*</code> because <code>alloc</code> implicitly has a
   1062 related result type. Similarly, the type of the expression
   1063 <code>[[NSArray alloc] init]</code> is <code>NSArray*</code>, since
   1064 <code>init</code> has a related result type and its receiver is known
   1065 to have the type <code>NSArray *</code>. If neither <code>alloc</code> nor <code>init</code> had a related result type, the expressions would have had type <code>id</code>, as declared in the method signature.</p>
   1066 
   1067 <p>A method with a related result type can be declared by using the
   1068 type <tt>instancetype</tt> as its result type. <tt>instancetype</tt>
   1069 is a contextual keyword that is only permitted in the result type of
   1070 an Objective-C method, e.g.</p>
   1071 
   1072 <pre>
   1073 @interface A
   1074 + (<b>instancetype</b>)constructAnA;
   1075 @end
   1076 </pre>
   1077 
   1078 <p>The related result type can also be inferred for some methods.
   1079 To determine whether a method has an inferred related result type, the first
   1080 word in the camel-case selector (e.g., "init" in "initWithObjects") is
   1081 considered, and the method will have a related result type if its return
   1082 type is compatible with the type of its class and if</p>
   1083 
   1084 <ul>
   1085   
   1086   <li>the first word is "alloc" or "new", and the method is a class
   1087   method, or</li>
   1088   
   1089   <li>the first word is "autorelease", "init", "retain", or "self",
   1090   and the method is an instance method.</li>
   1091   
   1092 </ul>
   1093 
   1094 <p>If a method with a related result type is overridden by a subclass
   1095 method, the subclass method must also return a type that is compatible
   1096 with the subclass type. For example:</p>
   1097 
   1098 <blockquote>
   1099 <pre>
   1100 @interface NSString : NSObject
   1101 - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
   1102 @end
   1103 </pre>
   1104 </blockquote>
   1105 
   1106 <p>Related result types only affect the type of a message send or
   1107 property access via the given method. In all other respects, a method
   1108 with a related result type is treated the same way as method that
   1109 returns <tt>id</tt>.</p>
   1110 
   1111 <p>Use <tt>__has_feature(objc_instancetype)</tt> to determine whether
   1112 the <tt>instancetype</tt> contextual keyword is available.</p>
   1113 
   1114 <!-- ======================================================================= -->
   1115 <h2 id="objc_arc">Automatic reference counting </h2>
   1116 <!-- ======================================================================= -->
   1117 
   1118 <p>Clang provides support for <a href="AutomaticReferenceCounting.html">automated reference counting</a> in Objective-C, which eliminates the need for manual retain/release/autorelease message sends. There are two feature macros associated with automatic reference counting: <code>__has_feature(objc_arc)</code> indicates the availability of automated reference counting in general, while <code>__has_feature(objc_arc_weak)</code> indicates that automated reference counting also includes support for <code>__weak</code> pointers to Objective-C objects.</p>
   1119 
   1120 <!-- ======================================================================= -->
   1121 <h2 id="objc_fixed_enum">Enumerations with a fixed underlying type</h2>
   1122 <!-- ======================================================================= -->
   1123 
   1124 <p>Clang provides support for C++11 enumerations with a fixed
   1125 underlying type within Objective-C. For example, one can write an
   1126 enumeration type as:</p>
   1127 
   1128 <pre>
   1129 typedef enum : unsigned char { Red, Green, Blue } Color;
   1130 </pre>
   1131 
   1132 <p>This specifies that the underlying type, which is used to store the
   1133 enumeration value, is <tt>unsigned char</tt>.</p>
   1134 
   1135 <p>Use <tt>__has_feature(objc_fixed_enum)</tt> to determine whether
   1136 support for fixed underlying types is available in Objective-C.</p>
   1137 
   1138 <!-- ======================================================================= -->
   1139 <h2 id="objc_lambdas">Interoperability with C++11 lambdas</h2>
   1140 <!-- ======================================================================= -->
   1141 
   1142 <p>Clang provides interoperability between C++11 lambdas and
   1143 blocks-based APIs, by permitting a lambda to be implicitly converted
   1144 to a block pointer with the corresponding signature. For example,
   1145 consider an API such as <code>NSArray</code>'s array-sorting
   1146 method:</p>
   1147 
   1148 <pre> - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr; </pre>
   1149 
   1150 <p><code>NSComparator</code> is simply a typedef for the block pointer
   1151 <code>NSComparisonResult (^)(id, id)</code>, and parameters of this
   1152 type are generally provided with block literals as arguments. However,
   1153 one can also use a C++11 lambda so long as it provides the same
   1154 signature (in this case, accepting two parameters of type
   1155 <code>id</code> and returning an <code>NSComparisonResult</code>):</p>
   1156 
   1157 <pre>
   1158   NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
   1159                      @"String 02"];
   1160   const NSStringCompareOptions comparisonOptions
   1161     = NSCaseInsensitiveSearch | NSNumericSearch |
   1162       NSWidthInsensitiveSearch | NSForcedOrderingSearch;
   1163   NSLocale *currentLocale = [NSLocale currentLocale];
   1164   NSArray *sorted 
   1165     = [array sortedArrayUsingComparator:<b>[=](id s1, id s2) -&gt; NSComparisonResult {
   1166                NSRange string1Range = NSMakeRange(0, [s1 length]);
   1167                return [s1 compare:s2 options:comparisonOptions 
   1168                           range:string1Range locale:currentLocale];
   1169        }</b>];
   1170   NSLog(@"sorted: %@", sorted);
   1171 </pre>
   1172 
   1173 <p>This code relies on an implicit conversion from the type of the
   1174 lambda expression (an unnamed, local class type called the <i>closure
   1175 type</i>) to the corresponding block pointer type. The conversion
   1176 itself is expressed by a conversion operator in that closure type
   1177 that produces a block pointer with the same signature as the lambda
   1178 itself, e.g.,</p>
   1179 
   1180 <pre>
   1181   operator NSComparisonResult (^)(id, id)() const;
   1182 </pre>
   1183 
   1184 <p>This conversion function returns a new block that simply forwards
   1185 the two parameters to the lambda object (which it captures by copy),
   1186 then returns the result. The returned block is first copied (with
   1187 <tt>Block_copy</tt>) and then autoreleased. As an optimization, if a
   1188 lambda expression is immediately converted to a block pointer (as in
   1189 the first example, above), then the block is not copied and
   1190 autoreleased: rather, it is given the same lifetime as a block literal
   1191 written at that point in the program, which avoids the overhead of
   1192 copying a block to the heap in the common case.</p>
   1193 
   1194 <p>The conversion from a lambda to a block pointer is only available
   1195 in Objective-C++, and not in C++ with blocks, due to its use of
   1196 Objective-C memory management (autorelease).</p>
   1197 
   1198 <!-- ======================================================================= -->
   1199 <h2 id="objc_object_literals_subscripting">Object Literals and Subscripting</h2>
   1200 <!-- ======================================================================= -->
   1201 
   1202 <p>Clang provides support for <a href="ObjectiveCLiterals.html">Object Literals 
   1203 and Subscripting</a> in Objective-C, which simplifies common Objective-C
   1204 programming patterns, makes programs more concise, and improves the safety of
   1205 container creation. There are several feature macros associated with object
   1206 literals and subscripting: <code>__has_feature(objc_array_literals)</code>
   1207 tests the availability of array literals;
   1208 <code>__has_feature(objc_dictionary_literals)</code> tests the availability of
   1209 dictionary literals; <code>__has_feature(objc_subscripting)</code> tests the
   1210 availability of object subscripting.</p>
   1211 
   1212 <!-- ======================================================================= -->
   1213 <h2 id="objc_default_synthesize_properties">Objective-C Autosynthesis of Properties</h2>
   1214 <!-- ======================================================================= -->
   1215 
   1216 <p> Clang provides support for autosynthesis of declared properties. Using this
   1217 feature, clang provides default synthesis of those properties not declared @dynamic
   1218 and not having user provided backing getter and setter methods.
   1219 <code>__has_feature(objc_default_synthesize_properties)</code> checks for availability
   1220 of this feature in version of clang being used.</p>
   1221 
   1222 <!-- ======================================================================= -->
   1223 <h2 id="overloading-in-c">Function Overloading in C</h2>
   1224 <!-- ======================================================================= -->
   1225 
   1226 <p>Clang provides support for C++ function overloading in C. Function
   1227 overloading in C is introduced using the <tt>overloadable</tt> attribute. For
   1228 example, one might provide several overloaded versions of a <tt>tgsin</tt>
   1229 function that invokes the appropriate standard function computing the sine of a
   1230 value with <tt>float</tt>, <tt>double</tt>, or <tt>long double</tt>
   1231 precision:</p>
   1232 
   1233 <blockquote>
   1234 <pre>
   1235 #include &lt;math.h&gt;
   1236 float <b>__attribute__((overloadable))</b> tgsin(float x) { return sinf(x); }
   1237 double <b>__attribute__((overloadable))</b> tgsin(double x) { return sin(x); }
   1238 long double <b>__attribute__((overloadable))</b> tgsin(long double x) { return sinl(x); }
   1239 </pre>
   1240 </blockquote>
   1241 
   1242 <p>Given these declarations, one can call <tt>tgsin</tt> with a
   1243 <tt>float</tt> value to receive a <tt>float</tt> result, with a
   1244 <tt>double</tt> to receive a <tt>double</tt> result, etc. Function
   1245 overloading in C follows the rules of C++ function overloading to pick
   1246 the best overload given the call arguments, with a few C-specific
   1247 semantics:</p>
   1248 <ul>
   1249   <li>Conversion from <tt>float</tt> or <tt>double</tt> to <tt>long
   1250   double</tt> is ranked as a floating-point promotion (per C99) rather
   1251   than as a floating-point conversion (as in C++).</li>
   1252   
   1253   <li>A conversion from a pointer of type <tt>T*</tt> to a pointer of type
   1254   <tt>U*</tt> is considered a pointer conversion (with conversion
   1255   rank) if <tt>T</tt> and <tt>U</tt> are compatible types.</li>
   1256 
   1257   <li>A conversion from type <tt>T</tt> to a value of type <tt>U</tt>
   1258   is permitted if <tt>T</tt> and <tt>U</tt> are compatible types. This
   1259   conversion is given "conversion" rank.</li>
   1260 </ul>
   1261 
   1262 <p>The declaration of <tt>overloadable</tt> functions is restricted to
   1263 function declarations and definitions. Most importantly, if any
   1264 function with a given name is given the <tt>overloadable</tt>
   1265 attribute, then all function declarations and definitions with that
   1266 name (and in that scope) must have the <tt>overloadable</tt>
   1267 attribute. This rule even applies to redeclarations of functions whose original
   1268 declaration had the <tt>overloadable</tt> attribute, e.g.,</p>
   1269 
   1270 <blockquote>
   1271 <pre>
   1272 int f(int) __attribute__((overloadable));
   1273 float f(float); <i>// error: declaration of "f" must have the "overloadable" attribute</i>
   1274 
   1275 int g(int) __attribute__((overloadable));
   1276 int g(int) { } <i>// error: redeclaration of "g" must also have the "overloadable" attribute</i>
   1277 </pre>
   1278 </blockquote>
   1279 
   1280 <p>Functions marked <tt>overloadable</tt> must have
   1281 prototypes. Therefore, the following code is ill-formed:</p>
   1282 
   1283 <blockquote>
   1284 <pre>
   1285 int h() __attribute__((overloadable)); <i>// error: h does not have a prototype</i>
   1286 </pre>
   1287 </blockquote>
   1288 
   1289 <p>However, <tt>overloadable</tt> functions are allowed to use a
   1290 ellipsis even if there are no named parameters (as is permitted in C++). This feature is particularly useful when combined with the <tt>unavailable</tt> attribute:</p>
   1291 
   1292 <blockquote>
   1293 <pre>
   1294 void honeypot(...) __attribute__((overloadable, unavailable)); <i>// calling me is an error</i>
   1295 </pre>
   1296 </blockquote>
   1297 
   1298 <p>Functions declared with the <tt>overloadable</tt> attribute have
   1299 their names mangled according to the same rules as C++ function
   1300 names. For example, the three <tt>tgsin</tt> functions in our
   1301 motivating example get the mangled names <tt>_Z5tgsinf</tt>,
   1302 <tt>_Z5tgsind</tt>, and <tt>_Z5tgsine</tt>, respectively. There are two
   1303 caveats to this use of name mangling:</p>
   1304 
   1305 <ul>
   1306   
   1307   <li>Future versions of Clang may change the name mangling of
   1308   functions overloaded in C, so you should not depend on an specific
   1309   mangling. To be completely safe, we strongly urge the use of
   1310   <tt>static inline</tt> with <tt>overloadable</tt> functions.</li>
   1311 
   1312   <li>The <tt>overloadable</tt> attribute has almost no meaning when
   1313   used in C++, because names will already be mangled and functions are
   1314   already overloadable. However, when an <tt>overloadable</tt>
   1315   function occurs within an <tt>extern "C"</tt> linkage specification,
   1316   it's name <i>will</i> be mangled in the same way as it would in
   1317   C.</li>
   1318 </ul>
   1319 
   1320 <p>Query for this feature with __has_extension(attribute_overloadable).</p>
   1321 
   1322 <!-- ======================================================================= -->
   1323 <h2 id="complex-list-init">Initializer lists for complex numbers in C</h2>
   1324 <!-- ======================================================================= -->
   1325 
   1326 <p>clang supports an extension which allows the following in C:</p>
   1327 
   1328 <blockquote>
   1329 <pre>
   1330 #include &lt;math.h&gt;
   1331 #include &lt;complex.h&gt;
   1332 complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
   1333 </pre>
   1334 </blockquote>
   1335 
   1336 <p>This construct is useful because there is no way to separately
   1337 initialize the real and imaginary parts of a complex variable in
   1338 standard C, given that clang does not support <code>_Imaginary</code>.
   1339 (clang also supports the <code>__real__</code> and <code>__imag__</code>
   1340 extensions from gcc, which help in some cases, but are not usable in
   1341 static initializers.)
   1342 
   1343 <p>Note that this extension does not allow eliding the braces; the
   1344 meaning of the following two lines is different:</p>
   1345 
   1346 <blockquote>
   1347 <pre>
   1348 complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
   1349 complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
   1350 </pre>
   1351 </blockquote>
   1352 
   1353 <p>This extension also works in C++ mode, as far as that goes, but does not
   1354     apply to the C++ <code>std::complex</code>.  (In C++11, list
   1355     initialization allows the same syntax to be used with
   1356     <code>std::complex</code> with the same meaning.)
   1357 
   1358 <!-- ======================================================================= -->
   1359 <h2 id="builtins">Builtin Functions</h2>
   1360 <!-- ======================================================================= -->
   1361 
   1362 <p>Clang supports a number of builtin library functions with the same syntax as
   1363 GCC, including things like <tt>__builtin_nan</tt>,
   1364 <tt>__builtin_constant_p</tt>, <tt>__builtin_choose_expr</tt>, 
   1365 <tt>__builtin_types_compatible_p</tt>, <tt>__sync_fetch_and_add</tt>, etc.  In
   1366 addition to the GCC builtins, Clang supports a number of builtins that GCC does
   1367 not, which are listed here.</p>
   1368 
   1369 <p>Please note that Clang does not and will not support all of the GCC builtins
   1370 for vector operations.  Instead of using builtins, you should use the functions
   1371 defined in target-specific header files like <tt>&lt;xmmintrin.h&gt;</tt>, which
   1372 define portable wrappers for these.  Many of the Clang versions of these
   1373 functions are implemented directly in terms of <a href="#vectors">extended
   1374 vector support</a> instead of builtins, in order to reduce the number of
   1375 builtins that we need to implement.</p>
   1376 
   1377 <!-- ======================================================================= -->
   1378 <h3><a name="__builtin_readcyclecounter">__builtin_readcyclecounter</a></h3>
   1379 <!-- ======================================================================= -->
   1380 
   1381 <p><tt>__builtin_readcyclecounter</tt> is used to access the cycle counter
   1382 register (or a similar low-latency, high-accuracy clock) on those targets that
   1383 support it.
   1384 </p>
   1385 
   1386 <p><b>Syntax:</b></p>
   1387 
   1388 <pre>
   1389 __builtin_readcyclecounter()
   1390 </pre>
   1391 
   1392 <p><b>Example of Use:</b></p>
   1393 
   1394 <pre>
   1395 unsigned long long t0 = __builtin_readcyclecounter();
   1396 do_something();
   1397 unsigned long long t1 = __builtin_readcyclecounter();
   1398 unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
   1399 </pre>
   1400 
   1401 <p><b>Description:</b></p>
   1402 
   1403 <p>The __builtin_readcyclecounter() builtin returns the cycle counter value,
   1404 which may be either global or process/thread-specific depending on the target.
   1405 As the backing counters often overflow quickly (on the order of
   1406 seconds) this should only be used for timing small intervals. When not
   1407 supported by the target, the return value is always zero. This builtin
   1408 takes no arguments and produces an unsigned long long result.
   1409 </p>
   1410 
   1411 <p>Query for this feature with __has_builtin(__builtin_readcyclecounter).</p>
   1412 
   1413 <!-- ======================================================================= -->
   1414 <h3><a name="__builtin_shufflevector">__builtin_shufflevector</a></h3>
   1415 <!-- ======================================================================= -->
   1416 
   1417 <p><tt>__builtin_shufflevector</tt> is used to express generic vector
   1418 permutation/shuffle/swizzle operations. This builtin is also very important for
   1419 the implementation of various target-specific header files like
   1420 <tt>&lt;xmmintrin.h&gt;</tt>.
   1421 </p>
   1422 
   1423 <p><b>Syntax:</b></p>
   1424 
   1425 <pre>
   1426 __builtin_shufflevector(vec1, vec2, index1, index2, ...)
   1427 </pre>
   1428 
   1429 <p><b>Examples:</b></p>
   1430 
   1431 <pre>
   1432   // Identity operation - return 4-element vector V1.
   1433   __builtin_shufflevector(V1, V1, 0, 1, 2, 3)
   1434 
   1435   // "Splat" element 0 of V1 into a 4-element result.
   1436   __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
   1437 
   1438   // Reverse 4-element vector V1.
   1439   __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
   1440 
   1441   // Concatenate every other element of 4-element vectors V1 and V2.
   1442   __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
   1443 
   1444   // Concatenate every other element of 8-element vectors V1 and V2.
   1445   __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
   1446 </pre>
   1447 
   1448 <p><b>Description:</b></p>
   1449 
   1450 <p>The first two arguments to __builtin_shufflevector are vectors that have the
   1451 same element type.  The remaining arguments are a list of integers that specify
   1452 the elements indices of the first two vectors that should be extracted and
   1453 returned in a new vector.  These element indices are numbered sequentially
   1454 starting with the first vector, continuing into the second vector.  Thus, if
   1455 vec1 is a 4-element vector, index 5 would refer to the second element of vec2.
   1456 </p>
   1457 
   1458 <p>The result of __builtin_shufflevector is a vector
   1459 with the same element type as vec1/vec2 but that has an element count equal to
   1460 the number of indices specified.
   1461 </p>
   1462 
   1463 <p>Query for this feature with __has_builtin(__builtin_shufflevector).</p>
   1464 
   1465 <!-- ======================================================================= -->
   1466 <h3><a name="__builtin_unreachable">__builtin_unreachable</a></h3>
   1467 <!-- ======================================================================= -->
   1468 
   1469 <p><tt>__builtin_unreachable</tt> is used to indicate that a specific point in
   1470 the program cannot be reached, even if the compiler might otherwise think it
   1471 can.  This is useful to improve optimization and eliminates certain warnings.
   1472 For example, without the <tt>__builtin_unreachable</tt> in the example below,
   1473 the compiler assumes that the inline asm can fall through and prints a "function
   1474 declared 'noreturn' should not return" warning.
   1475 </p>
   1476 
   1477 <p><b>Syntax:</b></p>
   1478 
   1479 <pre>
   1480 __builtin_unreachable()
   1481 </pre>
   1482 
   1483 <p><b>Example of Use:</b></p>
   1484 
   1485 <pre>
   1486 void myabort(void) __attribute__((noreturn));
   1487 void myabort(void) {
   1488     asm("int3");
   1489     __builtin_unreachable();
   1490 }
   1491 </pre>
   1492 
   1493 <p><b>Description:</b></p>
   1494 
   1495 <p>The __builtin_unreachable() builtin has completely undefined behavior.  Since
   1496 it has undefined behavior, it is a statement that it is never reached and the
   1497 optimizer can take advantage of this to produce better code.  This builtin takes
   1498 no arguments and produces a void result.
   1499 </p>
   1500 
   1501 <p>Query for this feature with __has_builtin(__builtin_unreachable).</p>
   1502 
   1503 <!-- ======================================================================= -->
   1504 <h3><a name="__sync_swap">__sync_swap</a></h3>
   1505 <!-- ======================================================================= -->
   1506 
   1507 <p><tt>__sync_swap</tt> is used to atomically swap integers or pointers in
   1508 memory.
   1509 </p>
   1510 
   1511 <p><b>Syntax:</b></p>
   1512 
   1513 <pre>
   1514 <i>type</i> __sync_swap(<i>type</i> *ptr, <i>type</i> value, ...)
   1515 </pre>
   1516 
   1517 <p><b>Example of Use:</b></p>
   1518 
   1519 <pre>
   1520 int old_value = __sync_swap(&amp;value, new_value);
   1521 </pre>
   1522 
   1523 <p><b>Description:</b></p>
   1524 
   1525 <p>The __sync_swap() builtin extends the existing __sync_*() family of atomic
   1526 intrinsics to allow code to atomically swap the current value with the new
   1527 value.  More importantly, it helps developers write more efficient and correct
   1528 code by avoiding expensive loops around __sync_bool_compare_and_swap() or
   1529 relying on the platform specific implementation details of
   1530 __sync_lock_test_and_set(). The __sync_swap() builtin is a full barrier.
   1531 </p>
   1532 
   1533 <!-- ======================================================================= -->
   1534 <h3><a name="__c11_atomic">__c11_atomic builtins</a></h3>
   1535 <!-- ======================================================================= -->
   1536 
   1537 <p>Clang provides a set of builtins which are intended to be used to implement
   1538 C11's <tt>&lt;stdatomic.h&gt;</tt> header. These builtins provide the semantics
   1539 of the <tt>_explicit</tt> form of the corresponding C11 operation, and are named
   1540 with a <tt>__c11_</tt> prefix. The supported operations are:</p>
   1541 
   1542 <ul>
   1543   <li><tt>__c11_atomic_init</tt></li>
   1544   <li><tt>__c11_atomic_thread_fence</tt></li>
   1545   <li><tt>__c11_atomic_signal_fence</tt></li>
   1546   <li><tt>__c11_atomic_is_lock_free</tt></li>
   1547   <li><tt>__c11_atomic_store</tt></li>
   1548   <li><tt>__c11_atomic_load</tt></li>
   1549   <li><tt>__c11_atomic_exchange</tt></li>
   1550   <li><tt>__c11_atomic_compare_exchange_strong</tt></li>
   1551   <li><tt>__c11_atomic_compare_exchange_weak</tt></li>
   1552   <li><tt>__c11_atomic_fetch_add</tt></li>
   1553   <li><tt>__c11_atomic_fetch_sub</tt></li>
   1554   <li><tt>__c11_atomic_fetch_and</tt></li>
   1555   <li><tt>__c11_atomic_fetch_or</tt></li>
   1556   <li><tt>__c11_atomic_fetch_xor</tt></li>
   1557 </ul>
   1558 
   1559 <!-- ======================================================================= -->
   1560 <h2 id="non-standard-attributes">Non-standard C++11 Attributes</h2>
   1561 <!-- ======================================================================= -->
   1562 
   1563 <p>Clang supports one non-standard C++11 attribute. It resides in the
   1564 <tt>clang</tt> attribute namespace.</p>
   1565 
   1566 <!-- ======================================================================= -->
   1567 <h3 id="clang__fallthrough">The <tt>clang::fallthrough</tt> attribute</h3>
   1568 <!-- ======================================================================= -->
   1569 
   1570 <p>The <tt>clang::fallthrough</tt> attribute is used along with the
   1571 <tt>-Wimplicit-fallthrough</tt> argument to annotate intentional fall-through
   1572 between switch labels. It can only be applied to a null statement placed at a
   1573 point of execution between any statement and the next switch label. It is common
   1574 to mark these places with a specific comment, but this attribute is meant to
   1575 replace comments with a more strict annotation, which can be checked by the
   1576 compiler. This attribute doesn't change semantics of the code and can be used
   1577 wherever an intended fall-through occurs. It is designed to mimic
   1578 control-flow statements like <tt>break;</tt>, so it can be placed in most places
   1579 where <tt>break;</tt> can, but only if there are no statements on the execution
   1580 path between it and the next switch label.</p>
   1581 <p>Here is an example:</p>
   1582 <pre>
   1583 // compile with -Wimplicit-fallthrough
   1584 switch (n) {
   1585 case 33:
   1586   f();
   1587 case 44:  // warning: unannotated fall-through
   1588   g();
   1589   <b>[[clang::fallthrough]];</b>
   1590 case 55:  // no warning
   1591   if (x) {
   1592     h();
   1593     break;
   1594   }
   1595   else {
   1596     i();
   1597     <b>[[clang::fallthrough]];</b>
   1598   }
   1599 case 66:  // no warning
   1600   p();
   1601   <b>[[clang::fallthrough]];</b>  // warning: fallthrough annotation does not directly precede case label
   1602   q();
   1603 case 77:  // warning: unannotated fall-through
   1604   r();
   1605 }
   1606 </pre>
   1607 
   1608 <!-- ======================================================================= -->
   1609 <h2 id="targetspecific">Target-Specific Extensions</h2>
   1610 <!-- ======================================================================= -->
   1611 
   1612 <p>Clang supports some language features conditionally on some targets.</p>
   1613 
   1614 <!-- ======================================================================= -->
   1615 <h3 id="x86-specific">X86/X86-64 Language Extensions</h3>
   1616 <!-- ======================================================================= -->
   1617 
   1618 <p>The X86 backend has these language extensions:</p>
   1619 
   1620 <!-- ======================================================================= -->
   1621 <h4 id="x86-gs-segment">Memory references off the GS segment</h4>
   1622 <!-- ======================================================================= -->
   1623 
   1624 <p>Annotating a pointer with address space #256 causes it to  be code generated
   1625 relative to the X86 GS segment register, and address space #257 causes it to be
   1626 relative to the X86 FS segment.  Note that this is a very very low-level
   1627 feature that should only be used if you know what you're doing (for example in
   1628 an OS kernel).</p>
   1629 
   1630 <p>Here is an example:</p>
   1631 
   1632 <pre>
   1633 #define GS_RELATIVE __attribute__((address_space(256)))
   1634 int foo(int GS_RELATIVE *P) {
   1635   return *P;
   1636 }
   1637 </pre>
   1638 
   1639 <p>Which compiles to (on X86-32):</p>
   1640 
   1641 <pre>
   1642 _foo:
   1643 	movl	4(%esp), %eax
   1644 	movl	%gs:(%eax), %eax
   1645 	ret
   1646 </pre>
   1647 
   1648 <!-- ======================================================================= -->
   1649 <h2 id="analyzerspecific">Static Analysis-Specific Extensions</h2>
   1650 <!-- ======================================================================= -->
   1651 
   1652 <p>Clang supports additional attributes that are useful for documenting program
   1653 invariants and rules for static analysis tools. The extensions documented here
   1654 are used by the <a
   1655 href="http://clang.llvm.org/StaticAnalysis.html">path-sensitive static analyzer
   1656 engine</a> that is part of Clang's Analysis library.</p>
   1657 
   1658 <h3 id="attr_analyzer_noreturn">The <tt>analyzer_noreturn</tt> attribute</h3>
   1659 
   1660 <p>Clang's static analysis engine understands the standard <tt>noreturn</tt>
   1661 attribute. This attribute, which is typically affixed to a function prototype,
   1662 indicates that a call to a given function never returns. Function prototypes for
   1663 common functions like <tt>exit</tt> are typically annotated with this attribute,
   1664 as well as a variety of common assertion handlers. Users can educate the static
   1665 analyzer about their own custom assertion handles (thus cutting down on false
   1666 positives due to false paths) by marking their own &quot;panic&quot; functions
   1667 with this attribute.</p>
   1668 
   1669 <p>While useful, <tt>noreturn</tt> is not applicable in all cases. Sometimes
   1670 there are special functions that for all intents and purposes should be
   1671 considered panic functions (i.e., they are only called when an internal program
   1672 error occurs) but may actually return so that the program can fail gracefully.
   1673 The <tt>analyzer_noreturn</tt> attribute allows one to annotate such functions
   1674 as being interpreted as &quot;no return&quot; functions by the analyzer (thus
   1675 pruning bogus paths) but will not affect compilation (as in the case of
   1676 <tt>noreturn</tt>).</p>
   1677 
   1678 <p><b>Usage</b>: The <tt>analyzer_noreturn</tt> attribute can be placed in the
   1679 same places where the <tt>noreturn</tt> attribute can be placed. It is commonly
   1680 placed at the end of function prototypes:</p>
   1681 
   1682 <pre>
   1683   void foo() <b>__attribute__((analyzer_noreturn))</b>;
   1684 </pre>
   1685 
   1686 <p>Query for this feature with
   1687 <tt>__has_attribute(analyzer_noreturn)</tt>.</p>
   1688 
   1689 <h3 id="attr_method_family">The <tt>objc_method_family</tt> attribute</h3>
   1690 
   1691 <p>Many methods in Objective-C have conventional meanings determined
   1692 by their selectors.  For the purposes of static analysis, it is
   1693 sometimes useful to be able to mark a method as having a particular
   1694 conventional meaning despite not having the right selector, or as not
   1695 having the conventional meaning that its selector would suggest.
   1696 For these use cases, we provide an attribute to specifically describe
   1697 the <q>method family</q> that a method belongs to.</p>
   1698 
   1699 <p><b>Usage</b>: <tt>__attribute__((objc_method_family(X)))</tt>,
   1700 where <tt>X</tt> is one of <tt>none</tt>, <tt>alloc</tt>, <tt>copy</tt>,
   1701 <tt>init</tt>, <tt>mutableCopy</tt>, or <tt>new</tt>.  This attribute
   1702 can only be placed at the end of a method declaration:</p>
   1703 
   1704 <pre>
   1705   - (NSString*) initMyStringValue <b>__attribute__((objc_method_family(none)))</b>;
   1706 </pre>
   1707 
   1708 <p>Users who do not wish to change the conventional meaning of a
   1709 method, and who merely want to document its non-standard retain and
   1710 release semantics, should use the
   1711 <a href="#attr_retain_release">retaining behavior attributes</a>
   1712 described below.</p>
   1713 
   1714 <p>Query for this feature with
   1715 <tt>__has_attribute(objc_method_family)</tt>.</p>
   1716 
   1717 <h3 id="attr_retain_release">Objective-C retaining behavior attributes</h3>
   1718 
   1719 <p>In Objective-C, functions and methods are generally assumed to take
   1720 and return objects with +0 retain counts, with some exceptions for
   1721 special methods like <tt>+alloc</tt> and <tt>init</tt>.  However,
   1722 there are exceptions, and so Clang provides attributes to allow these
   1723 exceptions to be documented, which helps the analyzer find leaks (and
   1724 ignore non-leaks).  Some exceptions may be better described using
   1725 the <a href="#attr_method_family"><tt>objc_method_family</tt></a>
   1726 attribute instead.</p>
   1727 
   1728 <p><b>Usage</b>: The <tt>ns_returns_retained</tt>, <tt>ns_returns_not_retained</tt>,
   1729 <tt>ns_returns_autoreleased</tt>, <tt>cf_returns_retained</tt>,
   1730 and <tt>cf_returns_not_retained</tt> attributes can be placed on
   1731 methods and functions that return Objective-C or CoreFoundation
   1732 objects.  They are commonly placed at the end of a function prototype
   1733 or method declaration:</p>
   1734 
   1735 <pre>
   1736   id foo() <b>__attribute__((ns_returns_retained))</b>;
   1737 
   1738   - (NSString*) bar: (int) x <b>__attribute__((ns_returns_retained))</b>;
   1739 </pre>
   1740 
   1741 <p>The <tt>*_returns_retained</tt> attributes specify that the
   1742 returned object has a +1 retain count.
   1743 The <tt>*_returns_not_retained</tt> attributes specify that the return
   1744 object has a +0 retain count, even if the normal convention for its
   1745 selector would be +1.  <tt>ns_returns_autoreleased</tt> specifies that the
   1746 returned object is +0, but is guaranteed to live at least as long as the
   1747 next flush of an autorelease pool.</p>
   1748 
   1749 <p><b>Usage</b>: The <tt>ns_consumed</tt> and <tt>cf_consumed</tt>
   1750 attributes can be placed on an parameter declaration; they specify
   1751 that the argument is expected to have a +1 retain count, which will be
   1752 balanced in some way by the function or method.
   1753 The <tt>ns_consumes_self</tt> attribute can only be placed on an
   1754 Objective-C method; it specifies that the method expects
   1755 its <tt>self</tt> parameter to have a +1 retain count, which it will
   1756 balance in some way.</p>
   1757 
   1758 <pre>
   1759   void <b>foo(__attribute__((ns_consumed))</b> NSString *string);
   1760 
   1761   - (void) bar <b>__attribute__((ns_consumes_self))</b>;
   1762   - (void) baz: (id) <b>__attribute__((ns_consumed))</b> x;
   1763 </pre>
   1764 
   1765 <p>Query for these features with <tt>__has_attribute(ns_consumed)</tt>,
   1766 <tt>__has_attribute(ns_returns_retained)</tt>, etc.</p>
   1767 
   1768 <!-- ======================================================================= -->
   1769 <h2 id="dynamicanalyzerspecific">Dynamic Analysis-Specific Extensions</h2>
   1770 <!-- ======================================================================= -->
   1771 <h3 id="address_sanitizer">AddressSanitizer</h3>
   1772 <p> Use <code>__has_feature(address_sanitizer)</code>
   1773 to check if the code is being built with <a
   1774   href="AddressSanitizer.html">AddressSanitizer</a>.
   1775 </p>
   1776 <p>Use <tt>__attribute__((no_address_safety_analysis))</tt> on a function
   1777 declaration to specify that address safety instrumentation (e.g.
   1778 AddressSanitizer) should not be applied to that function.
   1779 </p>
   1780 
   1781 <!-- ======================================================================= -->
   1782 <h2 id="threadsafety">Thread-Safety Annotation Checking</h2>
   1783 <!-- ======================================================================= -->
   1784 
   1785 <p>Clang supports additional attributes for checking basic locking policies in 
   1786 multithreaded programs.
   1787 Clang currently parses the following list of attributes, although 
   1788 <b>the implementation for these annotations is currently in development.</b> 
   1789 For more details, see the
   1790 <a href="http://gcc.gnu.org/wiki/ThreadSafetyAnnotation">GCC implementation</a>.
   1791 </p>
   1792 
   1793 <h4 id="ts_noanal">no_thread_safety_analysis</h4>
   1794 
   1795 <p>Use <tt>__attribute__((no_thread_safety_analysis))</tt> on a function 
   1796 declaration to specify that the thread safety analysis should not be run on that 
   1797 function. This attribute provides an escape hatch (e.g. for situations when it
   1798 is difficult to annotate the locking policy). </p> 
   1799 
   1800 <h4 id="ts_lockable">lockable</h4>
   1801 
   1802 <p>Use <tt>__attribute__((lockable))</tt> on a class definition to specify 
   1803 that it has a lockable type (e.g. a Mutex class). This annotation is primarily 
   1804 used to check consistency.</p> 
   1805 
   1806 <h4 id="ts_scopedlockable">scoped_lockable</h4>
   1807 
   1808 <p>Use <tt>__attribute__((scoped_lockable))</tt> on a class definition to 
   1809 specify that it has a "scoped" lockable type. Objects of this type will acquire 
   1810 the lock upon construction and release it upon going out of scope.
   1811  This annotation is primarily used to check 
   1812 consistency.</p> 
   1813 
   1814 <h4 id="ts_guardedvar">guarded_var</h4>
   1815 
   1816 <p>Use <tt>__attribute__((guarded_var))</tt> on a variable declaration to 
   1817 specify that the variable must be accessed while holding some lock.</p>
   1818 
   1819 <h4 id="ts_ptguardedvar">pt_guarded_var</h4>
   1820 
   1821 <p>Use <tt>__attribute__((pt_guarded_var))</tt> on a pointer declaration to 
   1822 specify that the pointer must be dereferenced while holding some lock.</p>
   1823 
   1824 <h4 id="ts_guardedby">guarded_by(l)</h4>
   1825 
   1826 <p>Use <tt>__attribute__((guarded_by(l)))</tt> on a variable declaration to 
   1827 specify that the variable must be accessed while holding lock <tt>l</tt>.</p>
   1828 
   1829 <h4 id="ts_ptguardedby">pt_guarded_by(l)</h4>
   1830 
   1831 <p>Use <tt>__attribute__((pt_guarded_by(l)))</tt> on a pointer declaration to 
   1832 specify that the pointer must be dereferenced while holding lock <tt>l</tt>.</p>
   1833 
   1834 <h4 id="ts_acquiredbefore">acquired_before(...)</h4>
   1835 
   1836 <p>Use <tt>__attribute__((acquired_before(...)))</tt> on a declaration 
   1837 of a lockable variable to specify that the lock must be acquired before all 
   1838 attribute arguments. Arguments must be lockable type, and there must be at 
   1839 least one argument.</p> 
   1840 
   1841 <h4 id="ts_acquiredafter">acquired_after(...)</h4>
   1842 
   1843 <p>Use <tt>__attribute__((acquired_after(...)))</tt> on a declaration 
   1844 of a lockable variable to specify that the lock must be acquired after all 
   1845 attribute arguments. Arguments must be lockable type, and there must be at 
   1846 least one argument.</p> 
   1847 
   1848 <h4 id="ts_elf">exclusive_lock_function(...)</h4>
   1849 
   1850 <p>Use <tt>__attribute__((exclusive_lock_function(...)))</tt> on a function 
   1851 declaration to specify that the function acquires all listed locks 
   1852 exclusively. This attribute takes zero or more arguments: either of lockable 
   1853 type or integers indexing into function parameters of lockable type. If no 
   1854 arguments are given, the acquired lock is implicitly <tt>this</tt> of the 
   1855 enclosing object.</p>
   1856 
   1857 <h4 id="ts_slf">shared_lock_function(...)</h4>
   1858 
   1859 <p>Use <tt>__attribute__((shared_lock_function(...)))</tt> on a function 
   1860 declaration to specify that the function acquires all listed locks, although
   1861  the locks may be shared (e.g. read locks). This attribute takes zero or more 
   1862 arguments: either of lockable type or integers indexing into function 
   1863 parameters of lockable type. If no arguments are given, the acquired lock is 
   1864 implicitly <tt>this</tt> of the enclosing object.</p>
   1865 
   1866 <h4 id="ts_etf">exclusive_trylock_function(...)</h4>
   1867 
   1868 <p>Use <tt>__attribute__((exclusive_lock_function(...)))</tt> on a function 
   1869 declaration to specify that the function will try (without blocking) to acquire
   1870 all listed locks exclusively. This attribute takes one or more arguments. The 
   1871 first argument is an integer or boolean value specifying the return value of a 
   1872 successful lock acquisition. The remaining arugments are either of lockable type 
   1873 or integers indexing into function parameters of lockable type. If only one 
   1874 argument is given, the acquired lock is implicitly <tt>this</tt> of the 
   1875 enclosing object.</p>
   1876 
   1877 <h4 id="ts_stf">shared_trylock_function(...)</h4>
   1878 
   1879 <p>Use <tt>__attribute__((shared_lock_function(...)))</tt> on a function 
   1880 declaration to specify that the function will try (without blocking) to acquire
   1881 all listed locks, although the locks may be shared (e.g. read locks). This 
   1882 attribute takes one or more arguments. The first argument is an integer or 
   1883 boolean value specifying the return value of a successful lock acquisition. The 
   1884 remaining arugments are either of lockable type or integers indexing into 
   1885 function parameters of lockable type. If only one argument is given, the 
   1886 acquired lock is implicitly <tt>this</tt> of the enclosing object.</p>
   1887 
   1888 <h4 id="ts_uf">unlock_function(...)</h4>
   1889 
   1890 <p>Use <tt>__attribute__((unlock_function(...)))</tt> on a function 
   1891 declaration to specify that the function release all listed locks. This 
   1892 attribute takes zero or more arguments: either of lockable type or integers 
   1893 indexing into function parameters of lockable type. If no arguments are given, 
   1894 the acquired lock is implicitly <tt>this</tt> of the enclosing object.</p>
   1895 
   1896 <h4 id="ts_lr">lock_returned(l)</h4>
   1897 
   1898 <p>Use <tt>__attribute__((lock_returned(l)))</tt> on a function 
   1899 declaration to specify that the function returns lock <tt>l</tt> (<tt>l</tt> 
   1900 must be of lockable type). This annotation is used to aid in resolving lock 
   1901 expressions.</p>
   1902 
   1903 <h4 id="ts_le">locks_excluded(...)</h4>
   1904 
   1905 <p>Use <tt>__attribute__((locks_excluded(...)))</tt> on a function declaration 
   1906 to specify that the function must not be called with the listed locks. Arguments 
   1907 must be lockable type, and there must be at least one argument.</p>
   1908 
   1909 <h4 id="ts_elr">exclusive_locks_required(...)</h4>
   1910 
   1911 <p>Use <tt>__attribute__((exclusive_locks_required(...)))</tt> on a function 
   1912 declaration to specify that the function must be called while holding the listed
   1913 exclusive locks. Arguments must be lockable type, and there must be at 
   1914 least one argument.</p> 
   1915 
   1916 <h4 id="ts_slr">shared_locks_required(...)</h4>
   1917 
   1918 <p>Use <tt>__attribute__((shared_locks_required(...)))</tt> on a function 
   1919 declaration to specify that the function must be called while holding the listed 
   1920 shared locks. Arguments must be lockable type, and there must be at 
   1921 least one argument.</p> 
   1922 
   1923 <!-- ======================================================================= -->
   1924 <h2 id="type_safety">Type Safety Checking</h2>
   1925 <!-- ======================================================================= -->
   1926 
   1927 <p>Clang supports additional attributes to enable checking type safety
   1928 properties that can't be enforced by C type system.  Usecases include:</p>
   1929 <ul>
   1930 <li>MPI library implementations, where these attributes enable checking that
   1931     buffer type matches the passed <tt>MPI_Datatype</tt>;</li>
   1932 <li>for HDF5 library there is a similar usecase as MPI;</li>
   1933 <li>checking types of variadic functions' arguments for functions like
   1934     <tt>fcntl()</tt> and <tt>ioctl()</tt>.</li>
   1935 </ul>
   1936 
   1937 <p>You can detect support for these attributes with __has_attribute().  For
   1938 example:</p>
   1939 
   1940 <blockquote>
   1941 <pre>
   1942 #if defined(__has_attribute)
   1943 #  if __has_attribute(argument_with_type_tag) &amp;&amp; \
   1944       __has_attribute(pointer_with_type_tag) &amp;&amp; \
   1945       __has_attribute(type_tag_for_datatype)
   1946 #    define ATTR_MPI_PWT(buffer_idx, type_idx) __attribute__((pointer_with_type_tag(mpi,buffer_idx,type_idx)))
   1947 /* ... other macros ... */
   1948 #  endif
   1949 #endif
   1950 
   1951 #if !defined(ATTR_MPI_PWT)
   1952 #define ATTR_MPI_PWT(buffer_idx, type_idx)
   1953 #endif
   1954 
   1955 int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
   1956     ATTR_MPI_PWT(1,3);
   1957 </pre>
   1958 </blockquote>
   1959 
   1960 <h3 id="argument_with_type_tag"><tt>argument_with_type_tag(...)</tt></h3>
   1961 
   1962 <p>Use <tt>__attribute__((argument_with_type_tag(arg_kind, arg_idx,
   1963 type_tag_idx)))</tt> on a function declaration to specify that the function
   1964 accepts a type tag that determines the type of some other argument.
   1965 <tt>arg_kind</tt> is an identifier that should be used when annotating all
   1966 applicable type tags.</p>
   1967 
   1968 <p>This attribute is primarily useful for checking arguments of variadic
   1969 functions (<tt>pointer_with_type_tag</tt> can be used in most of non-variadic
   1970 cases).</p>
   1971 
   1972 <p>For example:</p>
   1973 <blockquote>
   1974 <pre>
   1975 int fcntl(int fd, int cmd, ...)
   1976       __attribute__(( argument_with_type_tag(fcntl,3,2) ));
   1977 </pre>
   1978 </blockquote>
   1979 
   1980 <h3 id="pointer_with_type_tag"><tt>pointer_with_type_tag(...)</tt></h3>
   1981 
   1982 <p>Use <tt>__attribute__((pointer_with_type_tag(ptr_kind, ptr_idx,
   1983 type_tag_idx)))</tt> on a function declaration to specify that the
   1984 function accepts a type tag that determines the pointee type of some other
   1985 pointer argument.</p>
   1986 
   1987 <p>For example:</p>
   1988 <blockquote>
   1989 <pre>
   1990 int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
   1991     __attribute__(( pointer_with_type_tag(mpi,1,3) ));
   1992 </pre>
   1993 </blockquote>
   1994 
   1995 <h3 id="type_tag_for_datatype"><tt>type_tag_for_datatype(...)</tt></h3>
   1996 
   1997 <p>Clang supports annotating type tags of two forms.</p>
   1998 
   1999 <ul>
   2000 <li><b>Type tag that is an expression containing a reference to some declared
   2001 identifier.</b> Use <tt>__attribute__((type_tag_for_datatype(kind, type)))</tt>
   2002 on a declaration with that identifier:
   2003 
   2004 <blockquote>
   2005 <pre>
   2006 extern struct mpi_datatype mpi_datatype_int
   2007     __attribute__(( type_tag_for_datatype(mpi,int) ));
   2008 #define MPI_INT ((MPI_Datatype) &amp;mpi_datatype_int)
   2009 </pre>
   2010 </blockquote></li>
   2011 
   2012 <li><b>Type tag that is an integral literal.</b>  Introduce a <tt>static
   2013 const</tt> variable with a corresponding initializer value and attach
   2014 <tt>__attribute__((type_tag_for_datatype(kind, type)))</tt> on that
   2015 declaration, for example:
   2016 
   2017 <blockquote>
   2018 <pre>
   2019 #define MPI_INT ((MPI_Datatype) 42)
   2020 static const MPI_Datatype mpi_datatype_int
   2021     __attribute__(( type_tag_for_datatype(mpi,int) )) = 42
   2022 </pre>
   2023 </blockquote></li>
   2024 </ul>
   2025 
   2026 <p>The attribute also accepts an optional third argument that determines how
   2027 the expression is compared to the type tag.  There are two supported flags:</p>
   2028 
   2029 <ul><li><tt>layout_compatible</tt> will cause types to be compared according to
   2030 layout-compatibility rules (C++11 [class.mem] p&nbsp;17, 18).  This is
   2031 implemented to support annotating types like <tt>MPI_DOUBLE_INT</tt>.
   2032 
   2033 <p>For example:</p>
   2034 <blockquote>
   2035 <pre>
   2036 /* In mpi.h */
   2037 struct internal_mpi_double_int { double d; int i; };
   2038 extern struct mpi_datatype mpi_datatype_double_int
   2039     __attribute__(( type_tag_for_datatype(mpi, struct internal_mpi_double_int,
   2040                                           layout_compatible) ));
   2041 
   2042 #define MPI_DOUBLE_INT ((MPI_Datatype) &amp;mpi_datatype_double_int)
   2043 
   2044 /* In user code */
   2045 struct my_pair { double a; int b; };
   2046 struct my_pair *buffer;
   2047 MPI_Send(buffer, 1, MPI_DOUBLE_INT /*, ... */); // no warning
   2048 
   2049 struct my_int_pair { int a; int b; }
   2050 struct my_int_pair *buffer2;
   2051 MPI_Send(buffer2, 1, MPI_DOUBLE_INT /*, ... */); // warning: actual buffer element
   2052                                                  // type 'struct my_int_pair'
   2053                                                  // doesn't match specified MPI_Datatype
   2054 </pre>
   2055 </blockquote>
   2056 </li>
   2057 
   2058 <li><tt>must_be_null</tt> specifies that the expression should be a null
   2059 pointer constant, for example:
   2060 
   2061 <blockquote>
   2062 <pre>
   2063 /* In mpi.h */
   2064 extern struct mpi_datatype mpi_datatype_null
   2065     __attribute__(( type_tag_for_datatype(mpi, void, must_be_null) ));
   2066 
   2067 #define MPI_DATATYPE_NULL ((MPI_Datatype) &amp;mpi_datatype_null)
   2068 
   2069 /* In user code */
   2070 MPI_Send(buffer, 1, MPI_DATATYPE_NULL /*, ... */); // warning: MPI_DATATYPE_NULL
   2071                                                    // was specified but buffer
   2072                                                    // is not a null pointer
   2073 </pre>
   2074 </blockquote>
   2075 </li>
   2076 </ul>
   2077 
   2078 </div>
   2079 </body>
   2080 </html>
   2081