1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 <!-- Material used from: HTML 4.01 specs: http://www.w3.org/TR/html401/ --> 4 <html> 5 <head> 6 <META http-equiv="Content-Type" content="text/html; charset=UTF8"> 7 <title>Objective-C Literals</title> 8 <link type="text/css" rel="stylesheet" href="../menu.css"> 9 <link type="text/css" rel="stylesheet" href="../content.css"> 10 <style type="text/css"> 11 td { 12 vertical-align: top; 13 } 14 th { background-color: #ffddaa; } 15 </style> 16 </head> 17 <body> 18 19 <!--#include virtual="../menu.html.incl"--> 20 21 <div id="content"> 22 23 <h1>Objective-C Literals</h1> 24 25 <h2>Introduction</h2> 26 27 <p>Three new features were introduced into clang at the same time: <i>NSNumber Literals</i> provide a syntax for creating <code>NSNumber</code> from scalar literal expressions; <i>Collection Literals</i> provide a short-hand for creating arrays and dictionaries; <i>Object Subscripting</i> provides a way to use subscripting with Objective-C objects. Users of Apple compiler releases can use these features starting with the Apple LLVM Compiler 4.0. Users of open-source LLVM.org compiler releases can use these features starting with clang v3.1.</p> 28 29 <p>These language additions simplify common Objective-C programming patterns, make programs more concise, and improve the safety of container creation.</p> 30 31 <p>This document describes how the features are implemented in clang, and how to use them in your own programs.</p> 32 33 <h2>NSNumber Literals</h2> 34 35 <p>The framework class <code>NSNumber</code> is used to wrap scalar values inside objects: signed and unsigned integers (<code>char</code>, <code>short</code>, <code>int</code>, <code>long</code>, <code>long long</code>), floating point numbers (<code>float</code>, <code>double</code>), and boolean values (<code>BOOL</code>, C++ <code>bool</code>). Scalar values wrapped in objects are also known as <i>boxed</i> values.</p> 36 37 <p>In Objective-C, any character, numeric or boolean literal prefixed with the <code>'@'</code> character will evaluate to a pointer to an <code>NSNumber</code> object initialized with that value. C's type suffixes may be used to control the size of numeric literals.</p> 38 39 <h3>Examples</h3> 40 41 <p>The following program illustrates the rules for <code>NSNumber</code> literals:</p> 42 43 <pre> 44 void main(int argc, const char *argv[]) { 45 // character literals. 46 NSNumber *theLetterZ = @'Z'; // equivalent to [NSNumber numberWithChar:'Z'] 47 48 // integral literals. 49 NSNumber *fortyTwo = @42; // equivalent to [NSNumber numberWithInt:42] 50 NSNumber *fortyTwoUnsigned = @42U; // equivalent to [NSNumber numberWithUnsignedInt:42U] 51 NSNumber *fortyTwoLong = @42L; // equivalent to [NSNumber numberWithLong:42L] 52 NSNumber *fortyTwoLongLong = @42LL; // equivalent to [NSNumber numberWithLongLong:42LL] 53 54 // floating point literals. 55 NSNumber *piFloat = @3.141592654F; // equivalent to [NSNumber numberWithFloat:3.141592654F] 56 NSNumber *piDouble = @3.1415926535; // equivalent to [NSNumber numberWithDouble:3.1415926535] 57 58 // BOOL literals. 59 NSNumber *yesNumber = @YES; // equivalent to [NSNumber numberWithBool:YES] 60 NSNumber *noNumber = @NO; // equivalent to [NSNumber numberWithBool:NO] 61 62 #ifdef __cplusplus 63 NSNumber *trueNumber = @true; // equivalent to [NSNumber numberWithBool:(BOOL)true] 64 NSNumber *falseNumber = @false; // equivalent to [NSNumber numberWithBool:(BOOL)false] 65 #endif 66 } 67 </pre> 68 69 <h3>Discussion</h3> 70 71 <p>NSNumber literals only support literal scalar values after the <code>'@'</code>. Consequently, <code>@INT_MAX</code> works, but <code>@INT_MIN</code> does not, because they are defined like this:</p> 72 73 <pre> 74 #define INT_MAX 2147483647 /* max value for an int */ 75 #define INT_MIN (-2147483647-1) /* min value for an int */ 76 </pre> 77 78 <p>The definition of <code>INT_MIN</code> is not a simple literal, but a parenthesized expression. Parenthesized 79 expressions are supported using the <a href="#objc_boxed_expressions">boxed expression</a> syntax, which is described in the next section.</p> 80 81 <p>Because <code>NSNumber</code> does not currently support wrapping <code>long double</code> values, the use of a <code>long double NSNumber</code> literal (e.g. <code>@123.23L</code>) will be rejected by the compiler.</p> 82 83 <p>Previously, the <code>BOOL</code> type was simply a typedef for <code>signed char</code>, and <code>YES</code> and <code>NO</code> were macros that expand to <code>(BOOL)1</code> and <code>(BOOL)0</code> respectively. To support <code>@YES</code> and <code>@NO</code> expressions, these macros are now defined using new language keywords in <code><objc/objc.h></code>:</p> 84 85 <pre> 86 #if __has_feature(objc_bool) 87 #define YES __objc_yes 88 #define NO __objc_no 89 #else 90 #define YES ((BOOL)1) 91 #define NO ((BOOL)0) 92 #endif 93 </pre> 94 95 <p>The compiler implicitly converts <code>__objc_yes</code> and <code>__objc_no</code> to <code>(BOOL)1</code> and <code>(BOOL)0</code>. The keywords are used to disambiguate <code>BOOL</code> and integer literals.</p> 96 97 <p>Objective-C++ also supports <code>@true</code> and <code>@false</code> expressions, which are equivalent to <code>@YES</code> and <code>@NO</code>.</p> 98 99 <!-- ======================================================================= --> 100 <h2 id="objc_boxed_expressions">Boxed Expressions</h2> 101 <!-- ======================================================================= --> 102 103 <p>Objective-C provides a new syntax for boxing C expressions:</p> 104 105 <pre> 106 <code>@( <em>expression</em> )</code> 107 </pre> 108 109 <p>Expressions of scalar (numeric, enumerated, BOOL) and C string pointer types 110 are supported:</p> 111 112 <pre> 113 // numbers. 114 NSNumber *smallestInt = @(-INT_MAX - 1); // [NSNumber numberWithInt:(-INT_MAX - 1)] 115 NSNumber *piOverTwo = @(M_PI / 2); // [NSNumber numberWithDouble:(M_PI / 2)] 116 117 // enumerated types. 118 typedef enum { Red, Green, Blue } Color; 119 NSNumber *favoriteColor = @(Green); // [NSNumber numberWithInt:((int)Green)] 120 121 // strings. 122 NSString *path = @(getenv("PATH")); // [NSString stringWithUTF8String:(getenv("PATH"))] 123 NSArray *pathComponents = [path componentsSeparatedByString:@":"]; 124 </pre> 125 126 <h3>Boxed Enums</h3> 127 128 <p> 129 Cocoa frameworks frequently define constant values using <em>enums.</em> Although enum values are integral, they may not be used directly as boxed literals (this avoids conflicts with future <code>'@'</code>-prefixed Objective-C keywords). Instead, an enum value must be placed inside a boxed expression. The following example demonstrates configuring an <code>AVAudioRecorder</code> using a dictionary that contains a boxed enumeration value: 130 </p> 131 132 <pre> 133 enum { 134 AVAudioQualityMin = 0, 135 AVAudioQualityLow = 0x20, 136 AVAudioQualityMedium = 0x40, 137 AVAudioQualityHigh = 0x60, 138 AVAudioQualityMax = 0x7F 139 }; 140 141 - (AVAudioRecorder *)recordToFile:(NSURL *)fileURL { 142 NSDictionary *settings = @{ AVEncoderAudioQualityKey : @(AVAudioQualityMax) }; 143 return [[AVAudioRecorder alloc] initWithURL:fileURL settings:settings error:NULL]; 144 } 145 </pre> 146 147 <p> 148 The expression <code>@(AVAudioQualityMax)</code> converts <code>AVAudioQualityMax</code> to an integer type, and boxes the value accordingly. If the enum has a <a href="http://clang.llvm.org/docs/LanguageExtensions.html#objc_fixed_enum">fixed underlying type</a> as in: 149 </p> 150 151 <pre> 152 typedef enum : unsigned char { Red, Green, Blue } Color; 153 NSNumber *red = @(Red), *green = @(Green), *blue = @(Blue); // => [NSNumber numberWithUnsignedChar:] 154 </pre> 155 156 <p> 157 then the fixed underlying type will be used to select the correct <code>NSNumber</code> creation method. 158 </p> 159 160 <p> 161 Boxing a value of enum type will result in a <code>NSNumber</code> pointer with a creation method according to the underlying type of the enum, 162 which can be a <a href="http://clang.llvm.org/docs/LanguageExtensions.html#objc_fixed_enum">fixed underlying type</a> or a compiler-defined 163 integer type capable of representing the values of all the members of the enumeration: 164 </p> 165 166 <pre> 167 typedef enum : unsigned char { Red, Green, Blue } Color; 168 Color col = Red; 169 NSNumber *nsCol = @(col); // => [NSNumber numberWithUnsignedChar:] 170 </pre> 171 172 <h3>Boxed C Strings</h3> 173 174 <p> 175 A C string literal prefixed by the <code>'@'</code> token denotes an <code>NSString</code> literal in the same way a numeric literal prefixed by the <code>'@'</code> token denotes an <code>NSNumber</code> literal. When the type of the parenthesized expression is <code>(char *)</code> or <code>(const char *)</code>, the result of the boxed expression is a pointer to an <code>NSString</code> object containing equivalent character data, which is assumed to be '\0'-terminated and UTF-8 encoded. The following example converts C-style command line arguments into <code>NSString</code> objects. 176 </p> 177 178 <pre> 179 // Partition command line arguments into positional and option arguments. 180 NSMutableArray *args = [NSMutableArray new]; 181 NSMutableDictionary *options = [NSMutableDictionary new]; 182 while (--argc) { 183 const char *arg = *++argv; 184 if (strncmp(arg, "--", 2) == 0) { 185 options[@(arg + 2)] = @(*++argv); // --key value 186 } else { 187 [args addObject:@(arg)]; // positional argument 188 } 189 } 190 </pre> 191 192 <p> 193 As with all C pointers, character pointer expressions can involve arbitrary pointer arithmetic, therefore programmers must ensure that the character data is valid. Passing <code>NULL</code> as the character pointer will raise an exception at runtime. When possible, the compiler will reject <code>NULL</code> character pointers used in boxed expressions. 194 </p> 195 196 <h3>Availability</h3> 197 198 <p>Boxed expressions will be available in clang 3.2. It is not currently available in any Apple compiler.</p> 199 200 <h2>Container Literals</h2> 201 202 <p>Objective-C now supports a new expression syntax for creating immutable array and dictionary container objects.</p> 203 204 <h3>Examples</h3> 205 206 <p>Immutable array expression:</p> 207 208 <pre> 209 NSArray *array = @[ @"Hello", NSApp, [NSNumber numberWithInt:42] ]; 210 </pre> 211 212 <p>This creates an <code>NSArray</code> with 3 elements. The comma-separated sub-expressions of an array literal can be any Objective-C object pointer typed expression.</p> 213 214 <p>Immutable dictionary expression:</p> 215 216 <pre> 217 NSDictionary *dictionary = @{ 218 @"name" : NSUserName(), 219 @"date" : [NSDate date], 220 @"processInfo" : [NSProcessInfo processInfo] 221 }; 222 </pre> 223 224 <p>This creates an <code>NSDictionary</code> with 3 key/value pairs. Value sub-expressions of a dictionary literal must be Objective-C object pointer typed, as in array literals. Key sub-expressions must be of an Objective-C object pointer type that implements the <code><NSCopying></code> protocol.</p> 225 226 <h3>Discussion</h3> 227 228 <p>Neither keys nor values can have the value <code>nil</code> in containers. If the compiler can prove that a key or value is <code>nil</code> at compile time, then a warning will be emitted. Otherwise, a runtime error will occur.</p> 229 230 <p>Using array and dictionary literals is safer than the variadic creation forms commonly in use today. Array literal expressions expand to calls to <code>+[NSArray arrayWithObjects:count:]</code>, which validates that all objects are non-<code>nil</code>. The variadic form, <code>+[NSArray arrayWithObjects:]</code> uses <code>nil</code> as an argument list terminator, which can lead to malformed array objects. Dictionary literals are similarly created with <code>+[NSDictionary dictionaryWithObjects:forKeys:count:]</code> which validates all objects and keys, unlike <code>+[NSDictionary dictionaryWithObjectsAndKeys:]</code> which also uses a <code>nil</code> parameter as an argument list terminator.</p> 231 232 <h2>Object Subscripting</h2> 233 234 <p>Objective-C object pointer values can now be used with C's subscripting operator.</p> 235 236 <h3>Examples</h3> 237 238 <p>The following code demonstrates the use of object subscripting syntax with <code>NSMutableArray</code> and <code>NSMutableDictionary</code> objects:</p> 239 240 <pre> 241 NSMutableArray *array = ...; 242 NSUInteger idx = ...; 243 id newObject = ...; 244 id oldObject = array[idx]; 245 array[idx] = newObject; // replace oldObject with newObject 246 247 NSMutableDictionary *dictionary = ...; 248 NSString *key = ...; 249 oldObject = dictionary[key]; 250 dictionary[key] = newObject; // replace oldObject with newObject 251 </pre> 252 253 <p>The next section explains how subscripting expressions map to accessor methods.</p> 254 255 <h3>Subscripting Methods</h3> 256 257 <p>Objective-C supports two kinds of subscript expressions: <i>array-style</i> subscript expressions use integer typed subscripts; <i>dictionary-style</i> subscript expressions use Objective-C object pointer typed subscripts. Each type of subscript expression is mapped to a message send using a predefined selector. The advantage of this design is flexibility: class designers are free to introduce subscripting by declaring methods or by adopting protocols. Moreover, because the method names are selected by the type of the subscript, an object can be subscripted using both array and dictionary styles.</p> 258 259 <h4>Array-Style Subscripting</h4> 260 261 <p>When the subscript operand has an integral type, the expression is rewritten to use one of two different selectors, depending on whether the element is being read or written. When an expression reads an element using an integral index, as in the following example:</p> 262 263 <pre> 264 NSUInteger idx = ...; 265 id value = object[idx]; 266 </pre> 267 268 <p>it is translated into a call to <code>objectAtIndexedSubscript:</code></p> 269 270 <pre> 271 id value = [object objectAtIndexedSubscript:idx]; 272 </pre> 273 274 <p>When an expression writes an element using an integral index:</p> 275 276 <pre> 277 object[idx] = newValue; 278 </pre> 279 280 <p>it is translated to a call to <code>setObject:atIndexedSubscript:</code></p> 281 282 <pre> 283 [object setObject:newValue atIndexedSubscript:idx]; 284 </pre> 285 286 <p>These message sends are then type-checked and performed just like explicit message sends. The method used for objectAtIndexedSubscript: must be declared with an argument of integral type and a return value of some Objective-C object pointer type. The method used for setObject:atIndexedSubscript: must be declared with its first argument having some Objective-C pointer type and its second argument having integral type.</p> 287 288 <p>The meaning of indexes is left up to the declaring class. The compiler will coerce the index to the appropriate argument type of the method it uses for type-checking. For an instance of <code>NSArray</code>, reading an element using an index outside the range <code>[0, array.count)</code> will raise an exception. For an instance of <code>NSMutableArray</code>, assigning to an element using an index within this range will replace that element, but assigning to an element using an index outside this range will raise an exception; no syntax is provided for inserting, appending, or removing elements for mutable arrays.</p> 289 290 <p>A class need not declare both methods in order to take advantage of this language feature. For example, the class <code>NSArray</code> declares only <code>objectAtIndexedSubscript:</code>, so that assignments to elements will fail to type-check; moreover, its subclass <code>NSMutableArray</code> declares <code>setObject:atIndexedSubscript:</code>.</p> 291 292 <h4>Dictionary-Style Subscripting</h4> 293 294 <p>When the subscript operand has an Objective-C object pointer type, the expression is rewritten to use one of two different selectors, depending on whether the element is being read from or written to. When an expression reads an element using an Objective-C object pointer subscript operand, as in the following example:</p> 295 296 <pre> 297 id key = ...; 298 id value = object[key]; 299 </pre> 300 301 <p>it is translated into a call to the <code>objectForKeyedSubscript:</code> method:</p> 302 303 <pre> 304 id value = [object objectForKeyedSubscript:key]; 305 </pre> 306 307 <p>When an expression writes an element using an Objective-C object pointer subscript:</p> 308 309 <pre> 310 object[key] = newValue; 311 </pre> 312 313 <p>it is translated to a call to <code>setObject:forKeyedSubscript:</code></p> 314 315 <pre> 316 [object setObject:newValue forKeyedSubscript:key]; 317 </pre> 318 319 <p>The behavior of <code>setObject:forKeyedSubscript:</code> is class-specific; but in general it should replace an existing value if one is already associated with a key, otherwise it should add a new value for the key. No syntax is provided for removing elements from mutable dictionaries.</p> 320 321 <h3>Discussion</h3> 322 323 <p>An Objective-C subscript expression occurs when the base operand of the C subscript operator has an Objective-C object pointer type. Since this potentially collides with pointer arithmetic on the value, these expressions are only supported under the modern Objective-C runtime, which categorically forbids such arithmetic.</p> 324 325 <p>Currently, only subscripts of integral or Objective-C object pointer type are supported. In C++, a class type can be used if it has a single conversion function to an integral or Objective-C pointer type, in which case that conversion is applied and analysis continues as appropriate. Otherwise, the expression is ill-formed.</p> 326 327 <p>An Objective-C object subscript expression is always an l-value. If the expression appears on the left-hand side of a simple assignment operator (=), the element is written as described below. If the expression appears on the left-hand side of a compound assignment operator (e.g. +=), the program is ill-formed, because the result of reading an element is always an Objective-C object pointer and no binary operators are legal on such pointers. If the expression appears in any other position, the element is read as described below. It is an error to take the address of a subscript expression, or (in C++) to bind a reference to it.</p> 328 329 <p>Programs can use object subscripting with Objective-C object pointers of type <code>id</code>. Normal dynamic message send rules apply; the compiler must see <i>some</i> declaration of the subscripting methods, and will pick the declaration seen first.</p> 330 331 <h2>Caveats</h2> 332 333 <p>Objects created using the literal or boxed expression syntax are not guaranteed to be uniqued by the runtime, but nor are they guaranteed to be newly-allocated. As such, the result of performing direct comparisons against the location of an object literal (using <code>==</code>, <code>!=</code>, <code><</code>, <code><=</code>, <code>></code>, or <code>>=</code>) is not well-defined. This is usually a simple mistake in code that intended to call the <code>isEqual:</code> method (or the <code>compare:</code> method).</p> 334 335 <p>This caveat applies to compile-time string literals as well. Historically, string literals (using the <code>@"..."</code> syntax) have been uniqued across translation units during linking. This is an implementation detail of the compiler and should not be relied upon. If you are using such code, please use global string constants instead (<code>NSString * const MyConst = @"..."</code>) or use <code>isEqual:</code>.</p> 336 337 <h2>Grammar Additions</h2> 338 339 <p>To support the new syntax described above, the Objective-C <code>@</code>-expression grammar has the following new productions:</p> 340 341 <pre> 342 objc-at-expression : '@' (string-literal | encode-literal | selector-literal | protocol-literal | object-literal) 343 ; 344 345 object-literal : ('+' | '-')? numeric-constant 346 | character-constant 347 | boolean-constant 348 | array-literal 349 | dictionary-literal 350 ; 351 352 boolean-constant : '__objc_yes' | '__objc_no' | 'true' | 'false' /* boolean keywords. */ 353 ; 354 355 array-literal : '[' assignment-expression-list ']' 356 ; 357 358 assignment-expression-list : assignment-expression (',' assignment-expression-list)? 359 | /* empty */ 360 ; 361 362 dictionary-literal : '{' key-value-list '}' 363 ; 364 365 key-value-list : key-value-pair (',' key-value-list)? 366 | /* empty */ 367 ; 368 369 key-value-pair : assignment-expression ':' assignment-expression 370 ; 371 </pre> 372 373 <p>Note: <code>@true</code> and <code>@false</code> are only supported in Objective-C++.</p> 374 375 <h2>Availability Checks</h2> 376 377 <p>Programs test for the new features by using clang's __has_feature checks. Here are examples of their use:</p> 378 379 <pre> 380 #if __has_feature(objc_array_literals) 381 // new way. 382 NSArray *elements = @[ @"H", @"He", @"O", @"C" ]; 383 #else 384 // old way (equivalent). 385 id objects[] = { @"H", @"He", @"O", @"C" }; 386 NSArray *elements = [NSArray arrayWithObjects:objects count:4]; 387 #endif 388 389 #if __has_feature(objc_dictionary_literals) 390 // new way. 391 NSDictionary *masses = @{ @"H" : @1.0078, @"He" : @4.0026, @"O" : @15.9990, @"C" : @12.0096 }; 392 #else 393 // old way (equivalent). 394 id keys[] = { @"H", @"He", @"O", @"C" }; 395 id values[] = { [NSNumber numberWithDouble:1.0078], [NSNumber numberWithDouble:4.0026], 396 [NSNumber numberWithDouble:15.9990], [NSNumber numberWithDouble:12.0096] }; 397 NSDictionary *masses = [NSDictionary dictionaryWithObjects:objects forKeys:keys count:4]; 398 #endif 399 400 #if __has_feature(objc_subscripting) 401 NSUInteger i, count = elements.count; 402 for (i = 0; i < count; ++i) { 403 NSString *element = elements[i]; 404 NSNumber *mass = masses[element]; 405 NSLog(@"the mass of %@ is %@", element, mass); 406 } 407 #else 408 NSUInteger i, count = [elements count]; 409 for (i = 0; i < count; ++i) { 410 NSString *element = [elements objectAtIndex:i]; 411 NSNumber *mass = [masses objectForKey:element]; 412 NSLog(@"the mass of %@ is %@", element, mass); 413 } 414 #endif 415 </pre> 416 417 <p>Code can use also <code>__has_feature(objc_bool)</code> to check for the availability of numeric literals support. This checks for the new <code>__objc_yes / __objc_no</code> keywords, which enable the use of <code>@YES / @NO</code> literals.</p> 418 419 <p>To check whether boxed expressions are supported, use <code>__has_feature(objc_boxed_expressions)</code> feature macro.</p> 420 421 </div> 422 </body> 423 </html> 424