Home | History | Annotate | Download | only in Parse
      1 //===--- ParseDeclCXX.cpp - C++ Declaration Parsing -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements the C++ Declaration portions of the Parser interfaces.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Basic/OperatorKinds.h"
     15 #include "clang/Parse/Parser.h"
     16 #include "clang/Parse/ParseDiagnostic.h"
     17 #include "clang/Sema/DeclSpec.h"
     18 #include "clang/Sema/Scope.h"
     19 #include "clang/Sema/ParsedTemplate.h"
     20 #include "clang/Sema/PrettyDeclStackTrace.h"
     21 #include "llvm/ADT/SmallString.h"
     22 #include "RAIIObjectsForParser.h"
     23 using namespace clang;
     24 
     25 /// ParseNamespace - We know that the current token is a namespace keyword. This
     26 /// may either be a top level namespace or a block-level namespace alias. If
     27 /// there was an inline keyword, it has already been parsed.
     28 ///
     29 ///       namespace-definition: [C++ 7.3: basic.namespace]
     30 ///         named-namespace-definition
     31 ///         unnamed-namespace-definition
     32 ///
     33 ///       unnamed-namespace-definition:
     34 ///         'inline'[opt] 'namespace' attributes[opt] '{' namespace-body '}'
     35 ///
     36 ///       named-namespace-definition:
     37 ///         original-namespace-definition
     38 ///         extension-namespace-definition
     39 ///
     40 ///       original-namespace-definition:
     41 ///         'inline'[opt] 'namespace' identifier attributes[opt]
     42 ///             '{' namespace-body '}'
     43 ///
     44 ///       extension-namespace-definition:
     45 ///         'inline'[opt] 'namespace' original-namespace-name
     46 ///             '{' namespace-body '}'
     47 ///
     48 ///       namespace-alias-definition:  [C++ 7.3.2: namespace.alias]
     49 ///         'namespace' identifier '=' qualified-namespace-specifier ';'
     50 ///
     51 Decl *Parser::ParseNamespace(unsigned Context,
     52                              SourceLocation &DeclEnd,
     53                              SourceLocation InlineLoc) {
     54   assert(Tok.is(tok::kw_namespace) && "Not a namespace!");
     55   SourceLocation NamespaceLoc = ConsumeToken();  // eat the 'namespace'.
     56   ObjCDeclContextSwitch ObjCDC(*this);
     57 
     58   if (Tok.is(tok::code_completion)) {
     59     Actions.CodeCompleteNamespaceDecl(getCurScope());
     60     cutOffParsing();
     61     return 0;
     62   }
     63 
     64   SourceLocation IdentLoc;
     65   IdentifierInfo *Ident = 0;
     66   std::vector<SourceLocation> ExtraIdentLoc;
     67   std::vector<IdentifierInfo*> ExtraIdent;
     68   std::vector<SourceLocation> ExtraNamespaceLoc;
     69 
     70   Token attrTok;
     71 
     72   if (Tok.is(tok::identifier)) {
     73     Ident = Tok.getIdentifierInfo();
     74     IdentLoc = ConsumeToken();  // eat the identifier.
     75     while (Tok.is(tok::coloncolon) && NextToken().is(tok::identifier)) {
     76       ExtraNamespaceLoc.push_back(ConsumeToken());
     77       ExtraIdent.push_back(Tok.getIdentifierInfo());
     78       ExtraIdentLoc.push_back(ConsumeToken());
     79     }
     80   }
     81 
     82   // Read label attributes, if present.
     83   ParsedAttributes attrs(AttrFactory);
     84   if (Tok.is(tok::kw___attribute)) {
     85     attrTok = Tok;
     86     ParseGNUAttributes(attrs);
     87   }
     88 
     89   if (Tok.is(tok::equal)) {
     90     if (!attrs.empty())
     91       Diag(attrTok, diag::err_unexpected_namespace_attributes_alias);
     92     if (InlineLoc.isValid())
     93       Diag(InlineLoc, diag::err_inline_namespace_alias)
     94           << FixItHint::CreateRemoval(InlineLoc);
     95     return ParseNamespaceAlias(NamespaceLoc, IdentLoc, Ident, DeclEnd);
     96   }
     97 
     98 
     99   BalancedDelimiterTracker T(*this, tok::l_brace);
    100   if (T.consumeOpen()) {
    101     if (!ExtraIdent.empty()) {
    102       Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
    103           << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
    104     }
    105     Diag(Tok, Ident ? diag::err_expected_lbrace :
    106          diag::err_expected_ident_lbrace);
    107     return 0;
    108   }
    109 
    110   if (getCurScope()->isClassScope() || getCurScope()->isTemplateParamScope() ||
    111       getCurScope()->isInObjcMethodScope() || getCurScope()->getBlockParent() ||
    112       getCurScope()->getFnParent()) {
    113     if (!ExtraIdent.empty()) {
    114       Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
    115           << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
    116     }
    117     Diag(T.getOpenLocation(), diag::err_namespace_nonnamespace_scope);
    118     SkipUntil(tok::r_brace, false);
    119     return 0;
    120   }
    121 
    122   if (!ExtraIdent.empty()) {
    123     TentativeParsingAction TPA(*this);
    124     SkipUntil(tok::r_brace, /*StopAtSemi*/false, /*DontConsume*/true);
    125     Token rBraceToken = Tok;
    126     TPA.Revert();
    127 
    128     if (!rBraceToken.is(tok::r_brace)) {
    129       Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
    130           << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
    131     } else {
    132       std::string NamespaceFix;
    133       for (std::vector<IdentifierInfo*>::iterator I = ExtraIdent.begin(),
    134            E = ExtraIdent.end(); I != E; ++I) {
    135         NamespaceFix += " { namespace ";
    136         NamespaceFix += (*I)->getName();
    137       }
    138 
    139       std::string RBraces;
    140       for (unsigned i = 0, e = ExtraIdent.size(); i != e; ++i)
    141         RBraces +=  "} ";
    142 
    143       Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
    144           << FixItHint::CreateReplacement(SourceRange(ExtraNamespaceLoc.front(),
    145                                                       ExtraIdentLoc.back()),
    146                                           NamespaceFix)
    147           << FixItHint::CreateInsertion(rBraceToken.getLocation(), RBraces);
    148     }
    149   }
    150 
    151   // If we're still good, complain about inline namespaces in non-C++0x now.
    152   if (InlineLoc.isValid())
    153     Diag(InlineLoc, getLangOpts().CPlusPlus0x ?
    154          diag::warn_cxx98_compat_inline_namespace : diag::ext_inline_namespace);
    155 
    156   // Enter a scope for the namespace.
    157   ParseScope NamespaceScope(this, Scope::DeclScope);
    158 
    159   Decl *NamespcDecl =
    160     Actions.ActOnStartNamespaceDef(getCurScope(), InlineLoc, NamespaceLoc,
    161                                    IdentLoc, Ident, T.getOpenLocation(),
    162                                    attrs.getList());
    163 
    164   PrettyDeclStackTraceEntry CrashInfo(Actions, NamespcDecl, NamespaceLoc,
    165                                       "parsing namespace");
    166 
    167   // Parse the contents of the namespace.  This includes parsing recovery on
    168   // any improperly nested namespaces.
    169   ParseInnerNamespace(ExtraIdentLoc, ExtraIdent, ExtraNamespaceLoc, 0,
    170                       InlineLoc, attrs, T);
    171 
    172   // Leave the namespace scope.
    173   NamespaceScope.Exit();
    174 
    175   DeclEnd = T.getCloseLocation();
    176   Actions.ActOnFinishNamespaceDef(NamespcDecl, DeclEnd);
    177 
    178   return NamespcDecl;
    179 }
    180 
    181 /// ParseInnerNamespace - Parse the contents of a namespace.
    182 void Parser::ParseInnerNamespace(std::vector<SourceLocation>& IdentLoc,
    183                                  std::vector<IdentifierInfo*>& Ident,
    184                                  std::vector<SourceLocation>& NamespaceLoc,
    185                                  unsigned int index, SourceLocation& InlineLoc,
    186                                  ParsedAttributes& attrs,
    187                                  BalancedDelimiterTracker &Tracker) {
    188   if (index == Ident.size()) {
    189     while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
    190       ParsedAttributesWithRange attrs(AttrFactory);
    191       MaybeParseCXX0XAttributes(attrs);
    192       MaybeParseMicrosoftAttributes(attrs);
    193       ParseExternalDeclaration(attrs);
    194     }
    195 
    196     // The caller is what called check -- we are simply calling
    197     // the close for it.
    198     Tracker.consumeClose();
    199 
    200     return;
    201   }
    202 
    203   // Parse improperly nested namespaces.
    204   ParseScope NamespaceScope(this, Scope::DeclScope);
    205   Decl *NamespcDecl =
    206     Actions.ActOnStartNamespaceDef(getCurScope(), SourceLocation(),
    207                                    NamespaceLoc[index], IdentLoc[index],
    208                                    Ident[index], Tracker.getOpenLocation(),
    209                                    attrs.getList());
    210 
    211   ParseInnerNamespace(IdentLoc, Ident, NamespaceLoc, ++index, InlineLoc,
    212                       attrs, Tracker);
    213 
    214   NamespaceScope.Exit();
    215 
    216   Actions.ActOnFinishNamespaceDef(NamespcDecl, Tracker.getCloseLocation());
    217 }
    218 
    219 /// ParseNamespaceAlias - Parse the part after the '=' in a namespace
    220 /// alias definition.
    221 ///
    222 Decl *Parser::ParseNamespaceAlias(SourceLocation NamespaceLoc,
    223                                   SourceLocation AliasLoc,
    224                                   IdentifierInfo *Alias,
    225                                   SourceLocation &DeclEnd) {
    226   assert(Tok.is(tok::equal) && "Not equal token");
    227 
    228   ConsumeToken(); // eat the '='.
    229 
    230   if (Tok.is(tok::code_completion)) {
    231     Actions.CodeCompleteNamespaceAliasDecl(getCurScope());
    232     cutOffParsing();
    233     return 0;
    234   }
    235 
    236   CXXScopeSpec SS;
    237   // Parse (optional) nested-name-specifier.
    238   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
    239 
    240   if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
    241     Diag(Tok, diag::err_expected_namespace_name);
    242     // Skip to end of the definition and eat the ';'.
    243     SkipUntil(tok::semi);
    244     return 0;
    245   }
    246 
    247   // Parse identifier.
    248   IdentifierInfo *Ident = Tok.getIdentifierInfo();
    249   SourceLocation IdentLoc = ConsumeToken();
    250 
    251   // Eat the ';'.
    252   DeclEnd = Tok.getLocation();
    253   ExpectAndConsume(tok::semi, diag::err_expected_semi_after_namespace_name,
    254                    "", tok::semi);
    255 
    256   return Actions.ActOnNamespaceAliasDef(getCurScope(), NamespaceLoc, AliasLoc, Alias,
    257                                         SS, IdentLoc, Ident);
    258 }
    259 
    260 /// ParseLinkage - We know that the current token is a string_literal
    261 /// and just before that, that extern was seen.
    262 ///
    263 ///       linkage-specification: [C++ 7.5p2: dcl.link]
    264 ///         'extern' string-literal '{' declaration-seq[opt] '}'
    265 ///         'extern' string-literal declaration
    266 ///
    267 Decl *Parser::ParseLinkage(ParsingDeclSpec &DS, unsigned Context) {
    268   assert(Tok.is(tok::string_literal) && "Not a string literal!");
    269   SmallString<8> LangBuffer;
    270   bool Invalid = false;
    271   StringRef Lang = PP.getSpelling(Tok, LangBuffer, &Invalid);
    272   if (Invalid)
    273     return 0;
    274 
    275   // FIXME: This is incorrect: linkage-specifiers are parsed in translation
    276   // phase 7, so string-literal concatenation is supposed to occur.
    277   //   extern "" "C" "" "+" "+" { } is legal.
    278   if (Tok.hasUDSuffix())
    279     Diag(Tok, diag::err_invalid_string_udl);
    280   SourceLocation Loc = ConsumeStringToken();
    281 
    282   ParseScope LinkageScope(this, Scope::DeclScope);
    283   Decl *LinkageSpec
    284     = Actions.ActOnStartLinkageSpecification(getCurScope(),
    285                                              DS.getSourceRange().getBegin(),
    286                                              Loc, Lang,
    287                                       Tok.is(tok::l_brace) ? Tok.getLocation()
    288                                                            : SourceLocation());
    289 
    290   ParsedAttributesWithRange attrs(AttrFactory);
    291   MaybeParseCXX0XAttributes(attrs);
    292   MaybeParseMicrosoftAttributes(attrs);
    293 
    294   if (Tok.isNot(tok::l_brace)) {
    295     // Reset the source range in DS, as the leading "extern"
    296     // does not really belong to the inner declaration ...
    297     DS.SetRangeStart(SourceLocation());
    298     DS.SetRangeEnd(SourceLocation());
    299     // ... but anyway remember that such an "extern" was seen.
    300     DS.setExternInLinkageSpec(true);
    301     ParseExternalDeclaration(attrs, &DS);
    302     return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec,
    303                                                    SourceLocation());
    304   }
    305 
    306   DS.abort();
    307 
    308   ProhibitAttributes(attrs);
    309 
    310   BalancedDelimiterTracker T(*this, tok::l_brace);
    311   T.consumeOpen();
    312   while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
    313     ParsedAttributesWithRange attrs(AttrFactory);
    314     MaybeParseCXX0XAttributes(attrs);
    315     MaybeParseMicrosoftAttributes(attrs);
    316     ParseExternalDeclaration(attrs);
    317   }
    318 
    319   T.consumeClose();
    320   return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec,
    321                                                  T.getCloseLocation());
    322 }
    323 
    324 /// ParseUsingDirectiveOrDeclaration - Parse C++ using using-declaration or
    325 /// using-directive. Assumes that current token is 'using'.
    326 Decl *Parser::ParseUsingDirectiveOrDeclaration(unsigned Context,
    327                                          const ParsedTemplateInfo &TemplateInfo,
    328                                                SourceLocation &DeclEnd,
    329                                              ParsedAttributesWithRange &attrs,
    330                                                Decl **OwnedType) {
    331   assert(Tok.is(tok::kw_using) && "Not using token");
    332   ObjCDeclContextSwitch ObjCDC(*this);
    333 
    334   // Eat 'using'.
    335   SourceLocation UsingLoc = ConsumeToken();
    336 
    337   if (Tok.is(tok::code_completion)) {
    338     Actions.CodeCompleteUsing(getCurScope());
    339     cutOffParsing();
    340     return 0;
    341   }
    342 
    343   // 'using namespace' means this is a using-directive.
    344   if (Tok.is(tok::kw_namespace)) {
    345     // Template parameters are always an error here.
    346     if (TemplateInfo.Kind) {
    347       SourceRange R = TemplateInfo.getSourceRange();
    348       Diag(UsingLoc, diag::err_templated_using_directive)
    349         << R << FixItHint::CreateRemoval(R);
    350     }
    351 
    352     return ParseUsingDirective(Context, UsingLoc, DeclEnd, attrs);
    353   }
    354 
    355   // Otherwise, it must be a using-declaration or an alias-declaration.
    356 
    357   // Using declarations can't have attributes.
    358   ProhibitAttributes(attrs);
    359 
    360   return ParseUsingDeclaration(Context, TemplateInfo, UsingLoc, DeclEnd,
    361                                     AS_none, OwnedType);
    362 }
    363 
    364 /// ParseUsingDirective - Parse C++ using-directive, assumes
    365 /// that current token is 'namespace' and 'using' was already parsed.
    366 ///
    367 ///       using-directive: [C++ 7.3.p4: namespace.udir]
    368 ///        'using' 'namespace' ::[opt] nested-name-specifier[opt]
    369 ///                 namespace-name ;
    370 /// [GNU] using-directive:
    371 ///        'using' 'namespace' ::[opt] nested-name-specifier[opt]
    372 ///                 namespace-name attributes[opt] ;
    373 ///
    374 Decl *Parser::ParseUsingDirective(unsigned Context,
    375                                   SourceLocation UsingLoc,
    376                                   SourceLocation &DeclEnd,
    377                                   ParsedAttributes &attrs) {
    378   assert(Tok.is(tok::kw_namespace) && "Not 'namespace' token");
    379 
    380   // Eat 'namespace'.
    381   SourceLocation NamespcLoc = ConsumeToken();
    382 
    383   if (Tok.is(tok::code_completion)) {
    384     Actions.CodeCompleteUsingDirective(getCurScope());
    385     cutOffParsing();
    386     return 0;
    387   }
    388 
    389   CXXScopeSpec SS;
    390   // Parse (optional) nested-name-specifier.
    391   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
    392 
    393   IdentifierInfo *NamespcName = 0;
    394   SourceLocation IdentLoc = SourceLocation();
    395 
    396   // Parse namespace-name.
    397   if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
    398     Diag(Tok, diag::err_expected_namespace_name);
    399     // If there was invalid namespace name, skip to end of decl, and eat ';'.
    400     SkipUntil(tok::semi);
    401     // FIXME: Are there cases, when we would like to call ActOnUsingDirective?
    402     return 0;
    403   }
    404 
    405   // Parse identifier.
    406   NamespcName = Tok.getIdentifierInfo();
    407   IdentLoc = ConsumeToken();
    408 
    409   // Parse (optional) attributes (most likely GNU strong-using extension).
    410   bool GNUAttr = false;
    411   if (Tok.is(tok::kw___attribute)) {
    412     GNUAttr = true;
    413     ParseGNUAttributes(attrs);
    414   }
    415 
    416   // Eat ';'.
    417   DeclEnd = Tok.getLocation();
    418   ExpectAndConsume(tok::semi,
    419                    GNUAttr ? diag::err_expected_semi_after_attribute_list
    420                            : diag::err_expected_semi_after_namespace_name,
    421                    "", tok::semi);
    422 
    423   return Actions.ActOnUsingDirective(getCurScope(), UsingLoc, NamespcLoc, SS,
    424                                      IdentLoc, NamespcName, attrs.getList());
    425 }
    426 
    427 /// ParseUsingDeclaration - Parse C++ using-declaration or alias-declaration.
    428 /// Assumes that 'using' was already seen.
    429 ///
    430 ///     using-declaration: [C++ 7.3.p3: namespace.udecl]
    431 ///       'using' 'typename'[opt] ::[opt] nested-name-specifier
    432 ///               unqualified-id
    433 ///       'using' :: unqualified-id
    434 ///
    435 ///     alias-declaration: C++0x [decl.typedef]p2
    436 ///       'using' identifier = type-id ;
    437 ///
    438 Decl *Parser::ParseUsingDeclaration(unsigned Context,
    439                                     const ParsedTemplateInfo &TemplateInfo,
    440                                     SourceLocation UsingLoc,
    441                                     SourceLocation &DeclEnd,
    442                                     AccessSpecifier AS,
    443                                     Decl **OwnedType) {
    444   CXXScopeSpec SS;
    445   SourceLocation TypenameLoc;
    446   bool IsTypeName;
    447   ParsedAttributesWithRange attrs(AttrFactory);
    448 
    449   // FIXME: Simply skip the attributes and diagnose, don't bother parsing them.
    450   MaybeParseCXX0XAttributes(attrs);
    451   ProhibitAttributes(attrs);
    452   attrs.clear();
    453   attrs.Range = SourceRange();
    454 
    455   // Ignore optional 'typename'.
    456   // FIXME: This is wrong; we should parse this as a typename-specifier.
    457   if (Tok.is(tok::kw_typename)) {
    458     TypenameLoc = Tok.getLocation();
    459     ConsumeToken();
    460     IsTypeName = true;
    461   }
    462   else
    463     IsTypeName = false;
    464 
    465   // Parse nested-name-specifier.
    466   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
    467 
    468   // Check nested-name specifier.
    469   if (SS.isInvalid()) {
    470     SkipUntil(tok::semi);
    471     return 0;
    472   }
    473 
    474   // Parse the unqualified-id. We allow parsing of both constructor and
    475   // destructor names and allow the action module to diagnose any semantic
    476   // errors.
    477   SourceLocation TemplateKWLoc;
    478   UnqualifiedId Name;
    479   if (ParseUnqualifiedId(SS,
    480                          /*EnteringContext=*/false,
    481                          /*AllowDestructorName=*/true,
    482                          /*AllowConstructorName=*/true,
    483                          ParsedType(),
    484                          TemplateKWLoc,
    485                          Name)) {
    486     SkipUntil(tok::semi);
    487     return 0;
    488   }
    489 
    490   MaybeParseCXX0XAttributes(attrs);
    491 
    492   // Maybe this is an alias-declaration.
    493   bool IsAliasDecl = Tok.is(tok::equal);
    494   TypeResult TypeAlias;
    495   if (IsAliasDecl) {
    496     // TODO: Attribute support. C++0x attributes may appear before the equals.
    497     // Where can GNU attributes appear?
    498     ConsumeToken();
    499 
    500     Diag(Tok.getLocation(), getLangOpts().CPlusPlus0x ?
    501          diag::warn_cxx98_compat_alias_declaration :
    502          diag::ext_alias_declaration);
    503 
    504     // Type alias templates cannot be specialized.
    505     int SpecKind = -1;
    506     if (TemplateInfo.Kind == ParsedTemplateInfo::Template &&
    507         Name.getKind() == UnqualifiedId::IK_TemplateId)
    508       SpecKind = 0;
    509     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization)
    510       SpecKind = 1;
    511     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
    512       SpecKind = 2;
    513     if (SpecKind != -1) {
    514       SourceRange Range;
    515       if (SpecKind == 0)
    516         Range = SourceRange(Name.TemplateId->LAngleLoc,
    517                             Name.TemplateId->RAngleLoc);
    518       else
    519         Range = TemplateInfo.getSourceRange();
    520       Diag(Range.getBegin(), diag::err_alias_declaration_specialization)
    521         << SpecKind << Range;
    522       SkipUntil(tok::semi);
    523       return 0;
    524     }
    525 
    526     // Name must be an identifier.
    527     if (Name.getKind() != UnqualifiedId::IK_Identifier) {
    528       Diag(Name.StartLocation, diag::err_alias_declaration_not_identifier);
    529       // No removal fixit: can't recover from this.
    530       SkipUntil(tok::semi);
    531       return 0;
    532     } else if (IsTypeName)
    533       Diag(TypenameLoc, diag::err_alias_declaration_not_identifier)
    534         << FixItHint::CreateRemoval(SourceRange(TypenameLoc,
    535                              SS.isNotEmpty() ? SS.getEndLoc() : TypenameLoc));
    536     else if (SS.isNotEmpty())
    537       Diag(SS.getBeginLoc(), diag::err_alias_declaration_not_identifier)
    538         << FixItHint::CreateRemoval(SS.getRange());
    539 
    540     TypeAlias = ParseTypeName(0, TemplateInfo.Kind ?
    541                               Declarator::AliasTemplateContext :
    542                               Declarator::AliasDeclContext, AS, OwnedType);
    543   } else {
    544     // C++11 attributes are not allowed on a using-declaration, but GNU ones
    545     // are.
    546     ProhibitAttributes(attrs);
    547 
    548     // Parse (optional) attributes (most likely GNU strong-using extension).
    549     MaybeParseGNUAttributes(attrs);
    550   }
    551 
    552   // Eat ';'.
    553   DeclEnd = Tok.getLocation();
    554   ExpectAndConsume(tok::semi, diag::err_expected_semi_after,
    555                    !attrs.empty() ? "attributes list" :
    556                    IsAliasDecl ? "alias declaration" : "using declaration",
    557                    tok::semi);
    558 
    559   // Diagnose an attempt to declare a templated using-declaration.
    560   // In C++0x, alias-declarations can be templates:
    561   //   template <...> using id = type;
    562   if (TemplateInfo.Kind && !IsAliasDecl) {
    563     SourceRange R = TemplateInfo.getSourceRange();
    564     Diag(UsingLoc, diag::err_templated_using_declaration)
    565       << R << FixItHint::CreateRemoval(R);
    566 
    567     // Unfortunately, we have to bail out instead of recovering by
    568     // ignoring the parameters, just in case the nested name specifier
    569     // depends on the parameters.
    570     return 0;
    571   }
    572 
    573   // "typename" keyword is allowed for identifiers only,
    574   // because it may be a type definition.
    575   if (IsTypeName && Name.getKind() != UnqualifiedId::IK_Identifier) {
    576     Diag(Name.getSourceRange().getBegin(), diag::err_typename_identifiers_only)
    577       << FixItHint::CreateRemoval(SourceRange(TypenameLoc));
    578     // Proceed parsing, but reset the IsTypeName flag.
    579     IsTypeName = false;
    580   }
    581 
    582   if (IsAliasDecl) {
    583     TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
    584     MultiTemplateParamsArg TemplateParamsArg(
    585       TemplateParams ? TemplateParams->data() : 0,
    586       TemplateParams ? TemplateParams->size() : 0);
    587     // FIXME: Propagate attributes.
    588     return Actions.ActOnAliasDeclaration(getCurScope(), AS, TemplateParamsArg,
    589                                          UsingLoc, Name, TypeAlias);
    590   }
    591 
    592   return Actions.ActOnUsingDeclaration(getCurScope(), AS, true, UsingLoc, SS,
    593                                        Name, attrs.getList(),
    594                                        IsTypeName, TypenameLoc);
    595 }
    596 
    597 /// ParseStaticAssertDeclaration - Parse C++0x or C11 static_assert-declaration.
    598 ///
    599 /// [C++0x] static_assert-declaration:
    600 ///           static_assert ( constant-expression  ,  string-literal  ) ;
    601 ///
    602 /// [C11]   static_assert-declaration:
    603 ///           _Static_assert ( constant-expression  ,  string-literal  ) ;
    604 ///
    605 Decl *Parser::ParseStaticAssertDeclaration(SourceLocation &DeclEnd){
    606   assert((Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert)) &&
    607          "Not a static_assert declaration");
    608 
    609   if (Tok.is(tok::kw__Static_assert) && !getLangOpts().C11)
    610     Diag(Tok, diag::ext_c11_static_assert);
    611   if (Tok.is(tok::kw_static_assert))
    612     Diag(Tok, diag::warn_cxx98_compat_static_assert);
    613 
    614   SourceLocation StaticAssertLoc = ConsumeToken();
    615 
    616   BalancedDelimiterTracker T(*this, tok::l_paren);
    617   if (T.consumeOpen()) {
    618     Diag(Tok, diag::err_expected_lparen);
    619     return 0;
    620   }
    621 
    622   ExprResult AssertExpr(ParseConstantExpression());
    623   if (AssertExpr.isInvalid()) {
    624     SkipUntil(tok::semi);
    625     return 0;
    626   }
    627 
    628   if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::semi))
    629     return 0;
    630 
    631   if (!isTokenStringLiteral()) {
    632     Diag(Tok, diag::err_expected_string_literal);
    633     SkipUntil(tok::semi);
    634     return 0;
    635   }
    636 
    637   ExprResult AssertMessage(ParseStringLiteralExpression());
    638   if (AssertMessage.isInvalid()) {
    639     SkipUntil(tok::semi);
    640     return 0;
    641   }
    642 
    643   T.consumeClose();
    644 
    645   DeclEnd = Tok.getLocation();
    646   ExpectAndConsumeSemi(diag::err_expected_semi_after_static_assert);
    647 
    648   return Actions.ActOnStaticAssertDeclaration(StaticAssertLoc,
    649                                               AssertExpr.take(),
    650                                               AssertMessage.take(),
    651                                               T.getCloseLocation());
    652 }
    653 
    654 /// ParseDecltypeSpecifier - Parse a C++0x decltype specifier.
    655 ///
    656 /// 'decltype' ( expression )
    657 ///
    658 SourceLocation Parser::ParseDecltypeSpecifier(DeclSpec &DS) {
    659   assert((Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype))
    660            && "Not a decltype specifier");
    661 
    662 
    663   ExprResult Result;
    664   SourceLocation StartLoc = Tok.getLocation();
    665   SourceLocation EndLoc;
    666 
    667   if (Tok.is(tok::annot_decltype)) {
    668     Result = getExprAnnotation(Tok);
    669     EndLoc = Tok.getAnnotationEndLoc();
    670     ConsumeToken();
    671     if (Result.isInvalid()) {
    672       DS.SetTypeSpecError();
    673       return EndLoc;
    674     }
    675   } else {
    676     if (Tok.getIdentifierInfo()->isStr("decltype"))
    677       Diag(Tok, diag::warn_cxx98_compat_decltype);
    678 
    679     ConsumeToken();
    680 
    681     BalancedDelimiterTracker T(*this, tok::l_paren);
    682     if (T.expectAndConsume(diag::err_expected_lparen_after,
    683                            "decltype", tok::r_paren)) {
    684       DS.SetTypeSpecError();
    685       return T.getOpenLocation() == Tok.getLocation() ?
    686              StartLoc : T.getOpenLocation();
    687     }
    688 
    689     // Parse the expression
    690 
    691     // C++0x [dcl.type.simple]p4:
    692     //   The operand of the decltype specifier is an unevaluated operand.
    693     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
    694                                                  0, /*IsDecltype=*/true);
    695     Result = ParseExpression();
    696     if (Result.isInvalid()) {
    697       SkipUntil(tok::r_paren);
    698       DS.SetTypeSpecError();
    699       return StartLoc;
    700     }
    701 
    702     // Match the ')'
    703     T.consumeClose();
    704     if (T.getCloseLocation().isInvalid()) {
    705       DS.SetTypeSpecError();
    706       // FIXME: this should return the location of the last token
    707       //        that was consumed (by "consumeClose()")
    708       return T.getCloseLocation();
    709     }
    710 
    711     Result = Actions.ActOnDecltypeExpression(Result.take());
    712     if (Result.isInvalid()) {
    713       DS.SetTypeSpecError();
    714       return T.getCloseLocation();
    715     }
    716 
    717     EndLoc = T.getCloseLocation();
    718   }
    719 
    720   const char *PrevSpec = 0;
    721   unsigned DiagID;
    722   // Check for duplicate type specifiers (e.g. "int decltype(a)").
    723   if (DS.SetTypeSpecType(DeclSpec::TST_decltype, StartLoc, PrevSpec,
    724                          DiagID, Result.release())) {
    725     Diag(StartLoc, DiagID) << PrevSpec;
    726     DS.SetTypeSpecError();
    727   }
    728   return EndLoc;
    729 }
    730 
    731 void Parser::AnnotateExistingDecltypeSpecifier(const DeclSpec& DS,
    732                                                SourceLocation StartLoc,
    733                                                SourceLocation EndLoc) {
    734   // make sure we have a token we can turn into an annotation token
    735   if (PP.isBacktrackEnabled())
    736     PP.RevertCachedTokens(1);
    737   else
    738     PP.EnterToken(Tok);
    739 
    740   Tok.setKind(tok::annot_decltype);
    741   setExprAnnotation(Tok, DS.getTypeSpecType() == TST_decltype ?
    742                          DS.getRepAsExpr() : ExprResult());
    743   Tok.setAnnotationEndLoc(EndLoc);
    744   Tok.setLocation(StartLoc);
    745   PP.AnnotateCachedTokens(Tok);
    746 }
    747 
    748 void Parser::ParseUnderlyingTypeSpecifier(DeclSpec &DS) {
    749   assert(Tok.is(tok::kw___underlying_type) &&
    750          "Not an underlying type specifier");
    751 
    752   SourceLocation StartLoc = ConsumeToken();
    753   BalancedDelimiterTracker T(*this, tok::l_paren);
    754   if (T.expectAndConsume(diag::err_expected_lparen_after,
    755                        "__underlying_type", tok::r_paren)) {
    756     return;
    757   }
    758 
    759   TypeResult Result = ParseTypeName();
    760   if (Result.isInvalid()) {
    761     SkipUntil(tok::r_paren);
    762     return;
    763   }
    764 
    765   // Match the ')'
    766   T.consumeClose();
    767   if (T.getCloseLocation().isInvalid())
    768     return;
    769 
    770   const char *PrevSpec = 0;
    771   unsigned DiagID;
    772   if (DS.SetTypeSpecType(DeclSpec::TST_underlyingType, StartLoc, PrevSpec,
    773                          DiagID, Result.release()))
    774     Diag(StartLoc, DiagID) << PrevSpec;
    775 }
    776 
    777 /// ParseBaseTypeSpecifier - Parse a C++ base-type-specifier which is either a
    778 /// class name or decltype-specifier. Note that we only check that the result
    779 /// names a type; semantic analysis will need to verify that the type names a
    780 /// class. The result is either a type or null, depending on whether a type
    781 /// name was found.
    782 ///
    783 ///       base-type-specifier: [C++ 10.1]
    784 ///         class-or-decltype
    785 ///       class-or-decltype: [C++ 10.1]
    786 ///         nested-name-specifier[opt] class-name
    787 ///         decltype-specifier
    788 ///       class-name: [C++ 9.1]
    789 ///         identifier
    790 ///         simple-template-id
    791 ///
    792 Parser::TypeResult Parser::ParseBaseTypeSpecifier(SourceLocation &BaseLoc,
    793                                                   SourceLocation &EndLocation) {
    794   // Ignore attempts to use typename
    795   if (Tok.is(tok::kw_typename)) {
    796     Diag(Tok, diag::err_expected_class_name_not_template)
    797       << FixItHint::CreateRemoval(Tok.getLocation());
    798     ConsumeToken();
    799   }
    800 
    801   // Parse optional nested-name-specifier
    802   CXXScopeSpec SS;
    803   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
    804 
    805   BaseLoc = Tok.getLocation();
    806 
    807   // Parse decltype-specifier
    808   // tok == kw_decltype is just error recovery, it can only happen when SS
    809   // isn't empty
    810   if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
    811     if (SS.isNotEmpty())
    812       Diag(SS.getBeginLoc(), diag::err_unexpected_scope_on_base_decltype)
    813         << FixItHint::CreateRemoval(SS.getRange());
    814     // Fake up a Declarator to use with ActOnTypeName.
    815     DeclSpec DS(AttrFactory);
    816 
    817     EndLocation = ParseDecltypeSpecifier(DS);
    818 
    819     Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
    820     return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
    821   }
    822 
    823   // Check whether we have a template-id that names a type.
    824   if (Tok.is(tok::annot_template_id)) {
    825     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
    826     if (TemplateId->Kind == TNK_Type_template ||
    827         TemplateId->Kind == TNK_Dependent_template_name) {
    828       AnnotateTemplateIdTokenAsType();
    829 
    830       assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
    831       ParsedType Type = getTypeAnnotation(Tok);
    832       EndLocation = Tok.getAnnotationEndLoc();
    833       ConsumeToken();
    834 
    835       if (Type)
    836         return Type;
    837       return true;
    838     }
    839 
    840     // Fall through to produce an error below.
    841   }
    842 
    843   if (Tok.isNot(tok::identifier)) {
    844     Diag(Tok, diag::err_expected_class_name);
    845     return true;
    846   }
    847 
    848   IdentifierInfo *Id = Tok.getIdentifierInfo();
    849   SourceLocation IdLoc = ConsumeToken();
    850 
    851   if (Tok.is(tok::less)) {
    852     // It looks the user intended to write a template-id here, but the
    853     // template-name was wrong. Try to fix that.
    854     TemplateNameKind TNK = TNK_Type_template;
    855     TemplateTy Template;
    856     if (!Actions.DiagnoseUnknownTemplateName(*Id, IdLoc, getCurScope(),
    857                                              &SS, Template, TNK)) {
    858       Diag(IdLoc, diag::err_unknown_template_name)
    859         << Id;
    860     }
    861 
    862     if (!Template)
    863       return true;
    864 
    865     // Form the template name
    866     UnqualifiedId TemplateName;
    867     TemplateName.setIdentifier(Id, IdLoc);
    868 
    869     // Parse the full template-id, then turn it into a type.
    870     if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
    871                                 TemplateName, true))
    872       return true;
    873     if (TNK == TNK_Dependent_template_name)
    874       AnnotateTemplateIdTokenAsType();
    875 
    876     // If we didn't end up with a typename token, there's nothing more we
    877     // can do.
    878     if (Tok.isNot(tok::annot_typename))
    879       return true;
    880 
    881     // Retrieve the type from the annotation token, consume that token, and
    882     // return.
    883     EndLocation = Tok.getAnnotationEndLoc();
    884     ParsedType Type = getTypeAnnotation(Tok);
    885     ConsumeToken();
    886     return Type;
    887   }
    888 
    889   // We have an identifier; check whether it is actually a type.
    890   IdentifierInfo *CorrectedII = 0;
    891   ParsedType Type = Actions.getTypeName(*Id, IdLoc, getCurScope(), &SS, true,
    892                                         false, ParsedType(),
    893                                         /*IsCtorOrDtorName=*/false,
    894                                         /*NonTrivialTypeSourceInfo=*/true,
    895                                         &CorrectedII);
    896   if (!Type) {
    897     Diag(IdLoc, diag::err_expected_class_name);
    898     return true;
    899   }
    900 
    901   // Consume the identifier.
    902   EndLocation = IdLoc;
    903 
    904   // Fake up a Declarator to use with ActOnTypeName.
    905   DeclSpec DS(AttrFactory);
    906   DS.SetRangeStart(IdLoc);
    907   DS.SetRangeEnd(EndLocation);
    908   DS.getTypeSpecScope() = SS;
    909 
    910   const char *PrevSpec = 0;
    911   unsigned DiagID;
    912   DS.SetTypeSpecType(TST_typename, IdLoc, PrevSpec, DiagID, Type);
    913 
    914   Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
    915   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
    916 }
    917 
    918 void Parser::ParseMicrosoftInheritanceClassAttributes(ParsedAttributes &attrs) {
    919   while (Tok.is(tok::kw___single_inheritance) ||
    920          Tok.is(tok::kw___multiple_inheritance) ||
    921          Tok.is(tok::kw___virtual_inheritance)) {
    922     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    923     SourceLocation AttrNameLoc = ConsumeToken();
    924     attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
    925                  SourceLocation(), 0, 0, AttributeList::AS_GNU);
    926   }
    927 }
    928 
    929 /// Determine whether the following tokens are valid after a type-specifier
    930 /// which could be a standalone declaration. This will conservatively return
    931 /// true if there's any doubt, and is appropriate for insert-';' fixits.
    932 bool Parser::isValidAfterTypeSpecifier(bool CouldBeBitfield) {
    933   // This switch enumerates the valid "follow" set for type-specifiers.
    934   switch (Tok.getKind()) {
    935   default: break;
    936   case tok::semi:               // struct foo {...} ;
    937   case tok::star:               // struct foo {...} *         P;
    938   case tok::amp:                // struct foo {...} &         R = ...
    939   case tok::identifier:         // struct foo {...} V         ;
    940   case tok::r_paren:            //(struct foo {...} )         {4}
    941   case tok::annot_cxxscope:     // struct foo {...} a::       b;
    942   case tok::annot_typename:     // struct foo {...} a         ::b;
    943   case tok::annot_template_id:  // struct foo {...} a<int>    ::b;
    944   case tok::l_paren:            // struct foo {...} (         x);
    945   case tok::comma:              // __builtin_offsetof(struct foo{...} ,
    946     return true;
    947   case tok::colon:
    948     return CouldBeBitfield;     // enum E { ... }   :         2;
    949   // Type qualifiers
    950   case tok::kw_const:           // struct foo {...} const     x;
    951   case tok::kw_volatile:        // struct foo {...} volatile  x;
    952   case tok::kw_restrict:        // struct foo {...} restrict  x;
    953   case tok::kw_inline:          // struct foo {...} inline    foo() {};
    954   // Storage-class specifiers
    955   case tok::kw_static:          // struct foo {...} static    x;
    956   case tok::kw_extern:          // struct foo {...} extern    x;
    957   case tok::kw_typedef:         // struct foo {...} typedef   x;
    958   case tok::kw_register:        // struct foo {...} register  x;
    959   case tok::kw_auto:            // struct foo {...} auto      x;
    960   case tok::kw_mutable:         // struct foo {...} mutable   x;
    961   case tok::kw_constexpr:       // struct foo {...} constexpr x;
    962     // As shown above, type qualifiers and storage class specifiers absolutely
    963     // can occur after class specifiers according to the grammar.  However,
    964     // almost no one actually writes code like this.  If we see one of these,
    965     // it is much more likely that someone missed a semi colon and the
    966     // type/storage class specifier we're seeing is part of the *next*
    967     // intended declaration, as in:
    968     //
    969     //   struct foo { ... }
    970     //   typedef int X;
    971     //
    972     // We'd really like to emit a missing semicolon error instead of emitting
    973     // an error on the 'int' saying that you can't have two type specifiers in
    974     // the same declaration of X.  Because of this, we look ahead past this
    975     // token to see if it's a type specifier.  If so, we know the code is
    976     // otherwise invalid, so we can produce the expected semi error.
    977     if (!isKnownToBeTypeSpecifier(NextToken()))
    978       return true;
    979     break;
    980   case tok::r_brace:  // struct bar { struct foo {...} }
    981     // Missing ';' at end of struct is accepted as an extension in C mode.
    982     if (!getLangOpts().CPlusPlus)
    983       return true;
    984     break;
    985   }
    986   return false;
    987 }
    988 
    989 /// ParseClassSpecifier - Parse a C++ class-specifier [C++ class] or
    990 /// elaborated-type-specifier [C++ dcl.type.elab]; we can't tell which
    991 /// until we reach the start of a definition or see a token that
    992 /// cannot start a definition.
    993 ///
    994 ///       class-specifier: [C++ class]
    995 ///         class-head '{' member-specification[opt] '}'
    996 ///         class-head '{' member-specification[opt] '}' attributes[opt]
    997 ///       class-head:
    998 ///         class-key identifier[opt] base-clause[opt]
    999 ///         class-key nested-name-specifier identifier base-clause[opt]
   1000 ///         class-key nested-name-specifier[opt] simple-template-id
   1001 ///                          base-clause[opt]
   1002 /// [GNU]   class-key attributes[opt] identifier[opt] base-clause[opt]
   1003 /// [GNU]   class-key attributes[opt] nested-name-specifier
   1004 ///                          identifier base-clause[opt]
   1005 /// [GNU]   class-key attributes[opt] nested-name-specifier[opt]
   1006 ///                          simple-template-id base-clause[opt]
   1007 ///       class-key:
   1008 ///         'class'
   1009 ///         'struct'
   1010 ///         'union'
   1011 ///
   1012 ///       elaborated-type-specifier: [C++ dcl.type.elab]
   1013 ///         class-key ::[opt] nested-name-specifier[opt] identifier
   1014 ///         class-key ::[opt] nested-name-specifier[opt] 'template'[opt]
   1015 ///                          simple-template-id
   1016 ///
   1017 ///  Note that the C++ class-specifier and elaborated-type-specifier,
   1018 ///  together, subsume the C99 struct-or-union-specifier:
   1019 ///
   1020 ///       struct-or-union-specifier: [C99 6.7.2.1]
   1021 ///         struct-or-union identifier[opt] '{' struct-contents '}'
   1022 ///         struct-or-union identifier
   1023 /// [GNU]   struct-or-union attributes[opt] identifier[opt] '{' struct-contents
   1024 ///                                                         '}' attributes[opt]
   1025 /// [GNU]   struct-or-union attributes[opt] identifier
   1026 ///       struct-or-union:
   1027 ///         'struct'
   1028 ///         'union'
   1029 void Parser::ParseClassSpecifier(tok::TokenKind TagTokKind,
   1030                                  SourceLocation StartLoc, DeclSpec &DS,
   1031                                  const ParsedTemplateInfo &TemplateInfo,
   1032                                  AccessSpecifier AS,
   1033                                  bool EnteringContext, DeclSpecContext DSC) {
   1034   DeclSpec::TST TagType;
   1035   if (TagTokKind == tok::kw_struct)
   1036     TagType = DeclSpec::TST_struct;
   1037   else if (TagTokKind == tok::kw___interface)
   1038     TagType = DeclSpec::TST_interface;
   1039   else if (TagTokKind == tok::kw_class)
   1040     TagType = DeclSpec::TST_class;
   1041   else {
   1042     assert(TagTokKind == tok::kw_union && "Not a class specifier");
   1043     TagType = DeclSpec::TST_union;
   1044   }
   1045 
   1046   if (Tok.is(tok::code_completion)) {
   1047     // Code completion for a struct, class, or union name.
   1048     Actions.CodeCompleteTag(getCurScope(), TagType);
   1049     return cutOffParsing();
   1050   }
   1051 
   1052   // C++03 [temp.explicit] 14.7.2/8:
   1053   //   The usual access checking rules do not apply to names used to specify
   1054   //   explicit instantiations.
   1055   //
   1056   // As an extension we do not perform access checking on the names used to
   1057   // specify explicit specializations either. This is important to allow
   1058   // specializing traits classes for private types.
   1059   //
   1060   // Note that we don't suppress if this turns out to be an elaborated
   1061   // type specifier.
   1062   bool shouldDelayDiagsInTag =
   1063     (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
   1064      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
   1065   SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
   1066 
   1067   ParsedAttributesWithRange attrs(AttrFactory);
   1068   // If attributes exist after tag, parse them.
   1069   if (Tok.is(tok::kw___attribute))
   1070     ParseGNUAttributes(attrs);
   1071 
   1072   // If declspecs exist after tag, parse them.
   1073   while (Tok.is(tok::kw___declspec))
   1074     ParseMicrosoftDeclSpec(attrs);
   1075 
   1076   // Parse inheritance specifiers.
   1077   if (Tok.is(tok::kw___single_inheritance) ||
   1078       Tok.is(tok::kw___multiple_inheritance) ||
   1079       Tok.is(tok::kw___virtual_inheritance))
   1080       ParseMicrosoftInheritanceClassAttributes(attrs);
   1081 
   1082   // If C++0x attributes exist here, parse them.
   1083   // FIXME: Are we consistent with the ordering of parsing of different
   1084   // styles of attributes?
   1085   MaybeParseCXX0XAttributes(attrs);
   1086 
   1087   if (TagType == DeclSpec::TST_struct &&
   1088       !Tok.is(tok::identifier) &&
   1089       Tok.getIdentifierInfo() &&
   1090       (Tok.is(tok::kw___is_arithmetic) ||
   1091        Tok.is(tok::kw___is_convertible) ||
   1092        Tok.is(tok::kw___is_empty) ||
   1093        Tok.is(tok::kw___is_floating_point) ||
   1094        Tok.is(tok::kw___is_function) ||
   1095        Tok.is(tok::kw___is_fundamental) ||
   1096        Tok.is(tok::kw___is_integral) ||
   1097        Tok.is(tok::kw___is_member_function_pointer) ||
   1098        Tok.is(tok::kw___is_member_pointer) ||
   1099        Tok.is(tok::kw___is_pod) ||
   1100        Tok.is(tok::kw___is_pointer) ||
   1101        Tok.is(tok::kw___is_same) ||
   1102        Tok.is(tok::kw___is_scalar) ||
   1103        Tok.is(tok::kw___is_signed) ||
   1104        Tok.is(tok::kw___is_unsigned) ||
   1105        Tok.is(tok::kw___is_void))) {
   1106     // GNU libstdc++ 4.2 and libc++ use certain intrinsic names as the
   1107     // name of struct templates, but some are keywords in GCC >= 4.3
   1108     // and Clang. Therefore, when we see the token sequence "struct
   1109     // X", make X into a normal identifier rather than a keyword, to
   1110     // allow libstdc++ 4.2 and libc++ to work properly.
   1111     Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
   1112     Tok.setKind(tok::identifier);
   1113   }
   1114 
   1115   // Parse the (optional) nested-name-specifier.
   1116   CXXScopeSpec &SS = DS.getTypeSpecScope();
   1117   if (getLangOpts().CPlusPlus) {
   1118     // "FOO : BAR" is not a potential typo for "FOO::BAR".
   1119     ColonProtectionRAIIObject X(*this);
   1120 
   1121     if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext))
   1122       DS.SetTypeSpecError();
   1123     if (SS.isSet())
   1124       if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id))
   1125         Diag(Tok, diag::err_expected_ident);
   1126   }
   1127 
   1128   TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
   1129 
   1130   // Parse the (optional) class name or simple-template-id.
   1131   IdentifierInfo *Name = 0;
   1132   SourceLocation NameLoc;
   1133   TemplateIdAnnotation *TemplateId = 0;
   1134   if (Tok.is(tok::identifier)) {
   1135     Name = Tok.getIdentifierInfo();
   1136     NameLoc = ConsumeToken();
   1137 
   1138     if (Tok.is(tok::less) && getLangOpts().CPlusPlus) {
   1139       // The name was supposed to refer to a template, but didn't.
   1140       // Eat the template argument list and try to continue parsing this as
   1141       // a class (or template thereof).
   1142       TemplateArgList TemplateArgs;
   1143       SourceLocation LAngleLoc, RAngleLoc;
   1144       if (ParseTemplateIdAfterTemplateName(TemplateTy(), NameLoc, SS,
   1145                                            true, LAngleLoc,
   1146                                            TemplateArgs, RAngleLoc)) {
   1147         // We couldn't parse the template argument list at all, so don't
   1148         // try to give any location information for the list.
   1149         LAngleLoc = RAngleLoc = SourceLocation();
   1150       }
   1151 
   1152       Diag(NameLoc, diag::err_explicit_spec_non_template)
   1153         << (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
   1154         << (TagType == DeclSpec::TST_class? 0
   1155             : TagType == DeclSpec::TST_struct? 1
   1156             : TagType == DeclSpec::TST_interface? 2
   1157             : 3)
   1158         << Name
   1159         << SourceRange(LAngleLoc, RAngleLoc);
   1160 
   1161       // Strip off the last template parameter list if it was empty, since
   1162       // we've removed its template argument list.
   1163       if (TemplateParams && TemplateInfo.LastParameterListWasEmpty) {
   1164         if (TemplateParams && TemplateParams->size() > 1) {
   1165           TemplateParams->pop_back();
   1166         } else {
   1167           TemplateParams = 0;
   1168           const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
   1169             = ParsedTemplateInfo::NonTemplate;
   1170         }
   1171       } else if (TemplateInfo.Kind
   1172                                 == ParsedTemplateInfo::ExplicitInstantiation) {
   1173         // Pretend this is just a forward declaration.
   1174         TemplateParams = 0;
   1175         const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
   1176           = ParsedTemplateInfo::NonTemplate;
   1177         const_cast<ParsedTemplateInfo&>(TemplateInfo).TemplateLoc
   1178           = SourceLocation();
   1179         const_cast<ParsedTemplateInfo&>(TemplateInfo).ExternLoc
   1180           = SourceLocation();
   1181       }
   1182     }
   1183   } else if (Tok.is(tok::annot_template_id)) {
   1184     TemplateId = takeTemplateIdAnnotation(Tok);
   1185     NameLoc = ConsumeToken();
   1186 
   1187     if (TemplateId->Kind != TNK_Type_template &&
   1188         TemplateId->Kind != TNK_Dependent_template_name) {
   1189       // The template-name in the simple-template-id refers to
   1190       // something other than a class template. Give an appropriate
   1191       // error message and skip to the ';'.
   1192       SourceRange Range(NameLoc);
   1193       if (SS.isNotEmpty())
   1194         Range.setBegin(SS.getBeginLoc());
   1195 
   1196       Diag(TemplateId->LAngleLoc, diag::err_template_spec_syntax_non_template)
   1197         << Name << static_cast<int>(TemplateId->Kind) << Range;
   1198 
   1199       DS.SetTypeSpecError();
   1200       SkipUntil(tok::semi, false, true);
   1201       return;
   1202     }
   1203   }
   1204 
   1205   // There are four options here.
   1206   //  - If we are in a trailing return type, this is always just a reference,
   1207   //    and we must not try to parse a definition. For instance,
   1208   //      [] () -> struct S { };
   1209   //    does not define a type.
   1210   //  - If we have 'struct foo {...', 'struct foo :...',
   1211   //    'struct foo final :' or 'struct foo final {', then this is a definition.
   1212   //  - If we have 'struct foo;', then this is either a forward declaration
   1213   //    or a friend declaration, which have to be treated differently.
   1214   //  - Otherwise we have something like 'struct foo xyz', a reference.
   1215   // However, in type-specifier-seq's, things look like declarations but are
   1216   // just references, e.g.
   1217   //   new struct s;
   1218   // or
   1219   //   &T::operator struct s;
   1220   // For these, DSC is DSC_type_specifier.
   1221   Sema::TagUseKind TUK;
   1222   if (DSC == DSC_trailing)
   1223     TUK = Sema::TUK_Reference;
   1224   else if (Tok.is(tok::l_brace) ||
   1225            (getLangOpts().CPlusPlus && Tok.is(tok::colon)) ||
   1226            (isCXX0XFinalKeyword() &&
   1227             (NextToken().is(tok::l_brace) || NextToken().is(tok::colon)))) {
   1228     if (DS.isFriendSpecified()) {
   1229       // C++ [class.friend]p2:
   1230       //   A class shall not be defined in a friend declaration.
   1231       Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
   1232         << SourceRange(DS.getFriendSpecLoc());
   1233 
   1234       // Skip everything up to the semicolon, so that this looks like a proper
   1235       // friend class (or template thereof) declaration.
   1236       SkipUntil(tok::semi, true, true);
   1237       TUK = Sema::TUK_Friend;
   1238     } else {
   1239       // Okay, this is a class definition.
   1240       TUK = Sema::TUK_Definition;
   1241     }
   1242   } else if (DSC != DSC_type_specifier &&
   1243              (Tok.is(tok::semi) ||
   1244               (Tok.isAtStartOfLine() && !isValidAfterTypeSpecifier(false)))) {
   1245     TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
   1246     if (Tok.isNot(tok::semi)) {
   1247       // A semicolon was missing after this declaration. Diagnose and recover.
   1248       ExpectAndConsume(tok::semi, diag::err_expected_semi_after_tagdecl,
   1249         DeclSpec::getSpecifierName(TagType));
   1250       PP.EnterToken(Tok);
   1251       Tok.setKind(tok::semi);
   1252     }
   1253   } else
   1254     TUK = Sema::TUK_Reference;
   1255 
   1256   // If this is an elaborated type specifier, and we delayed
   1257   // diagnostics before, just merge them into the current pool.
   1258   if (shouldDelayDiagsInTag) {
   1259     diagsFromTag.done();
   1260     if (TUK == Sema::TUK_Reference)
   1261       diagsFromTag.redelay();
   1262   }
   1263 
   1264   if (!Name && !TemplateId && (DS.getTypeSpecType() == DeclSpec::TST_error ||
   1265                                TUK != Sema::TUK_Definition)) {
   1266     if (DS.getTypeSpecType() != DeclSpec::TST_error) {
   1267       // We have a declaration or reference to an anonymous class.
   1268       Diag(StartLoc, diag::err_anon_type_definition)
   1269         << DeclSpec::getSpecifierName(TagType);
   1270     }
   1271 
   1272     SkipUntil(tok::comma, true);
   1273     return;
   1274   }
   1275 
   1276   // Create the tag portion of the class or class template.
   1277   DeclResult TagOrTempResult = true; // invalid
   1278   TypeResult TypeResult = true; // invalid
   1279 
   1280   bool Owned = false;
   1281   if (TemplateId) {
   1282     // Explicit specialization, class template partial specialization,
   1283     // or explicit instantiation.
   1284     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   1285                                        TemplateId->NumArgs);
   1286     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
   1287         TUK == Sema::TUK_Declaration) {
   1288       // This is an explicit instantiation of a class template.
   1289       ProhibitAttributes(attrs);
   1290 
   1291       TagOrTempResult
   1292         = Actions.ActOnExplicitInstantiation(getCurScope(),
   1293                                              TemplateInfo.ExternLoc,
   1294                                              TemplateInfo.TemplateLoc,
   1295                                              TagType,
   1296                                              StartLoc,
   1297                                              SS,
   1298                                              TemplateId->Template,
   1299                                              TemplateId->TemplateNameLoc,
   1300                                              TemplateId->LAngleLoc,
   1301                                              TemplateArgsPtr,
   1302                                              TemplateId->RAngleLoc,
   1303                                              attrs.getList());
   1304 
   1305     // Friend template-ids are treated as references unless
   1306     // they have template headers, in which case they're ill-formed
   1307     // (FIXME: "template <class T> friend class A<T>::B<int>;").
   1308     // We diagnose this error in ActOnClassTemplateSpecialization.
   1309     } else if (TUK == Sema::TUK_Reference ||
   1310                (TUK == Sema::TUK_Friend &&
   1311                 TemplateInfo.Kind == ParsedTemplateInfo::NonTemplate)) {
   1312       ProhibitAttributes(attrs);
   1313       TypeResult = Actions.ActOnTagTemplateIdType(TUK, TagType, StartLoc,
   1314                                                   TemplateId->SS,
   1315                                                   TemplateId->TemplateKWLoc,
   1316                                                   TemplateId->Template,
   1317                                                   TemplateId->TemplateNameLoc,
   1318                                                   TemplateId->LAngleLoc,
   1319                                                   TemplateArgsPtr,
   1320                                                   TemplateId->RAngleLoc);
   1321     } else {
   1322       // This is an explicit specialization or a class template
   1323       // partial specialization.
   1324       TemplateParameterLists FakedParamLists;
   1325 
   1326       if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
   1327         // This looks like an explicit instantiation, because we have
   1328         // something like
   1329         //
   1330         //   template class Foo<X>
   1331         //
   1332         // but it actually has a definition. Most likely, this was
   1333         // meant to be an explicit specialization, but the user forgot
   1334         // the '<>' after 'template'.
   1335         assert(TUK == Sema::TUK_Definition && "Expected a definition here");
   1336 
   1337         SourceLocation LAngleLoc
   1338           = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
   1339         Diag(TemplateId->TemplateNameLoc,
   1340              diag::err_explicit_instantiation_with_definition)
   1341           << SourceRange(TemplateInfo.TemplateLoc)
   1342           << FixItHint::CreateInsertion(LAngleLoc, "<>");
   1343 
   1344         // Create a fake template parameter list that contains only
   1345         // "template<>", so that we treat this construct as a class
   1346         // template specialization.
   1347         FakedParamLists.push_back(
   1348           Actions.ActOnTemplateParameterList(0, SourceLocation(),
   1349                                              TemplateInfo.TemplateLoc,
   1350                                              LAngleLoc,
   1351                                              0, 0,
   1352                                              LAngleLoc));
   1353         TemplateParams = &FakedParamLists;
   1354       }
   1355 
   1356       // Build the class template specialization.
   1357       TagOrTempResult
   1358         = Actions.ActOnClassTemplateSpecialization(getCurScope(), TagType, TUK,
   1359                        StartLoc, DS.getModulePrivateSpecLoc(), SS,
   1360                        TemplateId->Template,
   1361                        TemplateId->TemplateNameLoc,
   1362                        TemplateId->LAngleLoc,
   1363                        TemplateArgsPtr,
   1364                        TemplateId->RAngleLoc,
   1365                        attrs.getList(),
   1366                        MultiTemplateParamsArg(
   1367                                     TemplateParams? &(*TemplateParams)[0] : 0,
   1368                                  TemplateParams? TemplateParams->size() : 0));
   1369     }
   1370   } else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
   1371              TUK == Sema::TUK_Declaration) {
   1372     // Explicit instantiation of a member of a class template
   1373     // specialization, e.g.,
   1374     //
   1375     //   template struct Outer<int>::Inner;
   1376     //
   1377     ProhibitAttributes(attrs);
   1378 
   1379     TagOrTempResult
   1380       = Actions.ActOnExplicitInstantiation(getCurScope(),
   1381                                            TemplateInfo.ExternLoc,
   1382                                            TemplateInfo.TemplateLoc,
   1383                                            TagType, StartLoc, SS, Name,
   1384                                            NameLoc, attrs.getList());
   1385   } else if (TUK == Sema::TUK_Friend &&
   1386              TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) {
   1387     ProhibitAttributes(attrs);
   1388 
   1389     TagOrTempResult =
   1390       Actions.ActOnTemplatedFriendTag(getCurScope(), DS.getFriendSpecLoc(),
   1391                                       TagType, StartLoc, SS,
   1392                                       Name, NameLoc, attrs.getList(),
   1393                                       MultiTemplateParamsArg(
   1394                                     TemplateParams? &(*TemplateParams)[0] : 0,
   1395                                  TemplateParams? TemplateParams->size() : 0));
   1396   } else {
   1397     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
   1398         TUK == Sema::TUK_Definition) {
   1399       // FIXME: Diagnose this particular error.
   1400     }
   1401 
   1402     if (TUK != Sema::TUK_Declaration && TUK != Sema::TUK_Definition)
   1403       ProhibitAttributes(attrs);
   1404 
   1405     bool IsDependent = false;
   1406 
   1407     // Don't pass down template parameter lists if this is just a tag
   1408     // reference.  For example, we don't need the template parameters here:
   1409     //   template <class T> class A *makeA(T t);
   1410     MultiTemplateParamsArg TParams;
   1411     if (TUK != Sema::TUK_Reference && TemplateParams)
   1412       TParams =
   1413         MultiTemplateParamsArg(&(*TemplateParams)[0], TemplateParams->size());
   1414 
   1415     // Declaration or definition of a class type
   1416     TagOrTempResult = Actions.ActOnTag(getCurScope(), TagType, TUK, StartLoc,
   1417                                        SS, Name, NameLoc, attrs.getList(), AS,
   1418                                        DS.getModulePrivateSpecLoc(),
   1419                                        TParams, Owned, IsDependent,
   1420                                        SourceLocation(), false,
   1421                                        clang::TypeResult());
   1422 
   1423     // If ActOnTag said the type was dependent, try again with the
   1424     // less common call.
   1425     if (IsDependent) {
   1426       assert(TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend);
   1427       TypeResult = Actions.ActOnDependentTag(getCurScope(), TagType, TUK,
   1428                                              SS, Name, StartLoc, NameLoc);
   1429     }
   1430   }
   1431 
   1432   // If there is a body, parse it and inform the actions module.
   1433   if (TUK == Sema::TUK_Definition) {
   1434     assert(Tok.is(tok::l_brace) ||
   1435            (getLangOpts().CPlusPlus && Tok.is(tok::colon)) ||
   1436            isCXX0XFinalKeyword());
   1437     if (getLangOpts().CPlusPlus)
   1438       ParseCXXMemberSpecification(StartLoc, TagType, TagOrTempResult.get());
   1439     else
   1440       ParseStructUnionBody(StartLoc, TagType, TagOrTempResult.get());
   1441   }
   1442 
   1443   const char *PrevSpec = 0;
   1444   unsigned DiagID;
   1445   bool Result;
   1446   if (!TypeResult.isInvalid()) {
   1447     Result = DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
   1448                                 NameLoc.isValid() ? NameLoc : StartLoc,
   1449                                 PrevSpec, DiagID, TypeResult.get());
   1450   } else if (!TagOrTempResult.isInvalid()) {
   1451     Result = DS.SetTypeSpecType(TagType, StartLoc,
   1452                                 NameLoc.isValid() ? NameLoc : StartLoc,
   1453                                 PrevSpec, DiagID, TagOrTempResult.get(), Owned);
   1454   } else {
   1455     DS.SetTypeSpecError();
   1456     return;
   1457   }
   1458 
   1459   if (Result)
   1460     Diag(StartLoc, DiagID) << PrevSpec;
   1461 
   1462   // At this point, we've successfully parsed a class-specifier in 'definition'
   1463   // form (e.g. "struct foo { int x; }".  While we could just return here, we're
   1464   // going to look at what comes after it to improve error recovery.  If an
   1465   // impossible token occurs next, we assume that the programmer forgot a ; at
   1466   // the end of the declaration and recover that way.
   1467   //
   1468   // Also enforce C++ [temp]p3:
   1469   //   In a template-declaration which defines a class, no declarator
   1470   //   is permitted.
   1471   if (TUK == Sema::TUK_Definition &&
   1472       (TemplateInfo.Kind || !isValidAfterTypeSpecifier(false))) {
   1473     ExpectAndConsume(tok::semi, diag::err_expected_semi_after_tagdecl,
   1474       DeclSpec::getSpecifierName(TagType));
   1475     // Push this token back into the preprocessor and change our current token
   1476     // to ';' so that the rest of the code recovers as though there were an
   1477     // ';' after the definition.
   1478     PP.EnterToken(Tok);
   1479     Tok.setKind(tok::semi);
   1480   }
   1481 }
   1482 
   1483 /// ParseBaseClause - Parse the base-clause of a C++ class [C++ class.derived].
   1484 ///
   1485 ///       base-clause : [C++ class.derived]
   1486 ///         ':' base-specifier-list
   1487 ///       base-specifier-list:
   1488 ///         base-specifier '...'[opt]
   1489 ///         base-specifier-list ',' base-specifier '...'[opt]
   1490 void Parser::ParseBaseClause(Decl *ClassDecl) {
   1491   assert(Tok.is(tok::colon) && "Not a base clause");
   1492   ConsumeToken();
   1493 
   1494   // Build up an array of parsed base specifiers.
   1495   SmallVector<CXXBaseSpecifier *, 8> BaseInfo;
   1496 
   1497   while (true) {
   1498     // Parse a base-specifier.
   1499     BaseResult Result = ParseBaseSpecifier(ClassDecl);
   1500     if (Result.isInvalid()) {
   1501       // Skip the rest of this base specifier, up until the comma or
   1502       // opening brace.
   1503       SkipUntil(tok::comma, tok::l_brace, true, true);
   1504     } else {
   1505       // Add this to our array of base specifiers.
   1506       BaseInfo.push_back(Result.get());
   1507     }
   1508 
   1509     // If the next token is a comma, consume it and keep reading
   1510     // base-specifiers.
   1511     if (Tok.isNot(tok::comma)) break;
   1512 
   1513     // Consume the comma.
   1514     ConsumeToken();
   1515   }
   1516 
   1517   // Attach the base specifiers
   1518   Actions.ActOnBaseSpecifiers(ClassDecl, BaseInfo.data(), BaseInfo.size());
   1519 }
   1520 
   1521 /// ParseBaseSpecifier - Parse a C++ base-specifier. A base-specifier is
   1522 /// one entry in the base class list of a class specifier, for example:
   1523 ///    class foo : public bar, virtual private baz {
   1524 /// 'public bar' and 'virtual private baz' are each base-specifiers.
   1525 ///
   1526 ///       base-specifier: [C++ class.derived]
   1527 ///         ::[opt] nested-name-specifier[opt] class-name
   1528 ///         'virtual' access-specifier[opt] ::[opt] nested-name-specifier[opt]
   1529 ///                        base-type-specifier
   1530 ///         access-specifier 'virtual'[opt] ::[opt] nested-name-specifier[opt]
   1531 ///                        base-type-specifier
   1532 Parser::BaseResult Parser::ParseBaseSpecifier(Decl *ClassDecl) {
   1533   bool IsVirtual = false;
   1534   SourceLocation StartLoc = Tok.getLocation();
   1535 
   1536   // Parse the 'virtual' keyword.
   1537   if (Tok.is(tok::kw_virtual))  {
   1538     ConsumeToken();
   1539     IsVirtual = true;
   1540   }
   1541 
   1542   // Parse an (optional) access specifier.
   1543   AccessSpecifier Access = getAccessSpecifierIfPresent();
   1544   if (Access != AS_none)
   1545     ConsumeToken();
   1546 
   1547   // Parse the 'virtual' keyword (again!), in case it came after the
   1548   // access specifier.
   1549   if (Tok.is(tok::kw_virtual))  {
   1550     SourceLocation VirtualLoc = ConsumeToken();
   1551     if (IsVirtual) {
   1552       // Complain about duplicate 'virtual'
   1553       Diag(VirtualLoc, diag::err_dup_virtual)
   1554         << FixItHint::CreateRemoval(VirtualLoc);
   1555     }
   1556 
   1557     IsVirtual = true;
   1558   }
   1559 
   1560   // Parse the class-name.
   1561   SourceLocation EndLocation;
   1562   SourceLocation BaseLoc;
   1563   TypeResult BaseType = ParseBaseTypeSpecifier(BaseLoc, EndLocation);
   1564   if (BaseType.isInvalid())
   1565     return true;
   1566 
   1567   // Parse the optional ellipsis (for a pack expansion). The ellipsis is
   1568   // actually part of the base-specifier-list grammar productions, but we
   1569   // parse it here for convenience.
   1570   SourceLocation EllipsisLoc;
   1571   if (Tok.is(tok::ellipsis))
   1572     EllipsisLoc = ConsumeToken();
   1573 
   1574   // Find the complete source range for the base-specifier.
   1575   SourceRange Range(StartLoc, EndLocation);
   1576 
   1577   // Notify semantic analysis that we have parsed a complete
   1578   // base-specifier.
   1579   return Actions.ActOnBaseSpecifier(ClassDecl, Range, IsVirtual, Access,
   1580                                     BaseType.get(), BaseLoc, EllipsisLoc);
   1581 }
   1582 
   1583 /// getAccessSpecifierIfPresent - Determine whether the next token is
   1584 /// a C++ access-specifier.
   1585 ///
   1586 ///       access-specifier: [C++ class.derived]
   1587 ///         'private'
   1588 ///         'protected'
   1589 ///         'public'
   1590 AccessSpecifier Parser::getAccessSpecifierIfPresent() const {
   1591   switch (Tok.getKind()) {
   1592   default: return AS_none;
   1593   case tok::kw_private: return AS_private;
   1594   case tok::kw_protected: return AS_protected;
   1595   case tok::kw_public: return AS_public;
   1596   }
   1597 }
   1598 
   1599 /// \brief If the given declarator has any parts for which parsing has to be
   1600 /// delayed, e.g., default arguments, create a late-parsed method declaration
   1601 /// record to handle the parsing at the end of the class definition.
   1602 void Parser::HandleMemberFunctionDeclDelays(Declarator& DeclaratorInfo,
   1603                                             Decl *ThisDecl) {
   1604   // We just declared a member function. If this member function
   1605   // has any default arguments, we'll need to parse them later.
   1606   LateParsedMethodDeclaration *LateMethod = 0;
   1607   DeclaratorChunk::FunctionTypeInfo &FTI
   1608     = DeclaratorInfo.getFunctionTypeInfo();
   1609 
   1610   for (unsigned ParamIdx = 0; ParamIdx < FTI.NumArgs; ++ParamIdx) {
   1611     if (LateMethod || FTI.ArgInfo[ParamIdx].DefaultArgTokens) {
   1612       if (!LateMethod) {
   1613         // Push this method onto the stack of late-parsed method
   1614         // declarations.
   1615         LateMethod = new LateParsedMethodDeclaration(this, ThisDecl);
   1616         getCurrentClass().LateParsedDeclarations.push_back(LateMethod);
   1617         LateMethod->TemplateScope = getCurScope()->isTemplateParamScope();
   1618 
   1619         // Add all of the parameters prior to this one (they don't
   1620         // have default arguments).
   1621         LateMethod->DefaultArgs.reserve(FTI.NumArgs);
   1622         for (unsigned I = 0; I < ParamIdx; ++I)
   1623           LateMethod->DefaultArgs.push_back(
   1624                              LateParsedDefaultArgument(FTI.ArgInfo[I].Param));
   1625       }
   1626 
   1627       // Add this parameter to the list of parameters (it may or may
   1628       // not have a default argument).
   1629       LateMethod->DefaultArgs.push_back(
   1630         LateParsedDefaultArgument(FTI.ArgInfo[ParamIdx].Param,
   1631                                   FTI.ArgInfo[ParamIdx].DefaultArgTokens));
   1632     }
   1633   }
   1634 }
   1635 
   1636 /// isCXX0XVirtSpecifier - Determine whether the given token is a C++0x
   1637 /// virt-specifier.
   1638 ///
   1639 ///       virt-specifier:
   1640 ///         override
   1641 ///         final
   1642 VirtSpecifiers::Specifier Parser::isCXX0XVirtSpecifier(const Token &Tok) const {
   1643   if (!getLangOpts().CPlusPlus)
   1644     return VirtSpecifiers::VS_None;
   1645 
   1646   if (Tok.is(tok::identifier)) {
   1647     IdentifierInfo *II = Tok.getIdentifierInfo();
   1648 
   1649     // Initialize the contextual keywords.
   1650     if (!Ident_final) {
   1651       Ident_final = &PP.getIdentifierTable().get("final");
   1652       Ident_override = &PP.getIdentifierTable().get("override");
   1653     }
   1654 
   1655     if (II == Ident_override)
   1656       return VirtSpecifiers::VS_Override;
   1657 
   1658     if (II == Ident_final)
   1659       return VirtSpecifiers::VS_Final;
   1660   }
   1661 
   1662   return VirtSpecifiers::VS_None;
   1663 }
   1664 
   1665 /// ParseOptionalCXX0XVirtSpecifierSeq - Parse a virt-specifier-seq.
   1666 ///
   1667 ///       virt-specifier-seq:
   1668 ///         virt-specifier
   1669 ///         virt-specifier-seq virt-specifier
   1670 void Parser::ParseOptionalCXX0XVirtSpecifierSeq(VirtSpecifiers &VS) {
   1671   while (true) {
   1672     VirtSpecifiers::Specifier Specifier = isCXX0XVirtSpecifier();
   1673     if (Specifier == VirtSpecifiers::VS_None)
   1674       return;
   1675 
   1676     // C++ [class.mem]p8:
   1677     //   A virt-specifier-seq shall contain at most one of each virt-specifier.
   1678     const char *PrevSpec = 0;
   1679     if (VS.SetSpecifier(Specifier, Tok.getLocation(), PrevSpec))
   1680       Diag(Tok.getLocation(), diag::err_duplicate_virt_specifier)
   1681         << PrevSpec
   1682         << FixItHint::CreateRemoval(Tok.getLocation());
   1683 
   1684     Diag(Tok.getLocation(), getLangOpts().CPlusPlus0x ?
   1685          diag::warn_cxx98_compat_override_control_keyword :
   1686          diag::ext_override_control_keyword)
   1687       << VirtSpecifiers::getSpecifierName(Specifier);
   1688     ConsumeToken();
   1689   }
   1690 }
   1691 
   1692 /// isCXX0XFinalKeyword - Determine whether the next token is a C++0x
   1693 /// contextual 'final' keyword.
   1694 bool Parser::isCXX0XFinalKeyword() const {
   1695   if (!getLangOpts().CPlusPlus)
   1696     return false;
   1697 
   1698   if (!Tok.is(tok::identifier))
   1699     return false;
   1700 
   1701   // Initialize the contextual keywords.
   1702   if (!Ident_final) {
   1703     Ident_final = &PP.getIdentifierTable().get("final");
   1704     Ident_override = &PP.getIdentifierTable().get("override");
   1705   }
   1706 
   1707   return Tok.getIdentifierInfo() == Ident_final;
   1708 }
   1709 
   1710 /// ParseCXXClassMemberDeclaration - Parse a C++ class member declaration.
   1711 ///
   1712 ///       member-declaration:
   1713 ///         decl-specifier-seq[opt] member-declarator-list[opt] ';'
   1714 ///         function-definition ';'[opt]
   1715 ///         ::[opt] nested-name-specifier template[opt] unqualified-id ';'[TODO]
   1716 ///         using-declaration                                            [TODO]
   1717 /// [C++0x] static_assert-declaration
   1718 ///         template-declaration
   1719 /// [GNU]   '__extension__' member-declaration
   1720 ///
   1721 ///       member-declarator-list:
   1722 ///         member-declarator
   1723 ///         member-declarator-list ',' member-declarator
   1724 ///
   1725 ///       member-declarator:
   1726 ///         declarator virt-specifier-seq[opt] pure-specifier[opt]
   1727 ///         declarator constant-initializer[opt]
   1728 /// [C++11] declarator brace-or-equal-initializer[opt]
   1729 ///         identifier[opt] ':' constant-expression
   1730 ///
   1731 ///       virt-specifier-seq:
   1732 ///         virt-specifier
   1733 ///         virt-specifier-seq virt-specifier
   1734 ///
   1735 ///       virt-specifier:
   1736 ///         override
   1737 ///         final
   1738 ///
   1739 ///       pure-specifier:
   1740 ///         '= 0'
   1741 ///
   1742 ///       constant-initializer:
   1743 ///         '=' constant-expression
   1744 ///
   1745 void Parser::ParseCXXClassMemberDeclaration(AccessSpecifier AS,
   1746                                             AttributeList *AccessAttrs,
   1747                                        const ParsedTemplateInfo &TemplateInfo,
   1748                                        ParsingDeclRAIIObject *TemplateDiags) {
   1749   if (Tok.is(tok::at)) {
   1750     if (getLangOpts().ObjC1 && NextToken().isObjCAtKeyword(tok::objc_defs))
   1751       Diag(Tok, diag::err_at_defs_cxx);
   1752     else
   1753       Diag(Tok, diag::err_at_in_class);
   1754 
   1755     ConsumeToken();
   1756     SkipUntil(tok::r_brace);
   1757     return;
   1758   }
   1759 
   1760   // Access declarations.
   1761   bool MalformedTypeSpec = false;
   1762   if (!TemplateInfo.Kind &&
   1763       (Tok.is(tok::identifier) || Tok.is(tok::coloncolon))) {
   1764     if (TryAnnotateCXXScopeToken())
   1765       MalformedTypeSpec = true;
   1766 
   1767     bool isAccessDecl;
   1768     if (Tok.isNot(tok::annot_cxxscope))
   1769       isAccessDecl = false;
   1770     else if (NextToken().is(tok::identifier))
   1771       isAccessDecl = GetLookAheadToken(2).is(tok::semi);
   1772     else
   1773       isAccessDecl = NextToken().is(tok::kw_operator);
   1774 
   1775     if (isAccessDecl) {
   1776       // Collect the scope specifier token we annotated earlier.
   1777       CXXScopeSpec SS;
   1778       ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
   1779                                      /*EnteringContext=*/false);
   1780 
   1781       // Try to parse an unqualified-id.
   1782       SourceLocation TemplateKWLoc;
   1783       UnqualifiedId Name;
   1784       if (ParseUnqualifiedId(SS, false, true, true, ParsedType(),
   1785                              TemplateKWLoc, Name)) {
   1786         SkipUntil(tok::semi);
   1787         return;
   1788       }
   1789 
   1790       // TODO: recover from mistakenly-qualified operator declarations.
   1791       if (ExpectAndConsume(tok::semi,
   1792                            diag::err_expected_semi_after,
   1793                            "access declaration",
   1794                            tok::semi))
   1795         return;
   1796 
   1797       Actions.ActOnUsingDeclaration(getCurScope(), AS,
   1798                                     false, SourceLocation(),
   1799                                     SS, Name,
   1800                                     /* AttrList */ 0,
   1801                                     /* IsTypeName */ false,
   1802                                     SourceLocation());
   1803       return;
   1804     }
   1805   }
   1806 
   1807   // static_assert-declaration
   1808   if (Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert)) {
   1809     // FIXME: Check for templates
   1810     SourceLocation DeclEnd;
   1811     ParseStaticAssertDeclaration(DeclEnd);
   1812     return;
   1813   }
   1814 
   1815   if (Tok.is(tok::kw_template)) {
   1816     assert(!TemplateInfo.TemplateParams &&
   1817            "Nested template improperly parsed?");
   1818     SourceLocation DeclEnd;
   1819     ParseDeclarationStartingWithTemplate(Declarator::MemberContext, DeclEnd,
   1820                                          AS, AccessAttrs);
   1821     return;
   1822   }
   1823 
   1824   // Handle:  member-declaration ::= '__extension__' member-declaration
   1825   if (Tok.is(tok::kw___extension__)) {
   1826     // __extension__ silences extension warnings in the subexpression.
   1827     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
   1828     ConsumeToken();
   1829     return ParseCXXClassMemberDeclaration(AS, AccessAttrs,
   1830                                           TemplateInfo, TemplateDiags);
   1831   }
   1832 
   1833   // Don't parse FOO:BAR as if it were a typo for FOO::BAR, in this context it
   1834   // is a bitfield.
   1835   ColonProtectionRAIIObject X(*this);
   1836 
   1837   ParsedAttributesWithRange attrs(AttrFactory);
   1838   // Optional C++0x attribute-specifier
   1839   MaybeParseCXX0XAttributes(attrs);
   1840   MaybeParseMicrosoftAttributes(attrs);
   1841 
   1842   if (Tok.is(tok::kw_using)) {
   1843     ProhibitAttributes(attrs);
   1844 
   1845     // Eat 'using'.
   1846     SourceLocation UsingLoc = ConsumeToken();
   1847 
   1848     if (Tok.is(tok::kw_namespace)) {
   1849       Diag(UsingLoc, diag::err_using_namespace_in_class);
   1850       SkipUntil(tok::semi, true, true);
   1851     } else {
   1852       SourceLocation DeclEnd;
   1853       // Otherwise, it must be a using-declaration or an alias-declaration.
   1854       ParseUsingDeclaration(Declarator::MemberContext, TemplateInfo,
   1855                             UsingLoc, DeclEnd, AS);
   1856     }
   1857     return;
   1858   }
   1859 
   1860   // Hold late-parsed attributes so we can attach a Decl to them later.
   1861   LateParsedAttrList CommonLateParsedAttrs;
   1862 
   1863   // decl-specifier-seq:
   1864   // Parse the common declaration-specifiers piece.
   1865   ParsingDeclSpec DS(*this, TemplateDiags);
   1866   DS.takeAttributesFrom(attrs);
   1867   if (MalformedTypeSpec)
   1868     DS.SetTypeSpecError();
   1869   ParseDeclarationSpecifiers(DS, TemplateInfo, AS, DSC_class,
   1870                              &CommonLateParsedAttrs);
   1871 
   1872   MultiTemplateParamsArg TemplateParams(
   1873       TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->data() : 0,
   1874       TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->size() : 0);
   1875 
   1876   if (Tok.is(tok::semi)) {
   1877     ConsumeToken();
   1878     Decl *TheDecl =
   1879       Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS, DS, TemplateParams);
   1880     DS.complete(TheDecl);
   1881     return;
   1882   }
   1883 
   1884   ParsingDeclarator DeclaratorInfo(*this, DS, Declarator::MemberContext);
   1885   VirtSpecifiers VS;
   1886 
   1887   // Hold late-parsed attributes so we can attach a Decl to them later.
   1888   LateParsedAttrList LateParsedAttrs;
   1889 
   1890   SourceLocation EqualLoc;
   1891   bool HasInitializer = false;
   1892   ExprResult Init;
   1893   if (Tok.isNot(tok::colon)) {
   1894     // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
   1895     ColonProtectionRAIIObject X(*this);
   1896 
   1897     // Parse the first declarator.
   1898     ParseDeclarator(DeclaratorInfo);
   1899     // Error parsing the declarator?
   1900     if (!DeclaratorInfo.hasName()) {
   1901       // If so, skip until the semi-colon or a }.
   1902       SkipUntil(tok::r_brace, true, true);
   1903       if (Tok.is(tok::semi))
   1904         ConsumeToken();
   1905       return;
   1906     }
   1907 
   1908     ParseOptionalCXX0XVirtSpecifierSeq(VS);
   1909 
   1910     // If attributes exist after the declarator, but before an '{', parse them.
   1911     MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs);
   1912 
   1913     // MSVC permits pure specifier on inline functions declared at class scope.
   1914     // Hence check for =0 before checking for function definition.
   1915     if (getLangOpts().MicrosoftExt && Tok.is(tok::equal) &&
   1916         DeclaratorInfo.isFunctionDeclarator() &&
   1917         NextToken().is(tok::numeric_constant)) {
   1918       EqualLoc = ConsumeToken();
   1919       Init = ParseInitializer();
   1920       if (Init.isInvalid())
   1921         SkipUntil(tok::comma, true, true);
   1922       else
   1923         HasInitializer = true;
   1924     }
   1925 
   1926     FunctionDefinitionKind DefinitionKind = FDK_Declaration;
   1927     // function-definition:
   1928     //
   1929     // In C++11, a non-function declarator followed by an open brace is a
   1930     // braced-init-list for an in-class member initialization, not an
   1931     // erroneous function definition.
   1932     if (Tok.is(tok::l_brace) && !getLangOpts().CPlusPlus0x) {
   1933       DefinitionKind = FDK_Definition;
   1934     } else if (DeclaratorInfo.isFunctionDeclarator()) {
   1935       if (Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
   1936         DefinitionKind = FDK_Definition;
   1937       } else if (Tok.is(tok::equal)) {
   1938         const Token &KW = NextToken();
   1939         if (KW.is(tok::kw_default))
   1940           DefinitionKind = FDK_Defaulted;
   1941         else if (KW.is(tok::kw_delete))
   1942           DefinitionKind = FDK_Deleted;
   1943       }
   1944     }
   1945 
   1946     if (DefinitionKind) {
   1947       if (!DeclaratorInfo.isFunctionDeclarator()) {
   1948         Diag(DeclaratorInfo.getIdentifierLoc(), diag::err_func_def_no_params);
   1949         ConsumeBrace();
   1950         SkipUntil(tok::r_brace, /*StopAtSemi*/false);
   1951 
   1952         // Consume the optional ';'
   1953         if (Tok.is(tok::semi))
   1954           ConsumeToken();
   1955         return;
   1956       }
   1957 
   1958       if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
   1959         Diag(DeclaratorInfo.getIdentifierLoc(),
   1960              diag::err_function_declared_typedef);
   1961         // This recovery skips the entire function body. It would be nice
   1962         // to simply call ParseCXXInlineMethodDef() below, however Sema
   1963         // assumes the declarator represents a function, not a typedef.
   1964         ConsumeBrace();
   1965         SkipUntil(tok::r_brace, /*StopAtSemi*/false);
   1966 
   1967         // Consume the optional ';'
   1968         if (Tok.is(tok::semi))
   1969           ConsumeToken();
   1970         return;
   1971       }
   1972 
   1973       Decl *FunDecl =
   1974         ParseCXXInlineMethodDef(AS, AccessAttrs, DeclaratorInfo, TemplateInfo,
   1975                                 VS, DefinitionKind, Init);
   1976 
   1977       for (unsigned i = 0, ni = CommonLateParsedAttrs.size(); i < ni; ++i) {
   1978         CommonLateParsedAttrs[i]->addDecl(FunDecl);
   1979       }
   1980       for (unsigned i = 0, ni = LateParsedAttrs.size(); i < ni; ++i) {
   1981         LateParsedAttrs[i]->addDecl(FunDecl);
   1982       }
   1983       LateParsedAttrs.clear();
   1984 
   1985       // Consume the ';' - it's optional unless we have a delete or default
   1986       if (Tok.is(tok::semi))
   1987         ConsumeExtraSemi(AfterMemberFunctionDefinition);
   1988 
   1989       return;
   1990     }
   1991   }
   1992 
   1993   // member-declarator-list:
   1994   //   member-declarator
   1995   //   member-declarator-list ',' member-declarator
   1996 
   1997   SmallVector<Decl *, 8> DeclsInGroup;
   1998   ExprResult BitfieldSize;
   1999   bool ExpectSemi = true;
   2000 
   2001   while (1) {
   2002     // member-declarator:
   2003     //   declarator pure-specifier[opt]
   2004     //   declarator brace-or-equal-initializer[opt]
   2005     //   identifier[opt] ':' constant-expression
   2006     if (Tok.is(tok::colon)) {
   2007       ConsumeToken();
   2008       BitfieldSize = ParseConstantExpression();
   2009       if (BitfieldSize.isInvalid())
   2010         SkipUntil(tok::comma, true, true);
   2011     }
   2012 
   2013     // If a simple-asm-expr is present, parse it.
   2014     if (Tok.is(tok::kw_asm)) {
   2015       SourceLocation Loc;
   2016       ExprResult AsmLabel(ParseSimpleAsm(&Loc));
   2017       if (AsmLabel.isInvalid())
   2018         SkipUntil(tok::comma, true, true);
   2019 
   2020       DeclaratorInfo.setAsmLabel(AsmLabel.release());
   2021       DeclaratorInfo.SetRangeEnd(Loc);
   2022     }
   2023 
   2024     // If attributes exist after the declarator, parse them.
   2025     MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs);
   2026 
   2027     // FIXME: When g++ adds support for this, we'll need to check whether it
   2028     // goes before or after the GNU attributes and __asm__.
   2029     ParseOptionalCXX0XVirtSpecifierSeq(VS);
   2030 
   2031     InClassInitStyle HasInClassInit = ICIS_NoInit;
   2032     if ((Tok.is(tok::equal) || Tok.is(tok::l_brace)) && !HasInitializer) {
   2033       if (BitfieldSize.get()) {
   2034         Diag(Tok, diag::err_bitfield_member_init);
   2035         SkipUntil(tok::comma, true, true);
   2036       } else {
   2037         HasInitializer = true;
   2038         if (!DeclaratorInfo.isDeclarationOfFunction() &&
   2039             DeclaratorInfo.getDeclSpec().getStorageClassSpec()
   2040               != DeclSpec::SCS_static &&
   2041             DeclaratorInfo.getDeclSpec().getStorageClassSpec()
   2042               != DeclSpec::SCS_typedef)
   2043           HasInClassInit = Tok.is(tok::equal) ? ICIS_CopyInit : ICIS_ListInit;
   2044       }
   2045     }
   2046 
   2047     // NOTE: If Sema is the Action module and declarator is an instance field,
   2048     // this call will *not* return the created decl; It will return null.
   2049     // See Sema::ActOnCXXMemberDeclarator for details.
   2050 
   2051     Decl *ThisDecl = 0;
   2052     if (DS.isFriendSpecified()) {
   2053       // TODO: handle initializers, bitfields, 'delete'
   2054       ThisDecl = Actions.ActOnFriendFunctionDecl(getCurScope(), DeclaratorInfo,
   2055                                                  TemplateParams);
   2056     } else {
   2057       ThisDecl = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS,
   2058                                                   DeclaratorInfo,
   2059                                                   TemplateParams,
   2060                                                   BitfieldSize.release(),
   2061                                                   VS, HasInClassInit);
   2062       if (AccessAttrs)
   2063         Actions.ProcessDeclAttributeList(getCurScope(), ThisDecl, AccessAttrs,
   2064                                          false, true);
   2065     }
   2066 
   2067     // Set the Decl for any late parsed attributes
   2068     for (unsigned i = 0, ni = CommonLateParsedAttrs.size(); i < ni; ++i) {
   2069       CommonLateParsedAttrs[i]->addDecl(ThisDecl);
   2070     }
   2071     for (unsigned i = 0, ni = LateParsedAttrs.size(); i < ni; ++i) {
   2072       LateParsedAttrs[i]->addDecl(ThisDecl);
   2073     }
   2074     LateParsedAttrs.clear();
   2075 
   2076     // Handle the initializer.
   2077     if (HasInClassInit != ICIS_NoInit) {
   2078       // The initializer was deferred; parse it and cache the tokens.
   2079       Diag(Tok, getLangOpts().CPlusPlus0x ?
   2080            diag::warn_cxx98_compat_nonstatic_member_init :
   2081            diag::ext_nonstatic_member_init);
   2082 
   2083       if (DeclaratorInfo.isArrayOfUnknownBound()) {
   2084         // C++11 [dcl.array]p3: An array bound may also be omitted when the
   2085         // declarator is followed by an initializer.
   2086         //
   2087         // A brace-or-equal-initializer for a member-declarator is not an
   2088         // initializer in the grammar, so this is ill-formed.
   2089         Diag(Tok, diag::err_incomplete_array_member_init);
   2090         SkipUntil(tok::comma, true, true);
   2091         if (ThisDecl)
   2092           // Avoid later warnings about a class member of incomplete type.
   2093           ThisDecl->setInvalidDecl();
   2094       } else
   2095         ParseCXXNonStaticMemberInitializer(ThisDecl);
   2096     } else if (HasInitializer) {
   2097       // Normal initializer.
   2098       if (!Init.isUsable())
   2099         Init = ParseCXXMemberInitializer(ThisDecl,
   2100                  DeclaratorInfo.isDeclarationOfFunction(), EqualLoc);
   2101 
   2102       if (Init.isInvalid())
   2103         SkipUntil(tok::comma, true, true);
   2104       else if (ThisDecl)
   2105         Actions.AddInitializerToDecl(ThisDecl, Init.get(), EqualLoc.isInvalid(),
   2106                                    DS.getTypeSpecType() == DeclSpec::TST_auto);
   2107     } else if (ThisDecl && DS.getStorageClassSpec() == DeclSpec::SCS_static) {
   2108       // No initializer.
   2109       Actions.ActOnUninitializedDecl(ThisDecl,
   2110                                    DS.getTypeSpecType() == DeclSpec::TST_auto);
   2111     }
   2112 
   2113     if (ThisDecl) {
   2114       Actions.FinalizeDeclaration(ThisDecl);
   2115       DeclsInGroup.push_back(ThisDecl);
   2116     }
   2117 
   2118     if (ThisDecl && DeclaratorInfo.isFunctionDeclarator() &&
   2119         DeclaratorInfo.getDeclSpec().getStorageClassSpec()
   2120           != DeclSpec::SCS_typedef) {
   2121       HandleMemberFunctionDeclDelays(DeclaratorInfo, ThisDecl);
   2122     }
   2123 
   2124     DeclaratorInfo.complete(ThisDecl);
   2125 
   2126     // If we don't have a comma, it is either the end of the list (a ';')
   2127     // or an error, bail out.
   2128     if (Tok.isNot(tok::comma))
   2129       break;
   2130 
   2131     // Consume the comma.
   2132     SourceLocation CommaLoc = ConsumeToken();
   2133 
   2134     if (Tok.isAtStartOfLine() &&
   2135         !MightBeDeclarator(Declarator::MemberContext)) {
   2136       // This comma was followed by a line-break and something which can't be
   2137       // the start of a declarator. The comma was probably a typo for a
   2138       // semicolon.
   2139       Diag(CommaLoc, diag::err_expected_semi_declaration)
   2140         << FixItHint::CreateReplacement(CommaLoc, ";");
   2141       ExpectSemi = false;
   2142       break;
   2143     }
   2144 
   2145     // Parse the next declarator.
   2146     DeclaratorInfo.clear();
   2147     VS.clear();
   2148     BitfieldSize = true;
   2149     Init = true;
   2150     HasInitializer = false;
   2151     DeclaratorInfo.setCommaLoc(CommaLoc);
   2152 
   2153     // Attributes are only allowed on the second declarator.
   2154     MaybeParseGNUAttributes(DeclaratorInfo);
   2155 
   2156     if (Tok.isNot(tok::colon))
   2157       ParseDeclarator(DeclaratorInfo);
   2158   }
   2159 
   2160   if (ExpectSemi &&
   2161       ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list)) {
   2162     // Skip to end of block or statement.
   2163     SkipUntil(tok::r_brace, true, true);
   2164     // If we stopped at a ';', eat it.
   2165     if (Tok.is(tok::semi)) ConsumeToken();
   2166     return;
   2167   }
   2168 
   2169   Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup.data(),
   2170                                   DeclsInGroup.size());
   2171 }
   2172 
   2173 /// ParseCXXMemberInitializer - Parse the brace-or-equal-initializer or
   2174 /// pure-specifier. Also detect and reject any attempted defaulted/deleted
   2175 /// function definition. The location of the '=', if any, will be placed in
   2176 /// EqualLoc.
   2177 ///
   2178 ///   pure-specifier:
   2179 ///     '= 0'
   2180 ///
   2181 ///   brace-or-equal-initializer:
   2182 ///     '=' initializer-expression
   2183 ///     braced-init-list
   2184 ///
   2185 ///   initializer-clause:
   2186 ///     assignment-expression
   2187 ///     braced-init-list
   2188 ///
   2189 ///   defaulted/deleted function-definition:
   2190 ///     '=' 'default'
   2191 ///     '=' 'delete'
   2192 ///
   2193 /// Prior to C++0x, the assignment-expression in an initializer-clause must
   2194 /// be a constant-expression.
   2195 ExprResult Parser::ParseCXXMemberInitializer(Decl *D, bool IsFunction,
   2196                                              SourceLocation &EqualLoc) {
   2197   assert((Tok.is(tok::equal) || Tok.is(tok::l_brace))
   2198          && "Data member initializer not starting with '=' or '{'");
   2199 
   2200   EnterExpressionEvaluationContext Context(Actions,
   2201                                            Sema::PotentiallyEvaluated,
   2202                                            D);
   2203   if (Tok.is(tok::equal)) {
   2204     EqualLoc = ConsumeToken();
   2205     if (Tok.is(tok::kw_delete)) {
   2206       // In principle, an initializer of '= delete p;' is legal, but it will
   2207       // never type-check. It's better to diagnose it as an ill-formed expression
   2208       // than as an ill-formed deleted non-function member.
   2209       // An initializer of '= delete p, foo' will never be parsed, because
   2210       // a top-level comma always ends the initializer expression.
   2211       const Token &Next = NextToken();
   2212       if (IsFunction || Next.is(tok::semi) || Next.is(tok::comma) ||
   2213            Next.is(tok::eof)) {
   2214         if (IsFunction)
   2215           Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
   2216             << 1 /* delete */;
   2217         else
   2218           Diag(ConsumeToken(), diag::err_deleted_non_function);
   2219         return ExprResult();
   2220       }
   2221     } else if (Tok.is(tok::kw_default)) {
   2222       if (IsFunction)
   2223         Diag(Tok, diag::err_default_delete_in_multiple_declaration)
   2224           << 0 /* default */;
   2225       else
   2226         Diag(ConsumeToken(), diag::err_default_special_members);
   2227       return ExprResult();
   2228     }
   2229 
   2230   }
   2231   return ParseInitializer();
   2232 }
   2233 
   2234 /// ParseCXXMemberSpecification - Parse the class definition.
   2235 ///
   2236 ///       member-specification:
   2237 ///         member-declaration member-specification[opt]
   2238 ///         access-specifier ':' member-specification[opt]
   2239 ///
   2240 void Parser::ParseCXXMemberSpecification(SourceLocation RecordLoc,
   2241                                          unsigned TagType, Decl *TagDecl) {
   2242   assert((TagType == DeclSpec::TST_struct ||
   2243          TagType == DeclSpec::TST_interface ||
   2244          TagType == DeclSpec::TST_union  ||
   2245          TagType == DeclSpec::TST_class) && "Invalid TagType!");
   2246 
   2247   PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
   2248                                       "parsing struct/union/class body");
   2249 
   2250   // Determine whether this is a non-nested class. Note that local
   2251   // classes are *not* considered to be nested classes.
   2252   bool NonNestedClass = true;
   2253   if (!ClassStack.empty()) {
   2254     for (const Scope *S = getCurScope(); S; S = S->getParent()) {
   2255       if (S->isClassScope()) {
   2256         // We're inside a class scope, so this is a nested class.
   2257         NonNestedClass = false;
   2258         break;
   2259       }
   2260 
   2261       if ((S->getFlags() & Scope::FnScope)) {
   2262         // If we're in a function or function template declared in the
   2263         // body of a class, then this is a local class rather than a
   2264         // nested class.
   2265         const Scope *Parent = S->getParent();
   2266         if (Parent->isTemplateParamScope())
   2267           Parent = Parent->getParent();
   2268         if (Parent->isClassScope())
   2269           break;
   2270       }
   2271     }
   2272   }
   2273 
   2274   // Enter a scope for the class.
   2275   ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope);
   2276 
   2277   // Note that we are parsing a new (potentially-nested) class definition.
   2278   ParsingClassDefinition ParsingDef(*this, TagDecl, NonNestedClass);
   2279 
   2280   if (TagDecl)
   2281     Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
   2282 
   2283   SourceLocation FinalLoc;
   2284 
   2285   // Parse the optional 'final' keyword.
   2286   if (getLangOpts().CPlusPlus && Tok.is(tok::identifier)) {
   2287     assert(isCXX0XFinalKeyword() && "not a class definition");
   2288     FinalLoc = ConsumeToken();
   2289 
   2290     Diag(FinalLoc, getLangOpts().CPlusPlus0x ?
   2291          diag::warn_cxx98_compat_override_control_keyword :
   2292          diag::ext_override_control_keyword) << "final";
   2293   }
   2294 
   2295   if (Tok.is(tok::colon)) {
   2296     ParseBaseClause(TagDecl);
   2297 
   2298     if (!Tok.is(tok::l_brace)) {
   2299       Diag(Tok, diag::err_expected_lbrace_after_base_specifiers);
   2300 
   2301       if (TagDecl)
   2302         Actions.ActOnTagDefinitionError(getCurScope(), TagDecl);
   2303       return;
   2304     }
   2305   }
   2306 
   2307   assert(Tok.is(tok::l_brace));
   2308   BalancedDelimiterTracker T(*this, tok::l_brace);
   2309   T.consumeOpen();
   2310 
   2311   if (TagDecl)
   2312     Actions.ActOnStartCXXMemberDeclarations(getCurScope(), TagDecl, FinalLoc,
   2313                                             T.getOpenLocation());
   2314 
   2315   // C++ 11p3: Members of a class defined with the keyword class are private
   2316   // by default. Members of a class defined with the keywords struct or union
   2317   // are public by default.
   2318   AccessSpecifier CurAS;
   2319   if (TagType == DeclSpec::TST_class)
   2320     CurAS = AS_private;
   2321   else
   2322     CurAS = AS_public;
   2323   ParsedAttributes AccessAttrs(AttrFactory);
   2324 
   2325   if (TagDecl) {
   2326     // While we still have something to read, read the member-declarations.
   2327     while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
   2328       // Each iteration of this loop reads one member-declaration.
   2329 
   2330       if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) ||
   2331           Tok.is(tok::kw___if_not_exists))) {
   2332         ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS);
   2333         continue;
   2334       }
   2335 
   2336       // Check for extraneous top-level semicolon.
   2337       if (Tok.is(tok::semi)) {
   2338         ConsumeExtraSemi(InsideStruct, TagType);
   2339         continue;
   2340       }
   2341 
   2342       if (Tok.is(tok::annot_pragma_vis)) {
   2343         HandlePragmaVisibility();
   2344         continue;
   2345       }
   2346 
   2347       if (Tok.is(tok::annot_pragma_pack)) {
   2348         HandlePragmaPack();
   2349         continue;
   2350       }
   2351 
   2352       AccessSpecifier AS = getAccessSpecifierIfPresent();
   2353       if (AS != AS_none) {
   2354         // Current token is a C++ access specifier.
   2355         CurAS = AS;
   2356         SourceLocation ASLoc = Tok.getLocation();
   2357         unsigned TokLength = Tok.getLength();
   2358         ConsumeToken();
   2359         AccessAttrs.clear();
   2360         MaybeParseGNUAttributes(AccessAttrs);
   2361 
   2362         SourceLocation EndLoc;
   2363         if (Tok.is(tok::colon)) {
   2364           EndLoc = Tok.getLocation();
   2365           ConsumeToken();
   2366         } else if (Tok.is(tok::semi)) {
   2367           EndLoc = Tok.getLocation();
   2368           ConsumeToken();
   2369           Diag(EndLoc, diag::err_expected_colon)
   2370             << FixItHint::CreateReplacement(EndLoc, ":");
   2371         } else {
   2372           EndLoc = ASLoc.getLocWithOffset(TokLength);
   2373           Diag(EndLoc, diag::err_expected_colon)
   2374             << FixItHint::CreateInsertion(EndLoc, ":");
   2375         }
   2376 
   2377         if (Actions.ActOnAccessSpecifier(AS, ASLoc, EndLoc,
   2378                                          AccessAttrs.getList())) {
   2379           // found another attribute than only annotations
   2380           AccessAttrs.clear();
   2381         }
   2382 
   2383         continue;
   2384       }
   2385 
   2386       // FIXME: Make sure we don't have a template here.
   2387 
   2388       // Parse all the comma separated declarators.
   2389       ParseCXXClassMemberDeclaration(CurAS, AccessAttrs.getList());
   2390     }
   2391 
   2392     T.consumeClose();
   2393   } else {
   2394     SkipUntil(tok::r_brace, false, false);
   2395   }
   2396 
   2397   // If attributes exist after class contents, parse them.
   2398   ParsedAttributes attrs(AttrFactory);
   2399   MaybeParseGNUAttributes(attrs);
   2400 
   2401   if (TagDecl)
   2402     Actions.ActOnFinishCXXMemberSpecification(getCurScope(), RecordLoc, TagDecl,
   2403                                               T.getOpenLocation(),
   2404                                               T.getCloseLocation(),
   2405                                               attrs.getList());
   2406 
   2407   // C++11 [class.mem]p2:
   2408   //   Within the class member-specification, the class is regarded as complete
   2409   //   within function bodies, default arguments, and
   2410   //   brace-or-equal-initializers for non-static data members (including such
   2411   //   things in nested classes).
   2412   if (TagDecl && NonNestedClass) {
   2413     // We are not inside a nested class. This class and its nested classes
   2414     // are complete and we can parse the delayed portions of method
   2415     // declarations and the lexed inline method definitions, along with any
   2416     // delayed attributes.
   2417     SourceLocation SavedPrevTokLocation = PrevTokLocation;
   2418     ParseLexedAttributes(getCurrentClass());
   2419     ParseLexedMethodDeclarations(getCurrentClass());
   2420 
   2421     // We've finished with all pending member declarations.
   2422     Actions.ActOnFinishCXXMemberDecls();
   2423 
   2424     ParseLexedMemberInitializers(getCurrentClass());
   2425     ParseLexedMethodDefs(getCurrentClass());
   2426     PrevTokLocation = SavedPrevTokLocation;
   2427   }
   2428 
   2429   if (TagDecl)
   2430     Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
   2431                                      T.getCloseLocation());
   2432 
   2433   // Leave the class scope.
   2434   ParsingDef.Pop();
   2435   ClassScope.Exit();
   2436 }
   2437 
   2438 /// ParseConstructorInitializer - Parse a C++ constructor initializer,
   2439 /// which explicitly initializes the members or base classes of a
   2440 /// class (C++ [class.base.init]). For example, the three initializers
   2441 /// after the ':' in the Derived constructor below:
   2442 ///
   2443 /// @code
   2444 /// class Base { };
   2445 /// class Derived : Base {
   2446 ///   int x;
   2447 ///   float f;
   2448 /// public:
   2449 ///   Derived(float f) : Base(), x(17), f(f) { }
   2450 /// };
   2451 /// @endcode
   2452 ///
   2453 /// [C++]  ctor-initializer:
   2454 ///          ':' mem-initializer-list
   2455 ///
   2456 /// [C++]  mem-initializer-list:
   2457 ///          mem-initializer ...[opt]
   2458 ///          mem-initializer ...[opt] , mem-initializer-list
   2459 void Parser::ParseConstructorInitializer(Decl *ConstructorDecl) {
   2460   assert(Tok.is(tok::colon) && "Constructor initializer always starts with ':'");
   2461 
   2462   // Poison the SEH identifiers so they are flagged as illegal in constructor initializers
   2463   PoisonSEHIdentifiersRAIIObject PoisonSEHIdentifiers(*this, true);
   2464   SourceLocation ColonLoc = ConsumeToken();
   2465 
   2466   SmallVector<CXXCtorInitializer*, 4> MemInitializers;
   2467   bool AnyErrors = false;
   2468 
   2469   do {
   2470     if (Tok.is(tok::code_completion)) {
   2471       Actions.CodeCompleteConstructorInitializer(ConstructorDecl,
   2472                                                  MemInitializers.data(),
   2473                                                  MemInitializers.size());
   2474       return cutOffParsing();
   2475     } else {
   2476       MemInitResult MemInit = ParseMemInitializer(ConstructorDecl);
   2477       if (!MemInit.isInvalid())
   2478         MemInitializers.push_back(MemInit.get());
   2479       else
   2480         AnyErrors = true;
   2481     }
   2482 
   2483     if (Tok.is(tok::comma))
   2484       ConsumeToken();
   2485     else if (Tok.is(tok::l_brace))
   2486       break;
   2487     // If the next token looks like a base or member initializer, assume that
   2488     // we're just missing a comma.
   2489     else if (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) {
   2490       SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
   2491       Diag(Loc, diag::err_ctor_init_missing_comma)
   2492         << FixItHint::CreateInsertion(Loc, ", ");
   2493     } else {
   2494       // Skip over garbage, until we get to '{'.  Don't eat the '{'.
   2495       Diag(Tok.getLocation(), diag::err_expected_lbrace_or_comma);
   2496       SkipUntil(tok::l_brace, true, true);
   2497       break;
   2498     }
   2499   } while (true);
   2500 
   2501   Actions.ActOnMemInitializers(ConstructorDecl, ColonLoc,
   2502                                MemInitializers.data(), MemInitializers.size(),
   2503                                AnyErrors);
   2504 }
   2505 
   2506 /// ParseMemInitializer - Parse a C++ member initializer, which is
   2507 /// part of a constructor initializer that explicitly initializes one
   2508 /// member or base class (C++ [class.base.init]). See
   2509 /// ParseConstructorInitializer for an example.
   2510 ///
   2511 /// [C++] mem-initializer:
   2512 ///         mem-initializer-id '(' expression-list[opt] ')'
   2513 /// [C++0x] mem-initializer-id braced-init-list
   2514 ///
   2515 /// [C++] mem-initializer-id:
   2516 ///         '::'[opt] nested-name-specifier[opt] class-name
   2517 ///         identifier
   2518 Parser::MemInitResult Parser::ParseMemInitializer(Decl *ConstructorDecl) {
   2519   // parse '::'[opt] nested-name-specifier[opt]
   2520   CXXScopeSpec SS;
   2521   ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
   2522   ParsedType TemplateTypeTy;
   2523   if (Tok.is(tok::annot_template_id)) {
   2524     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
   2525     if (TemplateId->Kind == TNK_Type_template ||
   2526         TemplateId->Kind == TNK_Dependent_template_name) {
   2527       AnnotateTemplateIdTokenAsType();
   2528       assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
   2529       TemplateTypeTy = getTypeAnnotation(Tok);
   2530     }
   2531   }
   2532   // Uses of decltype will already have been converted to annot_decltype by
   2533   // ParseOptionalCXXScopeSpecifier at this point.
   2534   if (!TemplateTypeTy && Tok.isNot(tok::identifier)
   2535       && Tok.isNot(tok::annot_decltype)) {
   2536     Diag(Tok, diag::err_expected_member_or_base_name);
   2537     return true;
   2538   }
   2539 
   2540   IdentifierInfo *II = 0;
   2541   DeclSpec DS(AttrFactory);
   2542   SourceLocation IdLoc = Tok.getLocation();
   2543   if (Tok.is(tok::annot_decltype)) {
   2544     // Get the decltype expression, if there is one.
   2545     ParseDecltypeSpecifier(DS);
   2546   } else {
   2547     if (Tok.is(tok::identifier))
   2548       // Get the identifier. This may be a member name or a class name,
   2549       // but we'll let the semantic analysis determine which it is.
   2550       II = Tok.getIdentifierInfo();
   2551     ConsumeToken();
   2552   }
   2553 
   2554 
   2555   // Parse the '('.
   2556   if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
   2557     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
   2558 
   2559     ExprResult InitList = ParseBraceInitializer();
   2560     if (InitList.isInvalid())
   2561       return true;
   2562 
   2563     SourceLocation EllipsisLoc;
   2564     if (Tok.is(tok::ellipsis))
   2565       EllipsisLoc = ConsumeToken();
   2566 
   2567     return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
   2568                                        TemplateTypeTy, DS, IdLoc,
   2569                                        InitList.take(), EllipsisLoc);
   2570   } else if(Tok.is(tok::l_paren)) {
   2571     BalancedDelimiterTracker T(*this, tok::l_paren);
   2572     T.consumeOpen();
   2573 
   2574     // Parse the optional expression-list.
   2575     ExprVector ArgExprs;
   2576     CommaLocsTy CommaLocs;
   2577     if (Tok.isNot(tok::r_paren) && ParseExpressionList(ArgExprs, CommaLocs)) {
   2578       SkipUntil(tok::r_paren);
   2579       return true;
   2580     }
   2581 
   2582     T.consumeClose();
   2583 
   2584     SourceLocation EllipsisLoc;
   2585     if (Tok.is(tok::ellipsis))
   2586       EllipsisLoc = ConsumeToken();
   2587 
   2588     return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
   2589                                        TemplateTypeTy, DS, IdLoc,
   2590                                        T.getOpenLocation(), ArgExprs.data(),
   2591                                        ArgExprs.size(), T.getCloseLocation(),
   2592                                        EllipsisLoc);
   2593   }
   2594 
   2595   Diag(Tok, getLangOpts().CPlusPlus0x ? diag::err_expected_lparen_or_lbrace
   2596                                   : diag::err_expected_lparen);
   2597   return true;
   2598 }
   2599 
   2600 /// \brief Parse a C++ exception-specification if present (C++0x [except.spec]).
   2601 ///
   2602 ///       exception-specification:
   2603 ///         dynamic-exception-specification
   2604 ///         noexcept-specification
   2605 ///
   2606 ///       noexcept-specification:
   2607 ///         'noexcept'
   2608 ///         'noexcept' '(' constant-expression ')'
   2609 ExceptionSpecificationType
   2610 Parser::tryParseExceptionSpecification(
   2611                     SourceRange &SpecificationRange,
   2612                     SmallVectorImpl<ParsedType> &DynamicExceptions,
   2613                     SmallVectorImpl<SourceRange> &DynamicExceptionRanges,
   2614                     ExprResult &NoexceptExpr) {
   2615   ExceptionSpecificationType Result = EST_None;
   2616 
   2617   // See if there's a dynamic specification.
   2618   if (Tok.is(tok::kw_throw)) {
   2619     Result = ParseDynamicExceptionSpecification(SpecificationRange,
   2620                                                 DynamicExceptions,
   2621                                                 DynamicExceptionRanges);
   2622     assert(DynamicExceptions.size() == DynamicExceptionRanges.size() &&
   2623            "Produced different number of exception types and ranges.");
   2624   }
   2625 
   2626   // If there's no noexcept specification, we're done.
   2627   if (Tok.isNot(tok::kw_noexcept))
   2628     return Result;
   2629 
   2630   Diag(Tok, diag::warn_cxx98_compat_noexcept_decl);
   2631 
   2632   // If we already had a dynamic specification, parse the noexcept for,
   2633   // recovery, but emit a diagnostic and don't store the results.
   2634   SourceRange NoexceptRange;
   2635   ExceptionSpecificationType NoexceptType = EST_None;
   2636 
   2637   SourceLocation KeywordLoc = ConsumeToken();
   2638   if (Tok.is(tok::l_paren)) {
   2639     // There is an argument.
   2640     BalancedDelimiterTracker T(*this, tok::l_paren);
   2641     T.consumeOpen();
   2642     NoexceptType = EST_ComputedNoexcept;
   2643     NoexceptExpr = ParseConstantExpression();
   2644     // The argument must be contextually convertible to bool. We use
   2645     // ActOnBooleanCondition for this purpose.
   2646     if (!NoexceptExpr.isInvalid())
   2647       NoexceptExpr = Actions.ActOnBooleanCondition(getCurScope(), KeywordLoc,
   2648                                                    NoexceptExpr.get());
   2649     T.consumeClose();
   2650     NoexceptRange = SourceRange(KeywordLoc, T.getCloseLocation());
   2651   } else {
   2652     // There is no argument.
   2653     NoexceptType = EST_BasicNoexcept;
   2654     NoexceptRange = SourceRange(KeywordLoc, KeywordLoc);
   2655   }
   2656 
   2657   if (Result == EST_None) {
   2658     SpecificationRange = NoexceptRange;
   2659     Result = NoexceptType;
   2660 
   2661     // If there's a dynamic specification after a noexcept specification,
   2662     // parse that and ignore the results.
   2663     if (Tok.is(tok::kw_throw)) {
   2664       Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
   2665       ParseDynamicExceptionSpecification(NoexceptRange, DynamicExceptions,
   2666                                          DynamicExceptionRanges);
   2667     }
   2668   } else {
   2669     Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
   2670   }
   2671 
   2672   return Result;
   2673 }
   2674 
   2675 /// ParseDynamicExceptionSpecification - Parse a C++
   2676 /// dynamic-exception-specification (C++ [except.spec]).
   2677 ///
   2678 ///       dynamic-exception-specification:
   2679 ///         'throw' '(' type-id-list [opt] ')'
   2680 /// [MS]    'throw' '(' '...' ')'
   2681 ///
   2682 ///       type-id-list:
   2683 ///         type-id ... [opt]
   2684 ///         type-id-list ',' type-id ... [opt]
   2685 ///
   2686 ExceptionSpecificationType Parser::ParseDynamicExceptionSpecification(
   2687                                   SourceRange &SpecificationRange,
   2688                                   SmallVectorImpl<ParsedType> &Exceptions,
   2689                                   SmallVectorImpl<SourceRange> &Ranges) {
   2690   assert(Tok.is(tok::kw_throw) && "expected throw");
   2691 
   2692   SpecificationRange.setBegin(ConsumeToken());
   2693   BalancedDelimiterTracker T(*this, tok::l_paren);
   2694   if (T.consumeOpen()) {
   2695     Diag(Tok, diag::err_expected_lparen_after) << "throw";
   2696     SpecificationRange.setEnd(SpecificationRange.getBegin());
   2697     return EST_DynamicNone;
   2698   }
   2699 
   2700   // Parse throw(...), a Microsoft extension that means "this function
   2701   // can throw anything".
   2702   if (Tok.is(tok::ellipsis)) {
   2703     SourceLocation EllipsisLoc = ConsumeToken();
   2704     if (!getLangOpts().MicrosoftExt)
   2705       Diag(EllipsisLoc, diag::ext_ellipsis_exception_spec);
   2706     T.consumeClose();
   2707     SpecificationRange.setEnd(T.getCloseLocation());
   2708     return EST_MSAny;
   2709   }
   2710 
   2711   // Parse the sequence of type-ids.
   2712   SourceRange Range;
   2713   while (Tok.isNot(tok::r_paren)) {
   2714     TypeResult Res(ParseTypeName(&Range));
   2715 
   2716     if (Tok.is(tok::ellipsis)) {
   2717       // C++0x [temp.variadic]p5:
   2718       //   - In a dynamic-exception-specification (15.4); the pattern is a
   2719       //     type-id.
   2720       SourceLocation Ellipsis = ConsumeToken();
   2721       Range.setEnd(Ellipsis);
   2722       if (!Res.isInvalid())
   2723         Res = Actions.ActOnPackExpansion(Res.get(), Ellipsis);
   2724     }
   2725 
   2726     if (!Res.isInvalid()) {
   2727       Exceptions.push_back(Res.get());
   2728       Ranges.push_back(Range);
   2729     }
   2730 
   2731     if (Tok.is(tok::comma))
   2732       ConsumeToken();
   2733     else
   2734       break;
   2735   }
   2736 
   2737   T.consumeClose();
   2738   SpecificationRange.setEnd(T.getCloseLocation());
   2739   return Exceptions.empty() ? EST_DynamicNone : EST_Dynamic;
   2740 }
   2741 
   2742 /// ParseTrailingReturnType - Parse a trailing return type on a new-style
   2743 /// function declaration.
   2744 TypeResult Parser::ParseTrailingReturnType(SourceRange &Range) {
   2745   assert(Tok.is(tok::arrow) && "expected arrow");
   2746 
   2747   ConsumeToken();
   2748 
   2749   return ParseTypeName(&Range, Declarator::TrailingReturnContext);
   2750 }
   2751 
   2752 /// \brief We have just started parsing the definition of a new class,
   2753 /// so push that class onto our stack of classes that is currently
   2754 /// being parsed.
   2755 Sema::ParsingClassState
   2756 Parser::PushParsingClass(Decl *ClassDecl, bool NonNestedClass) {
   2757   assert((NonNestedClass || !ClassStack.empty()) &&
   2758          "Nested class without outer class");
   2759   ClassStack.push(new ParsingClass(ClassDecl, NonNestedClass));
   2760   return Actions.PushParsingClass();
   2761 }
   2762 
   2763 /// \brief Deallocate the given parsed class and all of its nested
   2764 /// classes.
   2765 void Parser::DeallocateParsedClasses(Parser::ParsingClass *Class) {
   2766   for (unsigned I = 0, N = Class->LateParsedDeclarations.size(); I != N; ++I)
   2767     delete Class->LateParsedDeclarations[I];
   2768   delete Class;
   2769 }
   2770 
   2771 /// \brief Pop the top class of the stack of classes that are
   2772 /// currently being parsed.
   2773 ///
   2774 /// This routine should be called when we have finished parsing the
   2775 /// definition of a class, but have not yet popped the Scope
   2776 /// associated with the class's definition.
   2777 void Parser::PopParsingClass(Sema::ParsingClassState state) {
   2778   assert(!ClassStack.empty() && "Mismatched push/pop for class parsing");
   2779 
   2780   Actions.PopParsingClass(state);
   2781 
   2782   ParsingClass *Victim = ClassStack.top();
   2783   ClassStack.pop();
   2784   if (Victim->TopLevelClass) {
   2785     // Deallocate all of the nested classes of this class,
   2786     // recursively: we don't need to keep any of this information.
   2787     DeallocateParsedClasses(Victim);
   2788     return;
   2789   }
   2790   assert(!ClassStack.empty() && "Missing top-level class?");
   2791 
   2792   if (Victim->LateParsedDeclarations.empty()) {
   2793     // The victim is a nested class, but we will not need to perform
   2794     // any processing after the definition of this class since it has
   2795     // no members whose handling was delayed. Therefore, we can just
   2796     // remove this nested class.
   2797     DeallocateParsedClasses(Victim);
   2798     return;
   2799   }
   2800 
   2801   // This nested class has some members that will need to be processed
   2802   // after the top-level class is completely defined. Therefore, add
   2803   // it to the list of nested classes within its parent.
   2804   assert(getCurScope()->isClassScope() && "Nested class outside of class scope?");
   2805   ClassStack.top()->LateParsedDeclarations.push_back(new LateParsedClass(this, Victim));
   2806   Victim->TemplateScope = getCurScope()->getParent()->isTemplateParamScope();
   2807 }
   2808 
   2809 /// \brief Try to parse an 'identifier' which appears within an attribute-token.
   2810 ///
   2811 /// \return the parsed identifier on success, and 0 if the next token is not an
   2812 /// attribute-token.
   2813 ///
   2814 /// C++11 [dcl.attr.grammar]p3:
   2815 ///   If a keyword or an alternative token that satisfies the syntactic
   2816 ///   requirements of an identifier is contained in an attribute-token,
   2817 ///   it is considered an identifier.
   2818 IdentifierInfo *Parser::TryParseCXX11AttributeIdentifier(SourceLocation &Loc) {
   2819   switch (Tok.getKind()) {
   2820   default:
   2821     // Identifiers and keywords have identifier info attached.
   2822     if (IdentifierInfo *II = Tok.getIdentifierInfo()) {
   2823       Loc = ConsumeToken();
   2824       return II;
   2825     }
   2826     return 0;
   2827 
   2828   case tok::ampamp:       // 'and'
   2829   case tok::pipe:         // 'bitor'
   2830   case tok::pipepipe:     // 'or'
   2831   case tok::caret:        // 'xor'
   2832   case tok::tilde:        // 'compl'
   2833   case tok::amp:          // 'bitand'
   2834   case tok::ampequal:     // 'and_eq'
   2835   case tok::pipeequal:    // 'or_eq'
   2836   case tok::caretequal:   // 'xor_eq'
   2837   case tok::exclaim:      // 'not'
   2838   case tok::exclaimequal: // 'not_eq'
   2839     // Alternative tokens do not have identifier info, but their spelling
   2840     // starts with an alphabetical character.
   2841     llvm::SmallString<8> SpellingBuf;
   2842     StringRef Spelling = PP.getSpelling(Tok.getLocation(), SpellingBuf);
   2843     if (std::isalpha(Spelling[0])) {
   2844       Loc = ConsumeToken();
   2845       return &PP.getIdentifierTable().get(Spelling);
   2846     }
   2847     return 0;
   2848   }
   2849 }
   2850 
   2851 /// ParseCXX11AttributeSpecifier - Parse a C++11 attribute-specifier. Currently
   2852 /// only parses standard attributes.
   2853 ///
   2854 /// [C++11] attribute-specifier:
   2855 ///         '[' '[' attribute-list ']' ']'
   2856 ///         alignment-specifier
   2857 ///
   2858 /// [C++11] attribute-list:
   2859 ///         attribute[opt]
   2860 ///         attribute-list ',' attribute[opt]
   2861 ///         attribute '...'
   2862 ///         attribute-list ',' attribute '...'
   2863 ///
   2864 /// [C++11] attribute:
   2865 ///         attribute-token attribute-argument-clause[opt]
   2866 ///
   2867 /// [C++11] attribute-token:
   2868 ///         identifier
   2869 ///         attribute-scoped-token
   2870 ///
   2871 /// [C++11] attribute-scoped-token:
   2872 ///         attribute-namespace '::' identifier
   2873 ///
   2874 /// [C++11] attribute-namespace:
   2875 ///         identifier
   2876 ///
   2877 /// [C++11] attribute-argument-clause:
   2878 ///         '(' balanced-token-seq ')'
   2879 ///
   2880 /// [C++11] balanced-token-seq:
   2881 ///         balanced-token
   2882 ///         balanced-token-seq balanced-token
   2883 ///
   2884 /// [C++11] balanced-token:
   2885 ///         '(' balanced-token-seq ')'
   2886 ///         '[' balanced-token-seq ']'
   2887 ///         '{' balanced-token-seq '}'
   2888 ///         any token but '(', ')', '[', ']', '{', or '}'
   2889 void Parser::ParseCXX11AttributeSpecifier(ParsedAttributes &attrs,
   2890                                           SourceLocation *endLoc) {
   2891   if (Tok.is(tok::kw_alignas)) {
   2892     Diag(Tok.getLocation(), diag::warn_cxx98_compat_alignas);
   2893     ParseAlignmentSpecifier(attrs, endLoc);
   2894     return;
   2895   }
   2896 
   2897   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)
   2898       && "Not a C++11 attribute list");
   2899 
   2900   Diag(Tok.getLocation(), diag::warn_cxx98_compat_attribute);
   2901 
   2902   ConsumeBracket();
   2903   ConsumeBracket();
   2904 
   2905   while (Tok.isNot(tok::r_square)) {
   2906     // attribute not present
   2907     if (Tok.is(tok::comma)) {
   2908       ConsumeToken();
   2909       continue;
   2910     }
   2911 
   2912     SourceLocation ScopeLoc, AttrLoc;
   2913     IdentifierInfo *ScopeName = 0, *AttrName = 0;
   2914 
   2915     AttrName = TryParseCXX11AttributeIdentifier(AttrLoc);
   2916     if (!AttrName)
   2917       // Break out to the "expected ']'" diagnostic.
   2918       break;
   2919 
   2920     // scoped attribute
   2921     if (Tok.is(tok::coloncolon)) {
   2922       ConsumeToken();
   2923 
   2924       ScopeName = AttrName;
   2925       ScopeLoc = AttrLoc;
   2926 
   2927       AttrName = TryParseCXX11AttributeIdentifier(AttrLoc);
   2928       if (!AttrName) {
   2929         Diag(Tok.getLocation(), diag::err_expected_ident);
   2930         SkipUntil(tok::r_square, tok::comma, true, true);
   2931         continue;
   2932       }
   2933     }
   2934 
   2935     bool AttrParsed = false;
   2936     switch (AttributeList::getKind(AttrName, ScopeName,
   2937                                    AttributeList::AS_CXX11)) {
   2938     // No arguments
   2939     case AttributeList::AT_CarriesDependency:
   2940     // FIXME: implement generic support of attributes with C++11 syntax
   2941     // see Parse/ParseDecl.cpp: ParseGNUAttributes
   2942     case AttributeList::AT_FallThrough:
   2943     case AttributeList::AT_NoReturn: {
   2944       if (Tok.is(tok::l_paren)) {
   2945         Diag(Tok.getLocation(), diag::err_cxx11_attribute_forbids_arguments)
   2946           << AttrName->getName();
   2947         break;
   2948       }
   2949 
   2950       attrs.addNew(AttrName,
   2951                    SourceRange(ScopeLoc.isValid() ? ScopeLoc : AttrLoc,
   2952                                AttrLoc),
   2953                    ScopeName, ScopeLoc, 0,
   2954                    SourceLocation(), 0, 0, AttributeList::AS_CXX11);
   2955       AttrParsed = true;
   2956       break;
   2957     }
   2958 
   2959     // Silence warnings
   2960     default: break;
   2961     }
   2962 
   2963     // Skip the entire parameter clause, if any
   2964     if (!AttrParsed && Tok.is(tok::l_paren)) {
   2965       ConsumeParen();
   2966       // SkipUntil maintains the balancedness of tokens.
   2967       SkipUntil(tok::r_paren, false);
   2968     }
   2969 
   2970     if (Tok.is(tok::ellipsis)) {
   2971       if (AttrParsed)
   2972         Diag(Tok, diag::err_cxx11_attribute_forbids_ellipsis)
   2973           << AttrName->getName();
   2974       ConsumeToken();
   2975     }
   2976   }
   2977 
   2978   if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
   2979     SkipUntil(tok::r_square, false);
   2980   if (endLoc)
   2981     *endLoc = Tok.getLocation();
   2982   if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
   2983     SkipUntil(tok::r_square, false);
   2984 }
   2985 
   2986 /// ParseCXX11Attributes - Parse a C++11 attribute-specifier-seq.
   2987 ///
   2988 /// attribute-specifier-seq:
   2989 ///       attribute-specifier-seq[opt] attribute-specifier
   2990 void Parser::ParseCXX11Attributes(ParsedAttributesWithRange &attrs,
   2991                                   SourceLocation *endLoc) {
   2992   SourceLocation StartLoc = Tok.getLocation(), Loc;
   2993   if (!endLoc)
   2994     endLoc = &Loc;
   2995 
   2996   do {
   2997     ParseCXX11AttributeSpecifier(attrs, endLoc);
   2998   } while (isCXX11AttributeSpecifier());
   2999 
   3000   attrs.Range = SourceRange(StartLoc, *endLoc);
   3001 }
   3002 
   3003 /// ParseMicrosoftAttributes - Parse a Microsoft attribute [Attr]
   3004 ///
   3005 /// [MS] ms-attribute:
   3006 ///             '[' token-seq ']'
   3007 ///
   3008 /// [MS] ms-attribute-seq:
   3009 ///             ms-attribute[opt]
   3010 ///             ms-attribute ms-attribute-seq
   3011 void Parser::ParseMicrosoftAttributes(ParsedAttributes &attrs,
   3012                                       SourceLocation *endLoc) {
   3013   assert(Tok.is(tok::l_square) && "Not a Microsoft attribute list");
   3014 
   3015   while (Tok.is(tok::l_square)) {
   3016     // FIXME: If this is actually a C++11 attribute, parse it as one.
   3017     ConsumeBracket();
   3018     SkipUntil(tok::r_square, true, true);
   3019     if (endLoc) *endLoc = Tok.getLocation();
   3020     ExpectAndConsume(tok::r_square, diag::err_expected_rsquare);
   3021   }
   3022 }
   3023 
   3024 void Parser::ParseMicrosoftIfExistsClassDeclaration(DeclSpec::TST TagType,
   3025                                                     AccessSpecifier& CurAS) {
   3026   IfExistsCondition Result;
   3027   if (ParseMicrosoftIfExistsCondition(Result))
   3028     return;
   3029 
   3030   BalancedDelimiterTracker Braces(*this, tok::l_brace);
   3031   if (Braces.consumeOpen()) {
   3032     Diag(Tok, diag::err_expected_lbrace);
   3033     return;
   3034   }
   3035 
   3036   switch (Result.Behavior) {
   3037   case IEB_Parse:
   3038     // Parse the declarations below.
   3039     break;
   3040 
   3041   case IEB_Dependent:
   3042     Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists)
   3043       << Result.IsIfExists;
   3044     // Fall through to skip.
   3045 
   3046   case IEB_Skip:
   3047     Braces.skipToEnd();
   3048     return;
   3049   }
   3050 
   3051   while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
   3052     // __if_exists, __if_not_exists can nest.
   3053     if ((Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists))) {
   3054       ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS);
   3055       continue;
   3056     }
   3057 
   3058     // Check for extraneous top-level semicolon.
   3059     if (Tok.is(tok::semi)) {
   3060       ConsumeExtraSemi(InsideStruct, TagType);
   3061       continue;
   3062     }
   3063 
   3064     AccessSpecifier AS = getAccessSpecifierIfPresent();
   3065     if (AS != AS_none) {
   3066       // Current token is a C++ access specifier.
   3067       CurAS = AS;
   3068       SourceLocation ASLoc = Tok.getLocation();
   3069       ConsumeToken();
   3070       if (Tok.is(tok::colon))
   3071         Actions.ActOnAccessSpecifier(AS, ASLoc, Tok.getLocation());
   3072       else
   3073         Diag(Tok, diag::err_expected_colon);
   3074       ConsumeToken();
   3075       continue;
   3076     }
   3077 
   3078     // Parse all the comma separated declarators.
   3079     ParseCXXClassMemberDeclaration(CurAS, 0);
   3080   }
   3081 
   3082   Braces.consumeClose();
   3083 }
   3084