Home | History | Annotate | Download | only in Sema
      1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //===----------------------------------------------------------------------===/
      8 //
      9 //  This file implements C++ template argument deduction.
     10 //
     11 //===----------------------------------------------------------------------===/
     12 
     13 #include "clang/Sema/Sema.h"
     14 #include "clang/Sema/DeclSpec.h"
     15 #include "clang/Sema/Template.h"
     16 #include "clang/Sema/TemplateDeduction.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/StmtVisitor.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "llvm/ADT/SmallBitVector.h"
     24 #include "TreeTransform.h"
     25 #include <algorithm>
     26 
     27 namespace clang {
     28   using namespace sema;
     29 
     30   /// \brief Various flags that control template argument deduction.
     31   ///
     32   /// These flags can be bitwise-OR'd together.
     33   enum TemplateDeductionFlags {
     34     /// \brief No template argument deduction flags, which indicates the
     35     /// strictest results for template argument deduction (as used for, e.g.,
     36     /// matching class template partial specializations).
     37     TDF_None = 0,
     38     /// \brief Within template argument deduction from a function call, we are
     39     /// matching with a parameter type for which the original parameter was
     40     /// a reference.
     41     TDF_ParamWithReferenceType = 0x1,
     42     /// \brief Within template argument deduction from a function call, we
     43     /// are matching in a case where we ignore cv-qualifiers.
     44     TDF_IgnoreQualifiers = 0x02,
     45     /// \brief Within template argument deduction from a function call,
     46     /// we are matching in a case where we can perform template argument
     47     /// deduction from a template-id of a derived class of the argument type.
     48     TDF_DerivedClass = 0x04,
     49     /// \brief Allow non-dependent types to differ, e.g., when performing
     50     /// template argument deduction from a function call where conversions
     51     /// may apply.
     52     TDF_SkipNonDependent = 0x08,
     53     /// \brief Whether we are performing template argument deduction for
     54     /// parameters and arguments in a top-level template argument
     55     TDF_TopLevelParameterTypeList = 0x10
     56   };
     57 }
     58 
     59 using namespace clang;
     60 
     61 /// \brief Compare two APSInts, extending and switching the sign as
     62 /// necessary to compare their values regardless of underlying type.
     63 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
     64   if (Y.getBitWidth() > X.getBitWidth())
     65     X = X.extend(Y.getBitWidth());
     66   else if (Y.getBitWidth() < X.getBitWidth())
     67     Y = Y.extend(X.getBitWidth());
     68 
     69   // If there is a signedness mismatch, correct it.
     70   if (X.isSigned() != Y.isSigned()) {
     71     // If the signed value is negative, then the values cannot be the same.
     72     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
     73       return false;
     74 
     75     Y.setIsSigned(true);
     76     X.setIsSigned(true);
     77   }
     78 
     79   return X == Y;
     80 }
     81 
     82 static Sema::TemplateDeductionResult
     83 DeduceTemplateArguments(Sema &S,
     84                         TemplateParameterList *TemplateParams,
     85                         const TemplateArgument &Param,
     86                         TemplateArgument Arg,
     87                         TemplateDeductionInfo &Info,
     88                       SmallVectorImpl<DeducedTemplateArgument> &Deduced);
     89 
     90 /// \brief Whether template argument deduction for two reference parameters
     91 /// resulted in the argument type, parameter type, or neither type being more
     92 /// qualified than the other.
     93 enum DeductionQualifierComparison {
     94   NeitherMoreQualified = 0,
     95   ParamMoreQualified,
     96   ArgMoreQualified
     97 };
     98 
     99 /// \brief Stores the result of comparing two reference parameters while
    100 /// performing template argument deduction for partial ordering of function
    101 /// templates.
    102 struct RefParamPartialOrderingComparison {
    103   /// \brief Whether the parameter type is an rvalue reference type.
    104   bool ParamIsRvalueRef;
    105   /// \brief Whether the argument type is an rvalue reference type.
    106   bool ArgIsRvalueRef;
    107 
    108   /// \brief Whether the parameter or argument (or neither) is more qualified.
    109   DeductionQualifierComparison Qualifiers;
    110 };
    111 
    112 
    113 
    114 static Sema::TemplateDeductionResult
    115 DeduceTemplateArgumentsByTypeMatch(Sema &S,
    116                                    TemplateParameterList *TemplateParams,
    117                                    QualType Param,
    118                                    QualType Arg,
    119                                    TemplateDeductionInfo &Info,
    120                                    SmallVectorImpl<DeducedTemplateArgument> &
    121                                                       Deduced,
    122                                    unsigned TDF,
    123                                    bool PartialOrdering = false,
    124                             SmallVectorImpl<RefParamPartialOrderingComparison> *
    125                                                       RefParamComparisons = 0);
    126 
    127 static Sema::TemplateDeductionResult
    128 DeduceTemplateArguments(Sema &S,
    129                         TemplateParameterList *TemplateParams,
    130                         const TemplateArgument *Params, unsigned NumParams,
    131                         const TemplateArgument *Args, unsigned NumArgs,
    132                         TemplateDeductionInfo &Info,
    133                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    134                         bool NumberOfArgumentsMustMatch = true);
    135 
    136 /// \brief If the given expression is of a form that permits the deduction
    137 /// of a non-type template parameter, return the declaration of that
    138 /// non-type template parameter.
    139 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
    140   // If we are within an alias template, the expression may have undergone
    141   // any number of parameter substitutions already.
    142   while (1) {
    143     if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
    144       E = IC->getSubExpr();
    145     else if (SubstNonTypeTemplateParmExpr *Subst =
    146                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
    147       E = Subst->getReplacement();
    148     else
    149       break;
    150   }
    151 
    152   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    153     return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
    154 
    155   return 0;
    156 }
    157 
    158 /// \brief Determine whether two declaration pointers refer to the same
    159 /// declaration.
    160 static bool isSameDeclaration(Decl *X, Decl *Y) {
    161   if (!X || !Y)
    162     return !X && !Y;
    163 
    164   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
    165     X = NX->getUnderlyingDecl();
    166   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
    167     Y = NY->getUnderlyingDecl();
    168 
    169   return X->getCanonicalDecl() == Y->getCanonicalDecl();
    170 }
    171 
    172 /// \brief Verify that the given, deduced template arguments are compatible.
    173 ///
    174 /// \returns The deduced template argument, or a NULL template argument if
    175 /// the deduced template arguments were incompatible.
    176 static DeducedTemplateArgument
    177 checkDeducedTemplateArguments(ASTContext &Context,
    178                               const DeducedTemplateArgument &X,
    179                               const DeducedTemplateArgument &Y) {
    180   // We have no deduction for one or both of the arguments; they're compatible.
    181   if (X.isNull())
    182     return Y;
    183   if (Y.isNull())
    184     return X;
    185 
    186   switch (X.getKind()) {
    187   case TemplateArgument::Null:
    188     llvm_unreachable("Non-deduced template arguments handled above");
    189 
    190   case TemplateArgument::Type:
    191     // If two template type arguments have the same type, they're compatible.
    192     if (Y.getKind() == TemplateArgument::Type &&
    193         Context.hasSameType(X.getAsType(), Y.getAsType()))
    194       return X;
    195 
    196     return DeducedTemplateArgument();
    197 
    198   case TemplateArgument::Integral:
    199     // If we deduced a constant in one case and either a dependent expression or
    200     // declaration in another case, keep the integral constant.
    201     // If both are integral constants with the same value, keep that value.
    202     if (Y.getKind() == TemplateArgument::Expression ||
    203         Y.getKind() == TemplateArgument::Declaration ||
    204         (Y.getKind() == TemplateArgument::Integral &&
    205          hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
    206       return DeducedTemplateArgument(X,
    207                                      X.wasDeducedFromArrayBound() &&
    208                                      Y.wasDeducedFromArrayBound());
    209 
    210     // All other combinations are incompatible.
    211     return DeducedTemplateArgument();
    212 
    213   case TemplateArgument::Template:
    214     if (Y.getKind() == TemplateArgument::Template &&
    215         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
    216       return X;
    217 
    218     // All other combinations are incompatible.
    219     return DeducedTemplateArgument();
    220 
    221   case TemplateArgument::TemplateExpansion:
    222     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
    223         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
    224                                     Y.getAsTemplateOrTemplatePattern()))
    225       return X;
    226 
    227     // All other combinations are incompatible.
    228     return DeducedTemplateArgument();
    229 
    230   case TemplateArgument::Expression:
    231     // If we deduced a dependent expression in one case and either an integral
    232     // constant or a declaration in another case, keep the integral constant
    233     // or declaration.
    234     if (Y.getKind() == TemplateArgument::Integral ||
    235         Y.getKind() == TemplateArgument::Declaration)
    236       return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
    237                                      Y.wasDeducedFromArrayBound());
    238 
    239     if (Y.getKind() == TemplateArgument::Expression) {
    240       // Compare the expressions for equality
    241       llvm::FoldingSetNodeID ID1, ID2;
    242       X.getAsExpr()->Profile(ID1, Context, true);
    243       Y.getAsExpr()->Profile(ID2, Context, true);
    244       if (ID1 == ID2)
    245         return X;
    246     }
    247 
    248     // All other combinations are incompatible.
    249     return DeducedTemplateArgument();
    250 
    251   case TemplateArgument::Declaration:
    252     // If we deduced a declaration and a dependent expression, keep the
    253     // declaration.
    254     if (Y.getKind() == TemplateArgument::Expression)
    255       return X;
    256 
    257     // If we deduced a declaration and an integral constant, keep the
    258     // integral constant.
    259     if (Y.getKind() == TemplateArgument::Integral)
    260       return Y;
    261 
    262     // If we deduced two declarations, make sure they they refer to the
    263     // same declaration.
    264     if (Y.getKind() == TemplateArgument::Declaration &&
    265         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
    266       return X;
    267 
    268     // All other combinations are incompatible.
    269     return DeducedTemplateArgument();
    270 
    271   case TemplateArgument::Pack:
    272     if (Y.getKind() != TemplateArgument::Pack ||
    273         X.pack_size() != Y.pack_size())
    274       return DeducedTemplateArgument();
    275 
    276     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
    277                                       XAEnd = X.pack_end(),
    278                                          YA = Y.pack_begin();
    279          XA != XAEnd; ++XA, ++YA) {
    280       if (checkDeducedTemplateArguments(Context,
    281                     DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
    282                     DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
    283             .isNull())
    284         return DeducedTemplateArgument();
    285     }
    286 
    287     return X;
    288   }
    289 
    290   llvm_unreachable("Invalid TemplateArgument Kind!");
    291 }
    292 
    293 /// \brief Deduce the value of the given non-type template parameter
    294 /// from the given constant.
    295 static Sema::TemplateDeductionResult
    296 DeduceNonTypeTemplateArgument(Sema &S,
    297                               NonTypeTemplateParmDecl *NTTP,
    298                               llvm::APSInt Value, QualType ValueType,
    299                               bool DeducedFromArrayBound,
    300                               TemplateDeductionInfo &Info,
    301                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    302   assert(NTTP->getDepth() == 0 &&
    303          "Cannot deduce non-type template argument with depth > 0");
    304 
    305   DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
    306                                      DeducedFromArrayBound);
    307   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    308                                                      Deduced[NTTP->getIndex()],
    309                                                                  NewDeduced);
    310   if (Result.isNull()) {
    311     Info.Param = NTTP;
    312     Info.FirstArg = Deduced[NTTP->getIndex()];
    313     Info.SecondArg = NewDeduced;
    314     return Sema::TDK_Inconsistent;
    315   }
    316 
    317   Deduced[NTTP->getIndex()] = Result;
    318   return Sema::TDK_Success;
    319 }
    320 
    321 /// \brief Deduce the value of the given non-type template parameter
    322 /// from the given type- or value-dependent expression.
    323 ///
    324 /// \returns true if deduction succeeded, false otherwise.
    325 static Sema::TemplateDeductionResult
    326 DeduceNonTypeTemplateArgument(Sema &S,
    327                               NonTypeTemplateParmDecl *NTTP,
    328                               Expr *Value,
    329                               TemplateDeductionInfo &Info,
    330                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    331   assert(NTTP->getDepth() == 0 &&
    332          "Cannot deduce non-type template argument with depth > 0");
    333   assert((Value->isTypeDependent() || Value->isValueDependent()) &&
    334          "Expression template argument must be type- or value-dependent.");
    335 
    336   DeducedTemplateArgument NewDeduced(Value);
    337   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    338                                                      Deduced[NTTP->getIndex()],
    339                                                                  NewDeduced);
    340 
    341   if (Result.isNull()) {
    342     Info.Param = NTTP;
    343     Info.FirstArg = Deduced[NTTP->getIndex()];
    344     Info.SecondArg = NewDeduced;
    345     return Sema::TDK_Inconsistent;
    346   }
    347 
    348   Deduced[NTTP->getIndex()] = Result;
    349   return Sema::TDK_Success;
    350 }
    351 
    352 /// \brief Deduce the value of the given non-type template parameter
    353 /// from the given declaration.
    354 ///
    355 /// \returns true if deduction succeeded, false otherwise.
    356 static Sema::TemplateDeductionResult
    357 DeduceNonTypeTemplateArgument(Sema &S,
    358                               NonTypeTemplateParmDecl *NTTP,
    359                               Decl *D,
    360                               TemplateDeductionInfo &Info,
    361                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    362   assert(NTTP->getDepth() == 0 &&
    363          "Cannot deduce non-type template argument with depth > 0");
    364 
    365   DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
    366   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    367                                                      Deduced[NTTP->getIndex()],
    368                                                                  NewDeduced);
    369   if (Result.isNull()) {
    370     Info.Param = NTTP;
    371     Info.FirstArg = Deduced[NTTP->getIndex()];
    372     Info.SecondArg = NewDeduced;
    373     return Sema::TDK_Inconsistent;
    374   }
    375 
    376   Deduced[NTTP->getIndex()] = Result;
    377   return Sema::TDK_Success;
    378 }
    379 
    380 static Sema::TemplateDeductionResult
    381 DeduceTemplateArguments(Sema &S,
    382                         TemplateParameterList *TemplateParams,
    383                         TemplateName Param,
    384                         TemplateName Arg,
    385                         TemplateDeductionInfo &Info,
    386                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    387   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
    388   if (!ParamDecl) {
    389     // The parameter type is dependent and is not a template template parameter,
    390     // so there is nothing that we can deduce.
    391     return Sema::TDK_Success;
    392   }
    393 
    394   if (TemplateTemplateParmDecl *TempParam
    395         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
    396     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
    397     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    398                                                  Deduced[TempParam->getIndex()],
    399                                                                    NewDeduced);
    400     if (Result.isNull()) {
    401       Info.Param = TempParam;
    402       Info.FirstArg = Deduced[TempParam->getIndex()];
    403       Info.SecondArg = NewDeduced;
    404       return Sema::TDK_Inconsistent;
    405     }
    406 
    407     Deduced[TempParam->getIndex()] = Result;
    408     return Sema::TDK_Success;
    409   }
    410 
    411   // Verify that the two template names are equivalent.
    412   if (S.Context.hasSameTemplateName(Param, Arg))
    413     return Sema::TDK_Success;
    414 
    415   // Mismatch of non-dependent template parameter to argument.
    416   Info.FirstArg = TemplateArgument(Param);
    417   Info.SecondArg = TemplateArgument(Arg);
    418   return Sema::TDK_NonDeducedMismatch;
    419 }
    420 
    421 /// \brief Deduce the template arguments by comparing the template parameter
    422 /// type (which is a template-id) with the template argument type.
    423 ///
    424 /// \param S the Sema
    425 ///
    426 /// \param TemplateParams the template parameters that we are deducing
    427 ///
    428 /// \param Param the parameter type
    429 ///
    430 /// \param Arg the argument type
    431 ///
    432 /// \param Info information about the template argument deduction itself
    433 ///
    434 /// \param Deduced the deduced template arguments
    435 ///
    436 /// \returns the result of template argument deduction so far. Note that a
    437 /// "success" result means that template argument deduction has not yet failed,
    438 /// but it may still fail, later, for other reasons.
    439 static Sema::TemplateDeductionResult
    440 DeduceTemplateArguments(Sema &S,
    441                         TemplateParameterList *TemplateParams,
    442                         const TemplateSpecializationType *Param,
    443                         QualType Arg,
    444                         TemplateDeductionInfo &Info,
    445                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    446   assert(Arg.isCanonical() && "Argument type must be canonical");
    447 
    448   // Check whether the template argument is a dependent template-id.
    449   if (const TemplateSpecializationType *SpecArg
    450         = dyn_cast<TemplateSpecializationType>(Arg)) {
    451     // Perform template argument deduction for the template name.
    452     if (Sema::TemplateDeductionResult Result
    453           = DeduceTemplateArguments(S, TemplateParams,
    454                                     Param->getTemplateName(),
    455                                     SpecArg->getTemplateName(),
    456                                     Info, Deduced))
    457       return Result;
    458 
    459 
    460     // Perform template argument deduction on each template
    461     // argument. Ignore any missing/extra arguments, since they could be
    462     // filled in by default arguments.
    463     return DeduceTemplateArguments(S, TemplateParams,
    464                                    Param->getArgs(), Param->getNumArgs(),
    465                                    SpecArg->getArgs(), SpecArg->getNumArgs(),
    466                                    Info, Deduced,
    467                                    /*NumberOfArgumentsMustMatch=*/false);
    468   }
    469 
    470   // If the argument type is a class template specialization, we
    471   // perform template argument deduction using its template
    472   // arguments.
    473   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
    474   if (!RecordArg)
    475     return Sema::TDK_NonDeducedMismatch;
    476 
    477   ClassTemplateSpecializationDecl *SpecArg
    478     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
    479   if (!SpecArg)
    480     return Sema::TDK_NonDeducedMismatch;
    481 
    482   // Perform template argument deduction for the template name.
    483   if (Sema::TemplateDeductionResult Result
    484         = DeduceTemplateArguments(S,
    485                                   TemplateParams,
    486                                   Param->getTemplateName(),
    487                                TemplateName(SpecArg->getSpecializedTemplate()),
    488                                   Info, Deduced))
    489     return Result;
    490 
    491   // Perform template argument deduction for the template arguments.
    492   return DeduceTemplateArguments(S, TemplateParams,
    493                                  Param->getArgs(), Param->getNumArgs(),
    494                                  SpecArg->getTemplateArgs().data(),
    495                                  SpecArg->getTemplateArgs().size(),
    496                                  Info, Deduced);
    497 }
    498 
    499 /// \brief Determines whether the given type is an opaque type that
    500 /// might be more qualified when instantiated.
    501 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
    502   switch (T->getTypeClass()) {
    503   case Type::TypeOfExpr:
    504   case Type::TypeOf:
    505   case Type::DependentName:
    506   case Type::Decltype:
    507   case Type::UnresolvedUsing:
    508   case Type::TemplateTypeParm:
    509     return true;
    510 
    511   case Type::ConstantArray:
    512   case Type::IncompleteArray:
    513   case Type::VariableArray:
    514   case Type::DependentSizedArray:
    515     return IsPossiblyOpaquelyQualifiedType(
    516                                       cast<ArrayType>(T)->getElementType());
    517 
    518   default:
    519     return false;
    520   }
    521 }
    522 
    523 /// \brief Retrieve the depth and index of a template parameter.
    524 static std::pair<unsigned, unsigned>
    525 getDepthAndIndex(NamedDecl *ND) {
    526   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
    527     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    528 
    529   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
    530     return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
    531 
    532   TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
    533   return std::make_pair(TTP->getDepth(), TTP->getIndex());
    534 }
    535 
    536 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
    537 static std::pair<unsigned, unsigned>
    538 getDepthAndIndex(UnexpandedParameterPack UPP) {
    539   if (const TemplateTypeParmType *TTP
    540                           = UPP.first.dyn_cast<const TemplateTypeParmType *>())
    541     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    542 
    543   return getDepthAndIndex(UPP.first.get<NamedDecl *>());
    544 }
    545 
    546 /// \brief Helper function to build a TemplateParameter when we don't
    547 /// know its type statically.
    548 static TemplateParameter makeTemplateParameter(Decl *D) {
    549   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
    550     return TemplateParameter(TTP);
    551   else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
    552     return TemplateParameter(NTTP);
    553 
    554   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
    555 }
    556 
    557 /// \brief Prepare to perform template argument deduction for all of the
    558 /// arguments in a set of argument packs.
    559 static void PrepareArgumentPackDeduction(Sema &S,
    560                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    561                                            ArrayRef<unsigned> PackIndices,
    562                      SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
    563          SmallVectorImpl<
    564            SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
    565   // Save the deduced template arguments for each parameter pack expanded
    566   // by this pack expansion, then clear out the deduction.
    567   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    568     // Save the previously-deduced argument pack, then clear it out so that we
    569     // can deduce a new argument pack.
    570     SavedPacks[I] = Deduced[PackIndices[I]];
    571     Deduced[PackIndices[I]] = TemplateArgument();
    572 
    573     if (!S.CurrentInstantiationScope)
    574       continue;
    575 
    576     // If the template argument pack was explicitly specified, add that to
    577     // the set of deduced arguments.
    578     const TemplateArgument *ExplicitArgs;
    579     unsigned NumExplicitArgs;
    580     if (NamedDecl *PartiallySubstitutedPack
    581         = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
    582                                                            &ExplicitArgs,
    583                                                            &NumExplicitArgs)) {
    584       if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
    585         NewlyDeducedPacks[I].append(ExplicitArgs,
    586                                     ExplicitArgs + NumExplicitArgs);
    587     }
    588   }
    589 }
    590 
    591 /// \brief Finish template argument deduction for a set of argument packs,
    592 /// producing the argument packs and checking for consistency with prior
    593 /// deductions.
    594 static Sema::TemplateDeductionResult
    595 FinishArgumentPackDeduction(Sema &S,
    596                             TemplateParameterList *TemplateParams,
    597                             bool HasAnyArguments,
    598                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    599                             ArrayRef<unsigned> PackIndices,
    600                     SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
    601         SmallVectorImpl<
    602           SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
    603                             TemplateDeductionInfo &Info) {
    604   // Build argument packs for each of the parameter packs expanded by this
    605   // pack expansion.
    606   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    607     if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
    608       // We were not able to deduce anything for this parameter pack,
    609       // so just restore the saved argument pack.
    610       Deduced[PackIndices[I]] = SavedPacks[I];
    611       continue;
    612     }
    613 
    614     DeducedTemplateArgument NewPack;
    615 
    616     if (NewlyDeducedPacks[I].empty()) {
    617       // If we deduced an empty argument pack, create it now.
    618       NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
    619     } else {
    620       TemplateArgument *ArgumentPack
    621         = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
    622       std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
    623                 ArgumentPack);
    624       NewPack
    625         = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
    626                                                    NewlyDeducedPacks[I].size()),
    627                             NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
    628     }
    629 
    630     DeducedTemplateArgument Result
    631       = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
    632     if (Result.isNull()) {
    633       Info.Param
    634         = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
    635       Info.FirstArg = SavedPacks[I];
    636       Info.SecondArg = NewPack;
    637       return Sema::TDK_Inconsistent;
    638     }
    639 
    640     Deduced[PackIndices[I]] = Result;
    641   }
    642 
    643   return Sema::TDK_Success;
    644 }
    645 
    646 /// \brief Deduce the template arguments by comparing the list of parameter
    647 /// types to the list of argument types, as in the parameter-type-lists of
    648 /// function types (C++ [temp.deduct.type]p10).
    649 ///
    650 /// \param S The semantic analysis object within which we are deducing
    651 ///
    652 /// \param TemplateParams The template parameters that we are deducing
    653 ///
    654 /// \param Params The list of parameter types
    655 ///
    656 /// \param NumParams The number of types in \c Params
    657 ///
    658 /// \param Args The list of argument types
    659 ///
    660 /// \param NumArgs The number of types in \c Args
    661 ///
    662 /// \param Info information about the template argument deduction itself
    663 ///
    664 /// \param Deduced the deduced template arguments
    665 ///
    666 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    667 /// how template argument deduction is performed.
    668 ///
    669 /// \param PartialOrdering If true, we are performing template argument
    670 /// deduction for during partial ordering for a call
    671 /// (C++0x [temp.deduct.partial]).
    672 ///
    673 /// \param RefParamComparisons If we're performing template argument deduction
    674 /// in the context of partial ordering, the set of qualifier comparisons.
    675 ///
    676 /// \returns the result of template argument deduction so far. Note that a
    677 /// "success" result means that template argument deduction has not yet failed,
    678 /// but it may still fail, later, for other reasons.
    679 static Sema::TemplateDeductionResult
    680 DeduceTemplateArguments(Sema &S,
    681                         TemplateParameterList *TemplateParams,
    682                         const QualType *Params, unsigned NumParams,
    683                         const QualType *Args, unsigned NumArgs,
    684                         TemplateDeductionInfo &Info,
    685                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    686                         unsigned TDF,
    687                         bool PartialOrdering = false,
    688                         SmallVectorImpl<RefParamPartialOrderingComparison> *
    689                                                      RefParamComparisons = 0) {
    690   // Fast-path check to see if we have too many/too few arguments.
    691   if (NumParams != NumArgs &&
    692       !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
    693       !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
    694     return Sema::TDK_NonDeducedMismatch;
    695 
    696   // C++0x [temp.deduct.type]p10:
    697   //   Similarly, if P has a form that contains (T), then each parameter type
    698   //   Pi of the respective parameter-type- list of P is compared with the
    699   //   corresponding parameter type Ai of the corresponding parameter-type-list
    700   //   of A. [...]
    701   unsigned ArgIdx = 0, ParamIdx = 0;
    702   for (; ParamIdx != NumParams; ++ParamIdx) {
    703     // Check argument types.
    704     const PackExpansionType *Expansion
    705                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
    706     if (!Expansion) {
    707       // Simple case: compare the parameter and argument types at this point.
    708 
    709       // Make sure we have an argument.
    710       if (ArgIdx >= NumArgs)
    711         return Sema::TDK_NonDeducedMismatch;
    712 
    713       if (isa<PackExpansionType>(Args[ArgIdx])) {
    714         // C++0x [temp.deduct.type]p22:
    715         //   If the original function parameter associated with A is a function
    716         //   parameter pack and the function parameter associated with P is not
    717         //   a function parameter pack, then template argument deduction fails.
    718         return Sema::TDK_NonDeducedMismatch;
    719       }
    720 
    721       if (Sema::TemplateDeductionResult Result
    722             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
    723                                                  Params[ParamIdx], Args[ArgIdx],
    724                                                  Info, Deduced, TDF,
    725                                                  PartialOrdering,
    726                                                  RefParamComparisons))
    727         return Result;
    728 
    729       ++ArgIdx;
    730       continue;
    731     }
    732 
    733     // C++0x [temp.deduct.type]p5:
    734     //   The non-deduced contexts are:
    735     //     - A function parameter pack that does not occur at the end of the
    736     //       parameter-declaration-clause.
    737     if (ParamIdx + 1 < NumParams)
    738       return Sema::TDK_Success;
    739 
    740     // C++0x [temp.deduct.type]p10:
    741     //   If the parameter-declaration corresponding to Pi is a function
    742     //   parameter pack, then the type of its declarator- id is compared with
    743     //   each remaining parameter type in the parameter-type-list of A. Each
    744     //   comparison deduces template arguments for subsequent positions in the
    745     //   template parameter packs expanded by the function parameter pack.
    746 
    747     // Compute the set of template parameter indices that correspond to
    748     // parameter packs expanded by the pack expansion.
    749     SmallVector<unsigned, 2> PackIndices;
    750     QualType Pattern = Expansion->getPattern();
    751     {
    752       llvm::SmallBitVector SawIndices(TemplateParams->size());
    753       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
    754       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
    755       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
    756         unsigned Depth, Index;
    757         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
    758         if (Depth == 0 && !SawIndices[Index]) {
    759           SawIndices[Index] = true;
    760           PackIndices.push_back(Index);
    761         }
    762       }
    763     }
    764     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
    765 
    766     // Keep track of the deduced template arguments for each parameter pack
    767     // expanded by this pack expansion (the outer index) and for each
    768     // template argument (the inner SmallVectors).
    769     SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
    770       NewlyDeducedPacks(PackIndices.size());
    771     SmallVector<DeducedTemplateArgument, 2>
    772       SavedPacks(PackIndices.size());
    773     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
    774                                  NewlyDeducedPacks);
    775 
    776     bool HasAnyArguments = false;
    777     for (; ArgIdx < NumArgs; ++ArgIdx) {
    778       HasAnyArguments = true;
    779 
    780       // Deduce template arguments from the pattern.
    781       if (Sema::TemplateDeductionResult Result
    782             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
    783                                                  Args[ArgIdx], Info, Deduced,
    784                                                  TDF, PartialOrdering,
    785                                                  RefParamComparisons))
    786         return Result;
    787 
    788       // Capture the deduced template arguments for each parameter pack expanded
    789       // by this pack expansion, add them to the list of arguments we've deduced
    790       // for that pack, then clear out the deduced argument.
    791       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    792         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
    793         if (!DeducedArg.isNull()) {
    794           NewlyDeducedPacks[I].push_back(DeducedArg);
    795           DeducedArg = DeducedTemplateArgument();
    796         }
    797       }
    798     }
    799 
    800     // Build argument packs for each of the parameter packs expanded by this
    801     // pack expansion.
    802     if (Sema::TemplateDeductionResult Result
    803           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
    804                                         Deduced, PackIndices, SavedPacks,
    805                                         NewlyDeducedPacks, Info))
    806       return Result;
    807   }
    808 
    809   // Make sure we don't have any extra arguments.
    810   if (ArgIdx < NumArgs)
    811     return Sema::TDK_NonDeducedMismatch;
    812 
    813   return Sema::TDK_Success;
    814 }
    815 
    816 /// \brief Determine whether the parameter has qualifiers that are either
    817 /// inconsistent with or a superset of the argument's qualifiers.
    818 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
    819                                                   QualType ArgType) {
    820   Qualifiers ParamQs = ParamType.getQualifiers();
    821   Qualifiers ArgQs = ArgType.getQualifiers();
    822 
    823   if (ParamQs == ArgQs)
    824     return false;
    825 
    826   // Mismatched (but not missing) Objective-C GC attributes.
    827   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
    828       ParamQs.hasObjCGCAttr())
    829     return true;
    830 
    831   // Mismatched (but not missing) address spaces.
    832   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
    833       ParamQs.hasAddressSpace())
    834     return true;
    835 
    836   // Mismatched (but not missing) Objective-C lifetime qualifiers.
    837   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
    838       ParamQs.hasObjCLifetime())
    839     return true;
    840 
    841   // CVR qualifier superset.
    842   return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
    843       ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
    844                                                 == ParamQs.getCVRQualifiers());
    845 }
    846 
    847 /// \brief Deduce the template arguments by comparing the parameter type and
    848 /// the argument type (C++ [temp.deduct.type]).
    849 ///
    850 /// \param S the semantic analysis object within which we are deducing
    851 ///
    852 /// \param TemplateParams the template parameters that we are deducing
    853 ///
    854 /// \param ParamIn the parameter type
    855 ///
    856 /// \param ArgIn the argument type
    857 ///
    858 /// \param Info information about the template argument deduction itself
    859 ///
    860 /// \param Deduced the deduced template arguments
    861 ///
    862 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    863 /// how template argument deduction is performed.
    864 ///
    865 /// \param PartialOrdering Whether we're performing template argument deduction
    866 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
    867 ///
    868 /// \param RefParamComparisons If we're performing template argument deduction
    869 /// in the context of partial ordering, the set of qualifier comparisons.
    870 ///
    871 /// \returns the result of template argument deduction so far. Note that a
    872 /// "success" result means that template argument deduction has not yet failed,
    873 /// but it may still fail, later, for other reasons.
    874 static Sema::TemplateDeductionResult
    875 DeduceTemplateArgumentsByTypeMatch(Sema &S,
    876                                    TemplateParameterList *TemplateParams,
    877                                    QualType ParamIn, QualType ArgIn,
    878                                    TemplateDeductionInfo &Info,
    879                             SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    880                                    unsigned TDF,
    881                                    bool PartialOrdering,
    882                             SmallVectorImpl<RefParamPartialOrderingComparison> *
    883                                                           RefParamComparisons) {
    884   // We only want to look at the canonical types, since typedefs and
    885   // sugar are not part of template argument deduction.
    886   QualType Param = S.Context.getCanonicalType(ParamIn);
    887   QualType Arg = S.Context.getCanonicalType(ArgIn);
    888 
    889   // If the argument type is a pack expansion, look at its pattern.
    890   // This isn't explicitly called out
    891   if (const PackExpansionType *ArgExpansion
    892                                             = dyn_cast<PackExpansionType>(Arg))
    893     Arg = ArgExpansion->getPattern();
    894 
    895   if (PartialOrdering) {
    896     // C++0x [temp.deduct.partial]p5:
    897     //   Before the partial ordering is done, certain transformations are
    898     //   performed on the types used for partial ordering:
    899     //     - If P is a reference type, P is replaced by the type referred to.
    900     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
    901     if (ParamRef)
    902       Param = ParamRef->getPointeeType();
    903 
    904     //     - If A is a reference type, A is replaced by the type referred to.
    905     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
    906     if (ArgRef)
    907       Arg = ArgRef->getPointeeType();
    908 
    909     if (RefParamComparisons && ParamRef && ArgRef) {
    910       // C++0x [temp.deduct.partial]p6:
    911       //   If both P and A were reference types (before being replaced with the
    912       //   type referred to above), determine which of the two types (if any) is
    913       //   more cv-qualified than the other; otherwise the types are considered
    914       //   to be equally cv-qualified for partial ordering purposes. The result
    915       //   of this determination will be used below.
    916       //
    917       // We save this information for later, using it only when deduction
    918       // succeeds in both directions.
    919       RefParamPartialOrderingComparison Comparison;
    920       Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
    921       Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
    922       Comparison.Qualifiers = NeitherMoreQualified;
    923 
    924       Qualifiers ParamQuals = Param.getQualifiers();
    925       Qualifiers ArgQuals = Arg.getQualifiers();
    926       if (ParamQuals.isStrictSupersetOf(ArgQuals))
    927         Comparison.Qualifiers = ParamMoreQualified;
    928       else if (ArgQuals.isStrictSupersetOf(ParamQuals))
    929         Comparison.Qualifiers = ArgMoreQualified;
    930       RefParamComparisons->push_back(Comparison);
    931     }
    932 
    933     // C++0x [temp.deduct.partial]p7:
    934     //   Remove any top-level cv-qualifiers:
    935     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
    936     //       version of P.
    937     Param = Param.getUnqualifiedType();
    938     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
    939     //       version of A.
    940     Arg = Arg.getUnqualifiedType();
    941   } else {
    942     // C++0x [temp.deduct.call]p4 bullet 1:
    943     //   - If the original P is a reference type, the deduced A (i.e., the type
    944     //     referred to by the reference) can be more cv-qualified than the
    945     //     transformed A.
    946     if (TDF & TDF_ParamWithReferenceType) {
    947       Qualifiers Quals;
    948       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
    949       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
    950                              Arg.getCVRQualifiers());
    951       Param = S.Context.getQualifiedType(UnqualParam, Quals);
    952     }
    953 
    954     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
    955       // C++0x [temp.deduct.type]p10:
    956       //   If P and A are function types that originated from deduction when
    957       //   taking the address of a function template (14.8.2.2) or when deducing
    958       //   template arguments from a function declaration (14.8.2.6) and Pi and
    959       //   Ai are parameters of the top-level parameter-type-list of P and A,
    960       //   respectively, Pi is adjusted if it is an rvalue reference to a
    961       //   cv-unqualified template parameter and Ai is an lvalue reference, in
    962       //   which case the type of Pi is changed to be the template parameter
    963       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
    964       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
    965       //   deduced as X&. - end note ]
    966       TDF &= ~TDF_TopLevelParameterTypeList;
    967 
    968       if (const RValueReferenceType *ParamRef
    969                                         = Param->getAs<RValueReferenceType>()) {
    970         if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
    971             !ParamRef->getPointeeType().getQualifiers())
    972           if (Arg->isLValueReferenceType())
    973             Param = ParamRef->getPointeeType();
    974       }
    975     }
    976   }
    977 
    978   // C++ [temp.deduct.type]p9:
    979   //   A template type argument T, a template template argument TT or a
    980   //   template non-type argument i can be deduced if P and A have one of
    981   //   the following forms:
    982   //
    983   //     T
    984   //     cv-list T
    985   if (const TemplateTypeParmType *TemplateTypeParm
    986         = Param->getAs<TemplateTypeParmType>()) {
    987     // Just skip any attempts to deduce from a placeholder type.
    988     if (Arg->isPlaceholderType())
    989       return Sema::TDK_Success;
    990 
    991     unsigned Index = TemplateTypeParm->getIndex();
    992     bool RecanonicalizeArg = false;
    993 
    994     // If the argument type is an array type, move the qualifiers up to the
    995     // top level, so they can be matched with the qualifiers on the parameter.
    996     if (isa<ArrayType>(Arg)) {
    997       Qualifiers Quals;
    998       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
    999       if (Quals) {
   1000         Arg = S.Context.getQualifiedType(Arg, Quals);
   1001         RecanonicalizeArg = true;
   1002       }
   1003     }
   1004 
   1005     // The argument type can not be less qualified than the parameter
   1006     // type.
   1007     if (!(TDF & TDF_IgnoreQualifiers) &&
   1008         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
   1009       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1010       Info.FirstArg = TemplateArgument(Param);
   1011       Info.SecondArg = TemplateArgument(Arg);
   1012       return Sema::TDK_Underqualified;
   1013     }
   1014 
   1015     assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
   1016     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
   1017     QualType DeducedType = Arg;
   1018 
   1019     // Remove any qualifiers on the parameter from the deduced type.
   1020     // We checked the qualifiers for consistency above.
   1021     Qualifiers DeducedQs = DeducedType.getQualifiers();
   1022     Qualifiers ParamQs = Param.getQualifiers();
   1023     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
   1024     if (ParamQs.hasObjCGCAttr())
   1025       DeducedQs.removeObjCGCAttr();
   1026     if (ParamQs.hasAddressSpace())
   1027       DeducedQs.removeAddressSpace();
   1028     if (ParamQs.hasObjCLifetime())
   1029       DeducedQs.removeObjCLifetime();
   1030 
   1031     // Objective-C ARC:
   1032     //   If template deduction would produce a lifetime qualifier on a type
   1033     //   that is not a lifetime type, template argument deduction fails.
   1034     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
   1035         !DeducedType->isDependentType()) {
   1036       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1037       Info.FirstArg = TemplateArgument(Param);
   1038       Info.SecondArg = TemplateArgument(Arg);
   1039       return Sema::TDK_Underqualified;
   1040     }
   1041 
   1042     // Objective-C ARC:
   1043     //   If template deduction would produce an argument type with lifetime type
   1044     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
   1045     if (S.getLangOpts().ObjCAutoRefCount &&
   1046         DeducedType->isObjCLifetimeType() &&
   1047         !DeducedQs.hasObjCLifetime())
   1048       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
   1049 
   1050     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
   1051                                              DeducedQs);
   1052 
   1053     if (RecanonicalizeArg)
   1054       DeducedType = S.Context.getCanonicalType(DeducedType);
   1055 
   1056     DeducedTemplateArgument NewDeduced(DeducedType);
   1057     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
   1058                                                                  Deduced[Index],
   1059                                                                    NewDeduced);
   1060     if (Result.isNull()) {
   1061       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1062       Info.FirstArg = Deduced[Index];
   1063       Info.SecondArg = NewDeduced;
   1064       return Sema::TDK_Inconsistent;
   1065     }
   1066 
   1067     Deduced[Index] = Result;
   1068     return Sema::TDK_Success;
   1069   }
   1070 
   1071   // Set up the template argument deduction information for a failure.
   1072   Info.FirstArg = TemplateArgument(ParamIn);
   1073   Info.SecondArg = TemplateArgument(ArgIn);
   1074 
   1075   // If the parameter is an already-substituted template parameter
   1076   // pack, do nothing: we don't know which of its arguments to look
   1077   // at, so we have to wait until all of the parameter packs in this
   1078   // expansion have arguments.
   1079   if (isa<SubstTemplateTypeParmPackType>(Param))
   1080     return Sema::TDK_Success;
   1081 
   1082   // Check the cv-qualifiers on the parameter and argument types.
   1083   if (!(TDF & TDF_IgnoreQualifiers)) {
   1084     if (TDF & TDF_ParamWithReferenceType) {
   1085       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
   1086         return Sema::TDK_NonDeducedMismatch;
   1087     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
   1088       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
   1089         return Sema::TDK_NonDeducedMismatch;
   1090     }
   1091 
   1092     // If the parameter type is not dependent, there is nothing to deduce.
   1093     if (!Param->isDependentType()) {
   1094       if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
   1095         return Sema::TDK_NonDeducedMismatch;
   1096 
   1097       return Sema::TDK_Success;
   1098     }
   1099   } else if (!Param->isDependentType() &&
   1100              Param.getUnqualifiedType() == Arg.getUnqualifiedType()) {
   1101     return Sema::TDK_Success;
   1102   }
   1103 
   1104   switch (Param->getTypeClass()) {
   1105     // Non-canonical types cannot appear here.
   1106 #define NON_CANONICAL_TYPE(Class, Base) \
   1107   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
   1108 #define TYPE(Class, Base)
   1109 #include "clang/AST/TypeNodes.def"
   1110 
   1111     case Type::TemplateTypeParm:
   1112     case Type::SubstTemplateTypeParmPack:
   1113       llvm_unreachable("Type nodes handled above");
   1114 
   1115     // These types cannot be dependent, so simply check whether the types are
   1116     // the same.
   1117     case Type::Builtin:
   1118     case Type::VariableArray:
   1119     case Type::Vector:
   1120     case Type::FunctionNoProto:
   1121     case Type::Record:
   1122     case Type::Enum:
   1123     case Type::ObjCObject:
   1124     case Type::ObjCInterface:
   1125     case Type::ObjCObjectPointer: {
   1126       if (TDF & TDF_SkipNonDependent)
   1127         return Sema::TDK_Success;
   1128 
   1129       if (TDF & TDF_IgnoreQualifiers) {
   1130         Param = Param.getUnqualifiedType();
   1131         Arg = Arg.getUnqualifiedType();
   1132       }
   1133 
   1134       return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
   1135     }
   1136 
   1137     //     _Complex T   [placeholder extension]
   1138     case Type::Complex:
   1139       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
   1140         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1141                                     cast<ComplexType>(Param)->getElementType(),
   1142                                     ComplexArg->getElementType(),
   1143                                     Info, Deduced, TDF);
   1144 
   1145       return Sema::TDK_NonDeducedMismatch;
   1146 
   1147     //     _Atomic T   [extension]
   1148     case Type::Atomic:
   1149       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
   1150         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1151                                        cast<AtomicType>(Param)->getValueType(),
   1152                                        AtomicArg->getValueType(),
   1153                                        Info, Deduced, TDF);
   1154 
   1155       return Sema::TDK_NonDeducedMismatch;
   1156 
   1157     //     T *
   1158     case Type::Pointer: {
   1159       QualType PointeeType;
   1160       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
   1161         PointeeType = PointerArg->getPointeeType();
   1162       } else if (const ObjCObjectPointerType *PointerArg
   1163                    = Arg->getAs<ObjCObjectPointerType>()) {
   1164         PointeeType = PointerArg->getPointeeType();
   1165       } else {
   1166         return Sema::TDK_NonDeducedMismatch;
   1167       }
   1168 
   1169       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
   1170       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1171                                      cast<PointerType>(Param)->getPointeeType(),
   1172                                      PointeeType,
   1173                                      Info, Deduced, SubTDF);
   1174     }
   1175 
   1176     //     T &
   1177     case Type::LValueReference: {
   1178       const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
   1179       if (!ReferenceArg)
   1180         return Sema::TDK_NonDeducedMismatch;
   1181 
   1182       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1183                            cast<LValueReferenceType>(Param)->getPointeeType(),
   1184                            ReferenceArg->getPointeeType(), Info, Deduced, 0);
   1185     }
   1186 
   1187     //     T && [C++0x]
   1188     case Type::RValueReference: {
   1189       const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
   1190       if (!ReferenceArg)
   1191         return Sema::TDK_NonDeducedMismatch;
   1192 
   1193       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1194                              cast<RValueReferenceType>(Param)->getPointeeType(),
   1195                              ReferenceArg->getPointeeType(),
   1196                              Info, Deduced, 0);
   1197     }
   1198 
   1199     //     T [] (implied, but not stated explicitly)
   1200     case Type::IncompleteArray: {
   1201       const IncompleteArrayType *IncompleteArrayArg =
   1202         S.Context.getAsIncompleteArrayType(Arg);
   1203       if (!IncompleteArrayArg)
   1204         return Sema::TDK_NonDeducedMismatch;
   1205 
   1206       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1207       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1208                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
   1209                     IncompleteArrayArg->getElementType(),
   1210                     Info, Deduced, SubTDF);
   1211     }
   1212 
   1213     //     T [integer-constant]
   1214     case Type::ConstantArray: {
   1215       const ConstantArrayType *ConstantArrayArg =
   1216         S.Context.getAsConstantArrayType(Arg);
   1217       if (!ConstantArrayArg)
   1218         return Sema::TDK_NonDeducedMismatch;
   1219 
   1220       const ConstantArrayType *ConstantArrayParm =
   1221         S.Context.getAsConstantArrayType(Param);
   1222       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
   1223         return Sema::TDK_NonDeducedMismatch;
   1224 
   1225       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1226       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1227                                            ConstantArrayParm->getElementType(),
   1228                                            ConstantArrayArg->getElementType(),
   1229                                            Info, Deduced, SubTDF);
   1230     }
   1231 
   1232     //     type [i]
   1233     case Type::DependentSizedArray: {
   1234       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
   1235       if (!ArrayArg)
   1236         return Sema::TDK_NonDeducedMismatch;
   1237 
   1238       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1239 
   1240       // Check the element type of the arrays
   1241       const DependentSizedArrayType *DependentArrayParm
   1242         = S.Context.getAsDependentSizedArrayType(Param);
   1243       if (Sema::TemplateDeductionResult Result
   1244             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1245                                           DependentArrayParm->getElementType(),
   1246                                           ArrayArg->getElementType(),
   1247                                           Info, Deduced, SubTDF))
   1248         return Result;
   1249 
   1250       // Determine the array bound is something we can deduce.
   1251       NonTypeTemplateParmDecl *NTTP
   1252         = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
   1253       if (!NTTP)
   1254         return Sema::TDK_Success;
   1255 
   1256       // We can perform template argument deduction for the given non-type
   1257       // template parameter.
   1258       assert(NTTP->getDepth() == 0 &&
   1259              "Cannot deduce non-type template argument at depth > 0");
   1260       if (const ConstantArrayType *ConstantArrayArg
   1261             = dyn_cast<ConstantArrayType>(ArrayArg)) {
   1262         llvm::APSInt Size(ConstantArrayArg->getSize());
   1263         return DeduceNonTypeTemplateArgument(S, NTTP, Size,
   1264                                              S.Context.getSizeType(),
   1265                                              /*ArrayBound=*/true,
   1266                                              Info, Deduced);
   1267       }
   1268       if (const DependentSizedArrayType *DependentArrayArg
   1269             = dyn_cast<DependentSizedArrayType>(ArrayArg))
   1270         if (DependentArrayArg->getSizeExpr())
   1271           return DeduceNonTypeTemplateArgument(S, NTTP,
   1272                                                DependentArrayArg->getSizeExpr(),
   1273                                                Info, Deduced);
   1274 
   1275       // Incomplete type does not match a dependently-sized array type
   1276       return Sema::TDK_NonDeducedMismatch;
   1277     }
   1278 
   1279     //     type(*)(T)
   1280     //     T(*)()
   1281     //     T(*)(T)
   1282     case Type::FunctionProto: {
   1283       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
   1284       const FunctionProtoType *FunctionProtoArg =
   1285         dyn_cast<FunctionProtoType>(Arg);
   1286       if (!FunctionProtoArg)
   1287         return Sema::TDK_NonDeducedMismatch;
   1288 
   1289       const FunctionProtoType *FunctionProtoParam =
   1290         cast<FunctionProtoType>(Param);
   1291 
   1292       if (FunctionProtoParam->getTypeQuals()
   1293             != FunctionProtoArg->getTypeQuals() ||
   1294           FunctionProtoParam->getRefQualifier()
   1295             != FunctionProtoArg->getRefQualifier() ||
   1296           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
   1297         return Sema::TDK_NonDeducedMismatch;
   1298 
   1299       // Check return types.
   1300       if (Sema::TemplateDeductionResult Result
   1301             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1302                                             FunctionProtoParam->getResultType(),
   1303                                             FunctionProtoArg->getResultType(),
   1304                                             Info, Deduced, 0))
   1305         return Result;
   1306 
   1307       return DeduceTemplateArguments(S, TemplateParams,
   1308                                      FunctionProtoParam->arg_type_begin(),
   1309                                      FunctionProtoParam->getNumArgs(),
   1310                                      FunctionProtoArg->arg_type_begin(),
   1311                                      FunctionProtoArg->getNumArgs(),
   1312                                      Info, Deduced, SubTDF);
   1313     }
   1314 
   1315     case Type::InjectedClassName: {
   1316       // Treat a template's injected-class-name as if the template
   1317       // specialization type had been used.
   1318       Param = cast<InjectedClassNameType>(Param)
   1319         ->getInjectedSpecializationType();
   1320       assert(isa<TemplateSpecializationType>(Param) &&
   1321              "injected class name is not a template specialization type");
   1322       // fall through
   1323     }
   1324 
   1325     //     template-name<T> (where template-name refers to a class template)
   1326     //     template-name<i>
   1327     //     TT<T>
   1328     //     TT<i>
   1329     //     TT<>
   1330     case Type::TemplateSpecialization: {
   1331       const TemplateSpecializationType *SpecParam
   1332         = cast<TemplateSpecializationType>(Param);
   1333 
   1334       // Try to deduce template arguments from the template-id.
   1335       Sema::TemplateDeductionResult Result
   1336         = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
   1337                                   Info, Deduced);
   1338 
   1339       if (Result && (TDF & TDF_DerivedClass)) {
   1340         // C++ [temp.deduct.call]p3b3:
   1341         //   If P is a class, and P has the form template-id, then A can be a
   1342         //   derived class of the deduced A. Likewise, if P is a pointer to a
   1343         //   class of the form template-id, A can be a pointer to a derived
   1344         //   class pointed to by the deduced A.
   1345         //
   1346         // More importantly:
   1347         //   These alternatives are considered only if type deduction would
   1348         //   otherwise fail.
   1349         if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
   1350           // We cannot inspect base classes as part of deduction when the type
   1351           // is incomplete, so either instantiate any templates necessary to
   1352           // complete the type, or skip over it if it cannot be completed.
   1353           if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
   1354             return Result;
   1355 
   1356           // Use data recursion to crawl through the list of base classes.
   1357           // Visited contains the set of nodes we have already visited, while
   1358           // ToVisit is our stack of records that we still need to visit.
   1359           llvm::SmallPtrSet<const RecordType *, 8> Visited;
   1360           SmallVector<const RecordType *, 8> ToVisit;
   1361           ToVisit.push_back(RecordT);
   1362           bool Successful = false;
   1363           SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
   1364                                                               Deduced.end());
   1365           while (!ToVisit.empty()) {
   1366             // Retrieve the next class in the inheritance hierarchy.
   1367             const RecordType *NextT = ToVisit.back();
   1368             ToVisit.pop_back();
   1369 
   1370             // If we have already seen this type, skip it.
   1371             if (!Visited.insert(NextT))
   1372               continue;
   1373 
   1374             // If this is a base class, try to perform template argument
   1375             // deduction from it.
   1376             if (NextT != RecordT) {
   1377               Sema::TemplateDeductionResult BaseResult
   1378                 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
   1379                                           QualType(NextT, 0), Info, Deduced);
   1380 
   1381               // If template argument deduction for this base was successful,
   1382               // note that we had some success. Otherwise, ignore any deductions
   1383               // from this base class.
   1384               if (BaseResult == Sema::TDK_Success) {
   1385                 Successful = true;
   1386                 DeducedOrig.clear();
   1387                 DeducedOrig.append(Deduced.begin(), Deduced.end());
   1388               }
   1389               else
   1390                 Deduced = DeducedOrig;
   1391             }
   1392 
   1393             // Visit base classes
   1394             CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
   1395             for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
   1396                                                  BaseEnd = Next->bases_end();
   1397                  Base != BaseEnd; ++Base) {
   1398               assert(Base->getType()->isRecordType() &&
   1399                      "Base class that isn't a record?");
   1400               ToVisit.push_back(Base->getType()->getAs<RecordType>());
   1401             }
   1402           }
   1403 
   1404           if (Successful)
   1405             return Sema::TDK_Success;
   1406         }
   1407 
   1408       }
   1409 
   1410       return Result;
   1411     }
   1412 
   1413     //     T type::*
   1414     //     T T::*
   1415     //     T (type::*)()
   1416     //     type (T::*)()
   1417     //     type (type::*)(T)
   1418     //     type (T::*)(T)
   1419     //     T (type::*)(T)
   1420     //     T (T::*)()
   1421     //     T (T::*)(T)
   1422     case Type::MemberPointer: {
   1423       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
   1424       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
   1425       if (!MemPtrArg)
   1426         return Sema::TDK_NonDeducedMismatch;
   1427 
   1428       if (Sema::TemplateDeductionResult Result
   1429             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1430                                                  MemPtrParam->getPointeeType(),
   1431                                                  MemPtrArg->getPointeeType(),
   1432                                                  Info, Deduced,
   1433                                                  TDF & TDF_IgnoreQualifiers))
   1434         return Result;
   1435 
   1436       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1437                                            QualType(MemPtrParam->getClass(), 0),
   1438                                            QualType(MemPtrArg->getClass(), 0),
   1439                                            Info, Deduced,
   1440                                            TDF & TDF_IgnoreQualifiers);
   1441     }
   1442 
   1443     //     (clang extension)
   1444     //
   1445     //     type(^)(T)
   1446     //     T(^)()
   1447     //     T(^)(T)
   1448     case Type::BlockPointer: {
   1449       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
   1450       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
   1451 
   1452       if (!BlockPtrArg)
   1453         return Sema::TDK_NonDeducedMismatch;
   1454 
   1455       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1456                                                 BlockPtrParam->getPointeeType(),
   1457                                                 BlockPtrArg->getPointeeType(),
   1458                                                 Info, Deduced, 0);
   1459     }
   1460 
   1461     //     (clang extension)
   1462     //
   1463     //     T __attribute__(((ext_vector_type(<integral constant>))))
   1464     case Type::ExtVector: {
   1465       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
   1466       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1467         // Make sure that the vectors have the same number of elements.
   1468         if (VectorParam->getNumElements() != VectorArg->getNumElements())
   1469           return Sema::TDK_NonDeducedMismatch;
   1470 
   1471         // Perform deduction on the element types.
   1472         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1473                                                   VectorParam->getElementType(),
   1474                                                   VectorArg->getElementType(),
   1475                                                   Info, Deduced, TDF);
   1476       }
   1477 
   1478       if (const DependentSizedExtVectorType *VectorArg
   1479                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1480         // We can't check the number of elements, since the argument has a
   1481         // dependent number of elements. This can only occur during partial
   1482         // ordering.
   1483 
   1484         // Perform deduction on the element types.
   1485         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1486                                                   VectorParam->getElementType(),
   1487                                                   VectorArg->getElementType(),
   1488                                                   Info, Deduced, TDF);
   1489       }
   1490 
   1491       return Sema::TDK_NonDeducedMismatch;
   1492     }
   1493 
   1494     //     (clang extension)
   1495     //
   1496     //     T __attribute__(((ext_vector_type(N))))
   1497     case Type::DependentSizedExtVector: {
   1498       const DependentSizedExtVectorType *VectorParam
   1499         = cast<DependentSizedExtVectorType>(Param);
   1500 
   1501       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1502         // Perform deduction on the element types.
   1503         if (Sema::TemplateDeductionResult Result
   1504               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1505                                                   VectorParam->getElementType(),
   1506                                                    VectorArg->getElementType(),
   1507                                                    Info, Deduced, TDF))
   1508           return Result;
   1509 
   1510         // Perform deduction on the vector size, if we can.
   1511         NonTypeTemplateParmDecl *NTTP
   1512           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1513         if (!NTTP)
   1514           return Sema::TDK_Success;
   1515 
   1516         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
   1517         ArgSize = VectorArg->getNumElements();
   1518         return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
   1519                                              false, Info, Deduced);
   1520       }
   1521 
   1522       if (const DependentSizedExtVectorType *VectorArg
   1523                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1524         // Perform deduction on the element types.
   1525         if (Sema::TemplateDeductionResult Result
   1526             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1527                                                  VectorParam->getElementType(),
   1528                                                  VectorArg->getElementType(),
   1529                                                  Info, Deduced, TDF))
   1530           return Result;
   1531 
   1532         // Perform deduction on the vector size, if we can.
   1533         NonTypeTemplateParmDecl *NTTP
   1534           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1535         if (!NTTP)
   1536           return Sema::TDK_Success;
   1537 
   1538         return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
   1539                                              Info, Deduced);
   1540       }
   1541 
   1542       return Sema::TDK_NonDeducedMismatch;
   1543     }
   1544 
   1545     case Type::TypeOfExpr:
   1546     case Type::TypeOf:
   1547     case Type::DependentName:
   1548     case Type::UnresolvedUsing:
   1549     case Type::Decltype:
   1550     case Type::UnaryTransform:
   1551     case Type::Auto:
   1552     case Type::DependentTemplateSpecialization:
   1553     case Type::PackExpansion:
   1554       // No template argument deduction for these types
   1555       return Sema::TDK_Success;
   1556   }
   1557 
   1558   llvm_unreachable("Invalid Type Class!");
   1559 }
   1560 
   1561 static Sema::TemplateDeductionResult
   1562 DeduceTemplateArguments(Sema &S,
   1563                         TemplateParameterList *TemplateParams,
   1564                         const TemplateArgument &Param,
   1565                         TemplateArgument Arg,
   1566                         TemplateDeductionInfo &Info,
   1567                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1568   // If the template argument is a pack expansion, perform template argument
   1569   // deduction against the pattern of that expansion. This only occurs during
   1570   // partial ordering.
   1571   if (Arg.isPackExpansion())
   1572     Arg = Arg.getPackExpansionPattern();
   1573 
   1574   switch (Param.getKind()) {
   1575   case TemplateArgument::Null:
   1576     llvm_unreachable("Null template argument in parameter list");
   1577 
   1578   case TemplateArgument::Type:
   1579     if (Arg.getKind() == TemplateArgument::Type)
   1580       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1581                                                 Param.getAsType(),
   1582                                                 Arg.getAsType(),
   1583                                                 Info, Deduced, 0);
   1584     Info.FirstArg = Param;
   1585     Info.SecondArg = Arg;
   1586     return Sema::TDK_NonDeducedMismatch;
   1587 
   1588   case TemplateArgument::Template:
   1589     if (Arg.getKind() == TemplateArgument::Template)
   1590       return DeduceTemplateArguments(S, TemplateParams,
   1591                                      Param.getAsTemplate(),
   1592                                      Arg.getAsTemplate(), Info, Deduced);
   1593     Info.FirstArg = Param;
   1594     Info.SecondArg = Arg;
   1595     return Sema::TDK_NonDeducedMismatch;
   1596 
   1597   case TemplateArgument::TemplateExpansion:
   1598     llvm_unreachable("caller should handle pack expansions");
   1599 
   1600   case TemplateArgument::Declaration:
   1601     if (Arg.getKind() == TemplateArgument::Declaration &&
   1602         isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
   1603       return Sema::TDK_Success;
   1604 
   1605     Info.FirstArg = Param;
   1606     Info.SecondArg = Arg;
   1607     return Sema::TDK_NonDeducedMismatch;
   1608 
   1609   case TemplateArgument::Integral:
   1610     if (Arg.getKind() == TemplateArgument::Integral) {
   1611       if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
   1612         return Sema::TDK_Success;
   1613 
   1614       Info.FirstArg = Param;
   1615       Info.SecondArg = Arg;
   1616       return Sema::TDK_NonDeducedMismatch;
   1617     }
   1618 
   1619     if (Arg.getKind() == TemplateArgument::Expression) {
   1620       Info.FirstArg = Param;
   1621       Info.SecondArg = Arg;
   1622       return Sema::TDK_NonDeducedMismatch;
   1623     }
   1624 
   1625     Info.FirstArg = Param;
   1626     Info.SecondArg = Arg;
   1627     return Sema::TDK_NonDeducedMismatch;
   1628 
   1629   case TemplateArgument::Expression: {
   1630     if (NonTypeTemplateParmDecl *NTTP
   1631           = getDeducedParameterFromExpr(Param.getAsExpr())) {
   1632       if (Arg.getKind() == TemplateArgument::Integral)
   1633         return DeduceNonTypeTemplateArgument(S, NTTP,
   1634                                              Arg.getAsIntegral(),
   1635                                              Arg.getIntegralType(),
   1636                                              /*ArrayBound=*/false,
   1637                                              Info, Deduced);
   1638       if (Arg.getKind() == TemplateArgument::Expression)
   1639         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
   1640                                              Info, Deduced);
   1641       if (Arg.getKind() == TemplateArgument::Declaration)
   1642         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
   1643                                              Info, Deduced);
   1644 
   1645       Info.FirstArg = Param;
   1646       Info.SecondArg = Arg;
   1647       return Sema::TDK_NonDeducedMismatch;
   1648     }
   1649 
   1650     // Can't deduce anything, but that's okay.
   1651     return Sema::TDK_Success;
   1652   }
   1653   case TemplateArgument::Pack:
   1654     llvm_unreachable("Argument packs should be expanded by the caller!");
   1655   }
   1656 
   1657   llvm_unreachable("Invalid TemplateArgument Kind!");
   1658 }
   1659 
   1660 /// \brief Determine whether there is a template argument to be used for
   1661 /// deduction.
   1662 ///
   1663 /// This routine "expands" argument packs in-place, overriding its input
   1664 /// parameters so that \c Args[ArgIdx] will be the available template argument.
   1665 ///
   1666 /// \returns true if there is another template argument (which will be at
   1667 /// \c Args[ArgIdx]), false otherwise.
   1668 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
   1669                                             unsigned &ArgIdx,
   1670                                             unsigned &NumArgs) {
   1671   if (ArgIdx == NumArgs)
   1672     return false;
   1673 
   1674   const TemplateArgument &Arg = Args[ArgIdx];
   1675   if (Arg.getKind() != TemplateArgument::Pack)
   1676     return true;
   1677 
   1678   assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
   1679   Args = Arg.pack_begin();
   1680   NumArgs = Arg.pack_size();
   1681   ArgIdx = 0;
   1682   return ArgIdx < NumArgs;
   1683 }
   1684 
   1685 /// \brief Determine whether the given set of template arguments has a pack
   1686 /// expansion that is not the last template argument.
   1687 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
   1688                                       unsigned NumArgs) {
   1689   unsigned ArgIdx = 0;
   1690   while (ArgIdx < NumArgs) {
   1691     const TemplateArgument &Arg = Args[ArgIdx];
   1692 
   1693     // Unwrap argument packs.
   1694     if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
   1695       Args = Arg.pack_begin();
   1696       NumArgs = Arg.pack_size();
   1697       ArgIdx = 0;
   1698       continue;
   1699     }
   1700 
   1701     ++ArgIdx;
   1702     if (ArgIdx == NumArgs)
   1703       return false;
   1704 
   1705     if (Arg.isPackExpansion())
   1706       return true;
   1707   }
   1708 
   1709   return false;
   1710 }
   1711 
   1712 static Sema::TemplateDeductionResult
   1713 DeduceTemplateArguments(Sema &S,
   1714                         TemplateParameterList *TemplateParams,
   1715                         const TemplateArgument *Params, unsigned NumParams,
   1716                         const TemplateArgument *Args, unsigned NumArgs,
   1717                         TemplateDeductionInfo &Info,
   1718                     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   1719                         bool NumberOfArgumentsMustMatch) {
   1720   // C++0x [temp.deduct.type]p9:
   1721   //   If the template argument list of P contains a pack expansion that is not
   1722   //   the last template argument, the entire template argument list is a
   1723   //   non-deduced context.
   1724   if (hasPackExpansionBeforeEnd(Params, NumParams))
   1725     return Sema::TDK_Success;
   1726 
   1727   // C++0x [temp.deduct.type]p9:
   1728   //   If P has a form that contains <T> or <i>, then each argument Pi of the
   1729   //   respective template argument list P is compared with the corresponding
   1730   //   argument Ai of the corresponding template argument list of A.
   1731   unsigned ArgIdx = 0, ParamIdx = 0;
   1732   for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
   1733        ++ParamIdx) {
   1734     if (!Params[ParamIdx].isPackExpansion()) {
   1735       // The simple case: deduce template arguments by matching Pi and Ai.
   1736 
   1737       // Check whether we have enough arguments.
   1738       if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
   1739         return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
   1740                                          : Sema::TDK_Success;
   1741 
   1742       if (Args[ArgIdx].isPackExpansion()) {
   1743         // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
   1744         // but applied to pack expansions that are template arguments.
   1745         return Sema::TDK_NonDeducedMismatch;
   1746       }
   1747 
   1748       // Perform deduction for this Pi/Ai pair.
   1749       if (Sema::TemplateDeductionResult Result
   1750             = DeduceTemplateArguments(S, TemplateParams,
   1751                                       Params[ParamIdx], Args[ArgIdx],
   1752                                       Info, Deduced))
   1753         return Result;
   1754 
   1755       // Move to the next argument.
   1756       ++ArgIdx;
   1757       continue;
   1758     }
   1759 
   1760     // The parameter is a pack expansion.
   1761 
   1762     // C++0x [temp.deduct.type]p9:
   1763     //   If Pi is a pack expansion, then the pattern of Pi is compared with
   1764     //   each remaining argument in the template argument list of A. Each
   1765     //   comparison deduces template arguments for subsequent positions in the
   1766     //   template parameter packs expanded by Pi.
   1767     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
   1768 
   1769     // Compute the set of template parameter indices that correspond to
   1770     // parameter packs expanded by the pack expansion.
   1771     SmallVector<unsigned, 2> PackIndices;
   1772     {
   1773       llvm::SmallBitVector SawIndices(TemplateParams->size());
   1774       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
   1775       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
   1776       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
   1777         unsigned Depth, Index;
   1778         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
   1779         if (Depth == 0 && !SawIndices[Index]) {
   1780           SawIndices[Index] = true;
   1781           PackIndices.push_back(Index);
   1782         }
   1783       }
   1784     }
   1785     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
   1786 
   1787     // FIXME: If there are no remaining arguments, we can bail out early
   1788     // and set any deduced parameter packs to an empty argument pack.
   1789     // The latter part of this is a (minor) correctness issue.
   1790 
   1791     // Save the deduced template arguments for each parameter pack expanded
   1792     // by this pack expansion, then clear out the deduction.
   1793     SmallVector<DeducedTemplateArgument, 2>
   1794       SavedPacks(PackIndices.size());
   1795     SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
   1796       NewlyDeducedPacks(PackIndices.size());
   1797     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
   1798                                  NewlyDeducedPacks);
   1799 
   1800     // Keep track of the deduced template arguments for each parameter pack
   1801     // expanded by this pack expansion (the outer index) and for each
   1802     // template argument (the inner SmallVectors).
   1803     bool HasAnyArguments = false;
   1804     while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
   1805       HasAnyArguments = true;
   1806 
   1807       // Deduce template arguments from the pattern.
   1808       if (Sema::TemplateDeductionResult Result
   1809             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
   1810                                       Info, Deduced))
   1811         return Result;
   1812 
   1813       // Capture the deduced template arguments for each parameter pack expanded
   1814       // by this pack expansion, add them to the list of arguments we've deduced
   1815       // for that pack, then clear out the deduced argument.
   1816       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
   1817         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
   1818         if (!DeducedArg.isNull()) {
   1819           NewlyDeducedPacks[I].push_back(DeducedArg);
   1820           DeducedArg = DeducedTemplateArgument();
   1821         }
   1822       }
   1823 
   1824       ++ArgIdx;
   1825     }
   1826 
   1827     // Build argument packs for each of the parameter packs expanded by this
   1828     // pack expansion.
   1829     if (Sema::TemplateDeductionResult Result
   1830           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
   1831                                         Deduced, PackIndices, SavedPacks,
   1832                                         NewlyDeducedPacks, Info))
   1833       return Result;
   1834   }
   1835 
   1836   // If there is an argument remaining, then we had too many arguments.
   1837   if (NumberOfArgumentsMustMatch &&
   1838       hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
   1839     return Sema::TDK_NonDeducedMismatch;
   1840 
   1841   return Sema::TDK_Success;
   1842 }
   1843 
   1844 static Sema::TemplateDeductionResult
   1845 DeduceTemplateArguments(Sema &S,
   1846                         TemplateParameterList *TemplateParams,
   1847                         const TemplateArgumentList &ParamList,
   1848                         const TemplateArgumentList &ArgList,
   1849                         TemplateDeductionInfo &Info,
   1850                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1851   return DeduceTemplateArguments(S, TemplateParams,
   1852                                  ParamList.data(), ParamList.size(),
   1853                                  ArgList.data(), ArgList.size(),
   1854                                  Info, Deduced);
   1855 }
   1856 
   1857 /// \brief Determine whether two template arguments are the same.
   1858 static bool isSameTemplateArg(ASTContext &Context,
   1859                               const TemplateArgument &X,
   1860                               const TemplateArgument &Y) {
   1861   if (X.getKind() != Y.getKind())
   1862     return false;
   1863 
   1864   switch (X.getKind()) {
   1865     case TemplateArgument::Null:
   1866       llvm_unreachable("Comparing NULL template argument");
   1867 
   1868     case TemplateArgument::Type:
   1869       return Context.getCanonicalType(X.getAsType()) ==
   1870              Context.getCanonicalType(Y.getAsType());
   1871 
   1872     case TemplateArgument::Declaration:
   1873       return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
   1874 
   1875     case TemplateArgument::Template:
   1876     case TemplateArgument::TemplateExpansion:
   1877       return Context.getCanonicalTemplateName(
   1878                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
   1879              Context.getCanonicalTemplateName(
   1880                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
   1881 
   1882     case TemplateArgument::Integral:
   1883       return X.getAsIntegral() == Y.getAsIntegral();
   1884 
   1885     case TemplateArgument::Expression: {
   1886       llvm::FoldingSetNodeID XID, YID;
   1887       X.getAsExpr()->Profile(XID, Context, true);
   1888       Y.getAsExpr()->Profile(YID, Context, true);
   1889       return XID == YID;
   1890     }
   1891 
   1892     case TemplateArgument::Pack:
   1893       if (X.pack_size() != Y.pack_size())
   1894         return false;
   1895 
   1896       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
   1897                                         XPEnd = X.pack_end(),
   1898                                            YP = Y.pack_begin();
   1899            XP != XPEnd; ++XP, ++YP)
   1900         if (!isSameTemplateArg(Context, *XP, *YP))
   1901           return false;
   1902 
   1903       return true;
   1904   }
   1905 
   1906   llvm_unreachable("Invalid TemplateArgument Kind!");
   1907 }
   1908 
   1909 /// \brief Allocate a TemplateArgumentLoc where all locations have
   1910 /// been initialized to the given location.
   1911 ///
   1912 /// \param S The semantic analysis object.
   1913 ///
   1914 /// \param Arg The template argument we are producing template argument
   1915 /// location information for.
   1916 ///
   1917 /// \param NTTPType For a declaration template argument, the type of
   1918 /// the non-type template parameter that corresponds to this template
   1919 /// argument.
   1920 ///
   1921 /// \param Loc The source location to use for the resulting template
   1922 /// argument.
   1923 static TemplateArgumentLoc
   1924 getTrivialTemplateArgumentLoc(Sema &S,
   1925                               const TemplateArgument &Arg,
   1926                               QualType NTTPType,
   1927                               SourceLocation Loc) {
   1928   switch (Arg.getKind()) {
   1929   case TemplateArgument::Null:
   1930     llvm_unreachable("Can't get a NULL template argument here");
   1931 
   1932   case TemplateArgument::Type:
   1933     return TemplateArgumentLoc(Arg,
   1934                      S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
   1935 
   1936   case TemplateArgument::Declaration: {
   1937     Expr *E
   1938       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
   1939           .takeAs<Expr>();
   1940     return TemplateArgumentLoc(TemplateArgument(E), E);
   1941   }
   1942 
   1943   case TemplateArgument::Integral: {
   1944     Expr *E
   1945       = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
   1946     return TemplateArgumentLoc(TemplateArgument(E), E);
   1947   }
   1948 
   1949     case TemplateArgument::Template:
   1950     case TemplateArgument::TemplateExpansion: {
   1951       NestedNameSpecifierLocBuilder Builder;
   1952       TemplateName Template = Arg.getAsTemplate();
   1953       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
   1954         Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
   1955       else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   1956         Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
   1957 
   1958       if (Arg.getKind() == TemplateArgument::Template)
   1959         return TemplateArgumentLoc(Arg,
   1960                                    Builder.getWithLocInContext(S.Context),
   1961                                    Loc);
   1962 
   1963 
   1964       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
   1965                                  Loc, Loc);
   1966     }
   1967 
   1968   case TemplateArgument::Expression:
   1969     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
   1970 
   1971   case TemplateArgument::Pack:
   1972     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
   1973   }
   1974 
   1975   llvm_unreachable("Invalid TemplateArgument Kind!");
   1976 }
   1977 
   1978 
   1979 /// \brief Convert the given deduced template argument and add it to the set of
   1980 /// fully-converted template arguments.
   1981 static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
   1982                                            DeducedTemplateArgument Arg,
   1983                                            NamedDecl *Template,
   1984                                            QualType NTTPType,
   1985                                            unsigned ArgumentPackIndex,
   1986                                            TemplateDeductionInfo &Info,
   1987                                            bool InFunctionTemplate,
   1988                              SmallVectorImpl<TemplateArgument> &Output) {
   1989   if (Arg.getKind() == TemplateArgument::Pack) {
   1990     // This is a template argument pack, so check each of its arguments against
   1991     // the template parameter.
   1992     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
   1993     for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
   1994                                       PAEnd = Arg.pack_end();
   1995          PA != PAEnd; ++PA) {
   1996       // When converting the deduced template argument, append it to the
   1997       // general output list. We need to do this so that the template argument
   1998       // checking logic has all of the prior template arguments available.
   1999       DeducedTemplateArgument InnerArg(*PA);
   2000       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
   2001       if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
   2002                                          NTTPType, PackedArgsBuilder.size(),
   2003                                          Info, InFunctionTemplate, Output))
   2004         return true;
   2005 
   2006       // Move the converted template argument into our argument pack.
   2007       PackedArgsBuilder.push_back(Output.back());
   2008       Output.pop_back();
   2009     }
   2010 
   2011     // Create the resulting argument pack.
   2012     Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
   2013                                                       PackedArgsBuilder.data(),
   2014                                                      PackedArgsBuilder.size()));
   2015     return false;
   2016   }
   2017 
   2018   // Convert the deduced template argument into a template
   2019   // argument that we can check, almost as if the user had written
   2020   // the template argument explicitly.
   2021   TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
   2022                                                              Info.getLocation());
   2023 
   2024   // Check the template argument, converting it as necessary.
   2025   return S.CheckTemplateArgument(Param, ArgLoc,
   2026                                  Template,
   2027                                  Template->getLocation(),
   2028                                  Template->getSourceRange().getEnd(),
   2029                                  ArgumentPackIndex,
   2030                                  Output,
   2031                                  InFunctionTemplate
   2032                                   ? (Arg.wasDeducedFromArrayBound()
   2033                                        ? Sema::CTAK_DeducedFromArrayBound
   2034                                        : Sema::CTAK_Deduced)
   2035                                  : Sema::CTAK_Specified);
   2036 }
   2037 
   2038 /// Complete template argument deduction for a class template partial
   2039 /// specialization.
   2040 static Sema::TemplateDeductionResult
   2041 FinishTemplateArgumentDeduction(Sema &S,
   2042                                 ClassTemplatePartialSpecializationDecl *Partial,
   2043                                 const TemplateArgumentList &TemplateArgs,
   2044                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2045                                 TemplateDeductionInfo &Info) {
   2046   // Unevaluated SFINAE context.
   2047   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   2048   Sema::SFINAETrap Trap(S);
   2049 
   2050   Sema::ContextRAII SavedContext(S, Partial);
   2051 
   2052   // C++ [temp.deduct.type]p2:
   2053   //   [...] or if any template argument remains neither deduced nor
   2054   //   explicitly specified, template argument deduction fails.
   2055   SmallVector<TemplateArgument, 4> Builder;
   2056   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
   2057   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
   2058     NamedDecl *Param = PartialParams->getParam(I);
   2059     if (Deduced[I].isNull()) {
   2060       Info.Param = makeTemplateParameter(Param);
   2061       return Sema::TDK_Incomplete;
   2062     }
   2063 
   2064     // We have deduced this argument, so it still needs to be
   2065     // checked and converted.
   2066 
   2067     // First, for a non-type template parameter type that is
   2068     // initialized by a declaration, we need the type of the
   2069     // corresponding non-type template parameter.
   2070     QualType NTTPType;
   2071     if (NonTypeTemplateParmDecl *NTTP
   2072                                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2073       NTTPType = NTTP->getType();
   2074       if (NTTPType->isDependentType()) {
   2075         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2076                                           Builder.data(), Builder.size());
   2077         NTTPType = S.SubstType(NTTPType,
   2078                                MultiLevelTemplateArgumentList(TemplateArgs),
   2079                                NTTP->getLocation(),
   2080                                NTTP->getDeclName());
   2081         if (NTTPType.isNull()) {
   2082           Info.Param = makeTemplateParameter(Param);
   2083           // FIXME: These template arguments are temporary. Free them!
   2084           Info.reset(TemplateArgumentList::CreateCopy(S.Context,
   2085                                                       Builder.data(),
   2086                                                       Builder.size()));
   2087           return Sema::TDK_SubstitutionFailure;
   2088         }
   2089       }
   2090     }
   2091 
   2092     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
   2093                                        Partial, NTTPType, 0, Info, false,
   2094                                        Builder)) {
   2095       Info.Param = makeTemplateParameter(Param);
   2096       // FIXME: These template arguments are temporary. Free them!
   2097       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2098                                                   Builder.size()));
   2099       return Sema::TDK_SubstitutionFailure;
   2100     }
   2101   }
   2102 
   2103   // Form the template argument list from the deduced template arguments.
   2104   TemplateArgumentList *DeducedArgumentList
   2105     = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2106                                        Builder.size());
   2107 
   2108   Info.reset(DeducedArgumentList);
   2109 
   2110   // Substitute the deduced template arguments into the template
   2111   // arguments of the class template partial specialization, and
   2112   // verify that the instantiated template arguments are both valid
   2113   // and are equivalent to the template arguments originally provided
   2114   // to the class template.
   2115   LocalInstantiationScope InstScope(S);
   2116   ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
   2117   const TemplateArgumentLoc *PartialTemplateArgs
   2118     = Partial->getTemplateArgsAsWritten();
   2119 
   2120   // Note that we don't provide the langle and rangle locations.
   2121   TemplateArgumentListInfo InstArgs;
   2122 
   2123   if (S.Subst(PartialTemplateArgs,
   2124               Partial->getNumTemplateArgsAsWritten(),
   2125               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
   2126     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
   2127     if (ParamIdx >= Partial->getTemplateParameters()->size())
   2128       ParamIdx = Partial->getTemplateParameters()->size() - 1;
   2129 
   2130     Decl *Param
   2131       = const_cast<NamedDecl *>(
   2132                           Partial->getTemplateParameters()->getParam(ParamIdx));
   2133     Info.Param = makeTemplateParameter(Param);
   2134     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
   2135     return Sema::TDK_SubstitutionFailure;
   2136   }
   2137 
   2138   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
   2139   if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
   2140                                   InstArgs, false, ConvertedInstArgs))
   2141     return Sema::TDK_SubstitutionFailure;
   2142 
   2143   TemplateParameterList *TemplateParams
   2144     = ClassTemplate->getTemplateParameters();
   2145   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
   2146     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
   2147     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
   2148       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
   2149       Info.FirstArg = TemplateArgs[I];
   2150       Info.SecondArg = InstArg;
   2151       return Sema::TDK_NonDeducedMismatch;
   2152     }
   2153   }
   2154 
   2155   if (Trap.hasErrorOccurred())
   2156     return Sema::TDK_SubstitutionFailure;
   2157 
   2158   return Sema::TDK_Success;
   2159 }
   2160 
   2161 /// \brief Perform template argument deduction to determine whether
   2162 /// the given template arguments match the given class template
   2163 /// partial specialization per C++ [temp.class.spec.match].
   2164 Sema::TemplateDeductionResult
   2165 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
   2166                               const TemplateArgumentList &TemplateArgs,
   2167                               TemplateDeductionInfo &Info) {
   2168   // C++ [temp.class.spec.match]p2:
   2169   //   A partial specialization matches a given actual template
   2170   //   argument list if the template arguments of the partial
   2171   //   specialization can be deduced from the actual template argument
   2172   //   list (14.8.2).
   2173 
   2174   // Unevaluated SFINAE context.
   2175   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2176   SFINAETrap Trap(*this);
   2177 
   2178   SmallVector<DeducedTemplateArgument, 4> Deduced;
   2179   Deduced.resize(Partial->getTemplateParameters()->size());
   2180   if (TemplateDeductionResult Result
   2181         = ::DeduceTemplateArguments(*this,
   2182                                     Partial->getTemplateParameters(),
   2183                                     Partial->getTemplateArgs(),
   2184                                     TemplateArgs, Info, Deduced))
   2185     return Result;
   2186 
   2187   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2188   InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
   2189                              DeducedArgs, Info);
   2190   if (Inst)
   2191     return TDK_InstantiationDepth;
   2192 
   2193   if (Trap.hasErrorOccurred())
   2194     return Sema::TDK_SubstitutionFailure;
   2195 
   2196   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
   2197                                            Deduced, Info);
   2198 }
   2199 
   2200 /// \brief Determine whether the given type T is a simple-template-id type.
   2201 static bool isSimpleTemplateIdType(QualType T) {
   2202   if (const TemplateSpecializationType *Spec
   2203         = T->getAs<TemplateSpecializationType>())
   2204     return Spec->getTemplateName().getAsTemplateDecl() != 0;
   2205 
   2206   return false;
   2207 }
   2208 
   2209 /// \brief Substitute the explicitly-provided template arguments into the
   2210 /// given function template according to C++ [temp.arg.explicit].
   2211 ///
   2212 /// \param FunctionTemplate the function template into which the explicit
   2213 /// template arguments will be substituted.
   2214 ///
   2215 /// \param ExplicitTemplateArgs the explicitly-specified template
   2216 /// arguments.
   2217 ///
   2218 /// \param Deduced the deduced template arguments, which will be populated
   2219 /// with the converted and checked explicit template arguments.
   2220 ///
   2221 /// \param ParamTypes will be populated with the instantiated function
   2222 /// parameters.
   2223 ///
   2224 /// \param FunctionType if non-NULL, the result type of the function template
   2225 /// will also be instantiated and the pointed-to value will be updated with
   2226 /// the instantiated function type.
   2227 ///
   2228 /// \param Info if substitution fails for any reason, this object will be
   2229 /// populated with more information about the failure.
   2230 ///
   2231 /// \returns TDK_Success if substitution was successful, or some failure
   2232 /// condition.
   2233 Sema::TemplateDeductionResult
   2234 Sema::SubstituteExplicitTemplateArguments(
   2235                                       FunctionTemplateDecl *FunctionTemplate,
   2236                                TemplateArgumentListInfo &ExplicitTemplateArgs,
   2237                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2238                                  SmallVectorImpl<QualType> &ParamTypes,
   2239                                           QualType *FunctionType,
   2240                                           TemplateDeductionInfo &Info) {
   2241   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   2242   TemplateParameterList *TemplateParams
   2243     = FunctionTemplate->getTemplateParameters();
   2244 
   2245   if (ExplicitTemplateArgs.size() == 0) {
   2246     // No arguments to substitute; just copy over the parameter types and
   2247     // fill in the function type.
   2248     for (FunctionDecl::param_iterator P = Function->param_begin(),
   2249                                    PEnd = Function->param_end();
   2250          P != PEnd;
   2251          ++P)
   2252       ParamTypes.push_back((*P)->getType());
   2253 
   2254     if (FunctionType)
   2255       *FunctionType = Function->getType();
   2256     return TDK_Success;
   2257   }
   2258 
   2259   // Unevaluated SFINAE context.
   2260   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2261   SFINAETrap Trap(*this);
   2262 
   2263   // C++ [temp.arg.explicit]p3:
   2264   //   Template arguments that are present shall be specified in the
   2265   //   declaration order of their corresponding template-parameters. The
   2266   //   template argument list shall not specify more template-arguments than
   2267   //   there are corresponding template-parameters.
   2268   SmallVector<TemplateArgument, 4> Builder;
   2269 
   2270   // Enter a new template instantiation context where we check the
   2271   // explicitly-specified template arguments against this function template,
   2272   // and then substitute them into the function parameter types.
   2273   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2274   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
   2275                              FunctionTemplate, DeducedArgs,
   2276            ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
   2277                              Info);
   2278   if (Inst)
   2279     return TDK_InstantiationDepth;
   2280 
   2281   if (CheckTemplateArgumentList(FunctionTemplate,
   2282                                 SourceLocation(),
   2283                                 ExplicitTemplateArgs,
   2284                                 true,
   2285                                 Builder) || Trap.hasErrorOccurred()) {
   2286     unsigned Index = Builder.size();
   2287     if (Index >= TemplateParams->size())
   2288       Index = TemplateParams->size() - 1;
   2289     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
   2290     return TDK_InvalidExplicitArguments;
   2291   }
   2292 
   2293   // Form the template argument list from the explicitly-specified
   2294   // template arguments.
   2295   TemplateArgumentList *ExplicitArgumentList
   2296     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2297   Info.reset(ExplicitArgumentList);
   2298 
   2299   // Template argument deduction and the final substitution should be
   2300   // done in the context of the templated declaration.  Explicit
   2301   // argument substitution, on the other hand, needs to happen in the
   2302   // calling context.
   2303   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2304 
   2305   // If we deduced template arguments for a template parameter pack,
   2306   // note that the template argument pack is partially substituted and record
   2307   // the explicit template arguments. They'll be used as part of deduction
   2308   // for this template parameter pack.
   2309   for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
   2310     const TemplateArgument &Arg = Builder[I];
   2311     if (Arg.getKind() == TemplateArgument::Pack) {
   2312       CurrentInstantiationScope->SetPartiallySubstitutedPack(
   2313                                                  TemplateParams->getParam(I),
   2314                                                              Arg.pack_begin(),
   2315                                                              Arg.pack_size());
   2316       break;
   2317     }
   2318   }
   2319 
   2320   const FunctionProtoType *Proto
   2321     = Function->getType()->getAs<FunctionProtoType>();
   2322   assert(Proto && "Function template does not have a prototype?");
   2323 
   2324   // Instantiate the types of each of the function parameters given the
   2325   // explicitly-specified template arguments. If the function has a trailing
   2326   // return type, substitute it after the arguments to ensure we substitute
   2327   // in lexical order.
   2328   if (Proto->hasTrailingReturn()) {
   2329     if (SubstParmTypes(Function->getLocation(),
   2330                        Function->param_begin(), Function->getNumParams(),
   2331                        MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2332                        ParamTypes))
   2333       return TDK_SubstitutionFailure;
   2334   }
   2335 
   2336   // Instantiate the return type.
   2337   // FIXME: exception-specifications?
   2338   QualType ResultType;
   2339   {
   2340     // C++11 [expr.prim.general]p3:
   2341     //   If a declaration declares a member function or member function
   2342     //   template of a class X, the expression this is a prvalue of type
   2343     //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
   2344     //   and the end of the function-definition, member-declarator, or
   2345     //   declarator.
   2346     unsigned ThisTypeQuals = 0;
   2347     CXXRecordDecl *ThisContext = 0;
   2348     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
   2349       ThisContext = Method->getParent();
   2350       ThisTypeQuals = Method->getTypeQualifiers();
   2351     }
   2352 
   2353     CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
   2354                                getLangOpts().CPlusPlus0x);
   2355 
   2356     ResultType = SubstType(Proto->getResultType(),
   2357                    MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2358                    Function->getTypeSpecStartLoc(),
   2359                    Function->getDeclName());
   2360     if (ResultType.isNull() || Trap.hasErrorOccurred())
   2361       return TDK_SubstitutionFailure;
   2362   }
   2363 
   2364   // Instantiate the types of each of the function parameters given the
   2365   // explicitly-specified template arguments if we didn't do so earlier.
   2366   if (!Proto->hasTrailingReturn() &&
   2367       SubstParmTypes(Function->getLocation(),
   2368                      Function->param_begin(), Function->getNumParams(),
   2369                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2370                      ParamTypes))
   2371     return TDK_SubstitutionFailure;
   2372 
   2373   if (FunctionType) {
   2374     *FunctionType = BuildFunctionType(ResultType,
   2375                                       ParamTypes.data(), ParamTypes.size(),
   2376                                       Proto->isVariadic(),
   2377                                       Proto->hasTrailingReturn(),
   2378                                       Proto->getTypeQuals(),
   2379                                       Proto->getRefQualifier(),
   2380                                       Function->getLocation(),
   2381                                       Function->getDeclName(),
   2382                                       Proto->getExtInfo());
   2383     if (FunctionType->isNull() || Trap.hasErrorOccurred())
   2384       return TDK_SubstitutionFailure;
   2385   }
   2386 
   2387   // C++ [temp.arg.explicit]p2:
   2388   //   Trailing template arguments that can be deduced (14.8.2) may be
   2389   //   omitted from the list of explicit template-arguments. If all of the
   2390   //   template arguments can be deduced, they may all be omitted; in this
   2391   //   case, the empty template argument list <> itself may also be omitted.
   2392   //
   2393   // Take all of the explicitly-specified arguments and put them into
   2394   // the set of deduced template arguments. Explicitly-specified
   2395   // parameter packs, however, will be set to NULL since the deduction
   2396   // mechanisms handle explicitly-specified argument packs directly.
   2397   Deduced.reserve(TemplateParams->size());
   2398   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
   2399     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
   2400     if (Arg.getKind() == TemplateArgument::Pack)
   2401       Deduced.push_back(DeducedTemplateArgument());
   2402     else
   2403       Deduced.push_back(Arg);
   2404   }
   2405 
   2406   return TDK_Success;
   2407 }
   2408 
   2409 /// \brief Check whether the deduced argument type for a call to a function
   2410 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
   2411 static bool
   2412 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
   2413                               QualType DeducedA) {
   2414   ASTContext &Context = S.Context;
   2415 
   2416   QualType A = OriginalArg.OriginalArgType;
   2417   QualType OriginalParamType = OriginalArg.OriginalParamType;
   2418 
   2419   // Check for type equality (top-level cv-qualifiers are ignored).
   2420   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2421     return false;
   2422 
   2423   // Strip off references on the argument types; they aren't needed for
   2424   // the following checks.
   2425   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
   2426     DeducedA = DeducedARef->getPointeeType();
   2427   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   2428     A = ARef->getPointeeType();
   2429 
   2430   // C++ [temp.deduct.call]p4:
   2431   //   [...] However, there are three cases that allow a difference:
   2432   //     - If the original P is a reference type, the deduced A (i.e., the
   2433   //       type referred to by the reference) can be more cv-qualified than
   2434   //       the transformed A.
   2435   if (const ReferenceType *OriginalParamRef
   2436       = OriginalParamType->getAs<ReferenceType>()) {
   2437     // We don't want to keep the reference around any more.
   2438     OriginalParamType = OriginalParamRef->getPointeeType();
   2439 
   2440     Qualifiers AQuals = A.getQualifiers();
   2441     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
   2442 
   2443     // Under Objective-C++ ARC, the deduced type may have implicitly been
   2444     // given strong lifetime. If so, update the original qualifiers to
   2445     // include this strong lifetime.
   2446     if (S.getLangOpts().ObjCAutoRefCount &&
   2447         DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
   2448         AQuals.getObjCLifetime() == Qualifiers::OCL_None) {
   2449       AQuals.setObjCLifetime(Qualifiers::OCL_Strong);
   2450     }
   2451 
   2452     if (AQuals == DeducedAQuals) {
   2453       // Qualifiers match; there's nothing to do.
   2454     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
   2455       return true;
   2456     } else {
   2457       // Qualifiers are compatible, so have the argument type adopt the
   2458       // deduced argument type's qualifiers as if we had performed the
   2459       // qualification conversion.
   2460       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
   2461     }
   2462   }
   2463 
   2464   //    - The transformed A can be another pointer or pointer to member
   2465   //      type that can be converted to the deduced A via a qualification
   2466   //      conversion.
   2467   //
   2468   // Also allow conversions which merely strip [[noreturn]] from function types
   2469   // (recursively) as an extension.
   2470   // FIXME: Currently, this doesn't place nicely with qualfication conversions.
   2471   bool ObjCLifetimeConversion = false;
   2472   QualType ResultTy;
   2473   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
   2474       (S.IsQualificationConversion(A, DeducedA, false,
   2475                                    ObjCLifetimeConversion) ||
   2476        S.IsNoReturnConversion(A, DeducedA, ResultTy)))
   2477     return false;
   2478 
   2479 
   2480   //    - If P is a class and P has the form simple-template-id, then the
   2481   //      transformed A can be a derived class of the deduced A. [...]
   2482   //     [...] Likewise, if P is a pointer to a class of the form
   2483   //      simple-template-id, the transformed A can be a pointer to a
   2484   //      derived class pointed to by the deduced A.
   2485   if (const PointerType *OriginalParamPtr
   2486       = OriginalParamType->getAs<PointerType>()) {
   2487     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
   2488       if (const PointerType *APtr = A->getAs<PointerType>()) {
   2489         if (A->getPointeeType()->isRecordType()) {
   2490           OriginalParamType = OriginalParamPtr->getPointeeType();
   2491           DeducedA = DeducedAPtr->getPointeeType();
   2492           A = APtr->getPointeeType();
   2493         }
   2494       }
   2495     }
   2496   }
   2497 
   2498   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2499     return false;
   2500 
   2501   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
   2502       S.IsDerivedFrom(A, DeducedA))
   2503     return false;
   2504 
   2505   return true;
   2506 }
   2507 
   2508 /// \brief Finish template argument deduction for a function template,
   2509 /// checking the deduced template arguments for completeness and forming
   2510 /// the function template specialization.
   2511 ///
   2512 /// \param OriginalCallArgs If non-NULL, the original call arguments against
   2513 /// which the deduced argument types should be compared.
   2514 Sema::TemplateDeductionResult
   2515 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
   2516                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2517                                       unsigned NumExplicitlySpecified,
   2518                                       FunctionDecl *&Specialization,
   2519                                       TemplateDeductionInfo &Info,
   2520         SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
   2521   TemplateParameterList *TemplateParams
   2522     = FunctionTemplate->getTemplateParameters();
   2523 
   2524   // Unevaluated SFINAE context.
   2525   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2526   SFINAETrap Trap(*this);
   2527 
   2528   // Enter a new template instantiation context while we instantiate the
   2529   // actual function declaration.
   2530   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2531   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
   2532                              FunctionTemplate, DeducedArgs,
   2533               ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
   2534                              Info);
   2535   if (Inst)
   2536     return TDK_InstantiationDepth;
   2537 
   2538   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2539 
   2540   // C++ [temp.deduct.type]p2:
   2541   //   [...] or if any template argument remains neither deduced nor
   2542   //   explicitly specified, template argument deduction fails.
   2543   SmallVector<TemplateArgument, 4> Builder;
   2544   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   2545     NamedDecl *Param = TemplateParams->getParam(I);
   2546 
   2547     if (!Deduced[I].isNull()) {
   2548       if (I < NumExplicitlySpecified) {
   2549         // We have already fully type-checked and converted this
   2550         // argument, because it was explicitly-specified. Just record the
   2551         // presence of this argument.
   2552         Builder.push_back(Deduced[I]);
   2553         continue;
   2554       }
   2555 
   2556       // We have deduced this argument, so it still needs to be
   2557       // checked and converted.
   2558 
   2559       // First, for a non-type template parameter type that is
   2560       // initialized by a declaration, we need the type of the
   2561       // corresponding non-type template parameter.
   2562       QualType NTTPType;
   2563       if (NonTypeTemplateParmDecl *NTTP
   2564                                 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2565         NTTPType = NTTP->getType();
   2566         if (NTTPType->isDependentType()) {
   2567           TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2568                                             Builder.data(), Builder.size());
   2569           NTTPType = SubstType(NTTPType,
   2570                                MultiLevelTemplateArgumentList(TemplateArgs),
   2571                                NTTP->getLocation(),
   2572                                NTTP->getDeclName());
   2573           if (NTTPType.isNull()) {
   2574             Info.Param = makeTemplateParameter(Param);
   2575             // FIXME: These template arguments are temporary. Free them!
   2576             Info.reset(TemplateArgumentList::CreateCopy(Context,
   2577                                                         Builder.data(),
   2578                                                         Builder.size()));
   2579             return TDK_SubstitutionFailure;
   2580           }
   2581         }
   2582       }
   2583 
   2584       if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
   2585                                          FunctionTemplate, NTTPType, 0, Info,
   2586                                          true, Builder)) {
   2587         Info.Param = makeTemplateParameter(Param);
   2588         // FIXME: These template arguments are temporary. Free them!
   2589         Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2590                                                     Builder.size()));
   2591         return TDK_SubstitutionFailure;
   2592       }
   2593 
   2594       continue;
   2595     }
   2596 
   2597     // C++0x [temp.arg.explicit]p3:
   2598     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
   2599     //    be deduced to an empty sequence of template arguments.
   2600     // FIXME: Where did the word "trailing" come from?
   2601     if (Param->isTemplateParameterPack()) {
   2602       // We may have had explicitly-specified template arguments for this
   2603       // template parameter pack. If so, our empty deduction extends the
   2604       // explicitly-specified set (C++0x [temp.arg.explicit]p9).
   2605       const TemplateArgument *ExplicitArgs;
   2606       unsigned NumExplicitArgs;
   2607       if (CurrentInstantiationScope &&
   2608           CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
   2609                                                              &NumExplicitArgs)
   2610           == Param)
   2611         Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
   2612       else
   2613         Builder.push_back(TemplateArgument(0, 0));
   2614 
   2615       continue;
   2616     }
   2617 
   2618     // Substitute into the default template argument, if available.
   2619     TemplateArgumentLoc DefArg
   2620       = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
   2621                                               FunctionTemplate->getLocation(),
   2622                                   FunctionTemplate->getSourceRange().getEnd(),
   2623                                                 Param,
   2624                                                 Builder);
   2625 
   2626     // If there was no default argument, deduction is incomplete.
   2627     if (DefArg.getArgument().isNull()) {
   2628       Info.Param = makeTemplateParameter(
   2629                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2630       return TDK_Incomplete;
   2631     }
   2632 
   2633     // Check whether we can actually use the default argument.
   2634     if (CheckTemplateArgument(Param, DefArg,
   2635                               FunctionTemplate,
   2636                               FunctionTemplate->getLocation(),
   2637                               FunctionTemplate->getSourceRange().getEnd(),
   2638                               0, Builder,
   2639                               CTAK_Specified)) {
   2640       Info.Param = makeTemplateParameter(
   2641                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2642       // FIXME: These template arguments are temporary. Free them!
   2643       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2644                                                   Builder.size()));
   2645       return TDK_SubstitutionFailure;
   2646     }
   2647 
   2648     // If we get here, we successfully used the default template argument.
   2649   }
   2650 
   2651   // Form the template argument list from the deduced template arguments.
   2652   TemplateArgumentList *DeducedArgumentList
   2653     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2654   Info.reset(DeducedArgumentList);
   2655 
   2656   // Substitute the deduced template arguments into the function template
   2657   // declaration to produce the function template specialization.
   2658   DeclContext *Owner = FunctionTemplate->getDeclContext();
   2659   if (FunctionTemplate->getFriendObjectKind())
   2660     Owner = FunctionTemplate->getLexicalDeclContext();
   2661   Specialization = cast_or_null<FunctionDecl>(
   2662                       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
   2663                          MultiLevelTemplateArgumentList(*DeducedArgumentList)));
   2664   if (!Specialization || Specialization->isInvalidDecl())
   2665     return TDK_SubstitutionFailure;
   2666 
   2667   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
   2668          FunctionTemplate->getCanonicalDecl());
   2669 
   2670   // If the template argument list is owned by the function template
   2671   // specialization, release it.
   2672   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
   2673       !Trap.hasErrorOccurred())
   2674     Info.take();
   2675 
   2676   // There may have been an error that did not prevent us from constructing a
   2677   // declaration. Mark the declaration invalid and return with a substitution
   2678   // failure.
   2679   if (Trap.hasErrorOccurred()) {
   2680     Specialization->setInvalidDecl(true);
   2681     return TDK_SubstitutionFailure;
   2682   }
   2683 
   2684   if (OriginalCallArgs) {
   2685     // C++ [temp.deduct.call]p4:
   2686     //   In general, the deduction process attempts to find template argument
   2687     //   values that will make the deduced A identical to A (after the type A
   2688     //   is transformed as described above). [...]
   2689     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
   2690       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
   2691       unsigned ParamIdx = OriginalArg.ArgIdx;
   2692 
   2693       if (ParamIdx >= Specialization->getNumParams())
   2694         continue;
   2695 
   2696       QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
   2697       if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
   2698         return Sema::TDK_SubstitutionFailure;
   2699     }
   2700   }
   2701 
   2702   // If we suppressed any diagnostics while performing template argument
   2703   // deduction, and if we haven't already instantiated this declaration,
   2704   // keep track of these diagnostics. They'll be emitted if this specialization
   2705   // is actually used.
   2706   if (Info.diag_begin() != Info.diag_end()) {
   2707     llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
   2708       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
   2709     if (Pos == SuppressedDiagnostics.end())
   2710         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
   2711           .append(Info.diag_begin(), Info.diag_end());
   2712   }
   2713 
   2714   return TDK_Success;
   2715 }
   2716 
   2717 /// Gets the type of a function for template-argument-deducton
   2718 /// purposes when it's considered as part of an overload set.
   2719 static QualType GetTypeOfFunction(ASTContext &Context,
   2720                                   const OverloadExpr::FindResult &R,
   2721                                   FunctionDecl *Fn) {
   2722   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
   2723     if (Method->isInstance()) {
   2724       // An instance method that's referenced in a form that doesn't
   2725       // look like a member pointer is just invalid.
   2726       if (!R.HasFormOfMemberPointer) return QualType();
   2727 
   2728       return Context.getMemberPointerType(Fn->getType(),
   2729                Context.getTypeDeclType(Method->getParent()).getTypePtr());
   2730     }
   2731 
   2732   if (!R.IsAddressOfOperand) return Fn->getType();
   2733   return Context.getPointerType(Fn->getType());
   2734 }
   2735 
   2736 /// Apply the deduction rules for overload sets.
   2737 ///
   2738 /// \return the null type if this argument should be treated as an
   2739 /// undeduced context
   2740 static QualType
   2741 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
   2742                             Expr *Arg, QualType ParamType,
   2743                             bool ParamWasReference) {
   2744 
   2745   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
   2746 
   2747   OverloadExpr *Ovl = R.Expression;
   2748 
   2749   // C++0x [temp.deduct.call]p4
   2750   unsigned TDF = 0;
   2751   if (ParamWasReference)
   2752     TDF |= TDF_ParamWithReferenceType;
   2753   if (R.IsAddressOfOperand)
   2754     TDF |= TDF_IgnoreQualifiers;
   2755 
   2756   // C++0x [temp.deduct.call]p6:
   2757   //   When P is a function type, pointer to function type, or pointer
   2758   //   to member function type:
   2759 
   2760   if (!ParamType->isFunctionType() &&
   2761       !ParamType->isFunctionPointerType() &&
   2762       !ParamType->isMemberFunctionPointerType()) {
   2763     if (Ovl->hasExplicitTemplateArgs()) {
   2764       // But we can still look for an explicit specialization.
   2765       if (FunctionDecl *ExplicitSpec
   2766             = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
   2767         return GetTypeOfFunction(S.Context, R, ExplicitSpec);
   2768     }
   2769 
   2770     return QualType();
   2771   }
   2772 
   2773   // Gather the explicit template arguments, if any.
   2774   TemplateArgumentListInfo ExplicitTemplateArgs;
   2775   if (Ovl->hasExplicitTemplateArgs())
   2776     Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
   2777   QualType Match;
   2778   for (UnresolvedSetIterator I = Ovl->decls_begin(),
   2779          E = Ovl->decls_end(); I != E; ++I) {
   2780     NamedDecl *D = (*I)->getUnderlyingDecl();
   2781 
   2782     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
   2783       //   - If the argument is an overload set containing one or more
   2784       //     function templates, the parameter is treated as a
   2785       //     non-deduced context.
   2786       if (!Ovl->hasExplicitTemplateArgs())
   2787         return QualType();
   2788 
   2789       // Otherwise, see if we can resolve a function type
   2790       FunctionDecl *Specialization = 0;
   2791       TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
   2792       if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
   2793                                     Specialization, Info))
   2794         continue;
   2795 
   2796       D = Specialization;
   2797     }
   2798 
   2799     FunctionDecl *Fn = cast<FunctionDecl>(D);
   2800     QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
   2801     if (ArgType.isNull()) continue;
   2802 
   2803     // Function-to-pointer conversion.
   2804     if (!ParamWasReference && ParamType->isPointerType() &&
   2805         ArgType->isFunctionType())
   2806       ArgType = S.Context.getPointerType(ArgType);
   2807 
   2808     //   - If the argument is an overload set (not containing function
   2809     //     templates), trial argument deduction is attempted using each
   2810     //     of the members of the set. If deduction succeeds for only one
   2811     //     of the overload set members, that member is used as the
   2812     //     argument value for the deduction. If deduction succeeds for
   2813     //     more than one member of the overload set the parameter is
   2814     //     treated as a non-deduced context.
   2815 
   2816     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
   2817     //   Type deduction is done independently for each P/A pair, and
   2818     //   the deduced template argument values are then combined.
   2819     // So we do not reject deductions which were made elsewhere.
   2820     SmallVector<DeducedTemplateArgument, 8>
   2821       Deduced(TemplateParams->size());
   2822     TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
   2823     Sema::TemplateDeductionResult Result
   2824       = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
   2825                                            ArgType, Info, Deduced, TDF);
   2826     if (Result) continue;
   2827     if (!Match.isNull()) return QualType();
   2828     Match = ArgType;
   2829   }
   2830 
   2831   return Match;
   2832 }
   2833 
   2834 /// \brief Perform the adjustments to the parameter and argument types
   2835 /// described in C++ [temp.deduct.call].
   2836 ///
   2837 /// \returns true if the caller should not attempt to perform any template
   2838 /// argument deduction based on this P/A pair.
   2839 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
   2840                                           TemplateParameterList *TemplateParams,
   2841                                                       QualType &ParamType,
   2842                                                       QualType &ArgType,
   2843                                                       Expr *Arg,
   2844                                                       unsigned &TDF) {
   2845   // C++0x [temp.deduct.call]p3:
   2846   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
   2847   //   are ignored for type deduction.
   2848   if (ParamType.hasQualifiers())
   2849     ParamType = ParamType.getUnqualifiedType();
   2850   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
   2851   if (ParamRefType) {
   2852     QualType PointeeType = ParamRefType->getPointeeType();
   2853 
   2854     // If the argument has incomplete array type, try to complete it's type.
   2855     if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
   2856       ArgType = Arg->getType();
   2857 
   2858     //   [C++0x] If P is an rvalue reference to a cv-unqualified
   2859     //   template parameter and the argument is an lvalue, the type
   2860     //   "lvalue reference to A" is used in place of A for type
   2861     //   deduction.
   2862     if (isa<RValueReferenceType>(ParamType)) {
   2863       if (!PointeeType.getQualifiers() &&
   2864           isa<TemplateTypeParmType>(PointeeType) &&
   2865           Arg->Classify(S.Context).isLValue() &&
   2866           Arg->getType() != S.Context.OverloadTy &&
   2867           Arg->getType() != S.Context.BoundMemberTy)
   2868         ArgType = S.Context.getLValueReferenceType(ArgType);
   2869     }
   2870 
   2871     //   [...] If P is a reference type, the type referred to by P is used
   2872     //   for type deduction.
   2873     ParamType = PointeeType;
   2874   }
   2875 
   2876   // Overload sets usually make this parameter an undeduced
   2877   // context, but there are sometimes special circumstances.
   2878   if (ArgType == S.Context.OverloadTy) {
   2879     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
   2880                                           Arg, ParamType,
   2881                                           ParamRefType != 0);
   2882     if (ArgType.isNull())
   2883       return true;
   2884   }
   2885 
   2886   if (ParamRefType) {
   2887     // C++0x [temp.deduct.call]p3:
   2888     //   [...] If P is of the form T&&, where T is a template parameter, and
   2889     //   the argument is an lvalue, the type A& is used in place of A for
   2890     //   type deduction.
   2891     if (ParamRefType->isRValueReferenceType() &&
   2892         ParamRefType->getAs<TemplateTypeParmType>() &&
   2893         Arg->isLValue())
   2894       ArgType = S.Context.getLValueReferenceType(ArgType);
   2895   } else {
   2896     // C++ [temp.deduct.call]p2:
   2897     //   If P is not a reference type:
   2898     //   - If A is an array type, the pointer type produced by the
   2899     //     array-to-pointer standard conversion (4.2) is used in place of
   2900     //     A for type deduction; otherwise,
   2901     if (ArgType->isArrayType())
   2902       ArgType = S.Context.getArrayDecayedType(ArgType);
   2903     //   - If A is a function type, the pointer type produced by the
   2904     //     function-to-pointer standard conversion (4.3) is used in place
   2905     //     of A for type deduction; otherwise,
   2906     else if (ArgType->isFunctionType())
   2907       ArgType = S.Context.getPointerType(ArgType);
   2908     else {
   2909       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
   2910       //   type are ignored for type deduction.
   2911       ArgType = ArgType.getUnqualifiedType();
   2912     }
   2913   }
   2914 
   2915   // C++0x [temp.deduct.call]p4:
   2916   //   In general, the deduction process attempts to find template argument
   2917   //   values that will make the deduced A identical to A (after the type A
   2918   //   is transformed as described above). [...]
   2919   TDF = TDF_SkipNonDependent;
   2920 
   2921   //     - If the original P is a reference type, the deduced A (i.e., the
   2922   //       type referred to by the reference) can be more cv-qualified than
   2923   //       the transformed A.
   2924   if (ParamRefType)
   2925     TDF |= TDF_ParamWithReferenceType;
   2926   //     - The transformed A can be another pointer or pointer to member
   2927   //       type that can be converted to the deduced A via a qualification
   2928   //       conversion (4.4).
   2929   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
   2930       ArgType->isObjCObjectPointerType())
   2931     TDF |= TDF_IgnoreQualifiers;
   2932   //     - If P is a class and P has the form simple-template-id, then the
   2933   //       transformed A can be a derived class of the deduced A. Likewise,
   2934   //       if P is a pointer to a class of the form simple-template-id, the
   2935   //       transformed A can be a pointer to a derived class pointed to by
   2936   //       the deduced A.
   2937   if (isSimpleTemplateIdType(ParamType) ||
   2938       (isa<PointerType>(ParamType) &&
   2939        isSimpleTemplateIdType(
   2940                               ParamType->getAs<PointerType>()->getPointeeType())))
   2941     TDF |= TDF_DerivedClass;
   2942 
   2943   return false;
   2944 }
   2945 
   2946 static bool hasDeducibleTemplateParameters(Sema &S,
   2947                                            FunctionTemplateDecl *FunctionTemplate,
   2948                                            QualType T);
   2949 
   2950 /// \brief Perform template argument deduction by matching a parameter type
   2951 ///        against a single expression, where the expression is an element of
   2952 ///        an initializer list that was originally matched against the argument
   2953 ///        type.
   2954 static Sema::TemplateDeductionResult
   2955 DeduceTemplateArgumentByListElement(Sema &S,
   2956                                     TemplateParameterList *TemplateParams,
   2957                                     QualType ParamType, Expr *Arg,
   2958                                     TemplateDeductionInfo &Info,
   2959                               SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2960                                     unsigned TDF) {
   2961   // Handle the case where an init list contains another init list as the
   2962   // element.
   2963   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   2964     QualType X;
   2965     if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
   2966       return Sema::TDK_Success; // Just ignore this expression.
   2967 
   2968     // Recurse down into the init list.
   2969     for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   2970       if (Sema::TemplateDeductionResult Result =
   2971             DeduceTemplateArgumentByListElement(S, TemplateParams, X,
   2972                                                  ILE->getInit(i),
   2973                                                  Info, Deduced, TDF))
   2974         return Result;
   2975     }
   2976     return Sema::TDK_Success;
   2977   }
   2978 
   2979   // For all other cases, just match by type.
   2980   QualType ArgType = Arg->getType();
   2981   if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
   2982                                                 ArgType, Arg, TDF))
   2983     return Sema::TDK_FailedOverloadResolution;
   2984   return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
   2985                                             ArgType, Info, Deduced, TDF);
   2986 }
   2987 
   2988 /// \brief Perform template argument deduction from a function call
   2989 /// (C++ [temp.deduct.call]).
   2990 ///
   2991 /// \param FunctionTemplate the function template for which we are performing
   2992 /// template argument deduction.
   2993 ///
   2994 /// \param ExplicitTemplateArgs the explicit template arguments provided
   2995 /// for this call.
   2996 ///
   2997 /// \param Args the function call arguments
   2998 ///
   2999 /// \param Name the name of the function being called. This is only significant
   3000 /// when the function template is a conversion function template, in which
   3001 /// case this routine will also perform template argument deduction based on
   3002 /// the function to which
   3003 ///
   3004 /// \param Specialization if template argument deduction was successful,
   3005 /// this will be set to the function template specialization produced by
   3006 /// template argument deduction.
   3007 ///
   3008 /// \param Info the argument will be updated to provide additional information
   3009 /// about template argument deduction.
   3010 ///
   3011 /// \returns the result of template argument deduction.
   3012 Sema::TemplateDeductionResult
   3013 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3014                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3015                               llvm::ArrayRef<Expr *> Args,
   3016                               FunctionDecl *&Specialization,
   3017                               TemplateDeductionInfo &Info) {
   3018   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   3019 
   3020   // C++ [temp.deduct.call]p1:
   3021   //   Template argument deduction is done by comparing each function template
   3022   //   parameter type (call it P) with the type of the corresponding argument
   3023   //   of the call (call it A) as described below.
   3024   unsigned CheckArgs = Args.size();
   3025   if (Args.size() < Function->getMinRequiredArguments())
   3026     return TDK_TooFewArguments;
   3027   else if (Args.size() > Function->getNumParams()) {
   3028     const FunctionProtoType *Proto
   3029       = Function->getType()->getAs<FunctionProtoType>();
   3030     if (Proto->isTemplateVariadic())
   3031       /* Do nothing */;
   3032     else if (Proto->isVariadic())
   3033       CheckArgs = Function->getNumParams();
   3034     else
   3035       return TDK_TooManyArguments;
   3036   }
   3037 
   3038   // The types of the parameters from which we will perform template argument
   3039   // deduction.
   3040   LocalInstantiationScope InstScope(*this);
   3041   TemplateParameterList *TemplateParams
   3042     = FunctionTemplate->getTemplateParameters();
   3043   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3044   SmallVector<QualType, 4> ParamTypes;
   3045   unsigned NumExplicitlySpecified = 0;
   3046   if (ExplicitTemplateArgs) {
   3047     TemplateDeductionResult Result =
   3048       SubstituteExplicitTemplateArguments(FunctionTemplate,
   3049                                           *ExplicitTemplateArgs,
   3050                                           Deduced,
   3051                                           ParamTypes,
   3052                                           0,
   3053                                           Info);
   3054     if (Result)
   3055       return Result;
   3056 
   3057     NumExplicitlySpecified = Deduced.size();
   3058   } else {
   3059     // Just fill in the parameter types from the function declaration.
   3060     for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   3061       ParamTypes.push_back(Function->getParamDecl(I)->getType());
   3062   }
   3063 
   3064   // Deduce template arguments from the function parameters.
   3065   Deduced.resize(TemplateParams->size());
   3066   unsigned ArgIdx = 0;
   3067   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
   3068   for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
   3069        ParamIdx != NumParams; ++ParamIdx) {
   3070     QualType OrigParamType = ParamTypes[ParamIdx];
   3071     QualType ParamType = OrigParamType;
   3072 
   3073     const PackExpansionType *ParamExpansion
   3074       = dyn_cast<PackExpansionType>(ParamType);
   3075     if (!ParamExpansion) {
   3076       // Simple case: matching a function parameter to a function argument.
   3077       if (ArgIdx >= CheckArgs)
   3078         break;
   3079 
   3080       Expr *Arg = Args[ArgIdx++];
   3081       QualType ArgType = Arg->getType();
   3082 
   3083       unsigned TDF = 0;
   3084       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3085                                                     ParamType, ArgType, Arg,
   3086                                                     TDF))
   3087         continue;
   3088 
   3089       // If we have nothing to deduce, we're done.
   3090       if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3091         continue;
   3092 
   3093       // If the argument is an initializer list ...
   3094       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3095         // ... then the parameter is an undeduced context, unless the parameter
   3096         // type is (reference to cv) std::initializer_list<P'>, in which case
   3097         // deduction is done for each element of the initializer list, and the
   3098         // result is the deduced type if it's the same for all elements.
   3099         QualType X;
   3100         // Removing references was already done.
   3101         if (!isStdInitializerList(ParamType, &X))
   3102           continue;
   3103 
   3104         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   3105           if (TemplateDeductionResult Result =
   3106                 DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
   3107                                                      ILE->getInit(i),
   3108                                                      Info, Deduced, TDF))
   3109             return Result;
   3110         }
   3111         // Don't track the argument type, since an initializer list has none.
   3112         continue;
   3113       }
   3114 
   3115       // Keep track of the argument type and corresponding parameter index,
   3116       // so we can check for compatibility between the deduced A and A.
   3117       OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
   3118                                                  ArgType));
   3119 
   3120       if (TemplateDeductionResult Result
   3121             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3122                                                  ParamType, ArgType,
   3123                                                  Info, Deduced, TDF))
   3124         return Result;
   3125 
   3126       continue;
   3127     }
   3128 
   3129     // C++0x [temp.deduct.call]p1:
   3130     //   For a function parameter pack that occurs at the end of the
   3131     //   parameter-declaration-list, the type A of each remaining argument of
   3132     //   the call is compared with the type P of the declarator-id of the
   3133     //   function parameter pack. Each comparison deduces template arguments
   3134     //   for subsequent positions in the template parameter packs expanded by
   3135     //   the function parameter pack. For a function parameter pack that does
   3136     //   not occur at the end of the parameter-declaration-list, the type of
   3137     //   the parameter pack is a non-deduced context.
   3138     if (ParamIdx + 1 < NumParams)
   3139       break;
   3140 
   3141     QualType ParamPattern = ParamExpansion->getPattern();
   3142     SmallVector<unsigned, 2> PackIndices;
   3143     {
   3144       llvm::SmallBitVector SawIndices(TemplateParams->size());
   3145       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
   3146       collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
   3147       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
   3148         unsigned Depth, Index;
   3149         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
   3150         if (Depth == 0 && !SawIndices[Index]) {
   3151           SawIndices[Index] = true;
   3152           PackIndices.push_back(Index);
   3153         }
   3154       }
   3155     }
   3156     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
   3157 
   3158     // Keep track of the deduced template arguments for each parameter pack
   3159     // expanded by this pack expansion (the outer index) and for each
   3160     // template argument (the inner SmallVectors).
   3161     SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
   3162       NewlyDeducedPacks(PackIndices.size());
   3163     SmallVector<DeducedTemplateArgument, 2>
   3164       SavedPacks(PackIndices.size());
   3165     PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
   3166                                  NewlyDeducedPacks);
   3167     bool HasAnyArguments = false;
   3168     for (; ArgIdx < Args.size(); ++ArgIdx) {
   3169       HasAnyArguments = true;
   3170 
   3171       QualType OrigParamType = ParamPattern;
   3172       ParamType = OrigParamType;
   3173       Expr *Arg = Args[ArgIdx];
   3174       QualType ArgType = Arg->getType();
   3175 
   3176       unsigned TDF = 0;
   3177       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3178                                                     ParamType, ArgType, Arg,
   3179                                                     TDF)) {
   3180         // We can't actually perform any deduction for this argument, so stop
   3181         // deduction at this point.
   3182         ++ArgIdx;
   3183         break;
   3184       }
   3185 
   3186       // As above, initializer lists need special handling.
   3187       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3188         QualType X;
   3189         if (!isStdInitializerList(ParamType, &X)) {
   3190           ++ArgIdx;
   3191           break;
   3192         }
   3193 
   3194         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   3195           if (TemplateDeductionResult Result =
   3196                 DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
   3197                                                    ILE->getInit(i)->getType(),
   3198                                                    Info, Deduced, TDF))
   3199             return Result;
   3200         }
   3201       } else {
   3202 
   3203         // Keep track of the argument type and corresponding argument index,
   3204         // so we can check for compatibility between the deduced A and A.
   3205         if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3206           OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
   3207                                                      ArgType));
   3208 
   3209         if (TemplateDeductionResult Result
   3210             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3211                                                  ParamType, ArgType, Info,
   3212                                                  Deduced, TDF))
   3213           return Result;
   3214       }
   3215 
   3216       // Capture the deduced template arguments for each parameter pack expanded
   3217       // by this pack expansion, add them to the list of arguments we've deduced
   3218       // for that pack, then clear out the deduced argument.
   3219       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
   3220         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
   3221         if (!DeducedArg.isNull()) {
   3222           NewlyDeducedPacks[I].push_back(DeducedArg);
   3223           DeducedArg = DeducedTemplateArgument();
   3224         }
   3225       }
   3226     }
   3227 
   3228     // Build argument packs for each of the parameter packs expanded by this
   3229     // pack expansion.
   3230     if (Sema::TemplateDeductionResult Result
   3231           = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
   3232                                         Deduced, PackIndices, SavedPacks,
   3233                                         NewlyDeducedPacks, Info))
   3234       return Result;
   3235 
   3236     // After we've matching against a parameter pack, we're done.
   3237     break;
   3238   }
   3239 
   3240   return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3241                                          NumExplicitlySpecified,
   3242                                          Specialization, Info, &OriginalCallArgs);
   3243 }
   3244 
   3245 /// \brief Deduce template arguments when taking the address of a function
   3246 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
   3247 /// a template.
   3248 ///
   3249 /// \param FunctionTemplate the function template for which we are performing
   3250 /// template argument deduction.
   3251 ///
   3252 /// \param ExplicitTemplateArgs the explicitly-specified template
   3253 /// arguments.
   3254 ///
   3255 /// \param ArgFunctionType the function type that will be used as the
   3256 /// "argument" type (A) when performing template argument deduction from the
   3257 /// function template's function type. This type may be NULL, if there is no
   3258 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
   3259 ///
   3260 /// \param Specialization if template argument deduction was successful,
   3261 /// this will be set to the function template specialization produced by
   3262 /// template argument deduction.
   3263 ///
   3264 /// \param Info the argument will be updated to provide additional information
   3265 /// about template argument deduction.
   3266 ///
   3267 /// \returns the result of template argument deduction.
   3268 Sema::TemplateDeductionResult
   3269 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3270                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3271                               QualType ArgFunctionType,
   3272                               FunctionDecl *&Specialization,
   3273                               TemplateDeductionInfo &Info) {
   3274   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   3275   TemplateParameterList *TemplateParams
   3276     = FunctionTemplate->getTemplateParameters();
   3277   QualType FunctionType = Function->getType();
   3278 
   3279   // Substitute any explicit template arguments.
   3280   LocalInstantiationScope InstScope(*this);
   3281   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3282   unsigned NumExplicitlySpecified = 0;
   3283   SmallVector<QualType, 4> ParamTypes;
   3284   if (ExplicitTemplateArgs) {
   3285     if (TemplateDeductionResult Result
   3286           = SubstituteExplicitTemplateArguments(FunctionTemplate,
   3287                                                 *ExplicitTemplateArgs,
   3288                                                 Deduced, ParamTypes,
   3289                                                 &FunctionType, Info))
   3290       return Result;
   3291 
   3292     NumExplicitlySpecified = Deduced.size();
   3293   }
   3294 
   3295   // Unevaluated SFINAE context.
   3296   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   3297   SFINAETrap Trap(*this);
   3298 
   3299   Deduced.resize(TemplateParams->size());
   3300 
   3301   if (!ArgFunctionType.isNull()) {
   3302     // Deduce template arguments from the function type.
   3303     if (TemplateDeductionResult Result
   3304           = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3305                                       FunctionType, ArgFunctionType, Info,
   3306                                       Deduced, TDF_TopLevelParameterTypeList))
   3307       return Result;
   3308   }
   3309 
   3310   if (TemplateDeductionResult Result
   3311         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3312                                           NumExplicitlySpecified,
   3313                                           Specialization, Info))
   3314     return Result;
   3315 
   3316   // If the requested function type does not match the actual type of the
   3317   // specialization, template argument deduction fails.
   3318   if (!ArgFunctionType.isNull() &&
   3319       !Context.hasSameType(ArgFunctionType, Specialization->getType()))
   3320     return TDK_NonDeducedMismatch;
   3321 
   3322   return TDK_Success;
   3323 }
   3324 
   3325 /// \brief Deduce template arguments for a templated conversion
   3326 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
   3327 /// conversion function template specialization.
   3328 Sema::TemplateDeductionResult
   3329 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3330                               QualType ToType,
   3331                               CXXConversionDecl *&Specialization,
   3332                               TemplateDeductionInfo &Info) {
   3333   CXXConversionDecl *Conv
   3334     = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
   3335   QualType FromType = Conv->getConversionType();
   3336 
   3337   // Canonicalize the types for deduction.
   3338   QualType P = Context.getCanonicalType(FromType);
   3339   QualType A = Context.getCanonicalType(ToType);
   3340 
   3341   // C++0x [temp.deduct.conv]p2:
   3342   //   If P is a reference type, the type referred to by P is used for
   3343   //   type deduction.
   3344   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
   3345     P = PRef->getPointeeType();
   3346 
   3347   // C++0x [temp.deduct.conv]p4:
   3348   //   [...] If A is a reference type, the type referred to by A is used
   3349   //   for type deduction.
   3350   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   3351     A = ARef->getPointeeType().getUnqualifiedType();
   3352   // C++ [temp.deduct.conv]p3:
   3353   //
   3354   //   If A is not a reference type:
   3355   else {
   3356     assert(!A->isReferenceType() && "Reference types were handled above");
   3357 
   3358     //   - If P is an array type, the pointer type produced by the
   3359     //     array-to-pointer standard conversion (4.2) is used in place
   3360     //     of P for type deduction; otherwise,
   3361     if (P->isArrayType())
   3362       P = Context.getArrayDecayedType(P);
   3363     //   - If P is a function type, the pointer type produced by the
   3364     //     function-to-pointer standard conversion (4.3) is used in
   3365     //     place of P for type deduction; otherwise,
   3366     else if (P->isFunctionType())
   3367       P = Context.getPointerType(P);
   3368     //   - If P is a cv-qualified type, the top level cv-qualifiers of
   3369     //     P's type are ignored for type deduction.
   3370     else
   3371       P = P.getUnqualifiedType();
   3372 
   3373     // C++0x [temp.deduct.conv]p4:
   3374     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
   3375     //   type are ignored for type deduction. If A is a reference type, the type
   3376     //   referred to by A is used for type deduction.
   3377     A = A.getUnqualifiedType();
   3378   }
   3379 
   3380   // Unevaluated SFINAE context.
   3381   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   3382   SFINAETrap Trap(*this);
   3383 
   3384   // C++ [temp.deduct.conv]p1:
   3385   //   Template argument deduction is done by comparing the return
   3386   //   type of the template conversion function (call it P) with the
   3387   //   type that is required as the result of the conversion (call it
   3388   //   A) as described in 14.8.2.4.
   3389   TemplateParameterList *TemplateParams
   3390     = FunctionTemplate->getTemplateParameters();
   3391   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3392   Deduced.resize(TemplateParams->size());
   3393 
   3394   // C++0x [temp.deduct.conv]p4:
   3395   //   In general, the deduction process attempts to find template
   3396   //   argument values that will make the deduced A identical to
   3397   //   A. However, there are two cases that allow a difference:
   3398   unsigned TDF = 0;
   3399   //     - If the original A is a reference type, A can be more
   3400   //       cv-qualified than the deduced A (i.e., the type referred to
   3401   //       by the reference)
   3402   if (ToType->isReferenceType())
   3403     TDF |= TDF_ParamWithReferenceType;
   3404   //     - The deduced A can be another pointer or pointer to member
   3405   //       type that can be converted to A via a qualification
   3406   //       conversion.
   3407   //
   3408   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
   3409   // both P and A are pointers or member pointers. In this case, we
   3410   // just ignore cv-qualifiers completely).
   3411   if ((P->isPointerType() && A->isPointerType()) ||
   3412       (P->isMemberPointerType() && A->isMemberPointerType()))
   3413     TDF |= TDF_IgnoreQualifiers;
   3414   if (TemplateDeductionResult Result
   3415         = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3416                                              P, A, Info, Deduced, TDF))
   3417     return Result;
   3418 
   3419   // Finish template argument deduction.
   3420   LocalInstantiationScope InstScope(*this);
   3421   FunctionDecl *Spec = 0;
   3422   TemplateDeductionResult Result
   3423     = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
   3424                                       Info);
   3425   Specialization = cast_or_null<CXXConversionDecl>(Spec);
   3426   return Result;
   3427 }
   3428 
   3429 /// \brief Deduce template arguments for a function template when there is
   3430 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
   3431 ///
   3432 /// \param FunctionTemplate the function template for which we are performing
   3433 /// template argument deduction.
   3434 ///
   3435 /// \param ExplicitTemplateArgs the explicitly-specified template
   3436 /// arguments.
   3437 ///
   3438 /// \param Specialization if template argument deduction was successful,
   3439 /// this will be set to the function template specialization produced by
   3440 /// template argument deduction.
   3441 ///
   3442 /// \param Info the argument will be updated to provide additional information
   3443 /// about template argument deduction.
   3444 ///
   3445 /// \returns the result of template argument deduction.
   3446 Sema::TemplateDeductionResult
   3447 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3448                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3449                               FunctionDecl *&Specialization,
   3450                               TemplateDeductionInfo &Info) {
   3451   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
   3452                                  QualType(), Specialization, Info);
   3453 }
   3454 
   3455 namespace {
   3456   /// Substitute the 'auto' type specifier within a type for a given replacement
   3457   /// type.
   3458   class SubstituteAutoTransform :
   3459     public TreeTransform<SubstituteAutoTransform> {
   3460     QualType Replacement;
   3461   public:
   3462     SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
   3463       TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
   3464     }
   3465     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
   3466       // If we're building the type pattern to deduce against, don't wrap the
   3467       // substituted type in an AutoType. Certain template deduction rules
   3468       // apply only when a template type parameter appears directly (and not if
   3469       // the parameter is found through desugaring). For instance:
   3470       //   auto &&lref = lvalue;
   3471       // must transform into "rvalue reference to T" not "rvalue reference to
   3472       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
   3473       if (isa<TemplateTypeParmType>(Replacement)) {
   3474         QualType Result = Replacement;
   3475         TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
   3476         NewTL.setNameLoc(TL.getNameLoc());
   3477         return Result;
   3478       } else {
   3479         QualType Result = RebuildAutoType(Replacement);
   3480         AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
   3481         NewTL.setNameLoc(TL.getNameLoc());
   3482         return Result;
   3483       }
   3484     }
   3485 
   3486     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   3487       // Lambdas never need to be transformed.
   3488       return E;
   3489     }
   3490   };
   3491 
   3492   /// Determine whether the specified type (which contains an 'auto' type
   3493   /// specifier) is dependent. This is not trivial, because the 'auto' specifier
   3494   /// itself claims to be type-dependent.
   3495   bool isDependentAutoType(QualType Ty) {
   3496     while (1) {
   3497       QualType Pointee = Ty->getPointeeType();
   3498       if (!Pointee.isNull()) {
   3499         Ty = Pointee;
   3500       } else if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()){
   3501         if (MPT->getClass()->isDependentType())
   3502           return true;
   3503         Ty = MPT->getPointeeType();
   3504       } else if (const FunctionProtoType *FPT = Ty->getAs<FunctionProtoType>()){
   3505         for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
   3506                                                   E = FPT->arg_type_end();
   3507              I != E; ++I)
   3508           if ((*I)->isDependentType())
   3509             return true;
   3510         Ty = FPT->getResultType();
   3511       } else if (Ty->isDependentSizedArrayType()) {
   3512         return true;
   3513       } else if (const ArrayType *AT = Ty->getAsArrayTypeUnsafe()) {
   3514         Ty = AT->getElementType();
   3515       } else if (Ty->getAs<DependentSizedExtVectorType>()) {
   3516         return true;
   3517       } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
   3518         Ty = VT->getElementType();
   3519       } else {
   3520         break;
   3521       }
   3522     }
   3523     assert(Ty->getAs<AutoType>() && "didn't find 'auto' in auto type");
   3524     return false;
   3525   }
   3526 }
   3527 
   3528 /// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
   3529 ///
   3530 /// \param Type the type pattern using the auto type-specifier.
   3531 ///
   3532 /// \param Init the initializer for the variable whose type is to be deduced.
   3533 ///
   3534 /// \param Result if type deduction was successful, this will be set to the
   3535 /// deduced type. This may still contain undeduced autos if the type is
   3536 /// dependent. This will be set to null if deduction succeeded, but auto
   3537 /// substitution failed; the appropriate diagnostic will already have been
   3538 /// produced in that case.
   3539 Sema::DeduceAutoResult
   3540 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
   3541                      TypeSourceInfo *&Result) {
   3542   if (Init->getType()->isNonOverloadPlaceholderType()) {
   3543     ExprResult result = CheckPlaceholderExpr(Init);
   3544     if (result.isInvalid()) return DAR_FailedAlreadyDiagnosed;
   3545     Init = result.take();
   3546   }
   3547 
   3548   if (Init->isTypeDependent() || isDependentAutoType(Type->getType())) {
   3549     Result = Type;
   3550     return DAR_Succeeded;
   3551   }
   3552 
   3553   SourceLocation Loc = Init->getExprLoc();
   3554 
   3555   LocalInstantiationScope InstScope(*this);
   3556 
   3557   // Build template<class TemplParam> void Func(FuncParam);
   3558   TemplateTypeParmDecl *TemplParam =
   3559     TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
   3560                                  false, false);
   3561   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
   3562   NamedDecl *TemplParamPtr = TemplParam;
   3563   FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
   3564                                                    Loc);
   3565 
   3566   TypeSourceInfo *FuncParamInfo =
   3567     SubstituteAutoTransform(*this, TemplArg).TransformType(Type);
   3568   assert(FuncParamInfo && "substituting template parameter for 'auto' failed");
   3569   QualType FuncParam = FuncParamInfo->getType();
   3570 
   3571   // Deduce type of TemplParam in Func(Init)
   3572   SmallVector<DeducedTemplateArgument, 1> Deduced;
   3573   Deduced.resize(1);
   3574   QualType InitType = Init->getType();
   3575   unsigned TDF = 0;
   3576 
   3577   TemplateDeductionInfo Info(Context, Loc);
   3578 
   3579   InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
   3580   if (InitList) {
   3581     for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
   3582       if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
   3583                                               TemplArg,
   3584                                               InitList->getInit(i),
   3585                                               Info, Deduced, TDF))
   3586         return DAR_Failed;
   3587     }
   3588   } else {
   3589     if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
   3590                                                   FuncParam, InitType, Init,
   3591                                                   TDF))
   3592       return DAR_Failed;
   3593 
   3594     if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
   3595                                            InitType, Info, Deduced, TDF))
   3596       return DAR_Failed;
   3597   }
   3598 
   3599   QualType DeducedType = Deduced[0].getAsType();
   3600   if (DeducedType.isNull())
   3601     return DAR_Failed;
   3602 
   3603   if (InitList) {
   3604     DeducedType = BuildStdInitializerList(DeducedType, Loc);
   3605     if (DeducedType.isNull())
   3606       return DAR_FailedAlreadyDiagnosed;
   3607   }
   3608 
   3609   Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type);
   3610 
   3611   // Check that the deduced argument type is compatible with the original
   3612   // argument type per C++ [temp.deduct.call]p4.
   3613   if (!InitList && Result &&
   3614       CheckOriginalCallArgDeduction(*this,
   3615                                     Sema::OriginalCallArg(FuncParam,0,InitType),
   3616                                     Result->getType())) {
   3617     Result = 0;
   3618     return DAR_Failed;
   3619   }
   3620 
   3621   return DAR_Succeeded;
   3622 }
   3623 
   3624 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
   3625   if (isa<InitListExpr>(Init))
   3626     Diag(VDecl->getLocation(),
   3627          diag::err_auto_var_deduction_failure_from_init_list)
   3628       << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
   3629   else
   3630     Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
   3631       << VDecl->getDeclName() << VDecl->getType() << Init->getType()
   3632       << Init->getSourceRange();
   3633 }
   3634 
   3635 static void
   3636 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
   3637                            bool OnlyDeduced,
   3638                            unsigned Level,
   3639                            llvm::SmallBitVector &Deduced);
   3640 
   3641 /// \brief If this is a non-static member function,
   3642 static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
   3643                                                 CXXMethodDecl *Method,
   3644                                  SmallVectorImpl<QualType> &ArgTypes) {
   3645   if (Method->isStatic())
   3646     return;
   3647 
   3648   // C++ [over.match.funcs]p4:
   3649   //
   3650   //   For non-static member functions, the type of the implicit
   3651   //   object parameter is
   3652   //     - "lvalue reference to cv X" for functions declared without a
   3653   //       ref-qualifier or with the & ref-qualifier
   3654   //     - "rvalue reference to cv X" for functions declared with the
   3655   //       && ref-qualifier
   3656   //
   3657   // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
   3658   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
   3659   ArgTy = Context.getQualifiedType(ArgTy,
   3660                         Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
   3661   ArgTy = Context.getLValueReferenceType(ArgTy);
   3662   ArgTypes.push_back(ArgTy);
   3663 }
   3664 
   3665 /// \brief Determine whether the function template \p FT1 is at least as
   3666 /// specialized as \p FT2.
   3667 static bool isAtLeastAsSpecializedAs(Sema &S,
   3668                                      SourceLocation Loc,
   3669                                      FunctionTemplateDecl *FT1,
   3670                                      FunctionTemplateDecl *FT2,
   3671                                      TemplatePartialOrderingContext TPOC,
   3672                                      unsigned NumCallArguments,
   3673     SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
   3674   FunctionDecl *FD1 = FT1->getTemplatedDecl();
   3675   FunctionDecl *FD2 = FT2->getTemplatedDecl();
   3676   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
   3677   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
   3678 
   3679   assert(Proto1 && Proto2 && "Function templates must have prototypes");
   3680   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
   3681   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3682   Deduced.resize(TemplateParams->size());
   3683 
   3684   // C++0x [temp.deduct.partial]p3:
   3685   //   The types used to determine the ordering depend on the context in which
   3686   //   the partial ordering is done:
   3687   TemplateDeductionInfo Info(S.Context, Loc);
   3688   CXXMethodDecl *Method1 = 0;
   3689   CXXMethodDecl *Method2 = 0;
   3690   bool IsNonStatic2 = false;
   3691   bool IsNonStatic1 = false;
   3692   unsigned Skip2 = 0;
   3693   switch (TPOC) {
   3694   case TPOC_Call: {
   3695     //   - In the context of a function call, the function parameter types are
   3696     //     used.
   3697     Method1 = dyn_cast<CXXMethodDecl>(FD1);
   3698     Method2 = dyn_cast<CXXMethodDecl>(FD2);
   3699     IsNonStatic1 = Method1 && !Method1->isStatic();
   3700     IsNonStatic2 = Method2 && !Method2->isStatic();
   3701 
   3702     // C++0x [temp.func.order]p3:
   3703     //   [...] If only one of the function templates is a non-static
   3704     //   member, that function template is considered to have a new
   3705     //   first parameter inserted in its function parameter list. The
   3706     //   new parameter is of type "reference to cv A," where cv are
   3707     //   the cv-qualifiers of the function template (if any) and A is
   3708     //   the class of which the function template is a member.
   3709     //
   3710     // C++98/03 doesn't have this provision, so instead we drop the
   3711     // first argument of the free function or static member, which
   3712     // seems to match existing practice.
   3713     SmallVector<QualType, 4> Args1;
   3714     unsigned Skip1 = !S.getLangOpts().CPlusPlus0x &&
   3715       IsNonStatic2 && !IsNonStatic1;
   3716     if (S.getLangOpts().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
   3717       MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
   3718     Args1.insert(Args1.end(),
   3719                  Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
   3720 
   3721     SmallVector<QualType, 4> Args2;
   3722     Skip2 = !S.getLangOpts().CPlusPlus0x &&
   3723       IsNonStatic1 && !IsNonStatic2;
   3724     if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
   3725       MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
   3726     Args2.insert(Args2.end(),
   3727                  Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
   3728 
   3729     // C++ [temp.func.order]p5:
   3730     //   The presence of unused ellipsis and default arguments has no effect on
   3731     //   the partial ordering of function templates.
   3732     if (Args1.size() > NumCallArguments)
   3733       Args1.resize(NumCallArguments);
   3734     if (Args2.size() > NumCallArguments)
   3735       Args2.resize(NumCallArguments);
   3736     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
   3737                                 Args1.data(), Args1.size(), Info, Deduced,
   3738                                 TDF_None, /*PartialOrdering=*/true,
   3739                                 RefParamComparisons))
   3740         return false;
   3741 
   3742     break;
   3743   }
   3744 
   3745   case TPOC_Conversion:
   3746     //   - In the context of a call to a conversion operator, the return types
   3747     //     of the conversion function templates are used.
   3748     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   3749                                            Proto2->getResultType(),
   3750                                            Proto1->getResultType(),
   3751                                            Info, Deduced, TDF_None,
   3752                                            /*PartialOrdering=*/true,
   3753                                            RefParamComparisons))
   3754       return false;
   3755     break;
   3756 
   3757   case TPOC_Other:
   3758     //   - In other contexts (14.6.6.2) the function template's function type
   3759     //     is used.
   3760     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   3761                                            FD2->getType(), FD1->getType(),
   3762                                            Info, Deduced, TDF_None,
   3763                                            /*PartialOrdering=*/true,
   3764                                            RefParamComparisons))
   3765       return false;
   3766     break;
   3767   }
   3768 
   3769   // C++0x [temp.deduct.partial]p11:
   3770   //   In most cases, all template parameters must have values in order for
   3771   //   deduction to succeed, but for partial ordering purposes a template
   3772   //   parameter may remain without a value provided it is not used in the
   3773   //   types being used for partial ordering. [ Note: a template parameter used
   3774   //   in a non-deduced context is considered used. -end note]
   3775   unsigned ArgIdx = 0, NumArgs = Deduced.size();
   3776   for (; ArgIdx != NumArgs; ++ArgIdx)
   3777     if (Deduced[ArgIdx].isNull())
   3778       break;
   3779 
   3780   if (ArgIdx == NumArgs) {
   3781     // All template arguments were deduced. FT1 is at least as specialized
   3782     // as FT2.
   3783     return true;
   3784   }
   3785 
   3786   // Figure out which template parameters were used.
   3787   llvm::SmallBitVector UsedParameters(TemplateParams->size());
   3788   switch (TPOC) {
   3789   case TPOC_Call: {
   3790     unsigned NumParams = std::min(NumCallArguments,
   3791                                   std::min(Proto1->getNumArgs(),
   3792                                            Proto2->getNumArgs()));
   3793     if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
   3794       ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
   3795                                    false,
   3796                                    TemplateParams->getDepth(), UsedParameters);
   3797     for (unsigned I = Skip2; I < NumParams; ++I)
   3798       ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
   3799                                    TemplateParams->getDepth(),
   3800                                    UsedParameters);
   3801     break;
   3802   }
   3803 
   3804   case TPOC_Conversion:
   3805     ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
   3806                                  TemplateParams->getDepth(),
   3807                                  UsedParameters);
   3808     break;
   3809 
   3810   case TPOC_Other:
   3811     ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
   3812                                  TemplateParams->getDepth(),
   3813                                  UsedParameters);
   3814     break;
   3815   }
   3816 
   3817   for (; ArgIdx != NumArgs; ++ArgIdx)
   3818     // If this argument had no value deduced but was used in one of the types
   3819     // used for partial ordering, then deduction fails.
   3820     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
   3821       return false;
   3822 
   3823   return true;
   3824 }
   3825 
   3826 /// \brief Determine whether this a function template whose parameter-type-list
   3827 /// ends with a function parameter pack.
   3828 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
   3829   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
   3830   unsigned NumParams = Function->getNumParams();
   3831   if (NumParams == 0)
   3832     return false;
   3833 
   3834   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
   3835   if (!Last->isParameterPack())
   3836     return false;
   3837 
   3838   // Make sure that no previous parameter is a parameter pack.
   3839   while (--NumParams > 0) {
   3840     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
   3841       return false;
   3842   }
   3843 
   3844   return true;
   3845 }
   3846 
   3847 /// \brief Returns the more specialized function template according
   3848 /// to the rules of function template partial ordering (C++ [temp.func.order]).
   3849 ///
   3850 /// \param FT1 the first function template
   3851 ///
   3852 /// \param FT2 the second function template
   3853 ///
   3854 /// \param TPOC the context in which we are performing partial ordering of
   3855 /// function templates.
   3856 ///
   3857 /// \param NumCallArguments The number of arguments in a call, used only
   3858 /// when \c TPOC is \c TPOC_Call.
   3859 ///
   3860 /// \returns the more specialized function template. If neither
   3861 /// template is more specialized, returns NULL.
   3862 FunctionTemplateDecl *
   3863 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
   3864                                  FunctionTemplateDecl *FT2,
   3865                                  SourceLocation Loc,
   3866                                  TemplatePartialOrderingContext TPOC,
   3867                                  unsigned NumCallArguments) {
   3868   SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
   3869   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
   3870                                           NumCallArguments, 0);
   3871   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
   3872                                           NumCallArguments,
   3873                                           &RefParamComparisons);
   3874 
   3875   if (Better1 != Better2) // We have a clear winner
   3876     return Better1? FT1 : FT2;
   3877 
   3878   if (!Better1 && !Better2) // Neither is better than the other
   3879     return 0;
   3880 
   3881   // C++0x [temp.deduct.partial]p10:
   3882   //   If for each type being considered a given template is at least as
   3883   //   specialized for all types and more specialized for some set of types and
   3884   //   the other template is not more specialized for any types or is not at
   3885   //   least as specialized for any types, then the given template is more
   3886   //   specialized than the other template. Otherwise, neither template is more
   3887   //   specialized than the other.
   3888   Better1 = false;
   3889   Better2 = false;
   3890   for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
   3891     // C++0x [temp.deduct.partial]p9:
   3892     //   If, for a given type, deduction succeeds in both directions (i.e., the
   3893     //   types are identical after the transformations above) and both P and A
   3894     //   were reference types (before being replaced with the type referred to
   3895     //   above):
   3896 
   3897     //     -- if the type from the argument template was an lvalue reference
   3898     //        and the type from the parameter template was not, the argument
   3899     //        type is considered to be more specialized than the other;
   3900     //        otherwise,
   3901     if (!RefParamComparisons[I].ArgIsRvalueRef &&
   3902         RefParamComparisons[I].ParamIsRvalueRef) {
   3903       Better2 = true;
   3904       if (Better1)
   3905         return 0;
   3906       continue;
   3907     } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
   3908                RefParamComparisons[I].ArgIsRvalueRef) {
   3909       Better1 = true;
   3910       if (Better2)
   3911         return 0;
   3912       continue;
   3913     }
   3914 
   3915     //     -- if the type from the argument template is more cv-qualified than
   3916     //        the type from the parameter template (as described above), the
   3917     //        argument type is considered to be more specialized than the
   3918     //        other; otherwise,
   3919     switch (RefParamComparisons[I].Qualifiers) {
   3920     case NeitherMoreQualified:
   3921       break;
   3922 
   3923     case ParamMoreQualified:
   3924       Better1 = true;
   3925       if (Better2)
   3926         return 0;
   3927       continue;
   3928 
   3929     case ArgMoreQualified:
   3930       Better2 = true;
   3931       if (Better1)
   3932         return 0;
   3933       continue;
   3934     }
   3935 
   3936     //     -- neither type is more specialized than the other.
   3937   }
   3938 
   3939   assert(!(Better1 && Better2) && "Should have broken out in the loop above");
   3940   if (Better1)
   3941     return FT1;
   3942   else if (Better2)
   3943     return FT2;
   3944 
   3945   // FIXME: This mimics what GCC implements, but doesn't match up with the
   3946   // proposed resolution for core issue 692. This area needs to be sorted out,
   3947   // but for now we attempt to maintain compatibility.
   3948   bool Variadic1 = isVariadicFunctionTemplate(FT1);
   3949   bool Variadic2 = isVariadicFunctionTemplate(FT2);
   3950   if (Variadic1 != Variadic2)
   3951     return Variadic1? FT2 : FT1;
   3952 
   3953   return 0;
   3954 }
   3955 
   3956 /// \brief Determine if the two templates are equivalent.
   3957 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
   3958   if (T1 == T2)
   3959     return true;
   3960 
   3961   if (!T1 || !T2)
   3962     return false;
   3963 
   3964   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
   3965 }
   3966 
   3967 /// \brief Retrieve the most specialized of the given function template
   3968 /// specializations.
   3969 ///
   3970 /// \param SpecBegin the start iterator of the function template
   3971 /// specializations that we will be comparing.
   3972 ///
   3973 /// \param SpecEnd the end iterator of the function template
   3974 /// specializations, paired with \p SpecBegin.
   3975 ///
   3976 /// \param TPOC the partial ordering context to use to compare the function
   3977 /// template specializations.
   3978 ///
   3979 /// \param NumCallArguments The number of arguments in a call, used only
   3980 /// when \c TPOC is \c TPOC_Call.
   3981 ///
   3982 /// \param Loc the location where the ambiguity or no-specializations
   3983 /// diagnostic should occur.
   3984 ///
   3985 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
   3986 /// no matching candidates.
   3987 ///
   3988 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
   3989 /// occurs.
   3990 ///
   3991 /// \param CandidateDiag partial diagnostic used for each function template
   3992 /// specialization that is a candidate in the ambiguous ordering. One parameter
   3993 /// in this diagnostic should be unbound, which will correspond to the string
   3994 /// describing the template arguments for the function template specialization.
   3995 ///
   3996 /// \param Index if non-NULL and the result of this function is non-nULL,
   3997 /// receives the index corresponding to the resulting function template
   3998 /// specialization.
   3999 ///
   4000 /// \returns the most specialized function template specialization, if
   4001 /// found. Otherwise, returns SpecEnd.
   4002 ///
   4003 /// \todo FIXME: Consider passing in the "also-ran" candidates that failed
   4004 /// template argument deduction.
   4005 UnresolvedSetIterator
   4006 Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
   4007                         UnresolvedSetIterator SpecEnd,
   4008                          TemplatePartialOrderingContext TPOC,
   4009                          unsigned NumCallArguments,
   4010                          SourceLocation Loc,
   4011                          const PartialDiagnostic &NoneDiag,
   4012                          const PartialDiagnostic &AmbigDiag,
   4013                          const PartialDiagnostic &CandidateDiag,
   4014                          bool Complain,
   4015                          QualType TargetType) {
   4016   if (SpecBegin == SpecEnd) {
   4017     if (Complain)
   4018       Diag(Loc, NoneDiag);
   4019     return SpecEnd;
   4020   }
   4021 
   4022   if (SpecBegin + 1 == SpecEnd)
   4023     return SpecBegin;
   4024 
   4025   // Find the function template that is better than all of the templates it
   4026   // has been compared to.
   4027   UnresolvedSetIterator Best = SpecBegin;
   4028   FunctionTemplateDecl *BestTemplate
   4029     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
   4030   assert(BestTemplate && "Not a function template specialization?");
   4031   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
   4032     FunctionTemplateDecl *Challenger
   4033       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   4034     assert(Challenger && "Not a function template specialization?");
   4035     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   4036                                                   Loc, TPOC, NumCallArguments),
   4037                        Challenger)) {
   4038       Best = I;
   4039       BestTemplate = Challenger;
   4040     }
   4041   }
   4042 
   4043   // Make sure that the "best" function template is more specialized than all
   4044   // of the others.
   4045   bool Ambiguous = false;
   4046   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   4047     FunctionTemplateDecl *Challenger
   4048       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   4049     if (I != Best &&
   4050         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   4051                                                    Loc, TPOC, NumCallArguments),
   4052                         BestTemplate)) {
   4053       Ambiguous = true;
   4054       break;
   4055     }
   4056   }
   4057 
   4058   if (!Ambiguous) {
   4059     // We found an answer. Return it.
   4060     return Best;
   4061   }
   4062 
   4063   // Diagnose the ambiguity.
   4064   if (Complain)
   4065     Diag(Loc, AmbigDiag);
   4066 
   4067   if (Complain)
   4068   // FIXME: Can we order the candidates in some sane way?
   4069     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   4070       PartialDiagnostic PD = CandidateDiag;
   4071       PD << getTemplateArgumentBindingsText(
   4072           cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
   4073                     *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
   4074       if (!TargetType.isNull())
   4075         HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
   4076                                    TargetType);
   4077       Diag((*I)->getLocation(), PD);
   4078     }
   4079 
   4080   return SpecEnd;
   4081 }
   4082 
   4083 /// \brief Returns the more specialized class template partial specialization
   4084 /// according to the rules of partial ordering of class template partial
   4085 /// specializations (C++ [temp.class.order]).
   4086 ///
   4087 /// \param PS1 the first class template partial specialization
   4088 ///
   4089 /// \param PS2 the second class template partial specialization
   4090 ///
   4091 /// \returns the more specialized class template partial specialization. If
   4092 /// neither partial specialization is more specialized, returns NULL.
   4093 ClassTemplatePartialSpecializationDecl *
   4094 Sema::getMoreSpecializedPartialSpecialization(
   4095                                   ClassTemplatePartialSpecializationDecl *PS1,
   4096                                   ClassTemplatePartialSpecializationDecl *PS2,
   4097                                               SourceLocation Loc) {
   4098   // C++ [temp.class.order]p1:
   4099   //   For two class template partial specializations, the first is at least as
   4100   //   specialized as the second if, given the following rewrite to two
   4101   //   function templates, the first function template is at least as
   4102   //   specialized as the second according to the ordering rules for function
   4103   //   templates (14.6.6.2):
   4104   //     - the first function template has the same template parameters as the
   4105   //       first partial specialization and has a single function parameter
   4106   //       whose type is a class template specialization with the template
   4107   //       arguments of the first partial specialization, and
   4108   //     - the second function template has the same template parameters as the
   4109   //       second partial specialization and has a single function parameter
   4110   //       whose type is a class template specialization with the template
   4111   //       arguments of the second partial specialization.
   4112   //
   4113   // Rather than synthesize function templates, we merely perform the
   4114   // equivalent partial ordering by performing deduction directly on
   4115   // the template arguments of the class template partial
   4116   // specializations. This computation is slightly simpler than the
   4117   // general problem of function template partial ordering, because
   4118   // class template partial specializations are more constrained. We
   4119   // know that every template parameter is deducible from the class
   4120   // template partial specialization's template arguments, for
   4121   // example.
   4122   SmallVector<DeducedTemplateArgument, 4> Deduced;
   4123   TemplateDeductionInfo Info(Context, Loc);
   4124 
   4125   QualType PT1 = PS1->getInjectedSpecializationType();
   4126   QualType PT2 = PS2->getInjectedSpecializationType();
   4127 
   4128   // Determine whether PS1 is at least as specialized as PS2
   4129   Deduced.resize(PS2->getTemplateParameters()->size());
   4130   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
   4131                                             PS2->getTemplateParameters(),
   4132                                             PT2, PT1, Info, Deduced, TDF_None,
   4133                                             /*PartialOrdering=*/true,
   4134                                             /*RefParamComparisons=*/0);
   4135   if (Better1) {
   4136     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
   4137     InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
   4138                                DeducedArgs, Info);
   4139     Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
   4140                                                  PS1->getTemplateArgs(),
   4141                                                  Deduced, Info);
   4142   }
   4143 
   4144   // Determine whether PS2 is at least as specialized as PS1
   4145   Deduced.clear();
   4146   Deduced.resize(PS1->getTemplateParameters()->size());
   4147   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
   4148                                             PS1->getTemplateParameters(),
   4149                                             PT1, PT2, Info, Deduced, TDF_None,
   4150                                             /*PartialOrdering=*/true,
   4151                                             /*RefParamComparisons=*/0);
   4152   if (Better2) {
   4153     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
   4154     InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
   4155                                DeducedArgs, Info);
   4156     Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
   4157                                                  PS2->getTemplateArgs(),
   4158                                                  Deduced, Info);
   4159   }
   4160 
   4161   if (Better1 == Better2)
   4162     return 0;
   4163 
   4164   return Better1? PS1 : PS2;
   4165 }
   4166 
   4167 static void
   4168 MarkUsedTemplateParameters(ASTContext &Ctx,
   4169                            const TemplateArgument &TemplateArg,
   4170                            bool OnlyDeduced,
   4171                            unsigned Depth,
   4172                            llvm::SmallBitVector &Used);
   4173 
   4174 /// \brief Mark the template parameters that are used by the given
   4175 /// expression.
   4176 static void
   4177 MarkUsedTemplateParameters(ASTContext &Ctx,
   4178                            const Expr *E,
   4179                            bool OnlyDeduced,
   4180                            unsigned Depth,
   4181                            llvm::SmallBitVector &Used) {
   4182   // We can deduce from a pack expansion.
   4183   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
   4184     E = Expansion->getPattern();
   4185 
   4186   // Skip through any implicit casts we added while type-checking, and any
   4187   // substitutions performed by template alias expansion.
   4188   while (1) {
   4189     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   4190       E = ICE->getSubExpr();
   4191     else if (const SubstNonTypeTemplateParmExpr *Subst =
   4192                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
   4193       E = Subst->getReplacement();
   4194     else
   4195       break;
   4196   }
   4197 
   4198   // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
   4199   // find other occurrences of template parameters.
   4200   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   4201   if (!DRE)
   4202     return;
   4203 
   4204   const NonTypeTemplateParmDecl *NTTP
   4205     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
   4206   if (!NTTP)
   4207     return;
   4208 
   4209   if (NTTP->getDepth() == Depth)
   4210     Used[NTTP->getIndex()] = true;
   4211 }
   4212 
   4213 /// \brief Mark the template parameters that are used by the given
   4214 /// nested name specifier.
   4215 static void
   4216 MarkUsedTemplateParameters(ASTContext &Ctx,
   4217                            NestedNameSpecifier *NNS,
   4218                            bool OnlyDeduced,
   4219                            unsigned Depth,
   4220                            llvm::SmallBitVector &Used) {
   4221   if (!NNS)
   4222     return;
   4223 
   4224   MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
   4225                              Used);
   4226   MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
   4227                              OnlyDeduced, Depth, Used);
   4228 }
   4229 
   4230 /// \brief Mark the template parameters that are used by the given
   4231 /// template name.
   4232 static void
   4233 MarkUsedTemplateParameters(ASTContext &Ctx,
   4234                            TemplateName Name,
   4235                            bool OnlyDeduced,
   4236                            unsigned Depth,
   4237                            llvm::SmallBitVector &Used) {
   4238   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
   4239     if (TemplateTemplateParmDecl *TTP
   4240           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
   4241       if (TTP->getDepth() == Depth)
   4242         Used[TTP->getIndex()] = true;
   4243     }
   4244     return;
   4245   }
   4246 
   4247   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
   4248     MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
   4249                                Depth, Used);
   4250   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
   4251     MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
   4252                                Depth, Used);
   4253 }
   4254 
   4255 /// \brief Mark the template parameters that are used by the given
   4256 /// type.
   4257 static void
   4258 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
   4259                            bool OnlyDeduced,
   4260                            unsigned Depth,
   4261                            llvm::SmallBitVector &Used) {
   4262   if (T.isNull())
   4263     return;
   4264 
   4265   // Non-dependent types have nothing deducible
   4266   if (!T->isDependentType())
   4267     return;
   4268 
   4269   T = Ctx.getCanonicalType(T);
   4270   switch (T->getTypeClass()) {
   4271   case Type::Pointer:
   4272     MarkUsedTemplateParameters(Ctx,
   4273                                cast<PointerType>(T)->getPointeeType(),
   4274                                OnlyDeduced,
   4275                                Depth,
   4276                                Used);
   4277     break;
   4278 
   4279   case Type::BlockPointer:
   4280     MarkUsedTemplateParameters(Ctx,
   4281                                cast<BlockPointerType>(T)->getPointeeType(),
   4282                                OnlyDeduced,
   4283                                Depth,
   4284                                Used);
   4285     break;
   4286 
   4287   case Type::LValueReference:
   4288   case Type::RValueReference:
   4289     MarkUsedTemplateParameters(Ctx,
   4290                                cast<ReferenceType>(T)->getPointeeType(),
   4291                                OnlyDeduced,
   4292                                Depth,
   4293                                Used);
   4294     break;
   4295 
   4296   case Type::MemberPointer: {
   4297     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
   4298     MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
   4299                                Depth, Used);
   4300     MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
   4301                                OnlyDeduced, Depth, Used);
   4302     break;
   4303   }
   4304 
   4305   case Type::DependentSizedArray:
   4306     MarkUsedTemplateParameters(Ctx,
   4307                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
   4308                                OnlyDeduced, Depth, Used);
   4309     // Fall through to check the element type
   4310 
   4311   case Type::ConstantArray:
   4312   case Type::IncompleteArray:
   4313     MarkUsedTemplateParameters(Ctx,
   4314                                cast<ArrayType>(T)->getElementType(),
   4315                                OnlyDeduced, Depth, Used);
   4316     break;
   4317 
   4318   case Type::Vector:
   4319   case Type::ExtVector:
   4320     MarkUsedTemplateParameters(Ctx,
   4321                                cast<VectorType>(T)->getElementType(),
   4322                                OnlyDeduced, Depth, Used);
   4323     break;
   4324 
   4325   case Type::DependentSizedExtVector: {
   4326     const DependentSizedExtVectorType *VecType
   4327       = cast<DependentSizedExtVectorType>(T);
   4328     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
   4329                                Depth, Used);
   4330     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
   4331                                Depth, Used);
   4332     break;
   4333   }
   4334 
   4335   case Type::FunctionProto: {
   4336     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   4337     MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
   4338                                Depth, Used);
   4339     for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
   4340       MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
   4341                                  Depth, Used);
   4342     break;
   4343   }
   4344 
   4345   case Type::TemplateTypeParm: {
   4346     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
   4347     if (TTP->getDepth() == Depth)
   4348       Used[TTP->getIndex()] = true;
   4349     break;
   4350   }
   4351 
   4352   case Type::SubstTemplateTypeParmPack: {
   4353     const SubstTemplateTypeParmPackType *Subst
   4354       = cast<SubstTemplateTypeParmPackType>(T);
   4355     MarkUsedTemplateParameters(Ctx,
   4356                                QualType(Subst->getReplacedParameter(), 0),
   4357                                OnlyDeduced, Depth, Used);
   4358     MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
   4359                                OnlyDeduced, Depth, Used);
   4360     break;
   4361   }
   4362 
   4363   case Type::InjectedClassName:
   4364     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
   4365     // fall through
   4366 
   4367   case Type::TemplateSpecialization: {
   4368     const TemplateSpecializationType *Spec
   4369       = cast<TemplateSpecializationType>(T);
   4370     MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
   4371                                Depth, Used);
   4372 
   4373     // C++0x [temp.deduct.type]p9:
   4374     //   If the template argument list of P contains a pack expansion that is not
   4375     //   the last template argument, the entire template argument list is a
   4376     //   non-deduced context.
   4377     if (OnlyDeduced &&
   4378         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4379       break;
   4380 
   4381     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4382       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
   4383                                  Used);
   4384     break;
   4385   }
   4386 
   4387   case Type::Complex:
   4388     if (!OnlyDeduced)
   4389       MarkUsedTemplateParameters(Ctx,
   4390                                  cast<ComplexType>(T)->getElementType(),
   4391                                  OnlyDeduced, Depth, Used);
   4392     break;
   4393 
   4394   case Type::Atomic:
   4395     if (!OnlyDeduced)
   4396       MarkUsedTemplateParameters(Ctx,
   4397                                  cast<AtomicType>(T)->getValueType(),
   4398                                  OnlyDeduced, Depth, Used);
   4399     break;
   4400 
   4401   case Type::DependentName:
   4402     if (!OnlyDeduced)
   4403       MarkUsedTemplateParameters(Ctx,
   4404                                  cast<DependentNameType>(T)->getQualifier(),
   4405                                  OnlyDeduced, Depth, Used);
   4406     break;
   4407 
   4408   case Type::DependentTemplateSpecialization: {
   4409     const DependentTemplateSpecializationType *Spec
   4410       = cast<DependentTemplateSpecializationType>(T);
   4411     if (!OnlyDeduced)
   4412       MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
   4413                                  OnlyDeduced, Depth, Used);
   4414 
   4415     // C++0x [temp.deduct.type]p9:
   4416     //   If the template argument list of P contains a pack expansion that is not
   4417     //   the last template argument, the entire template argument list is a
   4418     //   non-deduced context.
   4419     if (OnlyDeduced &&
   4420         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4421       break;
   4422 
   4423     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4424       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
   4425                                  Used);
   4426     break;
   4427   }
   4428 
   4429   case Type::TypeOf:
   4430     if (!OnlyDeduced)
   4431       MarkUsedTemplateParameters(Ctx,
   4432                                  cast<TypeOfType>(T)->getUnderlyingType(),
   4433                                  OnlyDeduced, Depth, Used);
   4434     break;
   4435 
   4436   case Type::TypeOfExpr:
   4437     if (!OnlyDeduced)
   4438       MarkUsedTemplateParameters(Ctx,
   4439                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
   4440                                  OnlyDeduced, Depth, Used);
   4441     break;
   4442 
   4443   case Type::Decltype:
   4444     if (!OnlyDeduced)
   4445       MarkUsedTemplateParameters(Ctx,
   4446                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
   4447                                  OnlyDeduced, Depth, Used);
   4448     break;
   4449 
   4450   case Type::UnaryTransform:
   4451     if (!OnlyDeduced)
   4452       MarkUsedTemplateParameters(Ctx,
   4453                                cast<UnaryTransformType>(T)->getUnderlyingType(),
   4454                                  OnlyDeduced, Depth, Used);
   4455     break;
   4456 
   4457   case Type::PackExpansion:
   4458     MarkUsedTemplateParameters(Ctx,
   4459                                cast<PackExpansionType>(T)->getPattern(),
   4460                                OnlyDeduced, Depth, Used);
   4461     break;
   4462 
   4463   case Type::Auto:
   4464     MarkUsedTemplateParameters(Ctx,
   4465                                cast<AutoType>(T)->getDeducedType(),
   4466                                OnlyDeduced, Depth, Used);
   4467 
   4468   // None of these types have any template parameters in them.
   4469   case Type::Builtin:
   4470   case Type::VariableArray:
   4471   case Type::FunctionNoProto:
   4472   case Type::Record:
   4473   case Type::Enum:
   4474   case Type::ObjCInterface:
   4475   case Type::ObjCObject:
   4476   case Type::ObjCObjectPointer:
   4477   case Type::UnresolvedUsing:
   4478 #define TYPE(Class, Base)
   4479 #define ABSTRACT_TYPE(Class, Base)
   4480 #define DEPENDENT_TYPE(Class, Base)
   4481 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   4482 #include "clang/AST/TypeNodes.def"
   4483     break;
   4484   }
   4485 }
   4486 
   4487 /// \brief Mark the template parameters that are used by this
   4488 /// template argument.
   4489 static void
   4490 MarkUsedTemplateParameters(ASTContext &Ctx,
   4491                            const TemplateArgument &TemplateArg,
   4492                            bool OnlyDeduced,
   4493                            unsigned Depth,
   4494                            llvm::SmallBitVector &Used) {
   4495   switch (TemplateArg.getKind()) {
   4496   case TemplateArgument::Null:
   4497   case TemplateArgument::Integral:
   4498   case TemplateArgument::Declaration:
   4499     break;
   4500 
   4501   case TemplateArgument::Type:
   4502     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
   4503                                Depth, Used);
   4504     break;
   4505 
   4506   case TemplateArgument::Template:
   4507   case TemplateArgument::TemplateExpansion:
   4508     MarkUsedTemplateParameters(Ctx,
   4509                                TemplateArg.getAsTemplateOrTemplatePattern(),
   4510                                OnlyDeduced, Depth, Used);
   4511     break;
   4512 
   4513   case TemplateArgument::Expression:
   4514     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
   4515                                Depth, Used);
   4516     break;
   4517 
   4518   case TemplateArgument::Pack:
   4519     for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
   4520                                       PEnd = TemplateArg.pack_end();
   4521          P != PEnd; ++P)
   4522       MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
   4523     break;
   4524   }
   4525 }
   4526 
   4527 /// \brief Mark which template parameters can be deduced from a given
   4528 /// template argument list.
   4529 ///
   4530 /// \param TemplateArgs the template argument list from which template
   4531 /// parameters will be deduced.
   4532 ///
   4533 /// \param Used a bit vector whose elements will be set to \c true
   4534 /// to indicate when the corresponding template parameter will be
   4535 /// deduced.
   4536 void
   4537 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
   4538                                  bool OnlyDeduced, unsigned Depth,
   4539                                  llvm::SmallBitVector &Used) {
   4540   // C++0x [temp.deduct.type]p9:
   4541   //   If the template argument list of P contains a pack expansion that is not
   4542   //   the last template argument, the entire template argument list is a
   4543   //   non-deduced context.
   4544   if (OnlyDeduced &&
   4545       hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
   4546     return;
   4547 
   4548   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   4549     ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
   4550                                  Depth, Used);
   4551 }
   4552 
   4553 /// \brief Marks all of the template parameters that will be deduced by a
   4554 /// call to the given function template.
   4555 void
   4556 Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
   4557                                     FunctionTemplateDecl *FunctionTemplate,
   4558                                     llvm::SmallBitVector &Deduced) {
   4559   TemplateParameterList *TemplateParams
   4560     = FunctionTemplate->getTemplateParameters();
   4561   Deduced.clear();
   4562   Deduced.resize(TemplateParams->size());
   4563 
   4564   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   4565   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   4566     ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
   4567                                  true, TemplateParams->getDepth(), Deduced);
   4568 }
   4569 
   4570 bool hasDeducibleTemplateParameters(Sema &S,
   4571                                     FunctionTemplateDecl *FunctionTemplate,
   4572                                     QualType T) {
   4573   if (!T->isDependentType())
   4574     return false;
   4575 
   4576   TemplateParameterList *TemplateParams
   4577     = FunctionTemplate->getTemplateParameters();
   4578   llvm::SmallBitVector Deduced(TemplateParams->size());
   4579   ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
   4580                                Deduced);
   4581 
   4582   return Deduced.any();
   4583 }
   4584