1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a generic engine for intraprocedural, path-sensitive, 11 // dataflow analysis via graph reachability engine. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "CoreEngine" 16 17 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/StmtCXX.h" 22 #include "llvm/Support/Casting.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/Statistic.h" 25 26 using namespace clang; 27 using namespace ento; 28 29 STATISTIC(NumSteps, 30 "The # of steps executed."); 31 STATISTIC(NumReachedMaxSteps, 32 "The # of times we reached the max number of steps."); 33 STATISTIC(NumPathsExplored, 34 "The # of paths explored by the analyzer."); 35 36 //===----------------------------------------------------------------------===// 37 // Worklist classes for exploration of reachable states. 38 //===----------------------------------------------------------------------===// 39 40 WorkList::Visitor::~Visitor() {} 41 42 namespace { 43 class DFS : public WorkList { 44 SmallVector<WorkListUnit,20> Stack; 45 public: 46 virtual bool hasWork() const { 47 return !Stack.empty(); 48 } 49 50 virtual void enqueue(const WorkListUnit& U) { 51 Stack.push_back(U); 52 } 53 54 virtual WorkListUnit dequeue() { 55 assert (!Stack.empty()); 56 const WorkListUnit& U = Stack.back(); 57 Stack.pop_back(); // This technically "invalidates" U, but we are fine. 58 return U; 59 } 60 61 virtual bool visitItemsInWorkList(Visitor &V) { 62 for (SmallVectorImpl<WorkListUnit>::iterator 63 I = Stack.begin(), E = Stack.end(); I != E; ++I) { 64 if (V.visit(*I)) 65 return true; 66 } 67 return false; 68 } 69 }; 70 71 class BFS : public WorkList { 72 std::deque<WorkListUnit> Queue; 73 public: 74 virtual bool hasWork() const { 75 return !Queue.empty(); 76 } 77 78 virtual void enqueue(const WorkListUnit& U) { 79 Queue.push_back(U); 80 } 81 82 virtual WorkListUnit dequeue() { 83 WorkListUnit U = Queue.front(); 84 Queue.pop_front(); 85 return U; 86 } 87 88 virtual bool visitItemsInWorkList(Visitor &V) { 89 for (std::deque<WorkListUnit>::iterator 90 I = Queue.begin(), E = Queue.end(); I != E; ++I) { 91 if (V.visit(*I)) 92 return true; 93 } 94 return false; 95 } 96 }; 97 98 } // end anonymous namespace 99 100 // Place the dstor for WorkList here because it contains virtual member 101 // functions, and we the code for the dstor generated in one compilation unit. 102 WorkList::~WorkList() {} 103 104 WorkList *WorkList::makeDFS() { return new DFS(); } 105 WorkList *WorkList::makeBFS() { return new BFS(); } 106 107 namespace { 108 class BFSBlockDFSContents : public WorkList { 109 std::deque<WorkListUnit> Queue; 110 SmallVector<WorkListUnit,20> Stack; 111 public: 112 virtual bool hasWork() const { 113 return !Queue.empty() || !Stack.empty(); 114 } 115 116 virtual void enqueue(const WorkListUnit& U) { 117 if (isa<BlockEntrance>(U.getNode()->getLocation())) 118 Queue.push_front(U); 119 else 120 Stack.push_back(U); 121 } 122 123 virtual WorkListUnit dequeue() { 124 // Process all basic blocks to completion. 125 if (!Stack.empty()) { 126 const WorkListUnit& U = Stack.back(); 127 Stack.pop_back(); // This technically "invalidates" U, but we are fine. 128 return U; 129 } 130 131 assert(!Queue.empty()); 132 // Don't use const reference. The subsequent pop_back() might make it 133 // unsafe. 134 WorkListUnit U = Queue.front(); 135 Queue.pop_front(); 136 return U; 137 } 138 virtual bool visitItemsInWorkList(Visitor &V) { 139 for (SmallVectorImpl<WorkListUnit>::iterator 140 I = Stack.begin(), E = Stack.end(); I != E; ++I) { 141 if (V.visit(*I)) 142 return true; 143 } 144 for (std::deque<WorkListUnit>::iterator 145 I = Queue.begin(), E = Queue.end(); I != E; ++I) { 146 if (V.visit(*I)) 147 return true; 148 } 149 return false; 150 } 151 152 }; 153 } // end anonymous namespace 154 155 WorkList* WorkList::makeBFSBlockDFSContents() { 156 return new BFSBlockDFSContents(); 157 } 158 159 //===----------------------------------------------------------------------===// 160 // Core analysis engine. 161 //===----------------------------------------------------------------------===// 162 163 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps. 164 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps, 165 ProgramStateRef InitState) { 166 167 if (G->num_roots() == 0) { // Initialize the analysis by constructing 168 // the root if none exists. 169 170 const CFGBlock *Entry = &(L->getCFG()->getEntry()); 171 172 assert (Entry->empty() && 173 "Entry block must be empty."); 174 175 assert (Entry->succ_size() == 1 && 176 "Entry block must have 1 successor."); 177 178 // Mark the entry block as visited. 179 FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(), 180 L->getDecl(), 181 L->getCFG()->getNumBlockIDs()); 182 183 // Get the solitary successor. 184 const CFGBlock *Succ = *(Entry->succ_begin()); 185 186 // Construct an edge representing the 187 // starting location in the function. 188 BlockEdge StartLoc(Entry, Succ, L); 189 190 // Set the current block counter to being empty. 191 WList->setBlockCounter(BCounterFactory.GetEmptyCounter()); 192 193 if (!InitState) 194 // Generate the root. 195 generateNode(StartLoc, SubEng.getInitialState(L), 0); 196 else 197 generateNode(StartLoc, InitState, 0); 198 } 199 200 // Check if we have a steps limit 201 bool UnlimitedSteps = Steps == 0; 202 203 while (WList->hasWork()) { 204 if (!UnlimitedSteps) { 205 if (Steps == 0) { 206 NumReachedMaxSteps++; 207 break; 208 } 209 --Steps; 210 } 211 212 NumSteps++; 213 214 const WorkListUnit& WU = WList->dequeue(); 215 216 // Set the current block counter. 217 WList->setBlockCounter(WU.getBlockCounter()); 218 219 // Retrieve the node. 220 ExplodedNode *Node = WU.getNode(); 221 222 dispatchWorkItem(Node, Node->getLocation(), WU); 223 } 224 SubEng.processEndWorklist(hasWorkRemaining()); 225 return WList->hasWork(); 226 } 227 228 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc, 229 const WorkListUnit& WU) { 230 // Dispatch on the location type. 231 switch (Loc.getKind()) { 232 case ProgramPoint::BlockEdgeKind: 233 HandleBlockEdge(cast<BlockEdge>(Loc), Pred); 234 break; 235 236 case ProgramPoint::BlockEntranceKind: 237 HandleBlockEntrance(cast<BlockEntrance>(Loc), Pred); 238 break; 239 240 case ProgramPoint::BlockExitKind: 241 assert (false && "BlockExit location never occur in forward analysis."); 242 break; 243 244 case ProgramPoint::CallEnterKind: { 245 CallEnter CEnter = cast<CallEnter>(Loc); 246 SubEng.processCallEnter(CEnter, Pred); 247 break; 248 } 249 250 case ProgramPoint::CallExitBeginKind: 251 SubEng.processCallExit(Pred); 252 break; 253 254 case ProgramPoint::EpsilonKind: { 255 assert(Pred->hasSinglePred() && 256 "Assume epsilon has exactly one predecessor by construction"); 257 ExplodedNode *PNode = Pred->getFirstPred(); 258 dispatchWorkItem(Pred, PNode->getLocation(), WU); 259 break; 260 } 261 default: 262 assert(isa<PostStmt>(Loc) || 263 isa<PostInitializer>(Loc) || 264 isa<PostImplicitCall>(Loc) || 265 isa<CallExitEnd>(Loc)); 266 HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred); 267 break; 268 } 269 } 270 271 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L, 272 unsigned Steps, 273 ProgramStateRef InitState, 274 ExplodedNodeSet &Dst) { 275 bool DidNotFinish = ExecuteWorkList(L, Steps, InitState); 276 for (ExplodedGraph::eop_iterator I = G->eop_begin(), 277 E = G->eop_end(); I != E; ++I) { 278 Dst.Add(*I); 279 } 280 return DidNotFinish; 281 } 282 283 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) { 284 285 const CFGBlock *Blk = L.getDst(); 286 NodeBuilderContext BuilderCtx(*this, Blk, Pred); 287 288 // Mark this block as visited. 289 const LocationContext *LC = Pred->getLocationContext(); 290 FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(), 291 LC->getDecl(), 292 LC->getCFG()->getNumBlockIDs()); 293 294 // Check if we are entering the EXIT block. 295 if (Blk == &(L.getLocationContext()->getCFG()->getExit())) { 296 297 assert (L.getLocationContext()->getCFG()->getExit().size() == 0 298 && "EXIT block cannot contain Stmts."); 299 300 // Process the final state transition. 301 SubEng.processEndOfFunction(BuilderCtx); 302 303 // This path is done. Don't enqueue any more nodes. 304 return; 305 } 306 307 // Call into the SubEngine to process entering the CFGBlock. 308 ExplodedNodeSet dstNodes; 309 BlockEntrance BE(Blk, Pred->getLocationContext()); 310 NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE); 311 SubEng.processCFGBlockEntrance(L, nodeBuilder); 312 313 // Auto-generate a node. 314 if (!nodeBuilder.hasGeneratedNodes()) { 315 nodeBuilder.generateNode(Pred->State, Pred); 316 } 317 318 // Enqueue nodes onto the worklist. 319 enqueue(dstNodes); 320 } 321 322 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L, 323 ExplodedNode *Pred) { 324 325 // Increment the block counter. 326 const LocationContext *LC = Pred->getLocationContext(); 327 unsigned BlockId = L.getBlock()->getBlockID(); 328 BlockCounter Counter = WList->getBlockCounter(); 329 Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(), 330 BlockId); 331 WList->setBlockCounter(Counter); 332 333 // Process the entrance of the block. 334 if (CFGElement E = L.getFirstElement()) { 335 NodeBuilderContext Ctx(*this, L.getBlock(), Pred); 336 SubEng.processCFGElement(E, Pred, 0, &Ctx); 337 } 338 else 339 HandleBlockExit(L.getBlock(), Pred); 340 } 341 342 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) { 343 344 if (const Stmt *Term = B->getTerminator()) { 345 switch (Term->getStmtClass()) { 346 default: 347 llvm_unreachable("Analysis for this terminator not implemented."); 348 349 case Stmt::BinaryOperatorClass: // '&&' and '||' 350 HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred); 351 return; 352 353 case Stmt::BinaryConditionalOperatorClass: 354 case Stmt::ConditionalOperatorClass: 355 HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(), 356 Term, B, Pred); 357 return; 358 359 // FIXME: Use constant-folding in CFG construction to simplify this 360 // case. 361 362 case Stmt::ChooseExprClass: 363 HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred); 364 return; 365 366 case Stmt::CXXTryStmtClass: { 367 // Generate a node for each of the successors. 368 // Our logic for EH analysis can certainly be improved. 369 for (CFGBlock::const_succ_iterator it = B->succ_begin(), 370 et = B->succ_end(); it != et; ++it) { 371 if (const CFGBlock *succ = *it) { 372 generateNode(BlockEdge(B, succ, Pred->getLocationContext()), 373 Pred->State, Pred); 374 } 375 } 376 return; 377 } 378 379 case Stmt::DoStmtClass: 380 HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred); 381 return; 382 383 case Stmt::CXXForRangeStmtClass: 384 HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred); 385 return; 386 387 case Stmt::ForStmtClass: 388 HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred); 389 return; 390 391 case Stmt::ContinueStmtClass: 392 case Stmt::BreakStmtClass: 393 case Stmt::GotoStmtClass: 394 break; 395 396 case Stmt::IfStmtClass: 397 HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred); 398 return; 399 400 case Stmt::IndirectGotoStmtClass: { 401 // Only 1 successor: the indirect goto dispatch block. 402 assert (B->succ_size() == 1); 403 404 IndirectGotoNodeBuilder 405 builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(), 406 *(B->succ_begin()), this); 407 408 SubEng.processIndirectGoto(builder); 409 return; 410 } 411 412 case Stmt::ObjCForCollectionStmtClass: { 413 // In the case of ObjCForCollectionStmt, it appears twice in a CFG: 414 // 415 // (1) inside a basic block, which represents the binding of the 416 // 'element' variable to a value. 417 // (2) in a terminator, which represents the branch. 418 // 419 // For (1), subengines will bind a value (i.e., 0 or 1) indicating 420 // whether or not collection contains any more elements. We cannot 421 // just test to see if the element is nil because a container can 422 // contain nil elements. 423 HandleBranch(Term, Term, B, Pred); 424 return; 425 } 426 427 case Stmt::SwitchStmtClass: { 428 SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(), 429 this); 430 431 SubEng.processSwitch(builder); 432 return; 433 } 434 435 case Stmt::WhileStmtClass: 436 HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred); 437 return; 438 } 439 } 440 441 assert (B->succ_size() == 1 && 442 "Blocks with no terminator should have at most 1 successor."); 443 444 generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()), 445 Pred->State, Pred); 446 } 447 448 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term, 449 const CFGBlock * B, ExplodedNode *Pred) { 450 assert(B->succ_size() == 2); 451 NodeBuilderContext Ctx(*this, B, Pred); 452 ExplodedNodeSet Dst; 453 SubEng.processBranch(Cond, Term, Ctx, Pred, Dst, 454 *(B->succ_begin()), *(B->succ_begin()+1)); 455 // Enqueue the new frontier onto the worklist. 456 enqueue(Dst); 457 } 458 459 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, 460 ExplodedNode *Pred) { 461 assert(B); 462 assert(!B->empty()); 463 464 if (StmtIdx == B->size()) 465 HandleBlockExit(B, Pred); 466 else { 467 NodeBuilderContext Ctx(*this, B, Pred); 468 SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx); 469 } 470 } 471 472 /// generateNode - Utility method to generate nodes, hook up successors, 473 /// and add nodes to the worklist. 474 void CoreEngine::generateNode(const ProgramPoint &Loc, 475 ProgramStateRef State, 476 ExplodedNode *Pred) { 477 478 bool IsNew; 479 ExplodedNode *Node = G->getNode(Loc, State, false, &IsNew); 480 481 if (Pred) 482 Node->addPredecessor(Pred, *G); // Link 'Node' with its predecessor. 483 else { 484 assert (IsNew); 485 G->addRoot(Node); // 'Node' has no predecessor. Make it a root. 486 } 487 488 // Only add 'Node' to the worklist if it was freshly generated. 489 if (IsNew) WList->enqueue(Node); 490 } 491 492 void CoreEngine::enqueueStmtNode(ExplodedNode *N, 493 const CFGBlock *Block, unsigned Idx) { 494 assert(Block); 495 assert (!N->isSink()); 496 497 // Check if this node entered a callee. 498 if (isa<CallEnter>(N->getLocation())) { 499 // Still use the index of the CallExpr. It's needed to create the callee 500 // StackFrameContext. 501 WList->enqueue(N, Block, Idx); 502 return; 503 } 504 505 // Do not create extra nodes. Move to the next CFG element. 506 if (isa<PostInitializer>(N->getLocation()) || 507 isa<PostImplicitCall>(N->getLocation())) { 508 WList->enqueue(N, Block, Idx+1); 509 return; 510 } 511 512 if (isa<EpsilonPoint>(N->getLocation())) { 513 WList->enqueue(N, Block, Idx); 514 return; 515 } 516 517 // At this point, we know we're processing a normal statement. 518 CFGStmt CS = cast<CFGStmt>((*Block)[Idx]); 519 PostStmt Loc(CS.getStmt(), N->getLocationContext()); 520 521 if (Loc == N->getLocation()) { 522 // Note: 'N' should be a fresh node because otherwise it shouldn't be 523 // a member of Deferred. 524 WList->enqueue(N, Block, Idx+1); 525 return; 526 } 527 528 bool IsNew; 529 ExplodedNode *Succ = G->getNode(Loc, N->getState(), false, &IsNew); 530 Succ->addPredecessor(N, *G); 531 532 if (IsNew) 533 WList->enqueue(Succ, Block, Idx+1); 534 } 535 536 ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N) { 537 // Create a CallExitBegin node and enqueue it. 538 const StackFrameContext *LocCtx 539 = cast<StackFrameContext>(N->getLocationContext()); 540 541 // Use the callee location context. 542 CallExitBegin Loc(LocCtx); 543 544 bool isNew; 545 ExplodedNode *Node = G->getNode(Loc, N->getState(), false, &isNew); 546 Node->addPredecessor(N, *G); 547 return isNew ? Node : 0; 548 } 549 550 551 void CoreEngine::enqueue(ExplodedNodeSet &Set) { 552 for (ExplodedNodeSet::iterator I = Set.begin(), 553 E = Set.end(); I != E; ++I) { 554 WList->enqueue(*I); 555 } 556 } 557 558 void CoreEngine::enqueue(ExplodedNodeSet &Set, 559 const CFGBlock *Block, unsigned Idx) { 560 for (ExplodedNodeSet::iterator I = Set.begin(), 561 E = Set.end(); I != E; ++I) { 562 enqueueStmtNode(*I, Block, Idx); 563 } 564 } 565 566 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) { 567 for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) { 568 ExplodedNode *N = *I; 569 // If we are in an inlined call, generate CallExitBegin node. 570 if (N->getLocationContext()->getParent()) { 571 N = generateCallExitBeginNode(N); 572 if (N) 573 WList->enqueue(N); 574 } else { 575 // TODO: We should run remove dead bindings here. 576 G->addEndOfPath(N); 577 NumPathsExplored++; 578 } 579 } 580 } 581 582 583 void NodeBuilder::anchor() { } 584 585 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc, 586 ProgramStateRef State, 587 ExplodedNode *FromN, 588 bool MarkAsSink) { 589 HasGeneratedNodes = true; 590 bool IsNew; 591 ExplodedNode *N = C.Eng.G->getNode(Loc, State, MarkAsSink, &IsNew); 592 N->addPredecessor(FromN, *C.Eng.G); 593 Frontier.erase(FromN); 594 595 if (!IsNew) 596 return 0; 597 598 if (!MarkAsSink) 599 Frontier.Add(N); 600 601 return N; 602 } 603 604 void NodeBuilderWithSinks::anchor() { } 605 606 StmtNodeBuilder::~StmtNodeBuilder() { 607 if (EnclosingBldr) 608 for (ExplodedNodeSet::iterator I = Frontier.begin(), 609 E = Frontier.end(); I != E; ++I ) 610 EnclosingBldr->addNodes(*I); 611 } 612 613 void BranchNodeBuilder::anchor() { } 614 615 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State, 616 bool branch, 617 ExplodedNode *NodePred) { 618 // If the branch has been marked infeasible we should not generate a node. 619 if (!isFeasible(branch)) 620 return NULL; 621 622 ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF, 623 NodePred->getLocationContext()); 624 ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred); 625 return Succ; 626 } 627 628 ExplodedNode* 629 IndirectGotoNodeBuilder::generateNode(const iterator &I, 630 ProgramStateRef St, 631 bool IsSink) { 632 bool IsNew; 633 ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(), 634 Pred->getLocationContext()), St, 635 IsSink, &IsNew); 636 Succ->addPredecessor(Pred, *Eng.G); 637 638 if (!IsNew) 639 return 0; 640 641 if (!IsSink) 642 Eng.WList->enqueue(Succ); 643 644 return Succ; 645 } 646 647 648 ExplodedNode* 649 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I, 650 ProgramStateRef St) { 651 652 bool IsNew; 653 ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(), 654 Pred->getLocationContext()), St, 655 false, &IsNew); 656 Succ->addPredecessor(Pred, *Eng.G); 657 if (!IsNew) 658 return 0; 659 660 Eng.WList->enqueue(Succ); 661 return Succ; 662 } 663 664 665 ExplodedNode* 666 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St, 667 bool IsSink) { 668 // Get the block for the default case. 669 assert(Src->succ_rbegin() != Src->succ_rend()); 670 CFGBlock *DefaultBlock = *Src->succ_rbegin(); 671 672 // Sanity check for default blocks that are unreachable and not caught 673 // by earlier stages. 674 if (!DefaultBlock) 675 return NULL; 676 677 bool IsNew; 678 ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock, 679 Pred->getLocationContext()), St, 680 IsSink, &IsNew); 681 Succ->addPredecessor(Pred, *Eng.G); 682 683 if (!IsNew) 684 return 0; 685 686 if (!IsSink) 687 Eng.WList->enqueue(Succ); 688 689 return Succ; 690 } 691