1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 <html> 4 <head> 5 <title>Checker Developer Manual</title> 6 <link type="text/css" rel="stylesheet" href="menu.css"> 7 <link type="text/css" rel="stylesheet" href="content.css"> 8 <script type="text/javascript" src="scripts/menu.js"></script> 9 </head> 10 <body> 11 12 <div id="page"> 13 <!--#include virtual="menu.html.incl"--> 14 15 <div id="content"> 16 17 <h1 style="color:red">This Page Is Under Construction</h1> 18 19 <h1>Checker Developer Manual</h1> 20 21 <p>The static analyzer engine performs symbolic execution of the program and 22 relies on a set of checkers to implement the logic for detecting and 23 constructing bug reports. This page provides hints and guidelines for anyone 24 who is interested in implementing their own checker. The static analyzer is a 25 part of the Clang project, so consult <a href="http://clang.llvm.org/hacking.html">Hacking on Clang</a> 26 and <a href="http://llvm.org/docs/ProgrammersManual.html">LLVM Programmer's Manual</a> 27 for general developer guidelines and information. </p> 28 29 <ul> 30 <li><a href="#start">Getting Started</a></li> 31 <li><a href="#analyzer">Analyzer Overview</a></li> 32 <li><a href="#idea">Idea for a Checker</a></li> 33 <li><a href="#registration">Checker Registration</a></li> 34 <li><a href="#skeleton">Checker Skeleton</a></li> 35 <li><a href="#node">Exploded Node</a></li> 36 <li><a href="#bugs">Bug Reports</a></li> 37 <li><a href="#ast">AST Visitors</a></li> 38 <li><a href="#testing">Testing</a></li> 39 <li><a href="#commands">Useful Commands</a></li> 40 </ul> 41 42 <h2 id=start>Getting Started</h2> 43 <ul> 44 <li>To check out the source code and build the project, follow steps 1-4 of 45 the <a href="http://clang.llvm.org/get_started.html">Clang Getting Started</a> 46 page.</li> 47 48 <li>The analyzer source code is located under the Clang source tree: 49 <br><tt> 50 $ <b>cd llvm/tools/clang</b> 51 </tt> 52 <br>See: <tt>include/clang/StaticAnalyzer</tt>, <tt>lib/StaticAnalyzer</tt>, 53 <tt>test/Analysis</tt>.</li> 54 55 <li>The analyzer regression tests can be executed from the Clang's build 56 directory: 57 <br><tt> 58 $ <b>cd ../../../; cd build/tools/clang; TESTDIRS=Analysis make test</b> 59 </tt></li> 60 61 <li>Analyze a file with the specified checker: 62 <br><tt> 63 $ <b>clang -cc1 -analyze -analyzer-checker=core.DivideZero test.c</b> 64 </tt></li> 65 66 <li>List the available checkers: 67 <br><tt> 68 $ <b>clang -cc1 -analyzer-checker-help</b> 69 </tt></li> 70 71 <li>See the analyzer help for different output formats, fine tuning, and 72 debug options: 73 <br><tt> 74 $ <b>clang -cc1 -help | grep "analyzer"</b> 75 </tt></li> 76 77 </ul> 78 79 <h2 id=analyzer>Static Analyzer Overview</h2> 80 The analyzer core performs symbolic execution of the given program. All the 81 input values are represented with symbolic values; further, the engine deduces 82 the values of all the expressions in the program based on the input symbols 83 and the path. The execution is path sensitive and every possible path through 84 the program is explored. The explored execution traces are represented with 85 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1ExplodedGraph.html">ExplidedGraph</a> object. 86 Each node of the graph is 87 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1ExplodedNode.html">ExplodedNode</a>, 88 which consists of a <tt>ProgramPoint</tt> and a <tt>ProgramState</tt>. 89 <p> 90 <a href="http://clang.llvm.org/doxygen/classclang_1_1ProgramPoint.html">ProgramPoint</a> 91 represents the corresponding location in the program (or the CFG graph). 92 <tt>ProgramPoint</tt> is also used to record additional information on 93 when/how the state was added. For example, <tt>PostPurgeDeadSymbolsKind</tt> 94 kind means that the state is the result of purging dead symbols - the 95 analyzer's equivalent of garbage collection. 96 <p> 97 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1ProgramState.html">ProgramState</a> 98 represents abstract state of the program. It consists of: 99 <ul> 100 <li><tt>Environment</tt> - a mapping from source code expressions to symbolic 101 values 102 <li><tt>Store</tt> - a mapping from memory locations to symbolic values 103 <li><tt>GenericDataMap</tt> - constraints on symbolic values 104 </ul> 105 106 <h3>Interaction with Checkers</h3> 107 Checkers are not merely passive receivers of the analyzer core changes - they 108 actively participate in the <tt>ProgramState</tt> construction through the 109 <tt>GenericDataMap</tt> which can be used to store the checker-defined part 110 of the state. Each time the analyzer engine explores a new statement, it 111 notifies each checker registered to listen for that statement, giving it an 112 opportunity to either report a bug or modify the state. (As a rule of thumb, 113 the checker itself should be stateless.) The checkers are called one after another 114 in the predefined order; thus, calling all the checkers adds a chain to the 115 <tt>ExplodedGraph</tt>. 116 117 <h3>Representing Values</h3> 118 During symbolic execution, <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1SVal.html">SVal</a> 119 objects are used to represent the semantic evaluation of expressions. They can 120 represent things like concrete integers, symbolic values, or memory locations 121 (which are memory regions). They are a discriminated union of "values", 122 symbolic and otherwise. 123 <p> 124 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1SymExpr.html">SymExpr</a> (symbol) 125 is meant to represent abstract, but named, symbolic value. 126 Symbolic values can have constraints associated with them. Symbols represent 127 an actual (immutable) value. We might not know what its specific value is, but 128 we can associate constraints with that value as we analyze a path. 129 <p> 130 131 <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1MemRegion.html">MemRegion</a> is similar to a symbol. 132 It is used to provide a lexicon of how to describe abstract memory. Regions can 133 layer on top of other regions, providing a layered approach to representing memory. 134 For example, a struct object on the stack might be represented by a <tt>VarRegion</tt>, 135 but a <tt>FieldRegion</tt> which is a subregion of the <tt>VarRegion</tt> could 136 be used to represent the memory associated with a specific field of that object. 137 So how do we represent symbolic memory regions? That's what <a href="http://clang.llvm.org/doxygen/classclang_1_1ento_1_1SymbolicRegion.html">SymbolicRegion</a> 138 is for. It is a <tt>MemRegion</tt> that has an associated symbol. Since the 139 symbol is unique and has a unique name; that symbol names the region. 140 <p> 141 Let's see how the analyzer processes the expressions in the following example: 142 <p> 143 <pre class="code_example"> 144 int foo(int x) { 145 int y = x * 2; 146 int z = x; 147 ... 148 } 149 </pre> 150 <p> 151 Let's look at how <tt>x*2</tt> gets evaluated. When <tt>x</tt> is evaluated, 152 we first construct an <tt>SVal</tt> that represents the lvalue of <tt>x</tt>, in 153 this case it is an <tt>SVal</tt> that references the <tt>MemRegion</tt> for <tt>x</tt>. 154 Afterwards, when we do the lvalue-to-rvalue conversion, we get a new <tt>SVal</tt>, 155 which references the value <b>currently bound</b> to <tt>x</tt>. That value is 156 symbolic; it's whatever <tt>x</tt> was bound to at the start of the function. 157 Let's call that symbol <tt>$0</tt>. Similarly, we evaluate the expression for <tt>2</tt>, 158 and get an <tt>SVal</tt> that references the concrete number <tt>2</tt>. When 159 we evaluate <tt>x*2</tt>, we take the two <tt>SVals</tt> of the subexpressions, 160 and create a new <tt>SVal</tt> that represents their multiplication (which in 161 this case is a new symbolic expression, which we might call <tt>$1</tt>). When we 162 evaluate the assignment to <tt>y</tt>, we again compute its lvalue (a <tt>MemRegion</tt>), 163 and then bind the <tt>SVal</tt> for the RHS (which references the symbolic value <tt>$1</tt>) 164 to the <tt>MemRegion</tt> in the symbolic store. 165 <br> 166 The second line is similar. When we evaluate <tt>x</tt> again, we do the same 167 dance, and create an <tt>SVal</tt> that references the symbol <tt>$0</tt>. Note, two <tt>SVals</tt> 168 might reference the same underlying values. 169 170 <p> 171 To summarize, MemRegions are unique names for blocks of memory. Symbols are 172 unique names for abstract symbolic values. Some MemRegions represents abstract 173 symbolic chunks of memory, and thus are also based on symbols. SVals are just 174 references to values, and can reference either MemRegions, Symbols, or concrete 175 values (e.g., the number 1). 176 177 <!-- 178 TODO: Add a picture. 179 <br> 180 Symbols<br> 181 FunctionalObjects are used throughout. 182 --> 183 <h2 id=idea>Idea for a Checker</h2> 184 Here are several questions which you should consider when evaluating your 185 checker idea: 186 <ul> 187 <li>Can the check be effectively implemented without path-sensitive 188 analysis? See <a href="#ast">AST Visitors</a>.</li> 189 190 <li>How high the false positive rate is going to be? Looking at the occurrences 191 of the issue you want to write a checker for in the existing code bases might 192 give you some ideas. </li> 193 194 <li>How the current limitations of the analysis will effect the false alarm 195 rate? Currently, the analyzer only reasons about one procedure at a time (no 196 inter-procedural analysis). Also, it uses a simple range tracking based 197 solver to model symbolic execution.</li> 198 199 <li>Consult the <a 200 href="http://llvm.org/bugs/buglist.cgi?query_format=advanced&bug_status=NEW&bug_status=REOPENED&version=trunk&component=Static%20Analyzer&product=clang">Bugzilla database</a> 201 to get some ideas for new checkers and consider starting with improving/fixing 202 bugs in the existing checkers.</li> 203 </ul> 204 205 <h2 id=registration>Checker Registration</h2> 206 All checker implementation files are located in <tt>clang/lib/StaticAnalyzer/Checkers</tt> 207 folder. Follow the steps below to register a new checker with the analyzer. 208 <ol> 209 <li>Create a new checker implementation file, for example <tt>./lib/StaticAnalyzer/Checkers/NewChecker.cpp</tt> 210 <pre class="code_example"> 211 using namespace clang; 212 using namespace ento; 213 214 namespace { 215 class NewChecker: public Checker< check::PreStmt<CallExpr> > { 216 public: 217 void checkPreStmt(const CallExpr *CE, CheckerContext &Ctx) const {} 218 } 219 } 220 void ento::registerNewChecker(CheckerManager &mgr) { 221 mgr.registerChecker<NewChecker>(); 222 } 223 </pre> 224 225 <li>Pick the package name for your checker and add the registration code to 226 <tt>./lib/StaticAnalyzer/Checkers/Checkers.td</tt>. Note, all checkers should 227 first be developed as experimental. Suppose our new checker performs security 228 related checks, then we should add the following lines under 229 <tt>SecurityExperimental</tt> package: 230 <pre class="code_example"> 231 let ParentPackage = SecurityExperimental in { 232 ... 233 def NewChecker : Checker<"NewChecker">, 234 HelpText<"This text should give a short description of the checks performed.">, 235 DescFile<"NewChecker.cpp">; 236 ... 237 } // end "security.experimental" 238 </pre> 239 240 <li>Make the source code file visible to CMake by adding it to 241 <tt>./lib/StaticAnalyzer/Checkers/CMakeLists.txt</tt>. 242 243 <li>Compile and see your checker in the list of available checkers by running:<br> 244 <tt><b>$clang -cc1 -analyzer-checker-help</b></tt> 245 </ol> 246 247 248 <h2 id=skeleton>Checker Skeleton</h2> 249 There are two main decisions you need to make: 250 <ul> 251 <li> Which events the checker should be tracking. 252 See <a href="http://clang.llvm.org/doxygen/classento_1_1CheckerDocumentation.html">CheckerDocumentation</a> 253 for the list of available checker callbacks.</li> 254 <li> What data you want to store as part of the checker-specific program 255 state. Try to minimize the checker state as much as possible. </li> 256 </ul> 257 258 <h2 id=bugs>Bug Reports</h2> 259 260 <h2 id=ast>AST Visitors</h2> 261 Some checks might not require path-sensitivity to be effective. Simple AST walk 262 might be sufficient. If that is the case, consider implementing a Clang 263 compiler warning. On the other hand, a check might not be acceptable as a compiler 264 warning; for example, because of a relatively high false positive rate. In this 265 situation, AST callbacks <tt><b>checkASTDecl</b></tt> and 266 <tt><b>checkASTCodeBody</b></tt> are your best friends. 267 268 <h2 id=testing>Testing</h2> 269 Every patch should be well tested with Clang regression tests. The checker tests 270 live in <tt>clang/test/Analysis</tt> folder. To run all of the analyzer tests, 271 execute the following from the <tt>clang</tt> build directory: 272 <pre class="code"> 273 $ <b>TESTDIRS=Analysis make test</b> 274 </pre> 275 276 <h2 id=commands>Useful Commands/Debugging Hints</h2> 277 <ul> 278 <li> 279 While investigating a checker-related issue, instruct the analyzer to only 280 execute a single checker: 281 <br><tt> 282 $ <b>clang -cc1 -analyze -analyzer-checker=osx.KeychainAPI test.c</b> 283 </tt> 284 </li> 285 <li> 286 To dump AST: 287 <br><tt> 288 $ <b>clang -cc1 -ast-dump test.c</b> 289 </tt> 290 </li> 291 <li> 292 To view/dump CFG use <tt>debug.ViewCFG</tt> or <tt>debug.DumpCFG</tt> checkers: 293 <br><tt> 294 $ <b>clang -cc1 -analyze -analyzer-checker=debug.ViewCFG test.c</b> 295 </tt> 296 </li> 297 <li> 298 To see all available debug checkers: 299 <br><tt> 300 $ <b>clang -cc1 -analyzer-checker-help | grep "debug"</b> 301 </tt> 302 </li> 303 <li> 304 To see which function is failing while processing a large file use 305 <tt>-analyzer-display-progress</tt> option. 306 </li> 307 <li> 308 While debugging execute <tt>clang -cc1 -analyze -analyzer-checker=core</tt> 309 instead of <tt>clang --analyze</tt>, as the later would call the compiler 310 in a separate process. 311 </li> 312 <li> 313 To view <tt>ExplodedGraph</tt> (the state graph explored by the analyzer) while 314 debugging, goto a frame that has <tt>clang::ento::ExprEngine</tt> object and 315 execute: 316 <br><tt> 317 (gdb) <b>p ViewGraph(0)</b> 318 </tt> 319 </li> 320 <li> 321 To see the <tt>ProgramState</tt> while debugging use the following command. 322 <br><tt> 323 (gdb) <b>p State->dump()</b> 324 </tt> 325 </li> 326 <li> 327 To see <tt>clang::Expr</tt> while debugging use the following command. If you 328 pass in a SourceManager object, it will also dump the corresponding line in the 329 source code. 330 <br><tt> 331 (gdb) <b>p E->dump()</b> 332 </tt> 333 </li> 334 <li> 335 To dump AST of a method that the current <tt>ExplodedNode</tt> belongs to: 336 <br><tt> 337 (gdb) <b>p C.getPredecessor()->getCodeDecl().getBody()->dump()</b> 338 (gdb) <b>p C.getPredecessor()->getCodeDecl().getBody()->dump(getContext().getSourceManager())</b> 339 </tt> 340 </li> 341 </ul> 342 343 </div> 344 </div> 345 </body> 346 </html> 347