Home | History | Annotate | Download | only in www
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2           "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
      6   <title>Language Compatibility</title>
      7   <link type="text/css" rel="stylesheet" href="menu.css">
      8   <link type="text/css" rel="stylesheet" href="content.css">
      9   <style type="text/css">
     10 </style>
     11 </head>
     12 <body>
     13 
     14 <!--#include virtual="menu.html.incl"-->
     15 
     16 <div id="content">
     17 
     18 <!-- ======================================================================= -->
     19 <h1>Language Compatibility</h1>
     20 <!-- ======================================================================= -->
     21 
     22 <p>Clang strives to both conform to current language standards (C99,
     23   C++98) and also to implement many widely-used extensions available
     24   in other compilers, so that most correct code will "just work" when
     25   compiler with Clang. However, Clang is more strict than other
     26   popular compilers, and may reject incorrect code that other
     27   compilers allow. This page documents common compatibility and
     28   portability issues with Clang to help you understand and fix the
     29   problem in your code when Clang emits an error message.</p>
     30   
     31 <ul>
     32   <li><a href="#c">C compatibility</a>
     33     <ul>
     34       <li><a href="#inline">C99 inline functions</a></li>
     35       <li><a href="#vector_builtins">"missing" vector __builtin functions</a></li>
     36       <li><a href="#lvalue-cast">Lvalue casts</a></li>
     37       <li><a href="#blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</a></li>
     38       <li><a href="#block-variable-initialization">Non-initialization of <tt>__block</tt> variables</a></li>
     39       <li><a href="#inline-asm">Inline assembly</a></li>
     40     </ul>
     41   </li>
     42   <li><a href="#objective-c">Objective-C compatibility</a>
     43     <ul>
     44       <li><a href="#super-cast">Cast of super</a></li>
     45       <li><a href="#sizeof-interface">Size of interfaces</a></li>
     46       <li><a href="#objc_objs-cast">Internal Objective-C types</a></li>
     47       <li><a href="#c_variables-class">C variables in @class or @protocol</a></li>
     48     </ul>
     49   </li>
     50   <li><a href="#cxx">C++ compatibility</a>
     51     <ul>
     52       <li><a href="#vla">Variable-length arrays</a></li>
     53       <li><a href="#dep_lookup">Unqualified lookup in templates</a></li>
     54       <li><a href="#dep_lookup_bases">Unqualified lookup into dependent bases of class templates</a></li>
     55       <li><a href="#undep_incomplete">Incomplete types in templates</a></li>
     56       <li><a href="#bad_templates">Templates with no valid instantiations</a></li>
     57       <li><a href="#default_init_const">Default initialization of const
     58       variable of a class type requires user-defined default
     59       constructor</a></li>
     60       <li><a href="#param_name_lookup">Parameter name lookup</a></li>
     61     </ul>
     62   </li>
     63   <li><a href="#cxx11">C++11 compatibility</a>
     64     <ul>
     65       <li><a href="#deleted-special-func">Deleted special member
     66   functions</a></li>
     67     </ul>
     68   </li>
     69   <li><a href="#objective-cxx">Objective-C++ compatibility</a>
     70     <ul>
     71       <li><a href="#implicit-downcasts">Implicit downcasts</a></li>
     72     </ul>
     73     <ul>
     74       <li><a href="#class-as-property-name">Using <code>class</code> as a property name</a></li>
     75     </ul>
     76   </li>
     77 </ul>
     78 
     79 <!-- ======================================================================= -->
     80 <h2 id="c">C compatibility</h2>
     81 <!-- ======================================================================= -->
     82 
     83 <!-- ======================================================================= -->
     84 <h3 id="inline">C99 inline functions</h3>
     85 <!-- ======================================================================= -->
     86 <p>By default, Clang builds C code according to the C99 standard,
     87 which provides different semantics for the <code>inline</code> keyword
     88 than GCC's default behavior. For example, consider the following
     89 code:</p>
     90 <pre>
     91 inline int add(int i, int j) { return i + j; }
     92 
     93 int main() {
     94   int i = add(4, 5);
     95   return i;
     96 }
     97 </pre>
     98 
     99 <p>In C99, <code>inline</code> means that a function's definition is
    100 provided only for inlining, and that there is another definition
    101 (without <code>inline</code>) somewhere else in the program.  That
    102 means that this program is incomplete, because if <code>add</code>
    103 isn't inlined (for example, when compiling without optimization), then
    104 <code>main</code> will have an unresolved reference to that other
    105 definition.  Therefore we'll get a (correct) link-time error like this:</p>
    106 
    107 <pre>
    108 Undefined symbols:
    109   "_add", referenced from:
    110       _main in cc-y1jXIr.o
    111 </pre>
    112 
    113 <p>By contrast, GCC's default behavior follows the GNU89 dialect,
    114 which is the C89 standard plus a lot of extensions.  C89 doesn't have
    115 an <code>inline</code> keyword, but GCC recognizes it as an extension
    116 and just treats it as a hint to the optimizer.</p>
    117 
    118 <p>There are several ways to fix this problem:</p>
    119 
    120 <ul>
    121   <li>Change <code>add</code> to a <code>static inline</code>
    122   function.  This is usually the right solution if only one
    123   translation unit needs to use the function.  <code>static
    124   inline</code> functions are always resolved within the translation
    125   unit, so you won't have to add a non-<code>inline</code> definition
    126   of the function elsewhere in your program.</li>
    127 
    128   <li>Remove the <code>inline</code> keyword from this definition of
    129   <code>add</code>.  The <code>inline</code> keyword is not required
    130   for a function to be inlined, nor does it guarantee that it will be.
    131   Some compilers ignore it completely.  Clang treats it as a mild
    132   suggestion from the programmer.</li>
    133      
    134   <li>Provide an external (non-<code>inline</code>) definition
    135   of <code>add</code> somewhere else in your program.  The two
    136   definitions must be equivalent!</li>
    137 
    138   <li>Compile with the GNU89 dialect by adding
    139   <code>-std=gnu89</code> to the set of Clang options. This option is
    140   only recommended if the program source cannot be changed or if the
    141   program also relies on additional C89-specific behavior that cannot
    142   be changed.</li>
    143 </ul>
    144 
    145 <p>All of this only applies to C code; the meaning of <code>inline</code>
    146 in C++ is very different from its meaning in either GNU89 or C99.</p>
    147 
    148 <!-- ======================================================================= -->
    149 <h3 id="vector_builtins">"missing" vector __builtin functions</h3>
    150 <!-- ======================================================================= -->
    151 
    152 <p>The Intel and AMD manuals document a number "<tt>&lt;*mmintrin.h&gt;</tt>"
    153 header files, which define a standardized API for accessing vector operations
    154 on X86 CPUs.  These functions have names like <tt>_mm_xor_ps</tt> and
    155 <tt>_mm256_addsub_pd</tt>.  Compilers have leeway to implement these functions
    156 however they want.  Since Clang supports an excellent set of <a 
    157 href="../docs/LanguageExtensions.html#vectors">native vector operations</a>,
    158 the Clang headers implement these interfaces in terms of the native vector 
    159 operations.
    160 </p>
    161 
    162 <p>In contrast, GCC implements these functions mostly as a 1-to-1 mapping to
    163 builtin function calls, like <tt>__builtin_ia32_paddw128</tt>.  These builtin
    164 functions are an internal implementation detail of GCC, and are not portable to
    165 the Intel compiler, the Microsoft compiler, or Clang.  If you get build errors
    166 mentioning these, the fix is simple: switch to the *mmintrin.h functions.</p>
    167 
    168 <p>The same issue occurs for NEON and Altivec for the ARM and PowerPC
    169 architectures respectively.  For these, make sure to use the &lt;arm_neon.h&gt;
    170 and &lt;altivec.h&gt; headers.</p>
    171 
    172 <p>For x86 architectures this <a href="builtins.py">script</a> should help with
    173 the manual migration process.  It will rewrite your source files in place to
    174 use the APIs instead of builtin function calls. Just call it like this:</p>
    175 
    176 <pre>
    177   builtins.py *.c *.h
    178 </pre>
    179 
    180 <p>and it will rewrite all of the .c and .h files in the current directory to
    181 use the API calls instead of calls like <tt>__builtin_ia32_paddw128</tt>.</p>
    182 
    183 <!-- ======================================================================= -->
    184 <h3 id="lvalue-cast">Lvalue casts</h3>
    185 <!-- ======================================================================= -->
    186 
    187 <p>Old versions of GCC permit casting the left-hand side of an assignment to a
    188 different type. Clang produces an error on similar code, e.g.,</p>
    189 
    190 <pre>
    191 lvalue.c:2:3: error: assignment to cast is illegal, lvalue casts are not
    192       supported
    193   (int*)addr = val;
    194   ^~~~~~~~~~ ~
    195 </pre>
    196 
    197 <p>To fix this problem, move the cast to the right-hand side. In this
    198 example, one could use:</p>
    199 
    200 <pre>
    201   addr = (float *)val;
    202 </pre>
    203 
    204 <!-- ======================================================================= -->
    205 <h3 id="blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</h3>
    206 <!-- ======================================================================= -->
    207 
    208 <p>Clang disallows jumps into the scope of a <tt>__block</tt>
    209 variable.  Variables marked with <tt>__block</tt> require special
    210 runtime initialization. A jump into the scope of a <tt>__block</tt>
    211 variable bypasses this initialization, leaving the variable's metadata
    212 in an invalid state.  Consider the following code fragment:</p>
    213 
    214 <pre>
    215 int fetch_object_state(struct MyObject *c) {
    216   if (!c->active) goto error;
    217 
    218   __block int result;
    219   run_specially_somehow(^{ result = c->state; });
    220   return result;
    221 
    222  error:
    223   fprintf(stderr, "error while fetching object state");
    224   return -1;
    225 }
    226 </pre>
    227 
    228 <p>GCC accepts this code, but it produces code that will usually crash
    229 when <code>result</code> goes out of scope if the jump is taken.  (It's
    230 possible for this bug to go undetected because it often won't crash if
    231 the stack is fresh, i.e. still zeroed.)  Therefore, Clang rejects this
    232 code with a hard error:</p>
    233 
    234 <pre>
    235 t.c:3:5: error: goto into protected scope
    236     goto error;
    237     ^
    238 t.c:5:15: note: jump bypasses setup of __block variable
    239   __block int result;
    240               ^
    241 </pre>
    242 
    243 <p>The fix is to rewrite the code to not require jumping into a
    244 <tt>__block</tt> variable's scope, e.g. by limiting that scope:</p>
    245 
    246 <pre>
    247   {
    248     __block int result;
    249     run_specially_somehow(^{ result = c->state; });
    250     return result;
    251   }
    252 </pre>
    253 
    254 <!-- ======================================================================= -->
    255 <h3 id="block-variable-initialization">Non-initialization of <tt>__block</tt>
    256 variables</h3>
    257 <!-- ======================================================================= -->
    258 
    259 <p>In the following example code, the <tt>x</tt> variable is used before it is
    260 defined:</p>
    261 <pre>
    262 int f0() {
    263   __block int x;
    264   return ^(){ return x; }();
    265 }
    266 </pre>
    267 
    268 <p>By an accident of implementation, GCC and llvm-gcc unintentionally always
    269 zero initialized <tt>__block</tt> variables. However, any program which depends
    270 on this behavior is relying on unspecified compiler behavior. Programs must
    271 explicitly initialize all local block variables before they are used, as with
    272 other local variables.</p>
    273 
    274 <p>Clang does not zero initialize local block variables, and programs which rely
    275 on such behavior will most likely break when built with Clang.</p>
    276 
    277 
    278 <!-- ======================================================================= -->
    279 <h3 id="inline-asm">Inline assembly</h3>
    280 <!-- ======================================================================= -->
    281 
    282 <p>In general, Clang is highly compatible with the GCC inline assembly
    283 extensions, allowing the same set of constraints, modifiers and operands as GCC
    284 inline assembly.</p>
    285 
    286 <p>On targets that use the integrated assembler (such as most X86 targets),
    287 inline assembly is run through the integrated assembler instead of your system
    288 assembler (which is most commonly "gas", the GNU assembler).  The LLVM
    289 integrated assembler is extremely compatible with GAS, but there are a couple of
    290 minor places where it is more picky, particularly due to outright GAS bugs.</p>
    291 
    292 <p>One specific example is that the assembler rejects ambiguous X86 instructions
    293 that don't have suffixes.  For example:</p>
    294 
    295 <pre>
    296   asm("add %al, (%rax)");
    297   asm("addw $4, (%rax)");
    298   asm("add $4, (%rax)");
    299 </pre>
    300 
    301 <p>Both clang and GAS accept the first instruction: because the first
    302 instruction uses the 8-bit <tt>%al</tt> register as an operand, it is clear that
    303 it is an 8-bit add.  The second instruction is accepted by both because the "w"
    304 suffix indicates that it is a 16-bit add.  The last instruction is accepted by
    305 GAS even though there is nothing that specifies the size of the instruction (and
    306 the assembler randomly picks a 32-bit add).  Because it is ambiguous, Clang
    307 rejects the instruction with this error message:
    308 </p>
    309 
    310 <pre>
    311 &lt;inline asm&gt;:3:1: error: ambiguous instructions require an explicit suffix (could be 'addb', 'addw', 'addl', or 'addq')
    312 add $4, (%rax)
    313 ^
    314 1 error generated.
    315 </pre>
    316 
    317 <p>To fix this compatibility issue, add an explicit suffix to the instruction:
    318 this makes your code more clear and is compatible with both GCC and Clang.</p>
    319 
    320 <!-- ======================================================================= -->
    321 <h2 id="objective-c">Objective-C compatibility</h2>
    322 <!-- ======================================================================= -->
    323 
    324 <!-- ======================================================================= -->
    325 <h3 id="super-cast">Cast of super</h3>
    326 <!-- ======================================================================= -->
    327 
    328 <p>GCC treats the <code>super</code> identifier as an expression that
    329 can, among other things, be cast to a different type. Clang treats
    330 <code>super</code> as a context-sensitive keyword, and will reject a
    331 type-cast of <code>super</code>:</p>
    332 
    333 <pre>
    334 super.m:11:12: error: cannot cast 'super' (it isn't an expression)
    335   [(Super*)super add:4];
    336    ~~~~~~~~^
    337 </pre>
    338 
    339 <p>To fix this problem, remove the type cast, e.g.</p>
    340 <pre>
    341   [super add:4];
    342 </pre>
    343 
    344 <!-- ======================================================================= -->
    345 <h3 id="sizeof-interface">Size of interfaces</h3>
    346 <!-- ======================================================================= -->
    347 
    348 <p>When using the "non-fragile" Objective-C ABI in use, the size of an
    349 Objective-C class may change over time as instance variables are added
    350 (or removed). For this reason, Clang rejects the application of the
    351 <code>sizeof</code> operator to an Objective-C class when using this
    352 ABI:</p>
    353 
    354 <pre>
    355 sizeof.m:4:14: error: invalid application of 'sizeof' to interface 'NSArray' in
    356       non-fragile ABI
    357   int size = sizeof(NSArray);
    358              ^     ~~~~~~~~~
    359 </pre>
    360 
    361 <p>Code that relies on the size of an Objective-C class is likely to
    362 be broken anyway, since that size is not actually constant. To address
    363 this problem, use the Objective-C runtime API function
    364 <code>class_getInstanceSize()</code>:</p>
    365 
    366 <pre>
    367   class_getInstanceSize([NSArray class])
    368 </pre>
    369 
    370 <!-- ======================================================================= -->
    371 <h3 id="objc_objs-cast">Internal Objective-C types</h3>
    372 <!-- ======================================================================= -->
    373 
    374 <p>GCC allows using pointers to internal Objective-C objects, <tt>struct objc_object*</tt>,
    375 <tt>struct objc_selector*</tt>, and <tt>struct objc_class*</tt> in place of the types
    376 <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt> respectively. Clang treats the
    377 internal Objective-C structures as implementation detail and won't do implicit conversions:
    378 
    379 <pre>
    380 t.mm:11:2: error: no matching function for call to 'f'
    381         f((struct objc_object *)p);
    382         ^
    383 t.mm:5:6: note: candidate function not viable: no known conversion from 'struct objc_object *' to 'id' for 1st argument
    384 void f(id x);
    385      ^
    386 </pre>
    387 
    388 <p>Code should use types <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt>
    389 instead of the internal types.</p>
    390 
    391 <!-- ======================================================================= -->
    392 <h3 id="c_variables-class">C variables in @interface or @protocol</h3>
    393 <!-- ======================================================================= -->
    394 
    395 <p>GCC allows the declaration of C variables in
    396 an <code>@interface</code> or <code>@protocol</code>
    397 declaration. Clang does not allow variable declarations to appear
    398 within these declarations unless they are marked <code>extern</code>.</p>
    399 
    400 <p>Variables may still be declared in an @implementation.</p>
    401 
    402 <pre>
    403 @interface XX
    404 int a;         // not allowed in clang
    405 int b = 1;     // not allowed in clang
    406 extern int c;  // allowed 
    407 @end
    408 
    409 </pre>
    410 
    411 <!-- ======================================================================= -->
    412 <h2 id="cxx">C++ compatibility</h2>
    413 <!-- ======================================================================= -->
    414 
    415 <!-- ======================================================================= -->
    416 <h3 id="vla">Variable-length arrays</h3>
    417 <!-- ======================================================================= -->
    418 
    419 <p>GCC and C99 allow an array's size to be determined at run
    420 time. This extension is not permitted in standard C++. However, Clang
    421 supports such variable length arrays in very limited circumstances for
    422 compatibility with GNU C and C99 programs:</p>
    423 
    424 <ul>  
    425   <li>The element type of a variable length array must be a POD
    426   ("plain old data") type, which means that it cannot have any
    427   user-declared constructors or destructors, any base classes, or any
    428   members of non-POD type. All C types are POD types.</li>
    429 
    430   <li>Variable length arrays cannot be used as the type of a non-type
    431 template parameter.</li> </ul>
    432 
    433 <p>If your code uses variable length arrays in a manner that Clang doesn't support, there are several ways to fix your code:
    434 
    435 <ol>
    436 <li>replace the variable length array with a fixed-size array if you can
    437     determine a reasonable upper bound at compile time; sometimes this is as
    438     simple as changing <tt>int size = ...;</tt> to <tt>const int size
    439     = ...;</tt> (if the initializer is a compile-time constant);</li>
    440 <li>use <tt>std::vector</tt> or some other suitable container type;
    441     or</li>
    442 <li>allocate the array on the heap instead using <tt>new Type[]</tt> -
    443     just remember to <tt>delete[]</tt> it.</li>
    444 </ol>
    445 
    446 <!-- ======================================================================= -->
    447 <h3 id="dep_lookup">Unqualified lookup in templates</h3>
    448 <!-- ======================================================================= -->
    449 
    450 <p>Some versions of GCC accept the following invalid code:
    451 
    452 <pre>
    453 template &lt;typename T&gt; T Squared(T x) {
    454   return Multiply(x, x);
    455 }
    456 
    457 int Multiply(int x, int y) {
    458   return x * y;
    459 }
    460 
    461 int main() {
    462   Squared(5);
    463 }
    464 </pre>
    465 
    466 <p>Clang complains:
    467 
    468 <pre>  <b>my_file.cpp:2:10: <span class="error">error:</span> call to function 'Multiply' that is neither visible in the template definition nor found by argument-dependent lookup</b>
    469     return Multiply(x, x);
    470   <span class="caret">         ^</span>
    471   <b>my_file.cpp:10:3: <span class="note">note:</span> in instantiation of function template specialization 'Squared&lt;int&gt;' requested here</b>
    472     Squared(5);
    473   <span class="caret">  ^</span>
    474   <b>my_file.cpp:5:5: <span class="note">note:</span> 'Multiply' should be declared prior to the call site</b>
    475   int Multiply(int x, int y) {
    476   <span class="caret">    ^</span>
    477 </pre>
    478 
    479 <p>The C++ standard says that unqualified names like <q>Multiply</q>
    480 are looked up in two ways.
    481 
    482 <p>First, the compiler does <i>unqualified lookup</i> in the scope
    483 where the name was written.  For a template, this means the lookup is
    484 done at the point where the template is defined, not where it's
    485 instantiated.  Since <tt>Multiply</tt> hasn't been declared yet at
    486 this point, unqualified lookup won't find it.
    487 
    488 <p>Second, if the name is called like a function, then the compiler
    489 also does <i>argument-dependent lookup</i> (ADL).  (Sometimes
    490 unqualified lookup can suppress ADL; see [basic.lookup.argdep]p3 for
    491 more information.)  In ADL, the compiler looks at the types of all the
    492 arguments to the call.  When it finds a class type, it looks up the
    493 name in that class's namespace; the result is all the declarations it
    494 finds in those namespaces, plus the declarations from unqualified
    495 lookup.  However, the compiler doesn't do ADL until it knows all the
    496 argument types.
    497 
    498 <p>In our example, <tt>Multiply</tt> is called with dependent
    499 arguments, so ADL isn't done until the template is instantiated.  At
    500 that point, the arguments both have type <tt>int</tt>, which doesn't
    501 contain any class types, and so ADL doesn't look in any namespaces.
    502 Since neither form of lookup found the declaration
    503 of <tt>Multiply</tt>, the code doesn't compile.
    504 
    505 <p>Here's another example, this time using overloaded operators,
    506 which obey very similar rules.
    507 
    508 <pre>#include &lt;iostream&gt;
    509 
    510 template&lt;typename T&gt;
    511 void Dump(const T&amp; value) {
    512   std::cout &lt;&lt; value &lt;&lt; "\n";
    513 }
    514 
    515 namespace ns {
    516   struct Data {};
    517 }
    518 
    519 std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
    520   return out &lt;&lt; "Some data";
    521 }
    522 
    523 void Use() {
    524   Dump(ns::Data());
    525 }</pre>
    526 
    527 <p>Again, Clang complains:</p>
    528 
    529 <pre>  <b>my_file2.cpp:5:13: <span class="error">error:</span> call to function 'operator&lt;&lt;' that is neither visible in the template definition nor found by argument-dependent lookup</b>
    530     std::cout &lt;&lt; value &lt;&lt; "\n";
    531   <span class="caret">            ^</span>
    532   <b>my_file2.cpp:17:3: <span class="error">note:</span> in instantiation of function template specialization 'Dump&lt;ns::Data&gt;' requested here</b>
    533     Dump(ns::Data());
    534   <span class="caret">  ^</span>
    535   <b>my_file2.cpp:12:15: <span class="error">note:</span> 'operator&lt;&lt;' should be declared prior to the call site or in namespace 'ns'</b>
    536   std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
    537   <span class="caret">              ^</span>
    538 </pre>
    539 
    540 <p>Just like before, unqualified lookup didn't find any declarations
    541 with the name <tt>operator&lt;&lt;</tt>.  Unlike before, the argument
    542 types both contain class types: one of them is an instance of the
    543 class template type <tt>std::basic_ostream</tt>, and the other is the
    544 type <tt>ns::Data</tt> that we declared above.  Therefore, ADL will
    545 look in the namespaces <tt>std</tt> and <tt>ns</tt> for
    546 an <tt>operator&lt;&lt;</tt>.  Since one of the argument types was
    547 still dependent during the template definition, ADL isn't done until
    548 the template is instantiated during <tt>Use</tt>, which means that
    549 the <tt>operator&lt;&lt;</tt> we want it to find has already been
    550 declared.  Unfortunately, it was declared in the global namespace, not
    551 in either of the namespaces that ADL will look in!
    552 
    553 <p>There are two ways to fix this problem:</p>
    554 <ol><li>Make sure the function you want to call is declared before the
    555 template that might call it.  This is the only option if none of its
    556 argument types contain classes.  You can do this either by moving the
    557 template definition, or by moving the function definition, or by
    558 adding a forward declaration of the function before the template.</li>
    559 <li>Move the function into the same namespace as one of its arguments
    560 so that ADL applies.</li></ol>
    561 
    562 <p>For more information about argument-dependent lookup, see
    563 [basic.lookup.argdep].  For more information about the ordering of
    564 lookup in templates, see [temp.dep.candidate].
    565 
    566 <!-- ======================================================================= -->
    567 <h3 id="dep_lookup_bases">Unqualified lookup into dependent bases of class templates</h3>
    568 <!-- ======================================================================= -->
    569 
    570 Some versions of GCC accept the following invalid code:
    571 
    572 <pre>
    573 template &lt;typename T&gt; struct Base {
    574   void DoThis(T x) {}
    575   static void DoThat(T x) {}
    576 };
    577 
    578 template &lt;typename T&gt; struct Derived : public Base&lt;T&gt; {
    579   void Work(T x) {
    580     DoThis(x);  // Invalid!
    581     DoThat(x);  // Invalid!
    582   }
    583 };
    584 </pre>
    585 
    586 Clang correctly rejects it with the following errors
    587 (when <tt>Derived</tt> is eventually instantiated):
    588 
    589 <pre>
    590 my_file.cpp:8:5: error: use of undeclared identifier 'DoThis'
    591     DoThis(x);
    592     ^
    593     this-&gt;
    594 my_file.cpp:2:8: note: must qualify identifier to find this declaration in dependent base class
    595   void DoThis(T x) {}
    596        ^
    597 my_file.cpp:9:5: error: use of undeclared identifier 'DoThat'
    598     DoThat(x);
    599     ^
    600     this-&gt;
    601 my_file.cpp:3:15: note: must qualify identifier to find this declaration in dependent base class
    602   static void DoThat(T x) {}
    603 </pre>
    604 
    605 Like we said <a href="#dep_lookup">above</a>, unqualified names like
    606 <tt>DoThis</tt> and <tt>DoThat</tt> are looked up when the template
    607 <tt>Derived</tt> is defined, not when it's instantiated.  When we look
    608 up a name used in a class, we usually look into the base classes.
    609 However, we can't look into the base class <tt>Base&lt;T&gt;</tt>
    610 because its type depends on the template argument <tt>T</tt>, so the
    611 standard says we should just ignore it.  See [temp.dep]p3 for details.
    612 
    613 <p>The fix, as Clang tells you, is to tell the compiler that we want a
    614 class member by prefixing the calls with <tt>this-&gt;</tt>:
    615 
    616 <pre>
    617   void Work(T x) {
    618     <b>this-&gt;</b>DoThis(x);
    619     <b>this-&gt;</b>DoThat(x);
    620   }
    621 </pre>
    622 
    623 Alternatively, you can tell the compiler exactly where to look:
    624 
    625 <pre>
    626   void Work(T x) {
    627     <b>Base&lt;T&gt;</b>::DoThis(x);
    628     <b>Base&lt;T&gt;</b>::DoThat(x);
    629   }
    630 </pre>
    631 
    632 This works whether the methods are static or not, but be careful:
    633 if <tt>DoThis</tt> is virtual, calling it this way will bypass virtual
    634 dispatch!
    635 
    636 <!-- ======================================================================= -->
    637 <h3 id="undep_incomplete">Incomplete types in templates</h3>
    638 <!-- ======================================================================= -->
    639 
    640 The following code is invalid, but compilers are allowed to accept it:
    641 
    642 <pre>
    643   class IOOptions;
    644   template &lt;class T&gt; bool read(T &amp;value) {
    645     IOOptions opts;
    646     return read(opts, value);
    647   }
    648 
    649   class IOOptions { bool ForceReads; };
    650   bool read(const IOOptions &amp;opts, int &amp;x);
    651   template bool read&lt;&gt;(int &amp;);
    652 </pre>
    653 
    654 The standard says that types which don't depend on template parameters
    655 must be complete when a template is defined if they affect the
    656 program's behavior.  However, the standard also says that compilers
    657 are free to not enforce this rule.  Most compilers enforce it to some
    658 extent; for example, it would be an error in GCC to
    659 write <tt>opts.ForceReads</tt> in the code above.  In Clang, we feel
    660 that enforcing the rule consistently lets us provide a better
    661 experience, but unfortunately it also means we reject some code that
    662 other compilers accept.
    663 
    664 <p>We've explained the rule here in very imprecise terms; see
    665 [temp.res]p8 for details.
    666 
    667 <!-- ======================================================================= -->
    668 <h3 id="bad_templates">Templates with no valid instantiations</h3>
    669 <!-- ======================================================================= -->
    670 
    671 The following code contains a typo: the programmer
    672 meant <tt>init()</tt> but wrote <tt>innit()</tt> instead.
    673 
    674 <pre>
    675   template &lt;class T&gt; class Processor {
    676     ...
    677     void init();
    678     ...
    679   };
    680   ...
    681   template &lt;class T&gt; void process() {
    682     Processor&lt;T&gt; processor;
    683     processor.innit();       // <-- should be 'init()'
    684     ...
    685   }
    686 </pre>
    687 
    688 Unfortunately, we can't flag this mistake as soon as we see it: inside
    689 a template, we're not allowed to make assumptions about "dependent
    690 types" like <tt>Processor&lt;T&gt;</tt>.  Suppose that later on in
    691 this file the programmer adds an explicit specialization
    692 of <tt>Processor</tt>, like so:
    693 
    694 <pre>
    695   template &lt;&gt; class Processor&lt;char*&gt; {
    696     void innit();
    697   };
    698 </pre>
    699 
    700 Now the program will work &mdash; as long as the programmer only ever
    701 instantiates <tt>process()</tt> with <tt>T = char*</tt>!  This is why
    702 it's hard, and sometimes impossible, to diagnose mistakes in a
    703 template definition before it's instantiated.
    704 
    705 <p>The standard says that a template with no valid instantiations is
    706 ill-formed.  Clang tries to do as much checking as possible at
    707 definition-time instead of instantiation-time: not only does this
    708 produce clearer diagnostics, but it also substantially improves
    709 compile times when using pre-compiled headers.  The downside to this
    710 philosophy is that Clang sometimes fails to process files because they
    711 contain broken templates that are no longer used.  The solution is
    712 simple: since the code is unused, just remove it.
    713 
    714 <!-- ======================================================================= -->
    715 <h3 id="default_init_const">Default initialization of const variable of a class type requires user-defined default constructor</h3>
    716 <!-- ======================================================================= -->
    717 
    718 If a <tt>class</tt> or <tt>struct</tt> has no user-defined default
    719 constructor, C++ doesn't allow you to default construct a <tt>const</tt>
    720 instance of it like this ([dcl.init], p9):
    721 
    722 <pre>
    723 class Foo {
    724  public:
    725   // The compiler-supplied default constructor works fine, so we
    726   // don't bother with defining one.
    727   ...
    728 };
    729 
    730 void Bar() {
    731   const Foo foo;  // Error!
    732   ...
    733 }
    734 </pre>
    735 
    736 To fix this, you can define a default constructor for the class:
    737 
    738 <pre>
    739 class Foo {
    740  public:
    741   Foo() {}
    742   ...
    743 };
    744 
    745 void Bar() {
    746   const Foo foo;  // Now the compiler is happy.
    747   ...
    748 }
    749 </pre>
    750 
    751 <!-- ======================================================================= -->
    752 <h3 id="param_name_lookup">Parameter name lookup</h3>
    753 <!-- ======================================================================= -->
    754 
    755 <p>Due to a bug in its implementation, GCC allows the redeclaration of function parameter names within a function prototype in C++ code, e.g.</p>
    756 <blockquote>
    757 <pre>
    758 void f(int a, int a);
    759 </pre>
    760 </blockquote>
    761 <p>Clang diagnoses this error (where the parameter name has been redeclared). To fix this problem, rename one of the parameters.</p>
    762 
    763 <!-- ======================================================================= -->
    764 <h2 id="cxx11">C++11 compatibility</h2>
    765 <!-- ======================================================================= -->
    766 
    767 <!-- ======================================================================= -->
    768 <h3 id="deleted-special-func">Deleted special member functions</h3>
    769 <!-- ======================================================================= -->
    770 
    771 <p>In C++11, the explicit declaration of a move constructor or a move
    772 assignment operator within a class deletes the implicit declaration
    773 of the copy constructor and copy assignment operator. This change came
    774 fairly late in the C++11 standardization process, so early
    775 implementations of C++11 (including Clang before 3.0, GCC before 4.7,
    776 and Visual Studio 2010) do not implement this rule, leading them to
    777 accept this ill-formed code:</p>
    778 
    779 <pre>
    780 struct X {
    781   X(X&amp;&amp;); <i>// deletes implicit copy constructor:</i>
    782   <i>// X(const X&amp;) = delete;</i>
    783 };
    784 
    785 void f(X x);
    786 void g(X x) {
    787   f(x); <i>// error: X has a deleted copy constructor</i>
    788 }
    789 </pre>
    790 
    791 <p>This affects some early C++11 code, including Boost's popular <a
    792 href="http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm"><tt>shared_ptr</tt></a>
    793 up to version 1.47.0. The fix for Boost's <tt>shared_ptr</tt> is
    794 <a href="https://svn.boost.org/trac/boost/changeset/73202">available here</a>.</p>
    795 
    796 <!-- ======================================================================= -->
    797 <h2 id="objective-cxx">Objective-C++ compatibility</h2>
    798 <!-- ======================================================================= -->
    799 
    800 <!-- ======================================================================= -->
    801 <h3 id="implicit-downcasts">Implicit downcasts</h3>
    802 <!-- ======================================================================= -->
    803 
    804 <p>Due to a bug in its implementation, GCC allows implicit downcasts
    805 of Objective-C pointers (from a base class to a derived class) when
    806 calling functions. Such code is inherently unsafe, since the object
    807 might not actually be an instance of the derived class, and is
    808 rejected by Clang. For example, given this code:</p>
    809 
    810 <pre>
    811 @interface Base @end
    812 @interface Derived : Base @end
    813 
    814 void f(Derived *p);
    815 void g(Base *p) {
    816   f(p);
    817 }
    818 </pre>
    819 
    820 <p>Clang produces the following error:</p>
    821 
    822 <pre>
    823 downcast.mm:6:3: error: no matching function for call to 'f'
    824   f(p);
    825   ^
    826 downcast.mm:4:6: note: candidate function not viable: cannot convert from
    827       superclass 'Base *' to subclass 'Derived *' for 1st argument
    828 void f(Derived *p);
    829      ^
    830 </pre>
    831 
    832 <p>If the downcast is actually correct (e.g., because the code has
    833 already checked that the object has the appropriate type), add an
    834 explicit cast:</p>
    835 
    836 <pre>
    837   f((Derived *)base);
    838 </pre>
    839 
    840 <!-- ======================================================================= -->
    841 <h3 id="class-as-property-name">Using <code>class</code> as a property name</h3>
    842 <!-- ======================================================================= -->
    843 
    844 <p>In C and Objective-C, <code>class</code> is a normal identifier and
    845 can be used to name fields, ivars, methods, and so on.  In
    846 C++, <code>class</code> is a keyword.  For compatibility with existing
    847 code, Clang permits <code>class</code> to be used as part of a method
    848 selector in Objective-C++, but this does not extend to any other part
    849 of the language.  In particular, it is impossible to use property dot
    850 syntax in Objective-C++ with the property name <code>class</code>, so
    851 the following code will fail to parse:</p>
    852 
    853 <pre>
    854 @interface I {
    855 int cls;
    856 }
    857 + (int)class;
    858 @end
    859 
    860 @implementation  I
    861 - (int) Meth { return I.class; }
    862 @end
    863 </pre>
    864 
    865 <p>Use explicit message-send syntax instead, i.e. <code>[I class]</code>.</p>
    866 
    867 </div>
    868 </body>
    869 </html>
    870