1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 <html> 4 <head> 5 <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 6 <title>Language Compatibility</title> 7 <link type="text/css" rel="stylesheet" href="menu.css"> 8 <link type="text/css" rel="stylesheet" href="content.css"> 9 <style type="text/css"> 10 </style> 11 </head> 12 <body> 13 14 <!--#include virtual="menu.html.incl"--> 15 16 <div id="content"> 17 18 <!-- ======================================================================= --> 19 <h1>Language Compatibility</h1> 20 <!-- ======================================================================= --> 21 22 <p>Clang strives to both conform to current language standards (C99, 23 C++98) and also to implement many widely-used extensions available 24 in other compilers, so that most correct code will "just work" when 25 compiler with Clang. However, Clang is more strict than other 26 popular compilers, and may reject incorrect code that other 27 compilers allow. This page documents common compatibility and 28 portability issues with Clang to help you understand and fix the 29 problem in your code when Clang emits an error message.</p> 30 31 <ul> 32 <li><a href="#c">C compatibility</a> 33 <ul> 34 <li><a href="#inline">C99 inline functions</a></li> 35 <li><a href="#vector_builtins">"missing" vector __builtin functions</a></li> 36 <li><a href="#lvalue-cast">Lvalue casts</a></li> 37 <li><a href="#blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</a></li> 38 <li><a href="#block-variable-initialization">Non-initialization of <tt>__block</tt> variables</a></li> 39 <li><a href="#inline-asm">Inline assembly</a></li> 40 </ul> 41 </li> 42 <li><a href="#objective-c">Objective-C compatibility</a> 43 <ul> 44 <li><a href="#super-cast">Cast of super</a></li> 45 <li><a href="#sizeof-interface">Size of interfaces</a></li> 46 <li><a href="#objc_objs-cast">Internal Objective-C types</a></li> 47 <li><a href="#c_variables-class">C variables in @class or @protocol</a></li> 48 </ul> 49 </li> 50 <li><a href="#cxx">C++ compatibility</a> 51 <ul> 52 <li><a href="#vla">Variable-length arrays</a></li> 53 <li><a href="#dep_lookup">Unqualified lookup in templates</a></li> 54 <li><a href="#dep_lookup_bases">Unqualified lookup into dependent bases of class templates</a></li> 55 <li><a href="#undep_incomplete">Incomplete types in templates</a></li> 56 <li><a href="#bad_templates">Templates with no valid instantiations</a></li> 57 <li><a href="#default_init_const">Default initialization of const 58 variable of a class type requires user-defined default 59 constructor</a></li> 60 <li><a href="#param_name_lookup">Parameter name lookup</a></li> 61 </ul> 62 </li> 63 <li><a href="#cxx11">C++11 compatibility</a> 64 <ul> 65 <li><a href="#deleted-special-func">Deleted special member 66 functions</a></li> 67 </ul> 68 </li> 69 <li><a href="#objective-cxx">Objective-C++ compatibility</a> 70 <ul> 71 <li><a href="#implicit-downcasts">Implicit downcasts</a></li> 72 </ul> 73 <ul> 74 <li><a href="#class-as-property-name">Using <code>class</code> as a property name</a></li> 75 </ul> 76 </li> 77 </ul> 78 79 <!-- ======================================================================= --> 80 <h2 id="c">C compatibility</h2> 81 <!-- ======================================================================= --> 82 83 <!-- ======================================================================= --> 84 <h3 id="inline">C99 inline functions</h3> 85 <!-- ======================================================================= --> 86 <p>By default, Clang builds C code according to the C99 standard, 87 which provides different semantics for the <code>inline</code> keyword 88 than GCC's default behavior. For example, consider the following 89 code:</p> 90 <pre> 91 inline int add(int i, int j) { return i + j; } 92 93 int main() { 94 int i = add(4, 5); 95 return i; 96 } 97 </pre> 98 99 <p>In C99, <code>inline</code> means that a function's definition is 100 provided only for inlining, and that there is another definition 101 (without <code>inline</code>) somewhere else in the program. That 102 means that this program is incomplete, because if <code>add</code> 103 isn't inlined (for example, when compiling without optimization), then 104 <code>main</code> will have an unresolved reference to that other 105 definition. Therefore we'll get a (correct) link-time error like this:</p> 106 107 <pre> 108 Undefined symbols: 109 "_add", referenced from: 110 _main in cc-y1jXIr.o 111 </pre> 112 113 <p>By contrast, GCC's default behavior follows the GNU89 dialect, 114 which is the C89 standard plus a lot of extensions. C89 doesn't have 115 an <code>inline</code> keyword, but GCC recognizes it as an extension 116 and just treats it as a hint to the optimizer.</p> 117 118 <p>There are several ways to fix this problem:</p> 119 120 <ul> 121 <li>Change <code>add</code> to a <code>static inline</code> 122 function. This is usually the right solution if only one 123 translation unit needs to use the function. <code>static 124 inline</code> functions are always resolved within the translation 125 unit, so you won't have to add a non-<code>inline</code> definition 126 of the function elsewhere in your program.</li> 127 128 <li>Remove the <code>inline</code> keyword from this definition of 129 <code>add</code>. The <code>inline</code> keyword is not required 130 for a function to be inlined, nor does it guarantee that it will be. 131 Some compilers ignore it completely. Clang treats it as a mild 132 suggestion from the programmer.</li> 133 134 <li>Provide an external (non-<code>inline</code>) definition 135 of <code>add</code> somewhere else in your program. The two 136 definitions must be equivalent!</li> 137 138 <li>Compile with the GNU89 dialect by adding 139 <code>-std=gnu89</code> to the set of Clang options. This option is 140 only recommended if the program source cannot be changed or if the 141 program also relies on additional C89-specific behavior that cannot 142 be changed.</li> 143 </ul> 144 145 <p>All of this only applies to C code; the meaning of <code>inline</code> 146 in C++ is very different from its meaning in either GNU89 or C99.</p> 147 148 <!-- ======================================================================= --> 149 <h3 id="vector_builtins">"missing" vector __builtin functions</h3> 150 <!-- ======================================================================= --> 151 152 <p>The Intel and AMD manuals document a number "<tt><*mmintrin.h></tt>" 153 header files, which define a standardized API for accessing vector operations 154 on X86 CPUs. These functions have names like <tt>_mm_xor_ps</tt> and 155 <tt>_mm256_addsub_pd</tt>. Compilers have leeway to implement these functions 156 however they want. Since Clang supports an excellent set of <a 157 href="../docs/LanguageExtensions.html#vectors">native vector operations</a>, 158 the Clang headers implement these interfaces in terms of the native vector 159 operations. 160 </p> 161 162 <p>In contrast, GCC implements these functions mostly as a 1-to-1 mapping to 163 builtin function calls, like <tt>__builtin_ia32_paddw128</tt>. These builtin 164 functions are an internal implementation detail of GCC, and are not portable to 165 the Intel compiler, the Microsoft compiler, or Clang. If you get build errors 166 mentioning these, the fix is simple: switch to the *mmintrin.h functions.</p> 167 168 <p>The same issue occurs for NEON and Altivec for the ARM and PowerPC 169 architectures respectively. For these, make sure to use the <arm_neon.h> 170 and <altivec.h> headers.</p> 171 172 <p>For x86 architectures this <a href="builtins.py">script</a> should help with 173 the manual migration process. It will rewrite your source files in place to 174 use the APIs instead of builtin function calls. Just call it like this:</p> 175 176 <pre> 177 builtins.py *.c *.h 178 </pre> 179 180 <p>and it will rewrite all of the .c and .h files in the current directory to 181 use the API calls instead of calls like <tt>__builtin_ia32_paddw128</tt>.</p> 182 183 <!-- ======================================================================= --> 184 <h3 id="lvalue-cast">Lvalue casts</h3> 185 <!-- ======================================================================= --> 186 187 <p>Old versions of GCC permit casting the left-hand side of an assignment to a 188 different type. Clang produces an error on similar code, e.g.,</p> 189 190 <pre> 191 lvalue.c:2:3: error: assignment to cast is illegal, lvalue casts are not 192 supported 193 (int*)addr = val; 194 ^~~~~~~~~~ ~ 195 </pre> 196 197 <p>To fix this problem, move the cast to the right-hand side. In this 198 example, one could use:</p> 199 200 <pre> 201 addr = (float *)val; 202 </pre> 203 204 <!-- ======================================================================= --> 205 <h3 id="blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</h3> 206 <!-- ======================================================================= --> 207 208 <p>Clang disallows jumps into the scope of a <tt>__block</tt> 209 variable. Variables marked with <tt>__block</tt> require special 210 runtime initialization. A jump into the scope of a <tt>__block</tt> 211 variable bypasses this initialization, leaving the variable's metadata 212 in an invalid state. Consider the following code fragment:</p> 213 214 <pre> 215 int fetch_object_state(struct MyObject *c) { 216 if (!c->active) goto error; 217 218 __block int result; 219 run_specially_somehow(^{ result = c->state; }); 220 return result; 221 222 error: 223 fprintf(stderr, "error while fetching object state"); 224 return -1; 225 } 226 </pre> 227 228 <p>GCC accepts this code, but it produces code that will usually crash 229 when <code>result</code> goes out of scope if the jump is taken. (It's 230 possible for this bug to go undetected because it often won't crash if 231 the stack is fresh, i.e. still zeroed.) Therefore, Clang rejects this 232 code with a hard error:</p> 233 234 <pre> 235 t.c:3:5: error: goto into protected scope 236 goto error; 237 ^ 238 t.c:5:15: note: jump bypasses setup of __block variable 239 __block int result; 240 ^ 241 </pre> 242 243 <p>The fix is to rewrite the code to not require jumping into a 244 <tt>__block</tt> variable's scope, e.g. by limiting that scope:</p> 245 246 <pre> 247 { 248 __block int result; 249 run_specially_somehow(^{ result = c->state; }); 250 return result; 251 } 252 </pre> 253 254 <!-- ======================================================================= --> 255 <h3 id="block-variable-initialization">Non-initialization of <tt>__block</tt> 256 variables</h3> 257 <!-- ======================================================================= --> 258 259 <p>In the following example code, the <tt>x</tt> variable is used before it is 260 defined:</p> 261 <pre> 262 int f0() { 263 __block int x; 264 return ^(){ return x; }(); 265 } 266 </pre> 267 268 <p>By an accident of implementation, GCC and llvm-gcc unintentionally always 269 zero initialized <tt>__block</tt> variables. However, any program which depends 270 on this behavior is relying on unspecified compiler behavior. Programs must 271 explicitly initialize all local block variables before they are used, as with 272 other local variables.</p> 273 274 <p>Clang does not zero initialize local block variables, and programs which rely 275 on such behavior will most likely break when built with Clang.</p> 276 277 278 <!-- ======================================================================= --> 279 <h3 id="inline-asm">Inline assembly</h3> 280 <!-- ======================================================================= --> 281 282 <p>In general, Clang is highly compatible with the GCC inline assembly 283 extensions, allowing the same set of constraints, modifiers and operands as GCC 284 inline assembly.</p> 285 286 <p>On targets that use the integrated assembler (such as most X86 targets), 287 inline assembly is run through the integrated assembler instead of your system 288 assembler (which is most commonly "gas", the GNU assembler). The LLVM 289 integrated assembler is extremely compatible with GAS, but there are a couple of 290 minor places where it is more picky, particularly due to outright GAS bugs.</p> 291 292 <p>One specific example is that the assembler rejects ambiguous X86 instructions 293 that don't have suffixes. For example:</p> 294 295 <pre> 296 asm("add %al, (%rax)"); 297 asm("addw $4, (%rax)"); 298 asm("add $4, (%rax)"); 299 </pre> 300 301 <p>Both clang and GAS accept the first instruction: because the first 302 instruction uses the 8-bit <tt>%al</tt> register as an operand, it is clear that 303 it is an 8-bit add. The second instruction is accepted by both because the "w" 304 suffix indicates that it is a 16-bit add. The last instruction is accepted by 305 GAS even though there is nothing that specifies the size of the instruction (and 306 the assembler randomly picks a 32-bit add). Because it is ambiguous, Clang 307 rejects the instruction with this error message: 308 </p> 309 310 <pre> 311 <inline asm>:3:1: error: ambiguous instructions require an explicit suffix (could be 'addb', 'addw', 'addl', or 'addq') 312 add $4, (%rax) 313 ^ 314 1 error generated. 315 </pre> 316 317 <p>To fix this compatibility issue, add an explicit suffix to the instruction: 318 this makes your code more clear and is compatible with both GCC and Clang.</p> 319 320 <!-- ======================================================================= --> 321 <h2 id="objective-c">Objective-C compatibility</h2> 322 <!-- ======================================================================= --> 323 324 <!-- ======================================================================= --> 325 <h3 id="super-cast">Cast of super</h3> 326 <!-- ======================================================================= --> 327 328 <p>GCC treats the <code>super</code> identifier as an expression that 329 can, among other things, be cast to a different type. Clang treats 330 <code>super</code> as a context-sensitive keyword, and will reject a 331 type-cast of <code>super</code>:</p> 332 333 <pre> 334 super.m:11:12: error: cannot cast 'super' (it isn't an expression) 335 [(Super*)super add:4]; 336 ~~~~~~~~^ 337 </pre> 338 339 <p>To fix this problem, remove the type cast, e.g.</p> 340 <pre> 341 [super add:4]; 342 </pre> 343 344 <!-- ======================================================================= --> 345 <h3 id="sizeof-interface">Size of interfaces</h3> 346 <!-- ======================================================================= --> 347 348 <p>When using the "non-fragile" Objective-C ABI in use, the size of an 349 Objective-C class may change over time as instance variables are added 350 (or removed). For this reason, Clang rejects the application of the 351 <code>sizeof</code> operator to an Objective-C class when using this 352 ABI:</p> 353 354 <pre> 355 sizeof.m:4:14: error: invalid application of 'sizeof' to interface 'NSArray' in 356 non-fragile ABI 357 int size = sizeof(NSArray); 358 ^ ~~~~~~~~~ 359 </pre> 360 361 <p>Code that relies on the size of an Objective-C class is likely to 362 be broken anyway, since that size is not actually constant. To address 363 this problem, use the Objective-C runtime API function 364 <code>class_getInstanceSize()</code>:</p> 365 366 <pre> 367 class_getInstanceSize([NSArray class]) 368 </pre> 369 370 <!-- ======================================================================= --> 371 <h3 id="objc_objs-cast">Internal Objective-C types</h3> 372 <!-- ======================================================================= --> 373 374 <p>GCC allows using pointers to internal Objective-C objects, <tt>struct objc_object*</tt>, 375 <tt>struct objc_selector*</tt>, and <tt>struct objc_class*</tt> in place of the types 376 <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt> respectively. Clang treats the 377 internal Objective-C structures as implementation detail and won't do implicit conversions: 378 379 <pre> 380 t.mm:11:2: error: no matching function for call to 'f' 381 f((struct objc_object *)p); 382 ^ 383 t.mm:5:6: note: candidate function not viable: no known conversion from 'struct objc_object *' to 'id' for 1st argument 384 void f(id x); 385 ^ 386 </pre> 387 388 <p>Code should use types <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt> 389 instead of the internal types.</p> 390 391 <!-- ======================================================================= --> 392 <h3 id="c_variables-class">C variables in @interface or @protocol</h3> 393 <!-- ======================================================================= --> 394 395 <p>GCC allows the declaration of C variables in 396 an <code>@interface</code> or <code>@protocol</code> 397 declaration. Clang does not allow variable declarations to appear 398 within these declarations unless they are marked <code>extern</code>.</p> 399 400 <p>Variables may still be declared in an @implementation.</p> 401 402 <pre> 403 @interface XX 404 int a; // not allowed in clang 405 int b = 1; // not allowed in clang 406 extern int c; // allowed 407 @end 408 409 </pre> 410 411 <!-- ======================================================================= --> 412 <h2 id="cxx">C++ compatibility</h2> 413 <!-- ======================================================================= --> 414 415 <!-- ======================================================================= --> 416 <h3 id="vla">Variable-length arrays</h3> 417 <!-- ======================================================================= --> 418 419 <p>GCC and C99 allow an array's size to be determined at run 420 time. This extension is not permitted in standard C++. However, Clang 421 supports such variable length arrays in very limited circumstances for 422 compatibility with GNU C and C99 programs:</p> 423 424 <ul> 425 <li>The element type of a variable length array must be a POD 426 ("plain old data") type, which means that it cannot have any 427 user-declared constructors or destructors, any base classes, or any 428 members of non-POD type. All C types are POD types.</li> 429 430 <li>Variable length arrays cannot be used as the type of a non-type 431 template parameter.</li> </ul> 432 433 <p>If your code uses variable length arrays in a manner that Clang doesn't support, there are several ways to fix your code: 434 435 <ol> 436 <li>replace the variable length array with a fixed-size array if you can 437 determine a reasonable upper bound at compile time; sometimes this is as 438 simple as changing <tt>int size = ...;</tt> to <tt>const int size 439 = ...;</tt> (if the initializer is a compile-time constant);</li> 440 <li>use <tt>std::vector</tt> or some other suitable container type; 441 or</li> 442 <li>allocate the array on the heap instead using <tt>new Type[]</tt> - 443 just remember to <tt>delete[]</tt> it.</li> 444 </ol> 445 446 <!-- ======================================================================= --> 447 <h3 id="dep_lookup">Unqualified lookup in templates</h3> 448 <!-- ======================================================================= --> 449 450 <p>Some versions of GCC accept the following invalid code: 451 452 <pre> 453 template <typename T> T Squared(T x) { 454 return Multiply(x, x); 455 } 456 457 int Multiply(int x, int y) { 458 return x * y; 459 } 460 461 int main() { 462 Squared(5); 463 } 464 </pre> 465 466 <p>Clang complains: 467 468 <pre> <b>my_file.cpp:2:10: <span class="error">error:</span> call to function 'Multiply' that is neither visible in the template definition nor found by argument-dependent lookup</b> 469 return Multiply(x, x); 470 <span class="caret"> ^</span> 471 <b>my_file.cpp:10:3: <span class="note">note:</span> in instantiation of function template specialization 'Squared<int>' requested here</b> 472 Squared(5); 473 <span class="caret"> ^</span> 474 <b>my_file.cpp:5:5: <span class="note">note:</span> 'Multiply' should be declared prior to the call site</b> 475 int Multiply(int x, int y) { 476 <span class="caret"> ^</span> 477 </pre> 478 479 <p>The C++ standard says that unqualified names like <q>Multiply</q> 480 are looked up in two ways. 481 482 <p>First, the compiler does <i>unqualified lookup</i> in the scope 483 where the name was written. For a template, this means the lookup is 484 done at the point where the template is defined, not where it's 485 instantiated. Since <tt>Multiply</tt> hasn't been declared yet at 486 this point, unqualified lookup won't find it. 487 488 <p>Second, if the name is called like a function, then the compiler 489 also does <i>argument-dependent lookup</i> (ADL). (Sometimes 490 unqualified lookup can suppress ADL; see [basic.lookup.argdep]p3 for 491 more information.) In ADL, the compiler looks at the types of all the 492 arguments to the call. When it finds a class type, it looks up the 493 name in that class's namespace; the result is all the declarations it 494 finds in those namespaces, plus the declarations from unqualified 495 lookup. However, the compiler doesn't do ADL until it knows all the 496 argument types. 497 498 <p>In our example, <tt>Multiply</tt> is called with dependent 499 arguments, so ADL isn't done until the template is instantiated. At 500 that point, the arguments both have type <tt>int</tt>, which doesn't 501 contain any class types, and so ADL doesn't look in any namespaces. 502 Since neither form of lookup found the declaration 503 of <tt>Multiply</tt>, the code doesn't compile. 504 505 <p>Here's another example, this time using overloaded operators, 506 which obey very similar rules. 507 508 <pre>#include <iostream> 509 510 template<typename T> 511 void Dump(const T& value) { 512 std::cout << value << "\n"; 513 } 514 515 namespace ns { 516 struct Data {}; 517 } 518 519 std::ostream& operator<<(std::ostream& out, ns::Data data) { 520 return out << "Some data"; 521 } 522 523 void Use() { 524 Dump(ns::Data()); 525 }</pre> 526 527 <p>Again, Clang complains:</p> 528 529 <pre> <b>my_file2.cpp:5:13: <span class="error">error:</span> call to function 'operator<<' that is neither visible in the template definition nor found by argument-dependent lookup</b> 530 std::cout << value << "\n"; 531 <span class="caret"> ^</span> 532 <b>my_file2.cpp:17:3: <span class="error">note:</span> in instantiation of function template specialization 'Dump<ns::Data>' requested here</b> 533 Dump(ns::Data()); 534 <span class="caret"> ^</span> 535 <b>my_file2.cpp:12:15: <span class="error">note:</span> 'operator<<' should be declared prior to the call site or in namespace 'ns'</b> 536 std::ostream& operator<<(std::ostream& out, ns::Data data) { 537 <span class="caret"> ^</span> 538 </pre> 539 540 <p>Just like before, unqualified lookup didn't find any declarations 541 with the name <tt>operator<<</tt>. Unlike before, the argument 542 types both contain class types: one of them is an instance of the 543 class template type <tt>std::basic_ostream</tt>, and the other is the 544 type <tt>ns::Data</tt> that we declared above. Therefore, ADL will 545 look in the namespaces <tt>std</tt> and <tt>ns</tt> for 546 an <tt>operator<<</tt>. Since one of the argument types was 547 still dependent during the template definition, ADL isn't done until 548 the template is instantiated during <tt>Use</tt>, which means that 549 the <tt>operator<<</tt> we want it to find has already been 550 declared. Unfortunately, it was declared in the global namespace, not 551 in either of the namespaces that ADL will look in! 552 553 <p>There are two ways to fix this problem:</p> 554 <ol><li>Make sure the function you want to call is declared before the 555 template that might call it. This is the only option if none of its 556 argument types contain classes. You can do this either by moving the 557 template definition, or by moving the function definition, or by 558 adding a forward declaration of the function before the template.</li> 559 <li>Move the function into the same namespace as one of its arguments 560 so that ADL applies.</li></ol> 561 562 <p>For more information about argument-dependent lookup, see 563 [basic.lookup.argdep]. For more information about the ordering of 564 lookup in templates, see [temp.dep.candidate]. 565 566 <!-- ======================================================================= --> 567 <h3 id="dep_lookup_bases">Unqualified lookup into dependent bases of class templates</h3> 568 <!-- ======================================================================= --> 569 570 Some versions of GCC accept the following invalid code: 571 572 <pre> 573 template <typename T> struct Base { 574 void DoThis(T x) {} 575 static void DoThat(T x) {} 576 }; 577 578 template <typename T> struct Derived : public Base<T> { 579 void Work(T x) { 580 DoThis(x); // Invalid! 581 DoThat(x); // Invalid! 582 } 583 }; 584 </pre> 585 586 Clang correctly rejects it with the following errors 587 (when <tt>Derived</tt> is eventually instantiated): 588 589 <pre> 590 my_file.cpp:8:5: error: use of undeclared identifier 'DoThis' 591 DoThis(x); 592 ^ 593 this-> 594 my_file.cpp:2:8: note: must qualify identifier to find this declaration in dependent base class 595 void DoThis(T x) {} 596 ^ 597 my_file.cpp:9:5: error: use of undeclared identifier 'DoThat' 598 DoThat(x); 599 ^ 600 this-> 601 my_file.cpp:3:15: note: must qualify identifier to find this declaration in dependent base class 602 static void DoThat(T x) {} 603 </pre> 604 605 Like we said <a href="#dep_lookup">above</a>, unqualified names like 606 <tt>DoThis</tt> and <tt>DoThat</tt> are looked up when the template 607 <tt>Derived</tt> is defined, not when it's instantiated. When we look 608 up a name used in a class, we usually look into the base classes. 609 However, we can't look into the base class <tt>Base<T></tt> 610 because its type depends on the template argument <tt>T</tt>, so the 611 standard says we should just ignore it. See [temp.dep]p3 for details. 612 613 <p>The fix, as Clang tells you, is to tell the compiler that we want a 614 class member by prefixing the calls with <tt>this-></tt>: 615 616 <pre> 617 void Work(T x) { 618 <b>this-></b>DoThis(x); 619 <b>this-></b>DoThat(x); 620 } 621 </pre> 622 623 Alternatively, you can tell the compiler exactly where to look: 624 625 <pre> 626 void Work(T x) { 627 <b>Base<T></b>::DoThis(x); 628 <b>Base<T></b>::DoThat(x); 629 } 630 </pre> 631 632 This works whether the methods are static or not, but be careful: 633 if <tt>DoThis</tt> is virtual, calling it this way will bypass virtual 634 dispatch! 635 636 <!-- ======================================================================= --> 637 <h3 id="undep_incomplete">Incomplete types in templates</h3> 638 <!-- ======================================================================= --> 639 640 The following code is invalid, but compilers are allowed to accept it: 641 642 <pre> 643 class IOOptions; 644 template <class T> bool read(T &value) { 645 IOOptions opts; 646 return read(opts, value); 647 } 648 649 class IOOptions { bool ForceReads; }; 650 bool read(const IOOptions &opts, int &x); 651 template bool read<>(int &); 652 </pre> 653 654 The standard says that types which don't depend on template parameters 655 must be complete when a template is defined if they affect the 656 program's behavior. However, the standard also says that compilers 657 are free to not enforce this rule. Most compilers enforce it to some 658 extent; for example, it would be an error in GCC to 659 write <tt>opts.ForceReads</tt> in the code above. In Clang, we feel 660 that enforcing the rule consistently lets us provide a better 661 experience, but unfortunately it also means we reject some code that 662 other compilers accept. 663 664 <p>We've explained the rule here in very imprecise terms; see 665 [temp.res]p8 for details. 666 667 <!-- ======================================================================= --> 668 <h3 id="bad_templates">Templates with no valid instantiations</h3> 669 <!-- ======================================================================= --> 670 671 The following code contains a typo: the programmer 672 meant <tt>init()</tt> but wrote <tt>innit()</tt> instead. 673 674 <pre> 675 template <class T> class Processor { 676 ... 677 void init(); 678 ... 679 }; 680 ... 681 template <class T> void process() { 682 Processor<T> processor; 683 processor.innit(); // <-- should be 'init()' 684 ... 685 } 686 </pre> 687 688 Unfortunately, we can't flag this mistake as soon as we see it: inside 689 a template, we're not allowed to make assumptions about "dependent 690 types" like <tt>Processor<T></tt>. Suppose that later on in 691 this file the programmer adds an explicit specialization 692 of <tt>Processor</tt>, like so: 693 694 <pre> 695 template <> class Processor<char*> { 696 void innit(); 697 }; 698 </pre> 699 700 Now the program will work — as long as the programmer only ever 701 instantiates <tt>process()</tt> with <tt>T = char*</tt>! This is why 702 it's hard, and sometimes impossible, to diagnose mistakes in a 703 template definition before it's instantiated. 704 705 <p>The standard says that a template with no valid instantiations is 706 ill-formed. Clang tries to do as much checking as possible at 707 definition-time instead of instantiation-time: not only does this 708 produce clearer diagnostics, but it also substantially improves 709 compile times when using pre-compiled headers. The downside to this 710 philosophy is that Clang sometimes fails to process files because they 711 contain broken templates that are no longer used. The solution is 712 simple: since the code is unused, just remove it. 713 714 <!-- ======================================================================= --> 715 <h3 id="default_init_const">Default initialization of const variable of a class type requires user-defined default constructor</h3> 716 <!-- ======================================================================= --> 717 718 If a <tt>class</tt> or <tt>struct</tt> has no user-defined default 719 constructor, C++ doesn't allow you to default construct a <tt>const</tt> 720 instance of it like this ([dcl.init], p9): 721 722 <pre> 723 class Foo { 724 public: 725 // The compiler-supplied default constructor works fine, so we 726 // don't bother with defining one. 727 ... 728 }; 729 730 void Bar() { 731 const Foo foo; // Error! 732 ... 733 } 734 </pre> 735 736 To fix this, you can define a default constructor for the class: 737 738 <pre> 739 class Foo { 740 public: 741 Foo() {} 742 ... 743 }; 744 745 void Bar() { 746 const Foo foo; // Now the compiler is happy. 747 ... 748 } 749 </pre> 750 751 <!-- ======================================================================= --> 752 <h3 id="param_name_lookup">Parameter name lookup</h3> 753 <!-- ======================================================================= --> 754 755 <p>Due to a bug in its implementation, GCC allows the redeclaration of function parameter names within a function prototype in C++ code, e.g.</p> 756 <blockquote> 757 <pre> 758 void f(int a, int a); 759 </pre> 760 </blockquote> 761 <p>Clang diagnoses this error (where the parameter name has been redeclared). To fix this problem, rename one of the parameters.</p> 762 763 <!-- ======================================================================= --> 764 <h2 id="cxx11">C++11 compatibility</h2> 765 <!-- ======================================================================= --> 766 767 <!-- ======================================================================= --> 768 <h3 id="deleted-special-func">Deleted special member functions</h3> 769 <!-- ======================================================================= --> 770 771 <p>In C++11, the explicit declaration of a move constructor or a move 772 assignment operator within a class deletes the implicit declaration 773 of the copy constructor and copy assignment operator. This change came 774 fairly late in the C++11 standardization process, so early 775 implementations of C++11 (including Clang before 3.0, GCC before 4.7, 776 and Visual Studio 2010) do not implement this rule, leading them to 777 accept this ill-formed code:</p> 778 779 <pre> 780 struct X { 781 X(X&&); <i>// deletes implicit copy constructor:</i> 782 <i>// X(const X&) = delete;</i> 783 }; 784 785 void f(X x); 786 void g(X x) { 787 f(x); <i>// error: X has a deleted copy constructor</i> 788 } 789 </pre> 790 791 <p>This affects some early C++11 code, including Boost's popular <a 792 href="http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm"><tt>shared_ptr</tt></a> 793 up to version 1.47.0. The fix for Boost's <tt>shared_ptr</tt> is 794 <a href="https://svn.boost.org/trac/boost/changeset/73202">available here</a>.</p> 795 796 <!-- ======================================================================= --> 797 <h2 id="objective-cxx">Objective-C++ compatibility</h2> 798 <!-- ======================================================================= --> 799 800 <!-- ======================================================================= --> 801 <h3 id="implicit-downcasts">Implicit downcasts</h3> 802 <!-- ======================================================================= --> 803 804 <p>Due to a bug in its implementation, GCC allows implicit downcasts 805 of Objective-C pointers (from a base class to a derived class) when 806 calling functions. Such code is inherently unsafe, since the object 807 might not actually be an instance of the derived class, and is 808 rejected by Clang. For example, given this code:</p> 809 810 <pre> 811 @interface Base @end 812 @interface Derived : Base @end 813 814 void f(Derived *p); 815 void g(Base *p) { 816 f(p); 817 } 818 </pre> 819 820 <p>Clang produces the following error:</p> 821 822 <pre> 823 downcast.mm:6:3: error: no matching function for call to 'f' 824 f(p); 825 ^ 826 downcast.mm:4:6: note: candidate function not viable: cannot convert from 827 superclass 'Base *' to subclass 'Derived *' for 1st argument 828 void f(Derived *p); 829 ^ 830 </pre> 831 832 <p>If the downcast is actually correct (e.g., because the code has 833 already checked that the object has the appropriate type), add an 834 explicit cast:</p> 835 836 <pre> 837 f((Derived *)base); 838 </pre> 839 840 <!-- ======================================================================= --> 841 <h3 id="class-as-property-name">Using <code>class</code> as a property name</h3> 842 <!-- ======================================================================= --> 843 844 <p>In C and Objective-C, <code>class</code> is a normal identifier and 845 can be used to name fields, ivars, methods, and so on. In 846 C++, <code>class</code> is a keyword. For compatibility with existing 847 code, Clang permits <code>class</code> to be used as part of a method 848 selector in Objective-C++, but this does not extend to any other part 849 of the language. In particular, it is impossible to use property dot 850 syntax in Objective-C++ with the property name <code>class</code>, so 851 the following code will fail to parse:</p> 852 853 <pre> 854 @interface I { 855 int cls; 856 } 857 + (int)class; 858 @end 859 860 @implementation I 861 - (int) Meth { return I.class; } 862 @end 863 </pre> 864 865 <p>Use explicit message-send syntax instead, i.e. <code>[I class]</code>.</p> 866 867 </div> 868 </body> 869 </html> 870