Home | History | Annotate | Download | only in asan
      1 //===-- asan_allocator.cc -------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of AddressSanitizer, an address sanity checker.
     11 //
     12 // Implementation of ASan's memory allocator.
     13 // Evey piece of memory (AsanChunk) allocated by the allocator
     14 // has a left redzone of REDZONE bytes and
     15 // a right redzone such that the end of the chunk is aligned by REDZONE
     16 // (i.e. the right redzone is between 0 and REDZONE-1).
     17 // The left redzone is always poisoned.
     18 // The right redzone is poisoned on malloc, the body is poisoned on free.
     19 // Once freed, a chunk is moved to a quarantine (fifo list).
     20 // After quarantine, a chunk is returned to freelists.
     21 //
     22 // The left redzone contains ASan's internal data and the stack trace of
     23 // the malloc call.
     24 // Once freed, the body of the chunk contains the stack trace of the free call.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #include "asan_allocator.h"
     29 #include "asan_interceptors.h"
     30 #include "asan_internal.h"
     31 #include "asan_lock.h"
     32 #include "asan_mapping.h"
     33 #include "asan_stats.h"
     34 #include "asan_report.h"
     35 #include "asan_thread.h"
     36 #include "asan_thread_registry.h"
     37 #include "sanitizer/asan_interface.h"
     38 #include "sanitizer_common/sanitizer_atomic.h"
     39 
     40 #if defined(_WIN32) && !defined(__clang__)
     41 #include <intrin.h>
     42 #endif
     43 
     44 namespace __asan {
     45 
     46 #define REDZONE ((uptr)(flags()->redzone))
     47 static const uptr kMinAllocSize = REDZONE * 2;
     48 static const u64 kMaxAvailableRam = 128ULL << 30;  // 128G
     49 static const uptr kMaxThreadLocalQuarantine = 1 << 20;  // 1M
     50 
     51 static const uptr kMinMmapSize = (ASAN_LOW_MEMORY) ? 4UL << 17 : 4UL << 20;
     52 static const uptr kMaxSizeForThreadLocalFreeList =
     53     (ASAN_LOW_MEMORY) ? 1 << 15 : 1 << 17;
     54 
     55 // Size classes less than kMallocSizeClassStep are powers of two.
     56 // All other size classes are multiples of kMallocSizeClassStep.
     57 static const uptr kMallocSizeClassStepLog = 26;
     58 static const uptr kMallocSizeClassStep = 1UL << kMallocSizeClassStepLog;
     59 
     60 static const uptr kMaxAllowedMallocSize =
     61     (__WORDSIZE == 32) ? 3UL << 30 : 8UL << 30;
     62 
     63 static inline bool IsAligned(uptr a, uptr alignment) {
     64   return (a & (alignment - 1)) == 0;
     65 }
     66 
     67 static inline uptr Log2(uptr x) {
     68   CHECK(IsPowerOfTwo(x));
     69 #if !defined(_WIN32) || defined(__clang__)
     70   return __builtin_ctzl(x);
     71 #elif defined(_WIN64)
     72   unsigned long ret;  // NOLINT
     73   _BitScanForward64(&ret, x);
     74   return ret;
     75 #else
     76   unsigned long ret;  // NOLINT
     77   _BitScanForward(&ret, x);
     78   return ret;
     79 #endif
     80 }
     81 
     82 static inline uptr RoundUpToPowerOfTwo(uptr size) {
     83   CHECK(size);
     84   if (IsPowerOfTwo(size)) return size;
     85 
     86   unsigned long up;  // NOLINT
     87 #if !defined(_WIN32) || defined(__clang__)
     88   up = __WORDSIZE - 1 - __builtin_clzl(size);
     89 #elif defined(_WIN64)
     90   _BitScanReverse64(&up, size);
     91 #else
     92   _BitScanReverse(&up, size);
     93 #endif
     94   CHECK(size < (1ULL << (up + 1)));
     95   CHECK(size > (1ULL << up));
     96   return 1UL << (up + 1);
     97 }
     98 
     99 static inline uptr SizeClassToSize(u8 size_class) {
    100   CHECK(size_class < kNumberOfSizeClasses);
    101   if (size_class <= kMallocSizeClassStepLog) {
    102     return 1UL << size_class;
    103   } else {
    104     return (size_class - kMallocSizeClassStepLog) * kMallocSizeClassStep;
    105   }
    106 }
    107 
    108 static inline u8 SizeToSizeClass(uptr size) {
    109   u8 res = 0;
    110   if (size <= kMallocSizeClassStep) {
    111     uptr rounded = RoundUpToPowerOfTwo(size);
    112     res = Log2(rounded);
    113   } else {
    114     res = ((size + kMallocSizeClassStep - 1) / kMallocSizeClassStep)
    115         + kMallocSizeClassStepLog;
    116   }
    117   CHECK(res < kNumberOfSizeClasses);
    118   CHECK(size <= SizeClassToSize(res));
    119   return res;
    120 }
    121 
    122 // Given REDZONE bytes, we need to mark first size bytes
    123 // as addressable and the rest REDZONE-size bytes as unaddressable.
    124 static void PoisonHeapPartialRightRedzone(uptr mem, uptr size) {
    125   CHECK(size <= REDZONE);
    126   CHECK(IsAligned(mem, REDZONE));
    127   CHECK(IsPowerOfTwo(SHADOW_GRANULARITY));
    128   CHECK(IsPowerOfTwo(REDZONE));
    129   CHECK(REDZONE >= SHADOW_GRANULARITY);
    130   PoisonShadowPartialRightRedzone(mem, size, REDZONE,
    131                                   kAsanHeapRightRedzoneMagic);
    132 }
    133 
    134 static u8 *MmapNewPagesAndPoisonShadow(uptr size) {
    135   CHECK(IsAligned(size, kPageSize));
    136   u8 *res = (u8*)MmapOrDie(size, __FUNCTION__);
    137   PoisonShadow((uptr)res, size, kAsanHeapLeftRedzoneMagic);
    138   if (flags()->debug) {
    139     Printf("ASAN_MMAP: [%p, %p)\n", res, res + size);
    140   }
    141   return res;
    142 }
    143 
    144 // Every chunk of memory allocated by this allocator can be in one of 3 states:
    145 // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
    146 // CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
    147 // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
    148 //
    149 // The pseudo state CHUNK_MEMALIGN is used to mark that the address is not
    150 // the beginning of a AsanChunk (in which the actual chunk resides at
    151 // this - this->used_size).
    152 //
    153 // The magic numbers for the enum values are taken randomly.
    154 enum {
    155   CHUNK_AVAILABLE  = 0x57,
    156   CHUNK_ALLOCATED  = 0x32,
    157   CHUNK_QUARANTINE = 0x19,
    158   CHUNK_MEMALIGN   = 0xDC
    159 };
    160 
    161 struct ChunkBase {
    162   // First 8 bytes.
    163   uptr  chunk_state : 8;
    164   uptr  alloc_tid   : 24;
    165   uptr  size_class  : 8;
    166   uptr  free_tid    : 24;
    167 
    168   // Second 8 bytes.
    169   uptr alignment_log : 8;
    170   uptr used_size : FIRST_32_SECOND_64(32, 56);  // Size requested by the user.
    171 
    172   // This field may overlap with the user area and thus should not
    173   // be used while the chunk is in CHUNK_ALLOCATED state.
    174   AsanChunk *next;
    175 
    176   // Typically the beginning of the user-accessible memory is 'this'+REDZONE
    177   // and is also aligned by REDZONE. However, if the memory is allocated
    178   // by memalign, the alignment might be higher and the user-accessible memory
    179   // starts at the first properly aligned address after 'this'.
    180   uptr Beg() { return RoundUpTo((uptr)this + 1, 1 << alignment_log); }
    181   uptr Size() { return SizeClassToSize(size_class); }
    182   u8 SizeClass() { return size_class; }
    183 };
    184 
    185 struct AsanChunk: public ChunkBase {
    186   u32 *compressed_alloc_stack() {
    187     return (u32*)((uptr)this + sizeof(ChunkBase));
    188   }
    189   u32 *compressed_free_stack() {
    190     return (u32*)((uptr)this + Max((uptr)REDZONE, (uptr)sizeof(ChunkBase)));
    191   }
    192 
    193   // The left redzone after the ChunkBase is given to the alloc stack trace.
    194   uptr compressed_alloc_stack_size() {
    195     if (REDZONE < sizeof(ChunkBase)) return 0;
    196     return (REDZONE - sizeof(ChunkBase)) / sizeof(u32);
    197   }
    198   uptr compressed_free_stack_size() {
    199     if (REDZONE < sizeof(ChunkBase)) return 0;
    200     return (REDZONE) / sizeof(u32);
    201   }
    202 
    203   bool AddrIsInside(uptr addr, uptr access_size, uptr *offset) {
    204     if (addr >= Beg() && (addr + access_size) <= (Beg() + used_size)) {
    205       *offset = addr - Beg();
    206       return true;
    207     }
    208     return false;
    209   }
    210 
    211   bool AddrIsAtLeft(uptr addr, uptr access_size, uptr *offset) {
    212     if (addr < Beg()) {
    213       *offset = Beg() - addr;
    214       return true;
    215     }
    216     return false;
    217   }
    218 
    219   bool AddrIsAtRight(uptr addr, uptr access_size, uptr *offset) {
    220     if (addr + access_size >= Beg() + used_size) {
    221       if (addr <= Beg() + used_size)
    222         *offset = 0;
    223       else
    224         *offset = addr - (Beg() + used_size);
    225       return true;
    226     }
    227     return false;
    228   }
    229 
    230   void DescribeAddress(uptr addr, uptr access_size) {
    231     uptr offset;
    232     Printf("%p is located ", (void*)addr);
    233     if (AddrIsInside(addr, access_size, &offset)) {
    234       Printf("%zu bytes inside of", offset);
    235     } else if (AddrIsAtLeft(addr, access_size, &offset)) {
    236       Printf("%zu bytes to the left of", offset);
    237     } else if (AddrIsAtRight(addr, access_size, &offset)) {
    238       Printf("%zu bytes to the right of", offset);
    239     } else {
    240       Printf(" somewhere around (this is AddressSanitizer bug!)");
    241     }
    242     Printf(" %zu-byte region [%p,%p)\n",
    243                used_size, (void*)Beg(), (void*)(Beg() + used_size));
    244   }
    245 };
    246 
    247 static AsanChunk *PtrToChunk(uptr ptr) {
    248   AsanChunk *m = (AsanChunk*)(ptr - REDZONE);
    249   if (m->chunk_state == CHUNK_MEMALIGN) {
    250     m = (AsanChunk*)((uptr)m - m->used_size);
    251   }
    252   return m;
    253 }
    254 
    255 
    256 void AsanChunkFifoList::PushList(AsanChunkFifoList *q) {
    257   CHECK(q->size() > 0);
    258   if (last_) {
    259     CHECK(first_);
    260     CHECK(!last_->next);
    261     last_->next = q->first_;
    262     last_ = q->last_;
    263   } else {
    264     CHECK(!first_);
    265     last_ = q->last_;
    266     first_ = q->first_;
    267     CHECK(first_);
    268   }
    269   CHECK(last_);
    270   CHECK(!last_->next);
    271   size_ += q->size();
    272   q->clear();
    273 }
    274 
    275 void AsanChunkFifoList::Push(AsanChunk *n) {
    276   CHECK(n->next == 0);
    277   if (last_) {
    278     CHECK(first_);
    279     CHECK(!last_->next);
    280     last_->next = n;
    281     last_ = n;
    282   } else {
    283     CHECK(!first_);
    284     last_ = first_ = n;
    285   }
    286   size_ += n->Size();
    287 }
    288 
    289 // Interesting performance observation: this function takes up to 15% of overal
    290 // allocator time. That's because *first_ has been evicted from cache long time
    291 // ago. Not sure if we can or want to do anything with this.
    292 AsanChunk *AsanChunkFifoList::Pop() {
    293   CHECK(first_);
    294   AsanChunk *res = first_;
    295   first_ = first_->next;
    296   if (first_ == 0)
    297     last_ = 0;
    298   CHECK(size_ >= res->Size());
    299   size_ -= res->Size();
    300   if (last_) {
    301     CHECK(!last_->next);
    302   }
    303   return res;
    304 }
    305 
    306 // All pages we ever allocated.
    307 struct PageGroup {
    308   uptr beg;
    309   uptr end;
    310   uptr size_of_chunk;
    311   uptr last_chunk;
    312   bool InRange(uptr addr) {
    313     return addr >= beg && addr < end;
    314   }
    315 };
    316 
    317 class MallocInfo {
    318  public:
    319   explicit MallocInfo(LinkerInitialized x) : mu_(x) { }
    320 
    321   AsanChunk *AllocateChunks(u8 size_class, uptr n_chunks) {
    322     AsanChunk *m = 0;
    323     AsanChunk **fl = &free_lists_[size_class];
    324     {
    325       ScopedLock lock(&mu_);
    326       for (uptr i = 0; i < n_chunks; i++) {
    327         if (!(*fl)) {
    328           *fl = GetNewChunks(size_class);
    329         }
    330         AsanChunk *t = *fl;
    331         *fl = t->next;
    332         t->next = m;
    333         CHECK(t->chunk_state == CHUNK_AVAILABLE);
    334         m = t;
    335       }
    336     }
    337     return m;
    338   }
    339 
    340   void SwallowThreadLocalMallocStorage(AsanThreadLocalMallocStorage *x,
    341                                        bool eat_free_lists) {
    342     CHECK(flags()->quarantine_size > 0);
    343     ScopedLock lock(&mu_);
    344     AsanChunkFifoList *q = &x->quarantine_;
    345     if (q->size() > 0) {
    346       quarantine_.PushList(q);
    347       while (quarantine_.size() > (uptr)flags()->quarantine_size) {
    348         QuarantinePop();
    349       }
    350     }
    351     if (eat_free_lists) {
    352       for (uptr size_class = 0; size_class < kNumberOfSizeClasses;
    353            size_class++) {
    354         AsanChunk *m = x->free_lists_[size_class];
    355         while (m) {
    356           AsanChunk *t = m->next;
    357           m->next = free_lists_[size_class];
    358           free_lists_[size_class] = m;
    359           m = t;
    360         }
    361         x->free_lists_[size_class] = 0;
    362       }
    363     }
    364   }
    365 
    366   void BypassThreadLocalQuarantine(AsanChunk *chunk) {
    367     ScopedLock lock(&mu_);
    368     quarantine_.Push(chunk);
    369   }
    370 
    371   AsanChunk *FindMallocedOrFreed(uptr addr, uptr access_size) {
    372     ScopedLock lock(&mu_);
    373     return FindChunkByAddr(addr);
    374   }
    375 
    376   uptr AllocationSize(uptr ptr) {
    377     if (!ptr) return 0;
    378     ScopedLock lock(&mu_);
    379 
    380     // Make sure this is our chunk and |ptr| actually points to the beginning
    381     // of the allocated memory.
    382     AsanChunk *m = FindChunkByAddr(ptr);
    383     if (!m || m->Beg() != ptr) return 0;
    384 
    385     if (m->chunk_state == CHUNK_ALLOCATED) {
    386       return m->used_size;
    387     } else {
    388       return 0;
    389     }
    390   }
    391 
    392   void ForceLock() {
    393     mu_.Lock();
    394   }
    395 
    396   void ForceUnlock() {
    397     mu_.Unlock();
    398   }
    399 
    400   void PrintStatus() {
    401     ScopedLock lock(&mu_);
    402     uptr malloced = 0;
    403 
    404     Printf(" MallocInfo: in quarantine: %zu malloced: %zu; ",
    405            quarantine_.size() >> 20, malloced >> 20);
    406     for (uptr j = 1; j < kNumberOfSizeClasses; j++) {
    407       AsanChunk *i = free_lists_[j];
    408       if (!i) continue;
    409       uptr t = 0;
    410       for (; i; i = i->next) {
    411         t += i->Size();
    412       }
    413       Printf("%zu:%zu ", j, t >> 20);
    414     }
    415     Printf("\n");
    416   }
    417 
    418   PageGroup *FindPageGroup(uptr addr) {
    419     ScopedLock lock(&mu_);
    420     return FindPageGroupUnlocked(addr);
    421   }
    422 
    423  private:
    424   PageGroup *FindPageGroupUnlocked(uptr addr) {
    425     int n = atomic_load(&n_page_groups_, memory_order_relaxed);
    426     // If the page groups are not sorted yet, sort them.
    427     if (n_sorted_page_groups_ < n) {
    428       SortArray((uptr*)page_groups_, n);
    429       n_sorted_page_groups_ = n;
    430     }
    431     // Binary search over the page groups.
    432     int beg = 0, end = n;
    433     while (beg < end) {
    434       int med = (beg + end) / 2;
    435       uptr g = (uptr)page_groups_[med];
    436       if (addr > g) {
    437         // 'g' points to the end of the group, so 'addr'
    438         // may not belong to page_groups_[med] or any previous group.
    439         beg = med + 1;
    440       } else {
    441         // 'addr' may belong to page_groups_[med] or a previous group.
    442         end = med;
    443       }
    444     }
    445     if (beg >= n)
    446       return 0;
    447     PageGroup *g = page_groups_[beg];
    448     CHECK(g);
    449     if (g->InRange(addr))
    450       return g;
    451     return 0;
    452   }
    453 
    454   // We have an address between two chunks, and we want to report just one.
    455   AsanChunk *ChooseChunk(uptr addr,
    456                          AsanChunk *left_chunk, AsanChunk *right_chunk) {
    457     // Prefer an allocated chunk or a chunk from quarantine.
    458     if (left_chunk->chunk_state == CHUNK_AVAILABLE &&
    459         right_chunk->chunk_state != CHUNK_AVAILABLE)
    460       return right_chunk;
    461     if (right_chunk->chunk_state == CHUNK_AVAILABLE &&
    462         left_chunk->chunk_state != CHUNK_AVAILABLE)
    463       return left_chunk;
    464     // Choose based on offset.
    465     uptr l_offset = 0, r_offset = 0;
    466     CHECK(left_chunk->AddrIsAtRight(addr, 1, &l_offset));
    467     CHECK(right_chunk->AddrIsAtLeft(addr, 1, &r_offset));
    468     if (l_offset < r_offset)
    469       return left_chunk;
    470     return right_chunk;
    471   }
    472 
    473   AsanChunk *FindChunkByAddr(uptr addr) {
    474     PageGroup *g = FindPageGroupUnlocked(addr);
    475     if (!g) return 0;
    476     CHECK(g->size_of_chunk);
    477     uptr offset_from_beg = addr - g->beg;
    478     uptr this_chunk_addr = g->beg +
    479         (offset_from_beg / g->size_of_chunk) * g->size_of_chunk;
    480     CHECK(g->InRange(this_chunk_addr));
    481     AsanChunk *m = (AsanChunk*)this_chunk_addr;
    482     CHECK(m->chunk_state == CHUNK_ALLOCATED ||
    483           m->chunk_state == CHUNK_AVAILABLE ||
    484           m->chunk_state == CHUNK_QUARANTINE);
    485     uptr offset = 0;
    486     if (m->AddrIsInside(addr, 1, &offset))
    487       return m;
    488 
    489     if (m->AddrIsAtRight(addr, 1, &offset)) {
    490       if (this_chunk_addr == g->last_chunk)  // rightmost chunk
    491         return m;
    492       uptr right_chunk_addr = this_chunk_addr + g->size_of_chunk;
    493       CHECK(g->InRange(right_chunk_addr));
    494       return ChooseChunk(addr, m, (AsanChunk*)right_chunk_addr);
    495     } else {
    496       CHECK(m->AddrIsAtLeft(addr, 1, &offset));
    497       if (this_chunk_addr == g->beg)  // leftmost chunk
    498         return m;
    499       uptr left_chunk_addr = this_chunk_addr - g->size_of_chunk;
    500       CHECK(g->InRange(left_chunk_addr));
    501       return ChooseChunk(addr, (AsanChunk*)left_chunk_addr, m);
    502     }
    503   }
    504 
    505   void QuarantinePop() {
    506     CHECK(quarantine_.size() > 0);
    507     AsanChunk *m = quarantine_.Pop();
    508     CHECK(m);
    509     // if (F_v >= 2) Printf("MallocInfo::pop %p\n", m);
    510 
    511     CHECK(m->chunk_state == CHUNK_QUARANTINE);
    512     m->chunk_state = CHUNK_AVAILABLE;
    513     PoisonShadow((uptr)m, m->Size(), kAsanHeapLeftRedzoneMagic);
    514     CHECK(m->alloc_tid >= 0);
    515     CHECK(m->free_tid >= 0);
    516 
    517     uptr size_class = m->SizeClass();
    518     m->next = free_lists_[size_class];
    519     free_lists_[size_class] = m;
    520 
    521     // Statistics.
    522     AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
    523     thread_stats.real_frees++;
    524     thread_stats.really_freed += m->used_size;
    525     thread_stats.really_freed_redzones += m->Size() - m->used_size;
    526     thread_stats.really_freed_by_size[m->SizeClass()]++;
    527   }
    528 
    529   // Get a list of newly allocated chunks.
    530   AsanChunk *GetNewChunks(u8 size_class) {
    531     uptr size = SizeClassToSize(size_class);
    532     CHECK(IsPowerOfTwo(kMinMmapSize));
    533     CHECK(size < kMinMmapSize || (size % kMinMmapSize) == 0);
    534     uptr mmap_size = Max(size, kMinMmapSize);
    535     uptr n_chunks = mmap_size / size;
    536     CHECK(n_chunks * size == mmap_size);
    537     if (size < kPageSize) {
    538       // Size is small, just poison the last chunk.
    539       n_chunks--;
    540     } else {
    541       // Size is large, allocate an extra page at right and poison it.
    542       mmap_size += kPageSize;
    543     }
    544     CHECK(n_chunks > 0);
    545     u8 *mem = MmapNewPagesAndPoisonShadow(mmap_size);
    546 
    547     // Statistics.
    548     AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
    549     thread_stats.mmaps++;
    550     thread_stats.mmaped += mmap_size;
    551     thread_stats.mmaped_by_size[size_class] += n_chunks;
    552 
    553     AsanChunk *res = 0;
    554     for (uptr i = 0; i < n_chunks; i++) {
    555       AsanChunk *m = (AsanChunk*)(mem + i * size);
    556       m->chunk_state = CHUNK_AVAILABLE;
    557       m->size_class = size_class;
    558       m->next = res;
    559       res = m;
    560     }
    561     PageGroup *pg = (PageGroup*)(mem + n_chunks * size);
    562     // This memory is already poisoned, no need to poison it again.
    563     pg->beg = (uptr)mem;
    564     pg->end = pg->beg + mmap_size;
    565     pg->size_of_chunk = size;
    566     pg->last_chunk = (uptr)(mem + size * (n_chunks - 1));
    567     int idx = atomic_fetch_add(&n_page_groups_, 1, memory_order_relaxed);
    568     CHECK(idx < (int)ARRAY_SIZE(page_groups_));
    569     page_groups_[idx] = pg;
    570     return res;
    571   }
    572 
    573   AsanChunk *free_lists_[kNumberOfSizeClasses];
    574   AsanChunkFifoList quarantine_;
    575   AsanLock mu_;
    576 
    577   PageGroup *page_groups_[kMaxAvailableRam / kMinMmapSize];
    578   atomic_uint32_t n_page_groups_;
    579   int n_sorted_page_groups_;
    580 };
    581 
    582 static MallocInfo malloc_info(LINKER_INITIALIZED);
    583 
    584 void AsanThreadLocalMallocStorage::CommitBack() {
    585   malloc_info.SwallowThreadLocalMallocStorage(this, true);
    586 }
    587 
    588 void DescribeHeapAddress(uptr addr, uptr access_size) {
    589   AsanChunk *m = malloc_info.FindMallocedOrFreed(addr, access_size);
    590   if (!m) return;
    591   m->DescribeAddress(addr, access_size);
    592   CHECK(m->alloc_tid >= 0);
    593   AsanThreadSummary *alloc_thread =
    594       asanThreadRegistry().FindByTid(m->alloc_tid);
    595   StackTrace alloc_stack;
    596   StackTrace::UncompressStack(&alloc_stack, m->compressed_alloc_stack(),
    597                                   m->compressed_alloc_stack_size());
    598   AsanThread *t = asanThreadRegistry().GetCurrent();
    599   CHECK(t);
    600   if (m->free_tid != kInvalidTid) {
    601     AsanThreadSummary *free_thread =
    602         asanThreadRegistry().FindByTid(m->free_tid);
    603     Printf("freed by thread T%d here:\n", free_thread->tid());
    604     StackTrace free_stack;
    605     StackTrace::UncompressStack(&free_stack, m->compressed_free_stack(),
    606                                     m->compressed_free_stack_size());
    607     PrintStack(&free_stack);
    608     Printf("previously allocated by thread T%d here:\n",
    609                alloc_thread->tid());
    610 
    611     PrintStack(&alloc_stack);
    612     DescribeThread(t->summary());
    613     DescribeThread(free_thread);
    614     DescribeThread(alloc_thread);
    615   } else {
    616     Printf("allocated by thread T%d here:\n", alloc_thread->tid());
    617     PrintStack(&alloc_stack);
    618     DescribeThread(t->summary());
    619     DescribeThread(alloc_thread);
    620   }
    621 }
    622 
    623 static u8 *Allocate(uptr alignment, uptr size, StackTrace *stack) {
    624   __asan_init();
    625   CHECK(stack);
    626   if (size == 0) {
    627     size = 1;  // TODO(kcc): do something smarter
    628   }
    629   CHECK(IsPowerOfTwo(alignment));
    630   uptr rounded_size = RoundUpTo(size, REDZONE);
    631   uptr needed_size = rounded_size + REDZONE;
    632   if (alignment > REDZONE) {
    633     needed_size += alignment;
    634   }
    635   CHECK(IsAligned(needed_size, REDZONE));
    636   if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
    637     Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
    638            (void*)size);
    639     return 0;
    640   }
    641 
    642   u8 size_class = SizeToSizeClass(needed_size);
    643   uptr size_to_allocate = SizeClassToSize(size_class);
    644   CHECK(size_to_allocate >= kMinAllocSize);
    645   CHECK(size_to_allocate >= needed_size);
    646   CHECK(IsAligned(size_to_allocate, REDZONE));
    647 
    648   if (flags()->verbosity >= 3) {
    649     Printf("Allocate align: %zu size: %zu class: %u real: %zu\n",
    650          alignment, size, size_class, size_to_allocate);
    651   }
    652 
    653   AsanThread *t = asanThreadRegistry().GetCurrent();
    654   AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
    655   // Statistics
    656   thread_stats.mallocs++;
    657   thread_stats.malloced += size;
    658   thread_stats.malloced_redzones += size_to_allocate - size;
    659   thread_stats.malloced_by_size[size_class]++;
    660 
    661   AsanChunk *m = 0;
    662   if (!t || size_to_allocate >= kMaxSizeForThreadLocalFreeList) {
    663     // get directly from global storage.
    664     m = malloc_info.AllocateChunks(size_class, 1);
    665     thread_stats.malloc_large++;
    666   } else {
    667     // get from the thread-local storage.
    668     AsanChunk **fl = &t->malloc_storage().free_lists_[size_class];
    669     if (!*fl) {
    670       uptr n_new_chunks = kMaxSizeForThreadLocalFreeList / size_to_allocate;
    671       *fl = malloc_info.AllocateChunks(size_class, n_new_chunks);
    672       thread_stats.malloc_small_slow++;
    673     }
    674     m = *fl;
    675     *fl = (*fl)->next;
    676   }
    677   CHECK(m);
    678   CHECK(m->chunk_state == CHUNK_AVAILABLE);
    679   m->chunk_state = CHUNK_ALLOCATED;
    680   m->next = 0;
    681   CHECK(m->Size() == size_to_allocate);
    682   uptr addr = (uptr)m + REDZONE;
    683   CHECK(addr <= (uptr)m->compressed_free_stack());
    684 
    685   if (alignment > REDZONE && (addr & (alignment - 1))) {
    686     addr = RoundUpTo(addr, alignment);
    687     CHECK((addr & (alignment - 1)) == 0);
    688     AsanChunk *p = (AsanChunk*)(addr - REDZONE);
    689     p->chunk_state = CHUNK_MEMALIGN;
    690     p->used_size = (uptr)p - (uptr)m;
    691     m->alignment_log = Log2(alignment);
    692     CHECK(m->Beg() == addr);
    693   } else {
    694     m->alignment_log = Log2(REDZONE);
    695   }
    696   CHECK(m == PtrToChunk(addr));
    697   m->used_size = size;
    698   CHECK(m->Beg() == addr);
    699   m->alloc_tid = t ? t->tid() : 0;
    700   m->free_tid   = kInvalidTid;
    701   StackTrace::CompressStack(stack, m->compressed_alloc_stack(),
    702                                 m->compressed_alloc_stack_size());
    703   PoisonShadow(addr, rounded_size, 0);
    704   if (size < rounded_size) {
    705     PoisonHeapPartialRightRedzone(addr + rounded_size - REDZONE,
    706                                   size & (REDZONE - 1));
    707   }
    708   if (size <= (uptr)(flags()->max_malloc_fill_size)) {
    709     REAL(memset)((void*)addr, 0, rounded_size);
    710   }
    711   return (u8*)addr;
    712 }
    713 
    714 static void Deallocate(u8 *ptr, StackTrace *stack) {
    715   if (!ptr) return;
    716   CHECK(stack);
    717 
    718   if (flags()->debug) {
    719     CHECK(malloc_info.FindPageGroup((uptr)ptr));
    720   }
    721 
    722   // Printf("Deallocate %p\n", ptr);
    723   AsanChunk *m = PtrToChunk((uptr)ptr);
    724 
    725   // Flip the chunk_state atomically to avoid race on double-free.
    726   u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE,
    727                                        memory_order_acq_rel);
    728 
    729   if (old_chunk_state == CHUNK_QUARANTINE) {
    730     ReportDoubleFree((uptr)ptr, stack);
    731   } else if (old_chunk_state != CHUNK_ALLOCATED) {
    732     ReportFreeNotMalloced((uptr)ptr, stack);
    733   }
    734   CHECK(old_chunk_state == CHUNK_ALLOCATED);
    735   // With REDZONE==16 m->next is in the user area, otherwise it should be 0.
    736   CHECK(REDZONE <= 16 || !m->next);
    737   CHECK(m->free_tid == kInvalidTid);
    738   CHECK(m->alloc_tid >= 0);
    739   AsanThread *t = asanThreadRegistry().GetCurrent();
    740   m->free_tid = t ? t->tid() : 0;
    741   StackTrace::CompressStack(stack, m->compressed_free_stack(),
    742                                 m->compressed_free_stack_size());
    743   uptr rounded_size = RoundUpTo(m->used_size, REDZONE);
    744   PoisonShadow((uptr)ptr, rounded_size, kAsanHeapFreeMagic);
    745 
    746   // Statistics.
    747   AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
    748   thread_stats.frees++;
    749   thread_stats.freed += m->used_size;
    750   thread_stats.freed_by_size[m->SizeClass()]++;
    751 
    752   CHECK(m->chunk_state == CHUNK_QUARANTINE);
    753 
    754   if (t) {
    755     AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
    756     ms->quarantine_.Push(m);
    757 
    758     if (ms->quarantine_.size() > kMaxThreadLocalQuarantine) {
    759       malloc_info.SwallowThreadLocalMallocStorage(ms, false);
    760     }
    761   } else {
    762     malloc_info.BypassThreadLocalQuarantine(m);
    763   }
    764 }
    765 
    766 static u8 *Reallocate(u8 *old_ptr, uptr new_size,
    767                            StackTrace *stack) {
    768   CHECK(old_ptr && new_size);
    769 
    770   // Statistics.
    771   AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
    772   thread_stats.reallocs++;
    773   thread_stats.realloced += new_size;
    774 
    775   AsanChunk *m = PtrToChunk((uptr)old_ptr);
    776   CHECK(m->chunk_state == CHUNK_ALLOCATED);
    777   uptr old_size = m->used_size;
    778   uptr memcpy_size = Min(new_size, old_size);
    779   u8 *new_ptr = Allocate(0, new_size, stack);
    780   if (new_ptr) {
    781     CHECK(REAL(memcpy) != 0);
    782     REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
    783     Deallocate(old_ptr, stack);
    784   }
    785   return new_ptr;
    786 }
    787 
    788 }  // namespace __asan
    789 
    790 // Default (no-op) implementation of malloc hooks.
    791 extern "C" {
    792 SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
    793 void __asan_malloc_hook(void *ptr, uptr size) {
    794   (void)ptr;
    795   (void)size;
    796 }
    797 SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
    798 void __asan_free_hook(void *ptr) {
    799   (void)ptr;
    800 }
    801 }  // extern "C"
    802 
    803 namespace __asan {
    804 
    805 SANITIZER_INTERFACE_ATTRIBUTE
    806 void *asan_memalign(uptr alignment, uptr size, StackTrace *stack) {
    807   void *ptr = (void*)Allocate(alignment, size, stack);
    808   __asan_malloc_hook(ptr, size);
    809   return ptr;
    810 }
    811 
    812 SANITIZER_INTERFACE_ATTRIBUTE
    813 void asan_free(void *ptr, StackTrace *stack) {
    814   __asan_free_hook(ptr);
    815   Deallocate((u8*)ptr, stack);
    816 }
    817 
    818 SANITIZER_INTERFACE_ATTRIBUTE
    819 void *asan_malloc(uptr size, StackTrace *stack) {
    820   void *ptr = (void*)Allocate(0, size, stack);
    821   __asan_malloc_hook(ptr, size);
    822   return ptr;
    823 }
    824 
    825 void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
    826   void *ptr = (void*)Allocate(0, nmemb * size, stack);
    827   if (ptr)
    828     REAL(memset)(ptr, 0, nmemb * size);
    829   __asan_malloc_hook(ptr, nmemb * size);
    830   return ptr;
    831 }
    832 
    833 void *asan_realloc(void *p, uptr size, StackTrace *stack) {
    834   if (p == 0) {
    835     void *ptr = (void*)Allocate(0, size, stack);
    836     __asan_malloc_hook(ptr, size);
    837     return ptr;
    838   } else if (size == 0) {
    839     __asan_free_hook(p);
    840     Deallocate((u8*)p, stack);
    841     return 0;
    842   }
    843   return Reallocate((u8*)p, size, stack);
    844 }
    845 
    846 void *asan_valloc(uptr size, StackTrace *stack) {
    847   void *ptr = (void*)Allocate(kPageSize, size, stack);
    848   __asan_malloc_hook(ptr, size);
    849   return ptr;
    850 }
    851 
    852 void *asan_pvalloc(uptr size, StackTrace *stack) {
    853   size = RoundUpTo(size, kPageSize);
    854   if (size == 0) {
    855     // pvalloc(0) should allocate one page.
    856     size = kPageSize;
    857   }
    858   void *ptr = (void*)Allocate(kPageSize, size, stack);
    859   __asan_malloc_hook(ptr, size);
    860   return ptr;
    861 }
    862 
    863 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
    864                           StackTrace *stack) {
    865   void *ptr = Allocate(alignment, size, stack);
    866   CHECK(IsAligned((uptr)ptr, alignment));
    867   __asan_malloc_hook(ptr, size);
    868   *memptr = ptr;
    869   return 0;
    870 }
    871 
    872 uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
    873   CHECK(stack);
    874   if (ptr == 0) return 0;
    875   uptr usable_size = malloc_info.AllocationSize((uptr)ptr);
    876   if (flags()->check_malloc_usable_size && (usable_size == 0)) {
    877     ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
    878   }
    879   return usable_size;
    880 }
    881 
    882 uptr asan_mz_size(const void *ptr) {
    883   return malloc_info.AllocationSize((uptr)ptr);
    884 }
    885 
    886 void asan_mz_force_lock() {
    887   malloc_info.ForceLock();
    888 }
    889 
    890 void asan_mz_force_unlock() {
    891   malloc_info.ForceUnlock();
    892 }
    893 
    894 // ---------------------- Fake stack-------------------- {{{1
    895 FakeStack::FakeStack() {
    896   CHECK(REAL(memset) != 0);
    897   REAL(memset)(this, 0, sizeof(*this));
    898 }
    899 
    900 bool FakeStack::AddrIsInSizeClass(uptr addr, uptr size_class) {
    901   uptr mem = allocated_size_classes_[size_class];
    902   uptr size = ClassMmapSize(size_class);
    903   bool res = mem && addr >= mem && addr < mem + size;
    904   return res;
    905 }
    906 
    907 uptr FakeStack::AddrIsInFakeStack(uptr addr) {
    908   for (uptr i = 0; i < kNumberOfSizeClasses; i++) {
    909     if (AddrIsInSizeClass(addr, i)) return allocated_size_classes_[i];
    910   }
    911   return 0;
    912 }
    913 
    914 // We may want to compute this during compilation.
    915 inline uptr FakeStack::ComputeSizeClass(uptr alloc_size) {
    916   uptr rounded_size = RoundUpToPowerOfTwo(alloc_size);
    917   uptr log = Log2(rounded_size);
    918   CHECK(alloc_size <= (1UL << log));
    919   if (!(alloc_size > (1UL << (log-1)))) {
    920     Printf("alloc_size %zu log %zu\n", alloc_size, log);
    921   }
    922   CHECK(alloc_size > (1UL << (log-1)));
    923   uptr res = log < kMinStackFrameSizeLog ? 0 : log - kMinStackFrameSizeLog;
    924   CHECK(res < kNumberOfSizeClasses);
    925   CHECK(ClassSize(res) >= rounded_size);
    926   return res;
    927 }
    928 
    929 void FakeFrameFifo::FifoPush(FakeFrame *node) {
    930   CHECK(node);
    931   node->next = 0;
    932   if (first_ == 0 && last_ == 0) {
    933     first_ = last_ = node;
    934   } else {
    935     CHECK(first_);
    936     CHECK(last_);
    937     last_->next = node;
    938     last_ = node;
    939   }
    940 }
    941 
    942 FakeFrame *FakeFrameFifo::FifoPop() {
    943   CHECK(first_ && last_ && "Exhausted fake stack");
    944   FakeFrame *res = 0;
    945   if (first_ == last_) {
    946     res = first_;
    947     first_ = last_ = 0;
    948   } else {
    949     res = first_;
    950     first_ = first_->next;
    951   }
    952   return res;
    953 }
    954 
    955 void FakeStack::Init(uptr stack_size) {
    956   stack_size_ = stack_size;
    957   alive_ = true;
    958 }
    959 
    960 void FakeStack::Cleanup() {
    961   alive_ = false;
    962   for (uptr i = 0; i < kNumberOfSizeClasses; i++) {
    963     uptr mem = allocated_size_classes_[i];
    964     if (mem) {
    965       PoisonShadow(mem, ClassMmapSize(i), 0);
    966       allocated_size_classes_[i] = 0;
    967       UnmapOrDie((void*)mem, ClassMmapSize(i));
    968     }
    969   }
    970 }
    971 
    972 uptr FakeStack::ClassMmapSize(uptr size_class) {
    973   return RoundUpToPowerOfTwo(stack_size_);
    974 }
    975 
    976 void FakeStack::AllocateOneSizeClass(uptr size_class) {
    977   CHECK(ClassMmapSize(size_class) >= kPageSize);
    978   uptr new_mem = (uptr)MmapOrDie(
    979       ClassMmapSize(size_class), __FUNCTION__);
    980   // Printf("T%d new_mem[%zu]: %p-%p mmap %zu\n",
    981   //       asanThreadRegistry().GetCurrent()->tid(),
    982   //       size_class, new_mem, new_mem + ClassMmapSize(size_class),
    983   //       ClassMmapSize(size_class));
    984   uptr i;
    985   for (i = 0; i < ClassMmapSize(size_class);
    986        i += ClassSize(size_class)) {
    987     size_classes_[size_class].FifoPush((FakeFrame*)(new_mem + i));
    988   }
    989   CHECK(i == ClassMmapSize(size_class));
    990   allocated_size_classes_[size_class] = new_mem;
    991 }
    992 
    993 uptr FakeStack::AllocateStack(uptr size, uptr real_stack) {
    994   if (!alive_) return real_stack;
    995   CHECK(size <= kMaxStackMallocSize && size > 1);
    996   uptr size_class = ComputeSizeClass(size);
    997   if (!allocated_size_classes_[size_class]) {
    998     AllocateOneSizeClass(size_class);
    999   }
   1000   FakeFrame *fake_frame = size_classes_[size_class].FifoPop();
   1001   CHECK(fake_frame);
   1002   fake_frame->size_minus_one = size - 1;
   1003   fake_frame->real_stack = real_stack;
   1004   while (FakeFrame *top = call_stack_.top()) {
   1005     if (top->real_stack > real_stack) break;
   1006     call_stack_.LifoPop();
   1007     DeallocateFrame(top);
   1008   }
   1009   call_stack_.LifoPush(fake_frame);
   1010   uptr ptr = (uptr)fake_frame;
   1011   PoisonShadow(ptr, size, 0);
   1012   return ptr;
   1013 }
   1014 
   1015 void FakeStack::DeallocateFrame(FakeFrame *fake_frame) {
   1016   CHECK(alive_);
   1017   uptr size = fake_frame->size_minus_one + 1;
   1018   uptr size_class = ComputeSizeClass(size);
   1019   CHECK(allocated_size_classes_[size_class]);
   1020   uptr ptr = (uptr)fake_frame;
   1021   CHECK(AddrIsInSizeClass(ptr, size_class));
   1022   CHECK(AddrIsInSizeClass(ptr + size - 1, size_class));
   1023   size_classes_[size_class].FifoPush(fake_frame);
   1024 }
   1025 
   1026 void FakeStack::OnFree(uptr ptr, uptr size, uptr real_stack) {
   1027   FakeFrame *fake_frame = (FakeFrame*)ptr;
   1028   CHECK(fake_frame->magic = kRetiredStackFrameMagic);
   1029   CHECK(fake_frame->descr != 0);
   1030   CHECK(fake_frame->size_minus_one == size - 1);
   1031   PoisonShadow(ptr, size, kAsanStackAfterReturnMagic);
   1032 }
   1033 
   1034 }  // namespace __asan
   1035 
   1036 // ---------------------- Interface ---------------- {{{1
   1037 using namespace __asan;  // NOLINT
   1038 
   1039 uptr __asan_stack_malloc(uptr size, uptr real_stack) {
   1040   if (!flags()->use_fake_stack) return real_stack;
   1041   AsanThread *t = asanThreadRegistry().GetCurrent();
   1042   if (!t) {
   1043     // TSD is gone, use the real stack.
   1044     return real_stack;
   1045   }
   1046   uptr ptr = t->fake_stack().AllocateStack(size, real_stack);
   1047   // Printf("__asan_stack_malloc %p %zu %p\n", ptr, size, real_stack);
   1048   return ptr;
   1049 }
   1050 
   1051 void __asan_stack_free(uptr ptr, uptr size, uptr real_stack) {
   1052   if (!flags()->use_fake_stack) return;
   1053   if (ptr != real_stack) {
   1054     FakeStack::OnFree(ptr, size, real_stack);
   1055   }
   1056 }
   1057 
   1058 // ASan allocator doesn't reserve extra bytes, so normally we would
   1059 // just return "size".
   1060 uptr __asan_get_estimated_allocated_size(uptr size) {
   1061   if (size == 0) return 1;
   1062   return Min(size, kMaxAllowedMallocSize);
   1063 }
   1064 
   1065 bool __asan_get_ownership(const void *p) {
   1066   return malloc_info.AllocationSize((uptr)p) > 0;
   1067 }
   1068 
   1069 uptr __asan_get_allocated_size(const void *p) {
   1070   if (p == 0) return 0;
   1071   uptr allocated_size = malloc_info.AllocationSize((uptr)p);
   1072   // Die if p is not malloced or if it is already freed.
   1073   if (allocated_size == 0) {
   1074     GET_STACK_TRACE_HERE(kStackTraceMax);
   1075     ReportAsanGetAllocatedSizeNotOwned((uptr)p, &stack);
   1076   }
   1077   return allocated_size;
   1078 }
   1079