Home | History | Annotate | Download | only in lib
      1 //===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements single-precision soft-float division
     11 // with the IEEE-754 default rounding (to nearest, ties to even).
     12 //
     13 // For simplicity, this implementation currently flushes denormals to zero.
     14 // It should be a fairly straightforward exercise to implement gradual
     15 // underflow with correct rounding.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #define SINGLE_PRECISION
     20 #include "fp_lib.h"
     21 
     22 ARM_EABI_FNALIAS(fdiv, divsf3)
     23 
     24 fp_t __divsf3(fp_t a, fp_t b) {
     25 
     26     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
     27     const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
     28     const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
     29 
     30     rep_t aSignificand = toRep(a) & significandMask;
     31     rep_t bSignificand = toRep(b) & significandMask;
     32     int scale = 0;
     33 
     34     // Detect if a or b is zero, denormal, infinity, or NaN.
     35     if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
     36 
     37         const rep_t aAbs = toRep(a) & absMask;
     38         const rep_t bAbs = toRep(b) & absMask;
     39 
     40         // NaN / anything = qNaN
     41         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
     42         // anything / NaN = qNaN
     43         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
     44 
     45         if (aAbs == infRep) {
     46             // infinity / infinity = NaN
     47             if (bAbs == infRep) return fromRep(qnanRep);
     48             // infinity / anything else = +/- infinity
     49             else return fromRep(aAbs | quotientSign);
     50         }
     51 
     52         // anything else / infinity = +/- 0
     53         if (bAbs == infRep) return fromRep(quotientSign);
     54 
     55         if (!aAbs) {
     56             // zero / zero = NaN
     57             if (!bAbs) return fromRep(qnanRep);
     58             // zero / anything else = +/- zero
     59             else return fromRep(quotientSign);
     60         }
     61         // anything else / zero = +/- infinity
     62         if (!bAbs) return fromRep(infRep | quotientSign);
     63 
     64         // one or both of a or b is denormal, the other (if applicable) is a
     65         // normal number.  Renormalize one or both of a and b, and set scale to
     66         // include the necessary exponent adjustment.
     67         if (aAbs < implicitBit) scale += normalize(&aSignificand);
     68         if (bAbs < implicitBit) scale -= normalize(&bSignificand);
     69     }
     70 
     71     // Or in the implicit significand bit.  (If we fell through from the
     72     // denormal path it was already set by normalize( ), but setting it twice
     73     // won't hurt anything.)
     74     aSignificand |= implicitBit;
     75     bSignificand |= implicitBit;
     76     int quotientExponent = aExponent - bExponent + scale;
     77 
     78     // Align the significand of b as a Q31 fixed-point number in the range
     79     // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
     80     // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
     81     // is accurate to about 3.5 binary digits.
     82     uint32_t q31b = bSignificand << 8;
     83     uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
     84 
     85     // Now refine the reciprocal estimate using a Newton-Raphson iteration:
     86     //
     87     //     x1 = x0 * (2 - x0 * b)
     88     //
     89     // This doubles the number of correct binary digits in the approximation
     90     // with each iteration, so after three iterations, we have about 28 binary
     91     // digits of accuracy.
     92     uint32_t correction;
     93     correction = -((uint64_t)reciprocal * q31b >> 32);
     94     reciprocal = (uint64_t)reciprocal * correction >> 31;
     95     correction = -((uint64_t)reciprocal * q31b >> 32);
     96     reciprocal = (uint64_t)reciprocal * correction >> 31;
     97     correction = -((uint64_t)reciprocal * q31b >> 32);
     98     reciprocal = (uint64_t)reciprocal * correction >> 31;
     99 
    100     // Exhaustive testing shows that the error in reciprocal after three steps
    101     // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
    102     // expectations.  We bump the reciprocal by a tiny value to force the error
    103     // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
    104     // be specific).  This also causes 1/1 to give a sensible approximation
    105     // instead of zero (due to overflow).
    106     reciprocal -= 2;
    107 
    108     // The numerical reciprocal is accurate to within 2^-28, lies in the
    109     // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
    110     // than the true reciprocal of b.  Multiplying a by this reciprocal thus
    111     // gives a numerical q = a/b in Q24 with the following properties:
    112     //
    113     //    1. q < a/b
    114     //    2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
    115     //    3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
    116     //       from the fact that we truncate the product, and the 2^27 term
    117     //       is the error in the reciprocal of b scaled by the maximum
    118     //       possible value of a.  As a consequence of this error bound,
    119     //       either q or nextafter(q) is the correctly rounded
    120     rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
    121 
    122     // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
    123     // In either case, we are going to compute a residual of the form
    124     //
    125     //     r = a - q*b
    126     //
    127     // We know from the construction of q that r satisfies:
    128     //
    129     //     0 <= r < ulp(q)*b
    130     //
    131     // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
    132     // already have the correct result.  The exact halfway case cannot occur.
    133     // We also take this time to right shift quotient if it falls in the [1,2)
    134     // range and adjust the exponent accordingly.
    135     rep_t residual;
    136     if (quotient < (implicitBit << 1)) {
    137         residual = (aSignificand << 24) - quotient * bSignificand;
    138         quotientExponent--;
    139     } else {
    140         quotient >>= 1;
    141         residual = (aSignificand << 23) - quotient * bSignificand;
    142     }
    143 
    144     const int writtenExponent = quotientExponent + exponentBias;
    145 
    146     if (writtenExponent >= maxExponent) {
    147         // If we have overflowed the exponent, return infinity.
    148         return fromRep(infRep | quotientSign);
    149     }
    150 
    151     else if (writtenExponent < 1) {
    152         // Flush denormals to zero.  In the future, it would be nice to add
    153         // code to round them correctly.
    154         return fromRep(quotientSign);
    155     }
    156 
    157     else {
    158         const bool round = (residual << 1) > bSignificand;
    159         // Clear the implicit bit
    160         rep_t absResult = quotient & significandMask;
    161         // Insert the exponent
    162         absResult |= (rep_t)writtenExponent << significandBits;
    163         // Round
    164         absResult += round;
    165         // Insert the sign and return
    166         return fromRep(absResult | quotientSign);
    167     }
    168 }
    169