1 /* 2 ****************************************************************************** 3 * Copyright (C) 2003-2008, International Business Machines Corporation 4 * and others. All Rights Reserved. 5 ****************************************************************************** 6 * 7 * File HEBRWCAL.CPP 8 * 9 * Modification History: 10 * 11 * Date Name Description 12 * 12/03/2003 srl ported from java HebrewCalendar 13 ***************************************************************************** 14 */ 15 16 #include "hebrwcal.h" 17 18 #if !UCONFIG_NO_FORMATTING 19 20 #include "umutex.h" 21 #include <float.h> 22 #include "gregoimp.h" // Math 23 #include "astro.h" // CalendarAstronomer 24 #include "uhash.h" 25 #include "ucln_in.h" 26 27 // Hebrew Calendar implementation 28 29 /** 30 * The absolute date, in milliseconds since 1/1/1970 AD, Gregorian, 31 * of the start of the Hebrew calendar. In order to keep this calendar's 32 * time of day in sync with that of the Gregorian calendar, we use 33 * midnight, rather than sunset the day before. 34 */ 35 //static const double EPOCH_MILLIS = -180799862400000.; // 1/1/1 HY 36 37 static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = { 38 // Minimum Greatest Least Maximum 39 // Minimum Maximum 40 { 0, 0, 0, 0}, // ERA 41 { -5000000, -5000000, 5000000, 5000000}, // YEAR 42 { 0, 0, 12, 12}, // MONTH 43 { 1, 1, 51, 56}, // WEEK_OF_YEAR 44 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH 45 { 1, 1, 29, 30}, // DAY_OF_MONTH 46 { 1, 1, 353, 385}, // DAY_OF_YEAR 47 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK 48 { -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH 49 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM 50 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR 51 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY 52 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE 53 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND 54 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND 55 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET 56 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET 57 { -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY 58 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL 59 { -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR 60 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY 61 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY 62 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH 63 }; 64 65 /** 66 * The lengths of the Hebrew months. This is complicated, because there 67 * are three different types of years, or six if you count leap years. 68 * Due to the rules for postponing the start of the year to avoid having 69 * certain holidays fall on the sabbath, the year can end up being three 70 * different lengths, called "deficient", "normal", and "complete". 71 */ 72 static const int8_t MONTH_LENGTH[][3] = { 73 // Deficient Normal Complete 74 { 30, 30, 30 }, //Tishri 75 { 29, 29, 30 }, //Heshvan 76 { 29, 30, 30 }, //Kislev 77 { 29, 29, 29 }, //Tevet 78 { 30, 30, 30 }, //Shevat 79 { 30, 30, 30 }, //Adar I (leap years only) 80 { 29, 29, 29 }, //Adar 81 { 30, 30, 30 }, //Nisan 82 { 29, 29, 29 }, //Iyar 83 { 30, 30, 30 }, //Sivan 84 { 29, 29, 29 }, //Tammuz 85 { 30, 30, 30 }, //Av 86 { 29, 29, 29 }, //Elul 87 }; 88 89 /** 90 * The cumulative # of days to the end of each month in a non-leap year 91 * Although this can be calculated from the MONTH_LENGTH table, 92 * keeping it around separately makes some calculations a lot faster 93 */ 94 95 static const int16_t MONTH_START[][3] = { 96 // Deficient Normal Complete 97 { 0, 0, 0 }, // (placeholder) 98 { 30, 30, 30 }, // Tishri 99 { 59, 59, 60 }, // Heshvan 100 { 88, 89, 90 }, // Kislev 101 { 117, 118, 119 }, // Tevet 102 { 147, 148, 149 }, // Shevat 103 { 147, 148, 149 }, // (Adar I placeholder) 104 { 176, 177, 178 }, // Adar 105 { 206, 207, 208 }, // Nisan 106 { 235, 236, 237 }, // Iyar 107 { 265, 266, 267 }, // Sivan 108 { 294, 295, 296 }, // Tammuz 109 { 324, 325, 326 }, // Av 110 { 353, 354, 355 }, // Elul 111 }; 112 113 /** 114 * The cumulative # of days to the end of each month in a leap year 115 */ 116 static const int16_t LEAP_MONTH_START[][3] = { 117 // Deficient Normal Complete 118 { 0, 0, 0 }, // (placeholder) 119 { 30, 30, 30 }, // Tishri 120 { 59, 59, 60 }, // Heshvan 121 { 88, 89, 90 }, // Kislev 122 { 117, 118, 119 }, // Tevet 123 { 147, 148, 149 }, // Shevat 124 { 177, 178, 179 }, // Adar I 125 { 206, 207, 208 }, // Adar II 126 { 236, 237, 238 }, // Nisan 127 { 265, 266, 267 }, // Iyar 128 { 295, 296, 297 }, // Sivan 129 { 324, 325, 326 }, // Tammuz 130 { 354, 355, 356 }, // Av 131 { 383, 384, 385 }, // Elul 132 }; 133 134 static U_NAMESPACE_QUALIFIER CalendarCache *gCache = NULL; 135 136 U_CDECL_BEGIN 137 static UBool calendar_hebrew_cleanup(void) { 138 delete gCache; 139 gCache = NULL; 140 return TRUE; 141 } 142 U_CDECL_END 143 144 U_NAMESPACE_BEGIN 145 //------------------------------------------------------------------------- 146 // Constructors... 147 //------------------------------------------------------------------------- 148 149 /** 150 * Constructs a default <code>HebrewCalendar</code> using the current time 151 * in the default time zone with the default locale. 152 * @internal 153 */ 154 HebrewCalendar::HebrewCalendar(const Locale& aLocale, UErrorCode& success) 155 : Calendar(TimeZone::createDefault(), aLocale, success) 156 157 { 158 setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly. 159 } 160 161 162 HebrewCalendar::~HebrewCalendar() { 163 } 164 165 const char *HebrewCalendar::getType() const { 166 return "hebrew"; 167 } 168 169 Calendar* HebrewCalendar::clone() const { 170 return new HebrewCalendar(*this); 171 } 172 173 HebrewCalendar::HebrewCalendar(const HebrewCalendar& other) : Calendar(other) { 174 } 175 176 177 //------------------------------------------------------------------------- 178 // Rolling and adding functions overridden from Calendar 179 // 180 // These methods call through to the default implementation in IBMCalendar 181 // for most of the fields and only handle the unusual ones themselves. 182 //------------------------------------------------------------------------- 183 184 /** 185 * Add a signed amount to a specified field, using this calendar's rules. 186 * For example, to add three days to the current date, you can call 187 * <code>add(Calendar.DATE, 3)</code>. 188 * <p> 189 * When adding to certain fields, the values of other fields may conflict and 190 * need to be changed. For example, when adding one to the {@link #MONTH MONTH} field 191 * for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field 192 * must be adjusted so that the result is "29 Elul 5758" rather than the invalid 193 * "30 Elul 5758". 194 * <p> 195 * This method is able to add to 196 * all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET}, 197 * and {@link #ZONE_OFFSET ZONE_OFFSET}. 198 * <p> 199 * <b>Note:</b> You should always use {@link #roll roll} and add rather 200 * than attempting to perform arithmetic operations directly on the fields 201 * of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves 202 * discontinuously in non-leap years, simple arithmetic can give invalid results. 203 * <p> 204 * @param field the time field. 205 * @param amount the amount to add to the field. 206 * 207 * @exception IllegalArgumentException if the field is invalid or refers 208 * to a field that cannot be handled by this method. 209 * @internal 210 */ 211 void HebrewCalendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status) 212 { 213 if(U_FAILURE(status)) { 214 return; 215 } 216 switch (field) { 217 case UCAL_MONTH: 218 { 219 // We can't just do a set(MONTH, get(MONTH) + amount). The 220 // reason is ADAR_1. Suppose amount is +2 and we land in 221 // ADAR_1 -- then we have to bump to ADAR_2 aka ADAR. But 222 // if amount is -2 and we land in ADAR_1, then we have to 223 // bump the other way -- down to SHEVAT. - Alan 11/00 224 int32_t month = get(UCAL_MONTH, status); 225 int32_t year = get(UCAL_YEAR, status); 226 UBool acrossAdar1; 227 if (amount > 0) { 228 acrossAdar1 = (month < ADAR_1); // started before ADAR_1? 229 month += amount; 230 for (;;) { 231 if (acrossAdar1 && month>=ADAR_1 && !isLeapYear(year)) { 232 ++month; 233 } 234 if (month <= ELUL) { 235 break; 236 } 237 month -= ELUL+1; 238 ++year; 239 acrossAdar1 = TRUE; 240 } 241 } else { 242 acrossAdar1 = (month > ADAR_1); // started after ADAR_1? 243 month += amount; 244 for (;;) { 245 if (acrossAdar1 && month<=ADAR_1 && !isLeapYear(year)) { 246 --month; 247 } 248 if (month >= 0) { 249 break; 250 } 251 month += ELUL+1; 252 --year; 253 acrossAdar1 = TRUE; 254 } 255 } 256 set(UCAL_MONTH, month); 257 set(UCAL_YEAR, year); 258 pinField(UCAL_DAY_OF_MONTH, status); 259 break; 260 } 261 262 default: 263 Calendar::add(field, amount, status); 264 break; 265 } 266 } 267 268 /** 269 * @deprecated ICU 2.6 use UCalendarDateFields instead of EDateFields 270 */ 271 void HebrewCalendar::add(EDateFields field, int32_t amount, UErrorCode& status) 272 { 273 add((UCalendarDateFields)field, amount, status); 274 } 275 276 /** 277 * Rolls (up/down) a specified amount time on the given field. For 278 * example, to roll the current date up by three days, you can call 279 * <code>roll(Calendar.DATE, 3)</code>. If the 280 * field is rolled past its maximum allowable value, it will "wrap" back 281 * to its minimum and continue rolling. 282 * For example, calling <code>roll(Calendar.DATE, 10)</code> 283 * on a Hebrew calendar set to "25 Av 5758" will result in the date "5 Av 5758". 284 * <p> 285 * When rolling certain fields, the values of other fields may conflict and 286 * need to be changed. For example, when rolling the {@link #MONTH MONTH} field 287 * upward by one for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field 288 * must be adjusted so that the result is "29 Elul 5758" rather than the invalid 289 * "30 Elul". 290 * <p> 291 * This method is able to roll 292 * all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET}, 293 * and {@link #ZONE_OFFSET ZONE_OFFSET}. Subclasses may, of course, add support for 294 * additional fields in their overrides of <code>roll</code>. 295 * <p> 296 * <b>Note:</b> You should always use roll and {@link #add add} rather 297 * than attempting to perform arithmetic operations directly on the fields 298 * of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves 299 * discontinuously in non-leap years, simple arithmetic can give invalid results. 300 * <p> 301 * @param field the time field. 302 * @param amount the amount by which the field should be rolled. 303 * 304 * @exception IllegalArgumentException if the field is invalid or refers 305 * to a field that cannot be handled by this method. 306 * @internal 307 */ 308 void HebrewCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) 309 { 310 if(U_FAILURE(status)) { 311 return; 312 } 313 switch (field) { 314 case UCAL_MONTH: 315 { 316 int32_t month = get(UCAL_MONTH, status); 317 int32_t year = get(UCAL_YEAR, status); 318 319 UBool leapYear = isLeapYear(year); 320 int32_t yearLength = monthsInYear(year); 321 int32_t newMonth = month + (amount % yearLength); 322 // 323 // If it's not a leap year and we're rolling past the missing month 324 // of ADAR_1, we need to roll an extra month to make up for it. 325 // 326 if (!leapYear) { 327 if (amount > 0 && month < ADAR_1 && newMonth >= ADAR_1) { 328 newMonth++; 329 } else if (amount < 0 && month > ADAR_1 && newMonth <= ADAR_1) { 330 newMonth--; 331 } 332 } 333 set(UCAL_MONTH, (newMonth + 13) % 13); 334 pinField(UCAL_DAY_OF_MONTH, status); 335 return; 336 } 337 default: 338 Calendar::roll(field, amount, status); 339 } 340 } 341 342 void HebrewCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) { 343 roll((UCalendarDateFields)field, amount, status); 344 } 345 346 //------------------------------------------------------------------------- 347 // Support methods 348 //------------------------------------------------------------------------- 349 350 // Hebrew date calculations are performed in terms of days, hours, and 351 // "parts" (or halakim), which are 1/1080 of an hour, or 3 1/3 seconds. 352 static const int32_t HOUR_PARTS = 1080; 353 static const int32_t DAY_PARTS = 24*HOUR_PARTS; 354 355 // An approximate value for the length of a lunar month. 356 // It is used to calculate the approximate year and month of a given 357 // absolute date. 358 static const int32_t MONTH_DAYS = 29; 359 static const int32_t MONTH_FRACT = 12*HOUR_PARTS + 793; 360 static const int32_t MONTH_PARTS = MONTH_DAYS*DAY_PARTS + MONTH_FRACT; 361 362 // The time of the new moon (in parts) on 1 Tishri, year 1 (the epoch) 363 // counting from noon on the day before. BAHARAD is an abbreviation of 364 // Bet (Monday), Hey (5 hours from sunset), Resh-Daled (204). 365 static const int32_t BAHARAD = 11*HOUR_PARTS + 204; 366 367 /** 368 * Finds the day # of the first day in the given Hebrew year. 369 * To do this, we want to calculate the time of the Tishri 1 new moon 370 * in that year. 371 * <p> 372 * The algorithm here is similar to ones described in a number of 373 * references, including: 374 * <ul> 375 * <li>"Calendrical Calculations", by Nachum Dershowitz & Edward Reingold, 376 * Cambridge University Press, 1997, pages 85-91. 377 * 378 * <li>Hebrew Calendar Science and Myths, 379 * <a href="http://www.geocities.com/Athens/1584/"> 380 * http://www.geocities.com/Athens/1584/</a> 381 * 382 * <li>The Calendar FAQ, 383 * <a href="http://www.faqs.org/faqs/calendars/faq/"> 384 * http://www.faqs.org/faqs/calendars/faq/</a> 385 * </ul> 386 */ 387 int32_t HebrewCalendar::startOfYear(int32_t year, UErrorCode &status) 388 { 389 ucln_i18n_registerCleanup(UCLN_I18N_HEBREW_CALENDAR, calendar_hebrew_cleanup); 390 int32_t day = CalendarCache::get(&gCache, year, status); 391 392 if (day == 0) { 393 int32_t months = (235 * year - 234) / 19; // # of months before year 394 395 int64_t frac = (int64_t)months * MONTH_FRACT + BAHARAD; // Fractional part of day # 396 day = months * 29 + (int32_t)(frac / DAY_PARTS); // Whole # part of calculation 397 frac = frac % DAY_PARTS; // Time of day 398 399 int32_t wd = (day % 7); // Day of week (0 == Monday) 400 401 if (wd == 2 || wd == 4 || wd == 6) { 402 // If the 1st is on Sun, Wed, or Fri, postpone to the next day 403 day += 1; 404 wd = (day % 7); 405 } 406 if (wd == 1 && frac > 15*HOUR_PARTS+204 && !isLeapYear(year) ) { 407 // If the new moon falls after 3:11:20am (15h204p from the previous noon) 408 // on a Tuesday and it is not a leap year, postpone by 2 days. 409 // This prevents 356-day years. 410 day += 2; 411 } 412 else if (wd == 0 && frac > 21*HOUR_PARTS+589 && isLeapYear(year-1) ) { 413 // If the new moon falls after 9:32:43 1/3am (21h589p from yesterday noon) 414 // on a Monday and *last* year was a leap year, postpone by 1 day. 415 // Prevents 382-day years. 416 day += 1; 417 } 418 CalendarCache::put(&gCache, year, day, status); 419 } 420 return day; 421 } 422 423 /** 424 * Find the day of the week for a given day 425 * 426 * @param day The # of days since the start of the Hebrew calendar, 427 * 1-based (i.e. 1/1/1 AM is day 1). 428 */ 429 int32_t HebrewCalendar::absoluteDayToDayOfWeek(int32_t day) 430 { 431 // We know that 1/1/1 AM is a Monday, which makes the math easy... 432 return (day % 7) + 1; 433 } 434 435 /** 436 * Returns the the type of a given year. 437 * 0 "Deficient" year with 353 or 383 days 438 * 1 "Normal" year with 354 or 384 days 439 * 2 "Complete" year with 355 or 385 days 440 */ 441 int32_t HebrewCalendar::yearType(int32_t year) const 442 { 443 int32_t yearLength = handleGetYearLength(year); 444 445 if (yearLength > 380) { 446 yearLength -= 30; // Subtract length of leap month. 447 } 448 449 int type = 0; 450 451 switch (yearLength) { 452 case 353: 453 type = 0; break; 454 case 354: 455 type = 1; break; 456 case 355: 457 type = 2; break; 458 default: 459 //throw new RuntimeException("Illegal year length " + yearLength + " in year " + year); 460 type = 1; 461 } 462 return type; 463 } 464 465 /** 466 * Determine whether a given Hebrew year is a leap year 467 * 468 * The rule here is that if (year % 19) == 0, 3, 6, 8, 11, 14, or 17. 469 * The formula below performs the same test, believe it or not. 470 */ 471 UBool HebrewCalendar::isLeapYear(int32_t year) { 472 //return (year * 12 + 17) % 19 >= 12; 473 int32_t x = (year*12 + 17) % 19; 474 return x >= ((x < 0) ? -7 : 12); 475 } 476 477 int32_t HebrewCalendar::monthsInYear(int32_t year) { 478 return isLeapYear(year) ? 13 : 12; 479 } 480 481 //------------------------------------------------------------------------- 482 // Calendar framework 483 //------------------------------------------------------------------------- 484 485 /** 486 * @internal 487 */ 488 int32_t HebrewCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const { 489 return LIMITS[field][limitType]; 490 } 491 492 /** 493 * Returns the length of the given month in the given year 494 * @internal 495 */ 496 int32_t HebrewCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const { 497 // Resolve out-of-range months. This is necessary in order to 498 // obtain the correct year. We correct to 499 // a 12- or 13-month year (add/subtract 12 or 13, depending 500 // on the year) but since we _always_ number from 0..12, and 501 // the leap year determines whether or not month 5 (Adar 1) 502 // is present, we allow 0..12 in any given year. 503 while (month < 0) { 504 month += monthsInYear(--extendedYear); 505 } 506 // Careful: allow 0..12 in all years 507 while (month > 12) { 508 month -= monthsInYear(extendedYear++); 509 } 510 511 switch (month) { 512 case HESHVAN: 513 case KISLEV: 514 // These two month lengths can vary 515 return MONTH_LENGTH[month][yearType(extendedYear)]; 516 517 default: 518 // The rest are a fixed length 519 return MONTH_LENGTH[month][0]; 520 } 521 } 522 523 /** 524 * Returns the number of days in the given Hebrew year 525 * @internal 526 */ 527 int32_t HebrewCalendar::handleGetYearLength(int32_t eyear) const { 528 UErrorCode status = U_ZERO_ERROR; 529 return startOfYear(eyear+1, status) - startOfYear(eyear, status); 530 } 531 532 //------------------------------------------------------------------------- 533 // Functions for converting from milliseconds to field values 534 //------------------------------------------------------------------------- 535 536 /** 537 * Subclasses may override this method to compute several fields 538 * specific to each calendar system. These are: 539 * 540 * <ul><li>ERA 541 * <li>YEAR 542 * <li>MONTH 543 * <li>DAY_OF_MONTH 544 * <li>DAY_OF_YEAR 545 * <li>EXTENDED_YEAR</ul> 546 * 547 * Subclasses can refer to the DAY_OF_WEEK and DOW_LOCAL fields, 548 * which will be set when this method is called. Subclasses can 549 * also call the getGregorianXxx() methods to obtain Gregorian 550 * calendar equivalents for the given Julian day. 551 * 552 * <p>In addition, subclasses should compute any subclass-specific 553 * fields, that is, fields from BASE_FIELD_COUNT to 554 * getFieldCount() - 1. 555 * @internal 556 */ 557 void HebrewCalendar::handleComputeFields(int32_t julianDay, UErrorCode &status) { 558 int32_t d = julianDay - 347997; 559 double m = ((d * (double)DAY_PARTS)/ (double) MONTH_PARTS); // Months (approx) 560 int32_t year = (int32_t)( ((19. * m + 234.) / 235.) + 1.); // Years (approx) 561 int32_t ys = startOfYear(year, status); // 1st day of year 562 int32_t dayOfYear = (d - ys); 563 564 // Because of the postponement rules, it's possible to guess wrong. Fix it. 565 while (dayOfYear < 1) { 566 year--; 567 ys = startOfYear(year, status); 568 dayOfYear = (d - ys); 569 } 570 571 // Now figure out which month we're in, and the date within that month 572 int32_t type = yearType(year); 573 UBool isLeap = isLeapYear(year); 574 575 int32_t month = 0; 576 int32_t momax = sizeof(MONTH_START) / (3 * sizeof(MONTH_START[0][0])); 577 while (month < momax && dayOfYear > ( isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type] ) ) { 578 month++; 579 } 580 if (month >= momax || month<=0) { 581 // TODO: I found dayOfYear could be out of range when 582 // a large value is set to julianDay. I patched startOfYear 583 // to reduce the chace, but it could be still reproduced either 584 // by startOfYear or other places. For now, we check 585 // the month is in valid range to avoid out of array index 586 // access problem here. However, we need to carefully review 587 // the calendar implementation to check the extreme limit of 588 // each calendar field and the code works well for any values 589 // in the valid value range. -yoshito 590 status = U_ILLEGAL_ARGUMENT_ERROR; 591 return; 592 } 593 month--; 594 int dayOfMonth = dayOfYear - (isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type]); 595 596 internalSet(UCAL_ERA, 0); 597 internalSet(UCAL_YEAR, year); 598 internalSet(UCAL_EXTENDED_YEAR, year); 599 internalSet(UCAL_MONTH, month); 600 internalSet(UCAL_DAY_OF_MONTH, dayOfMonth); 601 internalSet(UCAL_DAY_OF_YEAR, dayOfYear); 602 } 603 604 //------------------------------------------------------------------------- 605 // Functions for converting from field values to milliseconds 606 //------------------------------------------------------------------------- 607 608 /** 609 * @internal 610 */ 611 int32_t HebrewCalendar::handleGetExtendedYear() { 612 int32_t year; 613 if (newerField(UCAL_EXTENDED_YEAR, UCAL_YEAR) == UCAL_EXTENDED_YEAR) { 614 year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1 615 } else { 616 year = internalGet(UCAL_YEAR, 1); // Default to year 1 617 } 618 return year; 619 } 620 621 /** 622 * Return JD of start of given month/year. 623 * @internal 624 */ 625 int32_t HebrewCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool /*useMonth*/) const { 626 UErrorCode status = U_ZERO_ERROR; 627 // Resolve out-of-range months. This is necessary in order to 628 // obtain the correct year. We correct to 629 // a 12- or 13-month year (add/subtract 12 or 13, depending 630 // on the year) but since we _always_ number from 0..12, and 631 // the leap year determines whether or not month 5 (Adar 1) 632 // is present, we allow 0..12 in any given year. 633 while (month < 0) { 634 month += monthsInYear(--eyear); 635 } 636 // Careful: allow 0..12 in all years 637 while (month > 12) { 638 month -= monthsInYear(eyear++); 639 } 640 641 int32_t day = startOfYear(eyear, status); 642 643 if(U_FAILURE(status)) { 644 return 0; 645 } 646 647 if (month != 0) { 648 if (isLeapYear(eyear)) { 649 day += LEAP_MONTH_START[month][yearType(eyear)]; 650 } else { 651 day += MONTH_START[month][yearType(eyear)]; 652 } 653 } 654 655 return (int) (day + 347997); 656 } 657 658 UBool 659 HebrewCalendar::inDaylightTime(UErrorCode& status) const 660 { 661 // copied from GregorianCalendar 662 if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) 663 return FALSE; 664 665 // Force an update of the state of the Calendar. 666 ((HebrewCalendar*)this)->complete(status); // cast away const 667 668 return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE); 669 } 670 671 // default century 672 const UDate HebrewCalendar::fgSystemDefaultCentury = DBL_MIN; 673 const int32_t HebrewCalendar::fgSystemDefaultCenturyYear = -1; 674 675 UDate HebrewCalendar::fgSystemDefaultCenturyStart = DBL_MIN; 676 int32_t HebrewCalendar::fgSystemDefaultCenturyStartYear = -1; 677 678 679 UBool HebrewCalendar::haveDefaultCentury() const 680 { 681 return TRUE; 682 } 683 684 UDate HebrewCalendar::defaultCenturyStart() const 685 { 686 return internalGetDefaultCenturyStart(); 687 } 688 689 int32_t HebrewCalendar::defaultCenturyStartYear() const 690 { 691 return internalGetDefaultCenturyStartYear(); 692 } 693 694 UDate 695 HebrewCalendar::internalGetDefaultCenturyStart() const 696 { 697 // lazy-evaluate systemDefaultCenturyStart 698 UBool needsUpdate; 699 UMTX_CHECK(NULL, (fgSystemDefaultCenturyStart == fgSystemDefaultCentury), needsUpdate); 700 701 if (needsUpdate) { 702 initializeSystemDefaultCentury(); 703 } 704 705 // use defaultCenturyStart unless it's the flag value; 706 // then use systemDefaultCenturyStart 707 708 return fgSystemDefaultCenturyStart; 709 } 710 711 int32_t 712 HebrewCalendar::internalGetDefaultCenturyStartYear() const 713 { 714 // lazy-evaluate systemDefaultCenturyStartYear 715 UBool needsUpdate; 716 UMTX_CHECK(NULL, (fgSystemDefaultCenturyStart == fgSystemDefaultCentury), needsUpdate); 717 718 if (needsUpdate) { 719 initializeSystemDefaultCentury(); 720 } 721 722 // use defaultCenturyStart unless it's the flag value; 723 // then use systemDefaultCenturyStartYear 724 725 return fgSystemDefaultCenturyStartYear; 726 } 727 728 void 729 HebrewCalendar::initializeSystemDefaultCentury() 730 { 731 // initialize systemDefaultCentury and systemDefaultCenturyYear based 732 // on the current time. They'll be set to 80 years before 733 // the current time. 734 UErrorCode status = U_ZERO_ERROR; 735 HebrewCalendar calendar(Locale("@calendar=hebrew"),status); 736 if (U_SUCCESS(status)) 737 { 738 calendar.setTime(Calendar::getNow(), status); 739 calendar.add(UCAL_YEAR, -80, status); 740 UDate newStart = calendar.getTime(status); 741 int32_t newYear = calendar.get(UCAL_YEAR, status); 742 umtx_lock(NULL); 743 if (fgSystemDefaultCenturyStart == fgSystemDefaultCentury) { 744 fgSystemDefaultCenturyStartYear = newYear; 745 fgSystemDefaultCenturyStart = newStart; 746 } 747 umtx_unlock(NULL); 748 } 749 // We have no recourse upon failure unless we want to propagate the failure 750 // out. 751 } 752 753 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(HebrewCalendar) 754 755 U_NAMESPACE_END 756 757 #endif // UCONFIG_NO_FORMATTING 758 759