Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <title>LLVM Assembly Language Reference Manual</title>
      6   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      7   <meta name="author" content="Chris Lattner">
      8   <meta name="description"
      9   content="LLVM Assembly Language Reference Manual.">
     10   <link rel="stylesheet" href="_static/llvm.css" type="text/css">
     11 </head>
     12 
     13 <body>
     14 
     15 <h1>LLVM Language Reference Manual</h1>
     16 <ol>
     17   <li><a href="#abstract">Abstract</a></li>
     18   <li><a href="#introduction">Introduction</a></li>
     19   <li><a href="#identifiers">Identifiers</a></li>
     20   <li><a href="#highlevel">High Level Structure</a>
     21     <ol>
     22       <li><a href="#modulestructure">Module Structure</a></li>
     23       <li><a href="#linkage">Linkage Types</a>
     24         <ol>
     25           <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
     26           <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
     27           <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
     28           <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
     29           <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
     30           <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
     31           <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
     32           <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
     33           <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
     34           <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
     35           <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
     36           <li><a href="#linkage_linkonce_odr_auto_hide">'<tt>linkonce_odr_auto_hide</tt>' Linkage</a></li>
     37           <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
     38           <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
     39           <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
     40           <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
     41         </ol>
     42       </li>
     43       <li><a href="#callingconv">Calling Conventions</a></li>
     44       <li><a href="#namedtypes">Named Types</a></li>
     45       <li><a href="#globalvars">Global Variables</a></li>
     46       <li><a href="#functionstructure">Functions</a></li>
     47       <li><a href="#aliasstructure">Aliases</a></li>
     48       <li><a href="#namedmetadatastructure">Named Metadata</a></li>
     49       <li><a href="#paramattrs">Parameter Attributes</a></li>
     50       <li><a href="#fnattrs">Function Attributes</a></li>
     51       <li><a href="#gc">Garbage Collector Names</a></li>
     52       <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
     53       <li><a href="#datalayout">Data Layout</a></li>
     54       <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
     55       <li><a href="#volatile">Volatile Memory Accesses</a></li>
     56       <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
     57       <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
     58     </ol>
     59   </li>
     60   <li><a href="#typesystem">Type System</a>
     61     <ol>
     62       <li><a href="#t_classifications">Type Classifications</a></li>
     63       <li><a href="#t_primitive">Primitive Types</a>
     64         <ol>
     65           <li><a href="#t_integer">Integer Type</a></li>
     66           <li><a href="#t_floating">Floating Point Types</a></li>
     67           <li><a href="#t_x86mmx">X86mmx Type</a></li>
     68           <li><a href="#t_void">Void Type</a></li>
     69           <li><a href="#t_label">Label Type</a></li>
     70           <li><a href="#t_metadata">Metadata Type</a></li>
     71         </ol>
     72       </li>
     73       <li><a href="#t_derived">Derived Types</a>
     74         <ol>
     75           <li><a href="#t_aggregate">Aggregate Types</a>
     76             <ol>
     77               <li><a href="#t_array">Array Type</a></li>
     78               <li><a href="#t_struct">Structure Type</a></li>
     79               <li><a href="#t_opaque">Opaque Structure Types</a></li>
     80               <li><a href="#t_vector">Vector Type</a></li>
     81             </ol>
     82           </li>
     83           <li><a href="#t_function">Function Type</a></li>
     84           <li><a href="#t_pointer">Pointer Type</a></li>
     85         </ol>
     86       </li>
     87     </ol>
     88   </li>
     89   <li><a href="#constants">Constants</a>
     90     <ol>
     91       <li><a href="#simpleconstants">Simple Constants</a></li>
     92       <li><a href="#complexconstants">Complex Constants</a></li>
     93       <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
     94       <li><a href="#undefvalues">Undefined Values</a></li>
     95       <li><a href="#poisonvalues">Poison Values</a></li>
     96       <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
     97       <li><a href="#constantexprs">Constant Expressions</a></li>
     98     </ol>
     99   </li>
    100   <li><a href="#othervalues">Other Values</a>
    101     <ol>
    102       <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
    103       <li><a href="#metadata">Metadata Nodes and Metadata Strings</a>
    104         <ol>
    105           <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li>
    106           <li><a href="#fpmath">'<tt>fpmath</tt>' Metadata</a></li>
    107           <li><a href="#range">'<tt>range</tt>' Metadata</a></li>
    108         </ol>
    109       </li>
    110     </ol>
    111   </li>
    112   <li><a href="#module_flags">Module Flags Metadata</a>
    113     <ol>
    114       <li><a href="#objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a></li>
    115     </ol>
    116   </li>
    117   <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
    118     <ol>
    119       <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
    120       <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
    121           Global Variable</a></li>
    122       <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
    123          Global Variable</a></li>
    124       <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
    125          Global Variable</a></li>
    126     </ol>
    127   </li>
    128   <li><a href="#instref">Instruction Reference</a>
    129     <ol>
    130       <li><a href="#terminators">Terminator Instructions</a>
    131         <ol>
    132           <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
    133           <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
    134           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
    135           <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
    136           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
    137           <li><a href="#i_resume">'<tt>resume</tt>'  Instruction</a></li>
    138           <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
    139         </ol>
    140       </li>
    141       <li><a href="#binaryops">Binary Operations</a>
    142         <ol>
    143           <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
    144           <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
    145           <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
    146           <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
    147           <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
    148           <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
    149           <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
    150           <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
    151           <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
    152           <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
    153           <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
    154           <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
    155         </ol>
    156       </li>
    157       <li><a href="#bitwiseops">Bitwise Binary Operations</a>
    158         <ol>
    159           <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
    160           <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
    161           <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
    162           <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
    163           <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li>
    164           <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
    165         </ol>
    166       </li>
    167       <li><a href="#vectorops">Vector Operations</a>
    168         <ol>
    169           <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
    170           <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
    171           <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
    172         </ol>
    173       </li>
    174       <li><a href="#aggregateops">Aggregate Operations</a>
    175         <ol>
    176           <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
    177           <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
    178         </ol>
    179       </li>
    180       <li><a href="#memoryops">Memory Access and Addressing Operations</a>
    181         <ol>
    182           <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
    183          <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
    184          <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
    185          <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
    186          <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
    187          <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
    188          <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
    189         </ol>
    190       </li>
    191       <li><a href="#convertops">Conversion Operations</a>
    192         <ol>
    193           <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
    194           <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
    195           <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
    196           <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
    197           <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
    198           <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
    199           <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
    200           <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
    201           <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
    202           <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
    203           <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
    204           <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
    205         </ol>
    206       </li>
    207       <li><a href="#otherops">Other Operations</a>
    208         <ol>
    209           <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
    210           <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
    211           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
    212           <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
    213           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
    214           <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li>
    215           <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
    216         </ol>
    217       </li>
    218     </ol>
    219   </li>
    220   <li><a href="#intrinsics">Intrinsic Functions</a>
    221     <ol>
    222       <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
    223         <ol>
    224           <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
    225           <li><a href="#int_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li>
    226           <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li>
    227         </ol>
    228       </li>
    229       <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
    230         <ol>
    231           <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
    232           <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
    233           <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
    234         </ol>
    235       </li>
    236       <li><a href="#int_codegen">Code Generator Intrinsics</a>
    237         <ol>
    238           <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
    239           <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li>
    240           <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
    241           <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
    242           <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
    243           <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
    244           <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
    245         </ol>
    246       </li>
    247       <li><a href="#int_libc">Standard C Library Intrinsics</a>
    248         <ol>
    249           <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
    250           <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
    251           <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
    252           <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
    253           <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
    254           <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
    255           <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
    256           <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
    257           <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
    258           <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
    259           <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
    260           <li><a href="#int_fabs">'<tt>llvm.fabs.*</tt>' Intrinsic</a></li>
    261           <li><a href="#int_floor">'<tt>llvm.floor.*</tt>' Intrinsic</a></li>
    262         </ol>
    263       </li>
    264       <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
    265         <ol>
    266           <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
    267           <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
    268           <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
    269           <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
    270         </ol>
    271       </li>
    272       <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
    273         <ol>
    274           <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
    275           <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
    276           <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
    277           <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
    278           <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
    279           <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
    280         </ol>
    281       </li>
    282       <li><a href="#spec_arithmetic">Specialised Arithmetic Intrinsics</a>
    283         <ol>
    284           <li><a href="#fmuladd">'<tt>llvm.fmuladd</tt> Intrinsic</a></li>
    285         </ol>
    286       </li>
    287       <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
    288         <ol>
    289           <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
    290           <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
    291         </ol>
    292       </li>
    293       <li><a href="#int_debugger">Debugger intrinsics</a></li>
    294       <li><a href="#int_eh">Exception Handling intrinsics</a></li>
    295       <li><a href="#int_trampoline">Trampoline Intrinsics</a>
    296         <ol>
    297           <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
    298           <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
    299         </ol>
    300       </li>
    301       <li><a href="#int_memorymarkers">Memory Use Markers</a>
    302         <ol>
    303           <li><a href="#int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a></li>
    304           <li><a href="#int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a></li>
    305           <li><a href="#int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a></li>
    306           <li><a href="#int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a></li>
    307         </ol>
    308       </li>
    309       <li><a href="#int_general">General intrinsics</a>
    310         <ol>
    311           <li><a href="#int_var_annotation">
    312             '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
    313           <li><a href="#int_annotation">
    314             '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
    315           <li><a href="#int_trap">
    316             '<tt>llvm.trap</tt>' Intrinsic</a></li>
    317           <li><a href="#int_debugtrap">
    318             '<tt>llvm.debugtrap</tt>' Intrinsic</a></li>
    319           <li><a href="#int_stackprotector">
    320             '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
    321           <li><a href="#int_objectsize">
    322             '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
    323           <li><a href="#int_expect">
    324             '<tt>llvm.expect</tt>' Intrinsic</a></li>
    325           <li><a href="#int_donothing">
    326             '<tt>llvm.donothing</tt>' Intrinsic</a></li>
    327         </ol>
    328       </li>
    329     </ol>
    330   </li>
    331 </ol>
    332 
    333 <div class="doc_author">
    334   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a>
    335             and <a href="mailto:vadve (a] cs.uiuc.edu">Vikram Adve</a></p>
    336 </div>
    337 
    338 <!-- *********************************************************************** -->
    339 <h2><a name="abstract">Abstract</a></h2>
    340 <!-- *********************************************************************** -->
    341 
    342 <div>
    343 
    344 <p>This document is a reference manual for the LLVM assembly language. LLVM is
    345    a Static Single Assignment (SSA) based representation that provides type
    346    safety, low-level operations, flexibility, and the capability of representing
    347    'all' high-level languages cleanly.  It is the common code representation
    348    used throughout all phases of the LLVM compilation strategy.</p>
    349 
    350 </div>
    351 
    352 <!-- *********************************************************************** -->
    353 <h2><a name="introduction">Introduction</a></h2>
    354 <!-- *********************************************************************** -->
    355 
    356 <div>
    357 
    358 <p>The LLVM code representation is designed to be used in three different forms:
    359    as an in-memory compiler IR, as an on-disk bitcode representation (suitable
    360    for fast loading by a Just-In-Time compiler), and as a human readable
    361    assembly language representation.  This allows LLVM to provide a powerful
    362    intermediate representation for efficient compiler transformations and
    363    analysis, while providing a natural means to debug and visualize the
    364    transformations.  The three different forms of LLVM are all equivalent.  This
    365    document describes the human readable representation and notation.</p>
    366 
    367 <p>The LLVM representation aims to be light-weight and low-level while being
    368    expressive, typed, and extensible at the same time.  It aims to be a
    369    "universal IR" of sorts, by being at a low enough level that high-level ideas
    370    may be cleanly mapped to it (similar to how microprocessors are "universal
    371    IR's", allowing many source languages to be mapped to them).  By providing
    372    type information, LLVM can be used as the target of optimizations: for
    373    example, through pointer analysis, it can be proven that a C automatic
    374    variable is never accessed outside of the current function, allowing it to
    375    be promoted to a simple SSA value instead of a memory location.</p>
    376 
    377 <!-- _______________________________________________________________________ -->
    378 <h4>
    379   <a name="wellformed">Well-Formedness</a>
    380 </h4>
    381 
    382 <div>
    383 
    384 <p>It is important to note that this document describes 'well formed' LLVM
    385    assembly language.  There is a difference between what the parser accepts and
    386    what is considered 'well formed'.  For example, the following instruction is
    387    syntactically okay, but not well formed:</p>
    388 
    389 <pre class="doc_code">
    390 %x = <a href="#i_add">add</a> i32 1, %x
    391 </pre>
    392 
    393 <p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
    394    LLVM infrastructure provides a verification pass that may be used to verify
    395    that an LLVM module is well formed.  This pass is automatically run by the
    396    parser after parsing input assembly and by the optimizer before it outputs
    397    bitcode.  The violations pointed out by the verifier pass indicate bugs in
    398    transformation passes or input to the parser.</p>
    399 
    400 </div>
    401 
    402 </div>
    403 
    404 <!-- Describe the typesetting conventions here. -->
    405 
    406 <!-- *********************************************************************** -->
    407 <h2><a name="identifiers">Identifiers</a></h2>
    408 <!-- *********************************************************************** -->
    409 
    410 <div>
    411 
    412 <p>LLVM identifiers come in two basic types: global and local. Global
    413    identifiers (functions, global variables) begin with the <tt>'@'</tt>
    414    character. Local identifiers (register names, types) begin with
    415    the <tt>'%'</tt> character. Additionally, there are three different formats
    416    for identifiers, for different purposes:</p>
    417 
    418 <ol>
    419   <li>Named values are represented as a string of characters with their prefix.
    420       For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
    421       <tt>%a.really.long.identifier</tt>. The actual regular expression used is
    422       '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers which require
    423       other characters in their names can be surrounded with quotes. Special
    424       characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
    425       ASCII code for the character in hexadecimal.  In this way, any character
    426       can be used in a name value, even quotes themselves.</li>
    427 
    428   <li>Unnamed values are represented as an unsigned numeric value with their
    429       prefix.  For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
    430 
    431   <li>Constants, which are described in a <a href="#constants">section about
    432       constants</a>, below.</li>
    433 </ol>
    434 
    435 <p>LLVM requires that values start with a prefix for two reasons: Compilers
    436    don't need to worry about name clashes with reserved words, and the set of
    437    reserved words may be expanded in the future without penalty.  Additionally,
    438    unnamed identifiers allow a compiler to quickly come up with a temporary
    439    variable without having to avoid symbol table conflicts.</p>
    440 
    441 <p>Reserved words in LLVM are very similar to reserved words in other
    442    languages. There are keywords for different opcodes
    443    ('<tt><a href="#i_add">add</a></tt>',
    444    '<tt><a href="#i_bitcast">bitcast</a></tt>',
    445    '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
    446    ('<tt><a href="#t_void">void</a></tt>',
    447    '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others.  These
    448    reserved words cannot conflict with variable names, because none of them
    449    start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
    450 
    451 <p>Here is an example of LLVM code to multiply the integer variable
    452    '<tt>%X</tt>' by 8:</p>
    453 
    454 <p>The easy way:</p>
    455 
    456 <pre class="doc_code">
    457 %result = <a href="#i_mul">mul</a> i32 %X, 8
    458 </pre>
    459 
    460 <p>After strength reduction:</p>
    461 
    462 <pre class="doc_code">
    463 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
    464 </pre>
    465 
    466 <p>And the hard way:</p>
    467 
    468 <pre class="doc_code">
    469 %0 = <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
    470 %1 = <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
    471 %result = <a href="#i_add">add</a> i32 %1, %1
    472 </pre>
    473 
    474 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
    475    lexical features of LLVM:</p>
    476 
    477 <ol>
    478   <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
    479       line.</li>
    480 
    481   <li>Unnamed temporaries are created when the result of a computation is not
    482       assigned to a named value.</li>
    483 
    484   <li>Unnamed temporaries are numbered sequentially</li>
    485 </ol>
    486 
    487 <p>It also shows a convention that we follow in this document.  When
    488    demonstrating instructions, we will follow an instruction with a comment that
    489    defines the type and name of value produced.  Comments are shown in italic
    490    text.</p>
    491 
    492 </div>
    493 
    494 <!-- *********************************************************************** -->
    495 <h2><a name="highlevel">High Level Structure</a></h2>
    496 <!-- *********************************************************************** -->
    497 <div>
    498 <!-- ======================================================================= -->
    499 <h3>
    500   <a name="modulestructure">Module Structure</a>
    501 </h3>
    502 
    503 <div>
    504 
    505 <p>LLVM programs are composed of <tt>Module</tt>s, each of which is a
    506    translation unit of the input programs.  Each module consists of functions,
    507    global variables, and symbol table entries.  Modules may be combined together
    508    with the LLVM linker, which merges function (and global variable)
    509    definitions, resolves forward declarations, and merges symbol table
    510    entries. Here is an example of the "hello world" module:</p>
    511 
    512 <pre class="doc_code">
    513 <i>; Declare the string constant as a global constant.</i>&nbsp;
    514 <a href="#identifiers">@.str</a> = <a href="#linkage_private">private</a>&nbsp;<a href="#globalvars">unnamed_addr</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00"&nbsp;
    515 
    516 <i>; External declaration of the puts function</i>&nbsp;
    517 <a href="#functionstructure">declare</a> i32 @puts(i8* <a href="#nocapture">nocapture</a>) <a href="#fnattrs">nounwind</a>&nbsp;
    518 
    519 <i>; Definition of main function</i>
    520 define i32 @main() {   <i>; i32()* </i>&nbsp;
    521   <i>; Convert [13 x i8]* to i8  *...</i>&nbsp;
    522   %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.str, i64 0, i64 0
    523 
    524   <i>; Call puts function to write out the string to stdout.</i>&nbsp;
    525   <a href="#i_call">call</a> i32 @puts(i8* %cast210)
    526   <a href="#i_ret">ret</a> i32 0&nbsp;
    527 }
    528 
    529 <i>; Named metadata</i>
    530 !1 = metadata !{i32 42}
    531 !foo = !{!1, null}
    532 </pre>
    533 
    534 <p>This example is made up of a <a href="#globalvars">global variable</a> named
    535    "<tt>.str</tt>", an external declaration of the "<tt>puts</tt>" function,
    536    a <a href="#functionstructure">function definition</a> for
    537    "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a> 
    538    "<tt>foo</tt>".</p>
    539 
    540 <p>In general, a module is made up of a list of global values (where both
    541    functions and global variables are global values). Global values are
    542    represented by a pointer to a memory location (in this case, a pointer to an
    543    array of char, and a pointer to a function), and have one of the
    544    following <a href="#linkage">linkage types</a>.</p>
    545 
    546 </div>
    547 
    548 <!-- ======================================================================= -->
    549 <h3>
    550   <a name="linkage">Linkage Types</a>
    551 </h3>
    552 
    553 <div>
    554 
    555 <p>All Global Variables and Functions have one of the following types of
    556    linkage:</p>
    557 
    558 <dl>
    559   <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
    560   <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
    561       by objects in the current module. In particular, linking code into a
    562       module with an private global value may cause the private to be renamed as
    563       necessary to avoid collisions.  Because the symbol is private to the
    564       module, all references can be updated. This doesn't show up in any symbol
    565       table in the object file.</dd>
    566 
    567   <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
    568   <dd>Similar to <tt>private</tt>, but the symbol is passed through the
    569       assembler and evaluated by the linker. Unlike normal strong symbols, they
    570       are removed by the linker from the final linked image (executable or
    571       dynamic library).</dd>
    572 
    573   <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
    574   <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
    575       <tt>linker_private_weak</tt> symbols are subject to coalescing by the
    576       linker. The symbols are removed by the linker from the final linked image
    577       (executable or dynamic library).</dd>
    578 
    579   <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
    580   <dd>Similar to private, but the value shows as a local symbol
    581       (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
    582       corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
    583 
    584   <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
    585   <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
    586       into the object file corresponding to the LLVM module.  They exist to
    587       allow inlining and other optimizations to take place given knowledge of
    588       the definition of the global, which is known to be somewhere outside the
    589       module.  Globals with <tt>available_externally</tt> linkage are allowed to
    590       be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
    591       This linkage type is only allowed on definitions, not declarations.</dd>
    592 
    593   <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
    594   <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
    595       the same name when linkage occurs.  This can be used to implement
    596       some forms of inline functions, templates, or other code which must be
    597       generated in each translation unit that uses it, but where the body may
    598       be overridden with a more definitive definition later.  Unreferenced
    599       <tt>linkonce</tt> globals are allowed to be discarded.  Note that
    600       <tt>linkonce</tt> linkage does not actually allow the optimizer to
    601       inline the body of this function into callers because it doesn't know if
    602       this definition of the function is the definitive definition within the
    603       program or whether it will be overridden by a stronger definition.
    604       To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
    605       linkage.</dd>
    606 
    607   <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
    608   <dd>"<tt>weak</tt>" linkage has the same merging semantics as
    609       <tt>linkonce</tt> linkage, except that unreferenced globals with
    610       <tt>weak</tt> linkage may not be discarded.  This is used for globals that
    611       are declared "weak" in C source code.</dd>
    612 
    613   <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
    614   <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
    615       they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
    616       global scope.
    617       Symbols with "<tt>common</tt>" linkage are merged in the same way as
    618       <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
    619       <tt>common</tt> symbols may not have an explicit section,
    620       must have a zero initializer, and may not be marked '<a
    621       href="#globalvars"><tt>constant</tt></a>'.  Functions and aliases may not
    622       have common linkage.</dd>
    623 
    624 
    625   <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
    626   <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
    627       pointer to array type.  When two global variables with appending linkage
    628       are linked together, the two global arrays are appended together.  This is
    629       the LLVM, typesafe, equivalent of having the system linker append together
    630       "sections" with identical names when .o files are linked.</dd>
    631 
    632   <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
    633   <dd>The semantics of this linkage follow the ELF object file model: the symbol
    634       is weak until linked, if not linked, the symbol becomes null instead of
    635       being an undefined reference.</dd>
    636 
    637   <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
    638   <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
    639   <dd>Some languages allow differing globals to be merged, such as two functions
    640       with different semantics.  Other languages, such as <tt>C++</tt>, ensure
    641       that only equivalent globals are ever merged (the "one definition rule"
    642       &mdash; "ODR").  Such languages can use the <tt>linkonce_odr</tt>
    643       and <tt>weak_odr</tt> linkage types to indicate that the global will only
    644       be merged with equivalent globals.  These linkage types are otherwise the
    645       same as their non-<tt>odr</tt> versions.</dd>
    646 
    647   <dt><tt><b><a name="linkage_linkonce_odr_auto_hide">linkonce_odr_auto_hide</a></b></tt></dt>
    648   <dd>Similar to "<tt>linkonce_odr</tt>", but nothing in the translation unit
    649       takes the address of this definition. For instance, functions that had an
    650       inline definition, but the compiler decided not to inline it.
    651       <tt>linkonce_odr_auto_hide</tt> may have only <tt>default</tt> visibility.
    652       The symbols are removed by the linker from the final linked image
    653       (executable or dynamic library).</dd>
    654 
    655   <dt><tt><b><a name="linkage_external">external</a></b></tt></dt>
    656   <dd>If none of the above identifiers are used, the global is externally
    657       visible, meaning that it participates in linkage and can be used to
    658       resolve external symbol references.</dd>
    659 </dl>
    660 
    661 <p>The next two types of linkage are targeted for Microsoft Windows platform
    662    only. They are designed to support importing (exporting) symbols from (to)
    663    DLLs (Dynamic Link Libraries).</p>
    664 
    665 <dl>
    666   <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
    667   <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
    668       or variable via a global pointer to a pointer that is set up by the DLL
    669       exporting the symbol. On Microsoft Windows targets, the pointer name is
    670       formed by combining <code>__imp_</code> and the function or variable
    671       name.</dd>
    672 
    673   <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
    674   <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
    675       pointer to a pointer in a DLL, so that it can be referenced with the
    676       <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
    677       name is formed by combining <code>__imp_</code> and the function or
    678       variable name.</dd>
    679 </dl>
    680 
    681 <p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
    682    another module defined a "<tt>.LC0</tt>" variable and was linked with this
    683    one, one of the two would be renamed, preventing a collision.  Since
    684    "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
    685    declarations), they are accessible outside of the current module.</p>
    686 
    687 <p>It is illegal for a function <i>declaration</i> to have any linkage type
    688    other than <tt>external</tt>, <tt>dllimport</tt>
    689   or <tt>extern_weak</tt>.</p>
    690 
    691 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
    692    or <tt>weak_odr</tt> linkages.</p>
    693 
    694 </div>
    695 
    696 <!-- ======================================================================= -->
    697 <h3>
    698   <a name="callingconv">Calling Conventions</a>
    699 </h3>
    700 
    701 <div>
    702 
    703 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
    704    and <a href="#i_invoke">invokes</a> can all have an optional calling
    705    convention specified for the call.  The calling convention of any pair of
    706    dynamic caller/callee must match, or the behavior of the program is
    707    undefined.  The following calling conventions are supported by LLVM, and more
    708    may be added in the future:</p>
    709 
    710 <dl>
    711   <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
    712   <dd>This calling convention (the default if no other calling convention is
    713       specified) matches the target C calling conventions.  This calling
    714       convention supports varargs function calls and tolerates some mismatch in
    715       the declared prototype and implemented declaration of the function (as
    716       does normal C).</dd>
    717 
    718   <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
    719   <dd>This calling convention attempts to make calls as fast as possible
    720       (e.g. by passing things in registers).  This calling convention allows the
    721       target to use whatever tricks it wants to produce fast code for the
    722       target, without having to conform to an externally specified ABI
    723       (Application Binary Interface).
    724       <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
    725       when this or the GHC convention is used.</a>  This calling convention
    726       does not support varargs and requires the prototype of all callees to
    727       exactly match the prototype of the function definition.</dd>
    728 
    729   <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
    730   <dd>This calling convention attempts to make code in the caller as efficient
    731       as possible under the assumption that the call is not commonly executed.
    732       As such, these calls often preserve all registers so that the call does
    733       not break any live ranges in the caller side.  This calling convention
    734       does not support varargs and requires the prototype of all callees to
    735       exactly match the prototype of the function definition.</dd>
    736 
    737   <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
    738   <dd>This calling convention has been implemented specifically for use by the
    739       <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
    740       It passes everything in registers, going to extremes to achieve this by
    741       disabling callee save registers. This calling convention should not be
    742       used lightly but only for specific situations such as an alternative to
    743       the <em>register pinning</em> performance technique often used when
    744       implementing functional programming languages.At the moment only X86
    745       supports this convention and it has the following limitations:
    746       <ul>
    747         <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
    748             floating point types are supported.</li>
    749         <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
    750             6 floating point parameters.</li>
    751       </ul>
    752       This calling convention supports
    753       <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
    754       requires both the caller and callee are using it.
    755   </dd>
    756 
    757   <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
    758   <dd>Any calling convention may be specified by number, allowing
    759       target-specific calling conventions to be used.  Target specific calling
    760       conventions start at 64.</dd>
    761 </dl>
    762 
    763 <p>More calling conventions can be added/defined on an as-needed basis, to
    764    support Pascal conventions or any other well-known target-independent
    765    convention.</p>
    766 
    767 </div>
    768 
    769 <!-- ======================================================================= -->
    770 <h3>
    771   <a name="visibility">Visibility Styles</a>
    772 </h3>
    773 
    774 <div>
    775 
    776 <p>All Global Variables and Functions have one of the following visibility
    777    styles:</p>
    778 
    779 <dl>
    780   <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
    781   <dd>On targets that use the ELF object file format, default visibility means
    782       that the declaration is visible to other modules and, in shared libraries,
    783       means that the declared entity may be overridden. On Darwin, default
    784       visibility means that the declaration is visible to other modules. Default
    785       visibility corresponds to "external linkage" in the language.</dd>
    786 
    787   <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
    788   <dd>Two declarations of an object with hidden visibility refer to the same
    789       object if they are in the same shared object. Usually, hidden visibility
    790       indicates that the symbol will not be placed into the dynamic symbol
    791       table, so no other module (executable or shared library) can reference it
    792       directly.</dd>
    793 
    794   <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
    795   <dd>On ELF, protected visibility indicates that the symbol will be placed in
    796       the dynamic symbol table, but that references within the defining module
    797       will bind to the local symbol. That is, the symbol cannot be overridden by
    798       another module.</dd>
    799 </dl>
    800 
    801 </div>
    802 
    803 <!-- ======================================================================= -->
    804 <h3>
    805   <a name="namedtypes">Named Types</a>
    806 </h3>
    807 
    808 <div>
    809 
    810 <p>LLVM IR allows you to specify name aliases for certain types.  This can make
    811    it easier to read the IR and make the IR more condensed (particularly when
    812    recursive types are involved).  An example of a name specification is:</p>
    813 
    814 <pre class="doc_code">
    815 %mytype = type { %mytype*, i32 }
    816 </pre>
    817 
    818 <p>You may give a name to any <a href="#typesystem">type</a> except
    819    "<a href="#t_void">void</a>".  Type name aliases may be used anywhere a type
    820    is expected with the syntax "%mytype".</p>
    821 
    822 <p>Note that type names are aliases for the structural type that they indicate,
    823    and that you can therefore specify multiple names for the same type.  This
    824    often leads to confusing behavior when dumping out a .ll file.  Since LLVM IR
    825    uses structural typing, the name is not part of the type.  When printing out
    826    LLVM IR, the printer will pick <em>one name</em> to render all types of a
    827    particular shape.  This means that if you have code where two different
    828    source types end up having the same LLVM type, that the dumper will sometimes
    829    print the "wrong" or unexpected type.  This is an important design point and
    830    isn't going to change.</p>
    831 
    832 </div>
    833 
    834 <!-- ======================================================================= -->
    835 <h3>
    836   <a name="globalvars">Global Variables</a>
    837 </h3>
    838 
    839 <div>
    840 
    841 <p>Global variables define regions of memory allocated at compilation time
    842    instead of run-time.  Global variables may optionally be initialized, may
    843    have an explicit section to be placed in, and may have an optional explicit
    844    alignment specified.</p>
    845 
    846 <p>A variable may be defined as <tt>thread_local</tt>, which
    847    means that it will not be shared by threads (each thread will have a
    848    separated copy of the variable).  Not all targets support thread-local
    849    variables.  Optionally, a TLS model may be specified:</p>
    850 
    851 <dl>
    852   <dt><b><tt>localdynamic</tt></b>:</dt>
    853   <dd>For variables that are only used within the current shared library.</dd>
    854 
    855   <dt><b><tt>initialexec</tt></b>:</dt>
    856   <dd>For variables in modules that will not be loaded dynamically.</dd>
    857 
    858   <dt><b><tt>localexec</tt></b>:</dt>
    859   <dd>For variables defined in the executable and only used within it.</dd>
    860 </dl>
    861 
    862 <p>The models correspond to the ELF TLS models; see
    863    <a href="http://people.redhat.com/drepper/tls.pdf">ELF
    864    Handling For Thread-Local Storage</a> for more information on under which
    865    circumstances the different models may be used.  The target may choose a
    866    different TLS model if the specified model is not supported, or if a better
    867    choice of model can be made.</p>
    868 
    869 <p>A variable may be defined as a global
    870    "constant," which indicates that the contents of the variable
    871    will <b>never</b> be modified (enabling better optimization, allowing the
    872    global data to be placed in the read-only section of an executable, etc).
    873    Note that variables that need runtime initialization cannot be marked
    874    "constant" as there is a store to the variable.</p>
    875 
    876 <p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
    877    constant, even if the final definition of the global is not.  This capability
    878    can be used to enable slightly better optimization of the program, but
    879    requires the language definition to guarantee that optimizations based on the
    880    'constantness' are valid for the translation units that do not include the
    881    definition.</p>
    882 
    883 <p>As SSA values, global variables define pointer values that are in scope
    884    (i.e. they dominate) all basic blocks in the program.  Global variables
    885    always define a pointer to their "content" type because they describe a
    886    region of memory, and all memory objects in LLVM are accessed through
    887    pointers.</p>
    888 
    889 <p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
    890   that the address is not significant, only the content. Constants marked
    891   like this can be merged with other constants if they have the same
    892   initializer. Note that a constant with significant address <em>can</em>
    893   be merged with a <tt>unnamed_addr</tt> constant, the result being a
    894   constant whose address is significant.</p>
    895 
    896 <p>A global variable may be declared to reside in a target-specific numbered
    897    address space. For targets that support them, address spaces may affect how
    898    optimizations are performed and/or what target instructions are used to
    899    access the variable. The default address space is zero. The address space
    900    qualifier must precede any other attributes.</p>
    901 
    902 <p>LLVM allows an explicit section to be specified for globals.  If the target
    903    supports it, it will emit globals to the section specified.</p>
    904 
    905 <p>An explicit alignment may be specified for a global, which must be a power
    906    of 2.  If not present, or if the alignment is set to zero, the alignment of
    907    the global is set by the target to whatever it feels convenient.  If an
    908    explicit alignment is specified, the global is forced to have exactly that
    909    alignment.  Targets and optimizers are not allowed to over-align the global
    910    if the global has an assigned section.  In this case, the extra alignment
    911    could be observable: for example, code could assume that the globals are
    912    densely packed in their section and try to iterate over them as an array,
    913    alignment padding would break this iteration.</p>
    914 
    915 <p>For example, the following defines a global in a numbered address space with
    916    an initializer, section, and alignment:</p>
    917 
    918 <pre class="doc_code">
    919 @G = addrspace(5) constant float 1.0, section "foo", align 4
    920 </pre>
    921 
    922 <p>The following example defines a thread-local global with
    923    the <tt>initialexec</tt> TLS model:</p>
    924 
    925 <pre class="doc_code">
    926 @G = thread_local(initialexec) global i32 0, align 4
    927 </pre>
    928 
    929 </div>
    930 
    931 
    932 <!-- ======================================================================= -->
    933 <h3>
    934   <a name="functionstructure">Functions</a>
    935 </h3>
    936 
    937 <div>
    938 
    939 <p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
    940    optional <a href="#linkage">linkage type</a>, an optional
    941    <a href="#visibility">visibility style</a>, an optional
    942    <a href="#callingconv">calling convention</a>,
    943    an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
    944    <a href="#paramattrs">parameter attribute</a> for the return type, a function
    945    name, a (possibly empty) argument list (each with optional
    946    <a href="#paramattrs">parameter attributes</a>), optional
    947    <a href="#fnattrs">function attributes</a>, an optional section, an optional
    948    alignment, an optional <a href="#gc">garbage collector name</a>, an opening
    949    curly brace, a list of basic blocks, and a closing curly brace.</p>
    950 
    951 <p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
    952    optional <a href="#linkage">linkage type</a>, an optional
    953    <a href="#visibility">visibility style</a>, an optional
    954    <a href="#callingconv">calling convention</a>,
    955    an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
    956    <a href="#paramattrs">parameter attribute</a> for the return type, a function
    957    name, a possibly empty list of arguments, an optional alignment, and an
    958    optional <a href="#gc">garbage collector name</a>.</p>
    959 
    960 <p>A function definition contains a list of basic blocks, forming the CFG
    961    (Control Flow Graph) for the function.  Each basic block may optionally start
    962    with a label (giving the basic block a symbol table entry), contains a list
    963    of instructions, and ends with a <a href="#terminators">terminator</a>
    964    instruction (such as a branch or function return).</p>
    965 
    966 <p>The first basic block in a function is special in two ways: it is immediately
    967    executed on entrance to the function, and it is not allowed to have
    968    predecessor basic blocks (i.e. there can not be any branches to the entry
    969    block of a function).  Because the block can have no predecessors, it also
    970    cannot have any <a href="#i_phi">PHI nodes</a>.</p>
    971 
    972 <p>LLVM allows an explicit section to be specified for functions.  If the target
    973    supports it, it will emit functions to the section specified.</p>
    974 
    975 <p>An explicit alignment may be specified for a function.  If not present, or if
    976    the alignment is set to zero, the alignment of the function is set by the
    977    target to whatever it feels convenient.  If an explicit alignment is
    978    specified, the function is forced to have at least that much alignment.  All
    979    alignments must be a power of 2.</p>
    980 
    981 <p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
    982    be significant and two identical functions can be merged.</p>
    983 
    984 <h5>Syntax:</h5>
    985 <pre class="doc_code">
    986 define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
    987        [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
    988        &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
    989        [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
    990        [<a href="#gc">gc</a>] { ... }
    991 </pre>
    992 
    993 </div>
    994 
    995 <!-- ======================================================================= -->
    996 <h3>
    997   <a name="aliasstructure">Aliases</a>
    998 </h3>
    999 
   1000 <div>
   1001 
   1002 <p>Aliases act as "second name" for the aliasee value (which can be either
   1003    function, global variable, another alias or bitcast of global value). Aliases
   1004    may have an optional <a href="#linkage">linkage type</a>, and an
   1005    optional <a href="#visibility">visibility style</a>.</p>
   1006 
   1007 <h5>Syntax:</h5>
   1008 <pre class="doc_code">
   1009 @&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
   1010 </pre>
   1011 
   1012 </div>
   1013 
   1014 <!-- ======================================================================= -->
   1015 <h3>
   1016   <a name="namedmetadatastructure">Named Metadata</a>
   1017 </h3>
   1018 
   1019 <div>
   1020 
   1021 <p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
   1022    nodes</a> (but not metadata strings) are the only valid operands for
   1023    a named metadata.</p>
   1024 
   1025 <h5>Syntax:</h5>
   1026 <pre class="doc_code">
   1027 ; Some unnamed metadata nodes, which are referenced by the named metadata.
   1028 !0 = metadata !{metadata !"zero"}
   1029 !1 = metadata !{metadata !"one"}
   1030 !2 = metadata !{metadata !"two"}
   1031 ; A named metadata.
   1032 !name = !{!0, !1, !2}
   1033 </pre>
   1034 
   1035 </div>
   1036 
   1037 <!-- ======================================================================= -->
   1038 <h3>
   1039   <a name="paramattrs">Parameter Attributes</a>
   1040 </h3>
   1041 
   1042 <div>
   1043 
   1044 <p>The return type and each parameter of a function type may have a set of
   1045    <i>parameter attributes</i> associated with them. Parameter attributes are
   1046    used to communicate additional information about the result or parameters of
   1047    a function. Parameter attributes are considered to be part of the function,
   1048    not of the function type, so functions with different parameter attributes
   1049    can have the same function type.</p>
   1050 
   1051 <p>Parameter attributes are simple keywords that follow the type specified. If
   1052    multiple parameter attributes are needed, they are space separated. For
   1053    example:</p>
   1054 
   1055 <pre class="doc_code">
   1056 declare i32 @printf(i8* noalias nocapture, ...)
   1057 declare i32 @atoi(i8 zeroext)
   1058 declare signext i8 @returns_signed_char()
   1059 </pre>
   1060 
   1061 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
   1062    <tt>readonly</tt>) come immediately after the argument list.</p>
   1063 
   1064 <p>Currently, only the following parameter attributes are defined:</p>
   1065 
   1066 <dl>
   1067   <dt><tt><b>zeroext</b></tt></dt>
   1068   <dd>This indicates to the code generator that the parameter or return value
   1069       should be zero-extended to the extent required by the target's ABI (which
   1070       is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
   1071       parameter) or the callee (for a return value).</dd>
   1072 
   1073   <dt><tt><b>signext</b></tt></dt>
   1074   <dd>This indicates to the code generator that the parameter or return value
   1075       should be sign-extended to the extent required by the target's ABI (which
   1076       is usually 32-bits) by the caller (for a parameter) or the callee (for a
   1077       return value).</dd>
   1078 
   1079   <dt><tt><b>inreg</b></tt></dt>
   1080   <dd>This indicates that this parameter or return value should be treated in a
   1081       special target-dependent fashion during while emitting code for a function
   1082       call or return (usually, by putting it in a register as opposed to memory,
   1083       though some targets use it to distinguish between two different kinds of
   1084       registers).  Use of this attribute is target-specific.</dd>
   1085 
   1086   <dt><tt><b><a name="byval">byval</a></b></tt></dt>
   1087   <dd><p>This indicates that the pointer parameter should really be passed by
   1088       value to the function.  The attribute implies that a hidden copy of the
   1089       pointee
   1090       is made between the caller and the callee, so the callee is unable to
   1091       modify the value in the caller.  This attribute is only valid on LLVM
   1092       pointer arguments.  It is generally used to pass structs and arrays by
   1093       value, but is also valid on pointers to scalars.  The copy is considered
   1094       to belong to the caller not the callee (for example,
   1095       <tt><a href="#readonly">readonly</a></tt> functions should not write to
   1096       <tt>byval</tt> parameters). This is not a valid attribute for return
   1097       values.</p>
   1098       
   1099       <p>The byval attribute also supports specifying an alignment with
   1100       the align attribute.  It indicates the alignment of the stack slot to
   1101       form and the known alignment of the pointer specified to the call site. If
   1102       the alignment is not specified, then the code generator makes a
   1103       target-specific assumption.</p></dd>
   1104 
   1105   <dt><tt><b><a name="sret">sret</a></b></tt></dt>
   1106   <dd>This indicates that the pointer parameter specifies the address of a
   1107       structure that is the return value of the function in the source program.
   1108       This pointer must be guaranteed by the caller to be valid: loads and
   1109       stores to the structure may be assumed by the callee to not to trap.  This
   1110       may only be applied to the first parameter. This is not a valid attribute
   1111       for return values. </dd>
   1112 
   1113   <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
   1114   <dd>This indicates that pointer values
   1115       <a href="#pointeraliasing"><i>based</i></a> on the argument or return
   1116       value do not alias pointer values which are not <i>based</i> on it,
   1117       ignoring certain "irrelevant" dependencies.
   1118       For a call to the parent function, dependencies between memory
   1119       references from before or after the call and from those during the call
   1120       are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
   1121       return value used in that call.
   1122       The caller shares the responsibility with the callee for ensuring that
   1123       these requirements are met.
   1124       For further details, please see the discussion of the NoAlias response in
   1125       <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
   1126 <br>
   1127       Note that this definition of <tt>noalias</tt> is intentionally
   1128       similar to the definition of <tt>restrict</tt> in C99 for function
   1129       arguments, though it is slightly weaker.
   1130 <br>
   1131       For function return values, C99's <tt>restrict</tt> is not meaningful,
   1132       while LLVM's <tt>noalias</tt> is.
   1133       </dd>
   1134 
   1135   <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
   1136   <dd>This indicates that the callee does not make any copies of the pointer
   1137       that outlive the callee itself. This is not a valid attribute for return
   1138       values.</dd>
   1139 
   1140   <dt><tt><b><a name="nest">nest</a></b></tt></dt>
   1141   <dd>This indicates that the pointer parameter can be excised using the
   1142       <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
   1143       attribute for return values.</dd>
   1144 </dl>
   1145 
   1146 </div>
   1147 
   1148 <!-- ======================================================================= -->
   1149 <h3>
   1150   <a name="gc">Garbage Collector Names</a>
   1151 </h3>
   1152 
   1153 <div>
   1154 
   1155 <p>Each function may specify a garbage collector name, which is simply a
   1156    string:</p>
   1157 
   1158 <pre class="doc_code">
   1159 define void @f() gc "name" { ... }
   1160 </pre>
   1161 
   1162 <p>The compiler declares the supported values of <i>name</i>. Specifying a
   1163    collector which will cause the compiler to alter its output in order to
   1164    support the named garbage collection algorithm.</p>
   1165 
   1166 </div>
   1167 
   1168 <!-- ======================================================================= -->
   1169 <h3>
   1170   <a name="fnattrs">Function Attributes</a>
   1171 </h3>
   1172 
   1173 <div>
   1174 
   1175 <p>Function attributes are set to communicate additional information about a
   1176    function. Function attributes are considered to be part of the function, not
   1177    of the function type, so functions with different parameter attributes can
   1178    have the same function type.</p>
   1179 
   1180 <p>Function attributes are simple keywords that follow the type specified. If
   1181    multiple attributes are needed, they are space separated. For example:</p>
   1182 
   1183 <pre class="doc_code">
   1184 define void @f() noinline { ... }
   1185 define void @f() alwaysinline { ... }
   1186 define void @f() alwaysinline optsize { ... }
   1187 define void @f() optsize { ... }
   1188 </pre>
   1189 
   1190 <dl>
   1191   <dt><tt><b>address_safety</b></tt></dt>
   1192   <dd>This attribute indicates that the address safety analysis
   1193   is enabled for this function.  </dd>
   1194 
   1195   <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
   1196   <dd>This attribute indicates that, when emitting the prologue and epilogue,
   1197       the backend should forcibly align the stack pointer. Specify the
   1198       desired alignment, which must be a power of two, in parentheses.
   1199 
   1200   <dt><tt><b>alwaysinline</b></tt></dt>
   1201   <dd>This attribute indicates that the inliner should attempt to inline this
   1202       function into callers whenever possible, ignoring any active inlining size
   1203       threshold for this caller.</dd>
   1204 
   1205   <dt><tt><b>nonlazybind</b></tt></dt>
   1206   <dd>This attribute suppresses lazy symbol binding for the function. This
   1207       may make calls to the function faster, at the cost of extra program
   1208       startup time if the function is not called during program startup.</dd>
   1209 
   1210   <dt><tt><b>inlinehint</b></tt></dt>
   1211   <dd>This attribute indicates that the source code contained a hint that inlining
   1212       this function is desirable (such as the "inline" keyword in C/C++).  It
   1213       is just a hint; it imposes no requirements on the inliner.</dd>
   1214 
   1215   <dt><tt><b>naked</b></tt></dt>
   1216   <dd>This attribute disables prologue / epilogue emission for the function.
   1217       This can have very system-specific consequences.</dd>
   1218 
   1219   <dt><tt><b>noimplicitfloat</b></tt></dt>
   1220   <dd>This attributes disables implicit floating point instructions.</dd>
   1221 
   1222   <dt><tt><b>noinline</b></tt></dt>
   1223   <dd>This attribute indicates that the inliner should never inline this
   1224       function in any situation. This attribute may not be used together with
   1225       the <tt>alwaysinline</tt> attribute.</dd>
   1226 
   1227   <dt><tt><b>noredzone</b></tt></dt>
   1228   <dd>This attribute indicates that the code generator should not use a red
   1229       zone, even if the target-specific ABI normally permits it.</dd>
   1230 
   1231   <dt><tt><b>noreturn</b></tt></dt>
   1232   <dd>This function attribute indicates that the function never returns
   1233       normally.  This produces undefined behavior at runtime if the function
   1234       ever does dynamically return.</dd>
   1235 
   1236   <dt><tt><b>nounwind</b></tt></dt>
   1237   <dd>This function attribute indicates that the function never returns with an
   1238       unwind or exceptional control flow.  If the function does unwind, its
   1239       runtime behavior is undefined.</dd>
   1240 
   1241   <dt><tt><b>optsize</b></tt></dt>
   1242   <dd>This attribute suggests that optimization passes and code generator passes
   1243       make choices that keep the code size of this function low, and otherwise
   1244       do optimizations specifically to reduce code size.</dd>
   1245 
   1246   <dt><tt><b>readnone</b></tt></dt>
   1247   <dd>This attribute indicates that the function computes its result (or decides
   1248       to unwind an exception) based strictly on its arguments, without
   1249       dereferencing any pointer arguments or otherwise accessing any mutable
   1250       state (e.g. memory, control registers, etc) visible to caller functions.
   1251       It does not write through any pointer arguments
   1252       (including <tt><a href="#byval">byval</a></tt> arguments) and never
   1253       changes any state visible to callers.  This means that it cannot unwind
   1254       exceptions by calling the <tt>C++</tt> exception throwing methods.</dd>
   1255 
   1256   <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
   1257   <dd>This attribute indicates that the function does not write through any
   1258       pointer arguments (including <tt><a href="#byval">byval</a></tt>
   1259       arguments) or otherwise modify any state (e.g. memory, control registers,
   1260       etc) visible to caller functions.  It may dereference pointer arguments
   1261       and read state that may be set in the caller.  A readonly function always
   1262       returns the same value (or unwinds an exception identically) when called
   1263       with the same set of arguments and global state.  It cannot unwind an
   1264       exception by calling the <tt>C++</tt> exception throwing methods.</dd>
   1265 
   1266   <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
   1267   <dd>This attribute indicates that this function can return twice. The
   1268       C <code>setjmp</code> is an example of such a function.  The compiler
   1269       disables some optimizations (like tail calls) in the caller of these
   1270       functions.</dd>
   1271 
   1272   <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
   1273   <dd>This attribute indicates that the function should emit a stack smashing
   1274       protector. It is in the form of a "canary"&mdash;a random value placed on
   1275       the stack before the local variables that's checked upon return from the
   1276       function to see if it has been overwritten. A heuristic is used to
   1277       determine if a function needs stack protectors or not.<br>
   1278 <br>
   1279       If a function that has an <tt>ssp</tt> attribute is inlined into a
   1280       function that doesn't have an <tt>ssp</tt> attribute, then the resulting
   1281       function will have an <tt>ssp</tt> attribute.</dd>
   1282 
   1283   <dt><tt><b>sspreq</b></tt></dt>
   1284   <dd>This attribute indicates that the function should <em>always</em> emit a
   1285       stack smashing protector. This overrides
   1286       the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
   1287 <br>
   1288       If a function that has an <tt>sspreq</tt> attribute is inlined into a
   1289       function that doesn't have an <tt>sspreq</tt> attribute or which has
   1290       an <tt>ssp</tt> attribute, then the resulting function will have
   1291       an <tt>sspreq</tt> attribute.</dd>
   1292 
   1293   <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
   1294   <dd>This attribute indicates that the ABI being targeted requires that
   1295       an unwind table entry be produce for this function even if we can
   1296       show that no exceptions passes by it. This is normally the case for
   1297       the ELF x86-64 abi, but it can be disabled for some compilation
   1298       units.</dd>
   1299 </dl>
   1300 
   1301 </div>
   1302 
   1303 <!-- ======================================================================= -->
   1304 <h3>
   1305   <a name="moduleasm">Module-Level Inline Assembly</a>
   1306 </h3>
   1307 
   1308 <div>
   1309 
   1310 <p>Modules may contain "module-level inline asm" blocks, which corresponds to
   1311    the GCC "file scope inline asm" blocks.  These blocks are internally
   1312    concatenated by LLVM and treated as a single unit, but may be separated in
   1313    the <tt>.ll</tt> file if desired.  The syntax is very simple:</p>
   1314 
   1315 <pre class="doc_code">
   1316 module asm "inline asm code goes here"
   1317 module asm "more can go here"
   1318 </pre>
   1319 
   1320 <p>The strings can contain any character by escaping non-printable characters.
   1321    The escape sequence used is simply "\xx" where "xx" is the two digit hex code
   1322    for the number.</p>
   1323 
   1324 <p>The inline asm code is simply printed to the machine code .s file when
   1325    assembly code is generated.</p>
   1326 
   1327 </div>
   1328 
   1329 <!-- ======================================================================= -->
   1330 <h3>
   1331   <a name="datalayout">Data Layout</a>
   1332 </h3>
   1333 
   1334 <div>
   1335 
   1336 <p>A module may specify a target specific data layout string that specifies how
   1337    data is to be laid out in memory. The syntax for the data layout is
   1338    simply:</p>
   1339 
   1340 <pre class="doc_code">
   1341 target datalayout = "<i>layout specification</i>"
   1342 </pre>
   1343 
   1344 <p>The <i>layout specification</i> consists of a list of specifications
   1345    separated by the minus sign character ('-').  Each specification starts with
   1346    a letter and may include other information after the letter to define some
   1347    aspect of the data layout.  The specifications accepted are as follows:</p>
   1348 
   1349 <dl>
   1350   <dt><tt>E</tt></dt>
   1351   <dd>Specifies that the target lays out data in big-endian form. That is, the
   1352       bits with the most significance have the lowest address location.</dd>
   1353 
   1354   <dt><tt>e</tt></dt>
   1355   <dd>Specifies that the target lays out data in little-endian form. That is,
   1356       the bits with the least significance have the lowest address
   1357       location.</dd>
   1358 
   1359   <dt><tt>S<i>size</i></tt></dt>
   1360   <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
   1361       of stack variables is limited to the natural stack alignment to avoid
   1362       dynamic stack realignment. The stack alignment must be a multiple of
   1363       8-bits. If omitted, the natural stack alignment defaults to "unspecified",
   1364       which does not prevent any alignment promotions.</dd>
   1365 
   1366   <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1367   <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
   1368       <i>preferred</i> alignments. All sizes are in bits. Specifying
   1369       the <i>pref</i> alignment is optional. If omitted, the
   1370       preceding <tt>:</tt> should be omitted too.</dd>
   1371 
   1372   <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1373   <dd>This specifies the alignment for an integer type of a given bit
   1374       <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
   1375 
   1376   <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1377   <dd>This specifies the alignment for a vector type of a given bit
   1378       <i>size</i>.</dd>
   1379 
   1380   <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1381   <dd>This specifies the alignment for a floating point type of a given bit
   1382       <i>size</i>. Only values of <i>size</i> that are supported by the target
   1383       will work.  32 (float) and 64 (double) are supported on all targets;
   1384       80 or 128 (different flavors of long double) are also supported on some
   1385       targets.
   1386 
   1387   <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1388   <dd>This specifies the alignment for an aggregate type of a given bit
   1389       <i>size</i>.</dd>
   1390 
   1391   <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1392   <dd>This specifies the alignment for a stack object of a given bit
   1393       <i>size</i>.</dd>
   1394 
   1395   <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
   1396   <dd>This specifies a set of native integer widths for the target CPU
   1397       in bits.  For example, it might contain "n32" for 32-bit PowerPC,
   1398       "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64.  Elements of
   1399       this set are considered to support most general arithmetic
   1400       operations efficiently.</dd>
   1401 </dl>
   1402 
   1403 <p>When constructing the data layout for a given target, LLVM starts with a
   1404    default set of specifications which are then (possibly) overridden by the
   1405    specifications in the <tt>datalayout</tt> keyword. The default specifications
   1406    are given in this list:</p>
   1407 
   1408 <ul>
   1409   <li><tt>E</tt> - big endian</li>
   1410   <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
   1411   <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
   1412   <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
   1413   <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
   1414   <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
   1415   <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
   1416   alignment of 64-bits</li>
   1417   <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
   1418   <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
   1419   <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
   1420   <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
   1421   <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
   1422   <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
   1423 </ul>
   1424 
   1425 <p>When LLVM is determining the alignment for a given type, it uses the
   1426    following rules:</p>
   1427 
   1428 <ol>
   1429   <li>If the type sought is an exact match for one of the specifications, that
   1430       specification is used.</li>
   1431 
   1432   <li>If no match is found, and the type sought is an integer type, then the
   1433       smallest integer type that is larger than the bitwidth of the sought type
   1434       is used. If none of the specifications are larger than the bitwidth then
   1435       the largest integer type is used. For example, given the default
   1436       specifications above, the i7 type will use the alignment of i8 (next
   1437       largest) while both i65 and i256 will use the alignment of i64 (largest
   1438       specified).</li>
   1439 
   1440   <li>If no match is found, and the type sought is a vector type, then the
   1441       largest vector type that is smaller than the sought vector type will be
   1442       used as a fall back.  This happens because &lt;128 x double&gt; can be
   1443       implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
   1444 </ol>
   1445 
   1446 <p>The function of the data layout string may not be what you expect.  Notably,
   1447    this is not a specification from the frontend of what alignment the code
   1448    generator should use.</p>
   1449 
   1450 <p>Instead, if specified, the target data layout is required to match what the 
   1451    ultimate <em>code generator</em> expects.  This string is used by the 
   1452    mid-level optimizers to
   1453    improve code, and this only works if it matches what the ultimate code 
   1454    generator uses.  If you would like to generate IR that does not embed this
   1455    target-specific detail into the IR, then you don't have to specify the 
   1456    string.  This will disable some optimizations that require precise layout
   1457    information, but this also prevents those optimizations from introducing
   1458    target specificity into the IR.</p>
   1459 
   1460 
   1461 
   1462 </div>
   1463 
   1464 <!-- ======================================================================= -->
   1465 <h3>
   1466   <a name="pointeraliasing">Pointer Aliasing Rules</a>
   1467 </h3>
   1468 
   1469 <div>
   1470 
   1471 <p>Any memory access must be done through a pointer value associated
   1472 with an address range of the memory access, otherwise the behavior
   1473 is undefined. Pointer values are associated with address ranges
   1474 according to the following rules:</p>
   1475 
   1476 <ul>
   1477   <li>A pointer value is associated with the addresses associated with
   1478       any value it is <i>based</i> on.
   1479   <li>An address of a global variable is associated with the address
   1480       range of the variable's storage.</li>
   1481   <li>The result value of an allocation instruction is associated with
   1482       the address range of the allocated storage.</li>
   1483   <li>A null pointer in the default address-space is associated with
   1484       no address.</li>
   1485   <li>An integer constant other than zero or a pointer value returned
   1486       from a function not defined within LLVM may be associated with address
   1487       ranges allocated through mechanisms other than those provided by
   1488       LLVM. Such ranges shall not overlap with any ranges of addresses
   1489       allocated by mechanisms provided by LLVM.</li>
   1490 </ul>
   1491 
   1492 <p>A pointer value is <i>based</i> on another pointer value according
   1493    to the following rules:</p>
   1494 
   1495 <ul>
   1496   <li>A pointer value formed from a
   1497       <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
   1498       is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
   1499   <li>The result value of a
   1500       <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
   1501       of the <tt>bitcast</tt>.</li>
   1502   <li>A pointer value formed by an
   1503       <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
   1504       pointer values that contribute (directly or indirectly) to the
   1505       computation of the pointer's value.</li>
   1506   <li>The "<i>based</i> on" relationship is transitive.</li>
   1507 </ul>
   1508 
   1509 <p>Note that this definition of <i>"based"</i> is intentionally
   1510    similar to the definition of <i>"based"</i> in C99, though it is
   1511    slightly weaker.</p>
   1512 
   1513 <p>LLVM IR does not associate types with memory. The result type of a
   1514 <tt><a href="#i_load">load</a></tt> merely indicates the size and
   1515 alignment of the memory from which to load, as well as the
   1516 interpretation of the value. The first operand type of a
   1517 <tt><a href="#i_store">store</a></tt> similarly only indicates the size
   1518 and alignment of the store.</p>
   1519 
   1520 <p>Consequently, type-based alias analysis, aka TBAA, aka
   1521 <tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
   1522 LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
   1523 additional information which specialized optimization passes may use
   1524 to implement type-based alias analysis.</p>
   1525 
   1526 </div>
   1527 
   1528 <!-- ======================================================================= -->
   1529 <h3>
   1530   <a name="volatile">Volatile Memory Accesses</a>
   1531 </h3>
   1532 
   1533 <div>
   1534 
   1535 <p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
   1536 href="#i_store"><tt>store</tt></a>s, and <a
   1537 href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
   1538 The optimizers must not change the number of volatile operations or change their
   1539 order of execution relative to other volatile operations.  The optimizers
   1540 <i>may</i> change the order of volatile operations relative to non-volatile
   1541 operations.  This is not Java's "volatile" and has no cross-thread
   1542 synchronization behavior.</p>
   1543 
   1544 </div>
   1545 
   1546 <!-- ======================================================================= -->
   1547 <h3>
   1548   <a name="memmodel">Memory Model for Concurrent Operations</a>
   1549 </h3>
   1550 
   1551 <div>
   1552 
   1553 <p>The LLVM IR does not define any way to start parallel threads of execution
   1554 or to register signal handlers. Nonetheless, there are platform-specific
   1555 ways to create them, and we define LLVM IR's behavior in their presence. This
   1556 model is inspired by the C++0x memory model.</p>
   1557 
   1558 <p>For a more informal introduction to this model, see the
   1559 <a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
   1560 
   1561 <p>We define a <i>happens-before</i> partial order as the least partial order
   1562 that</p>
   1563 <ul>
   1564   <li>Is a superset of single-thread program order, and</li>
   1565   <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
   1566       <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
   1567       by platform-specific techniques, like pthread locks, thread
   1568       creation, thread joining, etc., and by atomic instructions.
   1569       (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
   1570       </li>
   1571 </ul>
   1572 
   1573 <p>Note that program order does not introduce <i>happens-before</i> edges
   1574 between a thread and signals executing inside that thread.</p>
   1575 
   1576 <p>Every (defined) read operation (load instructions, memcpy, atomic
   1577 loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
   1578 (defined) write operations (store instructions, atomic
   1579 stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
   1580 initialized globals are considered to have a write of the initializer which is
   1581 atomic and happens before any other read or write of the memory in question.
   1582 For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
   1583 any write to the same byte, except:</p>
   1584 
   1585 <ul>
   1586   <li>If <var>write<sub>1</sub></var> happens before
   1587       <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
   1588       before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
   1589       does not see <var>write<sub>1</sub></var>.
   1590   <li>If <var>R<sub>byte</sub></var> happens before
   1591       <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
   1592       see <var>write<sub>3</sub></var>.
   1593 </ul>
   1594 
   1595 <p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
   1596 <ul>
   1597   <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
   1598       is supposed to give guarantees which can support
   1599       <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
   1600       addresses which do not behave like normal memory.  It does not generally
   1601       provide cross-thread synchronization.)
   1602   <li>Otherwise, if there is no write to the same byte that happens before
   1603     <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns 
   1604     <tt>undef</tt> for that byte.
   1605   <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
   1606       <var>R<sub>byte</sub></var> returns the value written by that
   1607       write.</li>
   1608   <li>Otherwise, if <var>R</var> is atomic, and all the writes
   1609       <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
   1610       values written.  See the <a href="#ordering">Atomic Memory Ordering
   1611       Constraints</a> section for additional constraints on how the choice
   1612       is made.
   1613   <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
   1614 </ul>
   1615 
   1616 <p><var>R</var> returns the value composed of the series of bytes it read.
   1617 This implies that some bytes within the value may be <tt>undef</tt>
   1618 <b>without</b> the entire value being <tt>undef</tt>. Note that this only
   1619 defines the semantics of the operation; it doesn't mean that targets will
   1620 emit more than one instruction to read the series of bytes.</p>
   1621 
   1622 <p>Note that in cases where none of the atomic intrinsics are used, this model
   1623 places only one restriction on IR transformations on top of what is required
   1624 for single-threaded execution: introducing a store to a byte which might not
   1625 otherwise be stored is not allowed in general.  (Specifically, in the case
   1626 where another thread might write to and read from an address, introducing a
   1627 store can change a load that may see exactly one write into a load that may
   1628 see multiple writes.)</p>
   1629 
   1630 <!-- FIXME: This model assumes all targets where concurrency is relevant have
   1631 a byte-size store which doesn't affect adjacent bytes.  As far as I can tell,
   1632 none of the backends currently in the tree fall into this category; however,
   1633 there might be targets which care.  If there are, we want a paragraph
   1634 like the following:
   1635 
   1636 Targets may specify that stores narrower than a certain width are not
   1637 available; on such a target, for the purposes of this model, treat any
   1638 non-atomic write with an alignment or width less than the minimum width
   1639 as if it writes to the relevant surrounding bytes.
   1640 -->
   1641 
   1642 </div>
   1643 
   1644 <!-- ======================================================================= -->
   1645 <h3>
   1646       <a name="ordering">Atomic Memory Ordering Constraints</a>
   1647 </h3>
   1648 
   1649 <div>
   1650 
   1651 <p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
   1652 <a href="#i_atomicrmw"><code>atomicrmw</code></a>,
   1653 <a href="#i_fence"><code>fence</code></a>,
   1654 <a href="#i_load"><code>atomic load</code></a>, and
   1655 <a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
   1656 that determines which other atomic instructions on the same address they
   1657 <i>synchronize with</i>.  These semantics are borrowed from Java and C++0x,
   1658 but are somewhat more colloquial. If these descriptions aren't precise enough,
   1659 check those specs (see spec references in the
   1660 <a href="Atomics.html#introduction">atomics guide</a>).
   1661 <a href="#i_fence"><code>fence</code></a> instructions
   1662 treat these orderings somewhat differently since they don't take an address.
   1663 See that instruction's documentation for details.</p>
   1664 
   1665 <p>For a simpler introduction to the ordering constraints, see the
   1666 <a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
   1667 
   1668 <dl>
   1669 <dt><code>unordered</code></dt>
   1670 <dd>The set of values that can be read is governed by the happens-before
   1671 partial order. A value cannot be read unless some operation wrote it.
   1672 This is intended to provide a guarantee strong enough to model Java's
   1673 non-volatile shared variables.  This ordering cannot be specified for
   1674 read-modify-write operations; it is not strong enough to make them atomic
   1675 in any interesting way.</dd>
   1676 <dt><code>monotonic</code></dt>
   1677 <dd>In addition to the guarantees of <code>unordered</code>, there is a single
   1678 total order for modifications by <code>monotonic</code> operations on each
   1679 address. All modification orders must be compatible with the happens-before
   1680 order. There is no guarantee that the modification orders can be combined to
   1681 a global total order for the whole program (and this often will not be
   1682 possible). The read in an atomic read-modify-write operation
   1683 (<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
   1684 <a href="#i_atomicrmw"><code>atomicrmw</code></a>)
   1685 reads the value in the modification order immediately before the value it
   1686 writes. If one atomic read happens before another atomic read of the same
   1687 address, the later read must see the same value or a later value in the
   1688 address's modification order. This disallows reordering of
   1689 <code>monotonic</code> (or stronger) operations on the same address. If an
   1690 address is written <code>monotonic</code>ally by one thread, and other threads
   1691 <code>monotonic</code>ally read that address repeatedly, the other threads must
   1692 eventually see the write. This corresponds to the C++0x/C1x
   1693 <code>memory_order_relaxed</code>.</dd>
   1694 <dt><code>acquire</code></dt>
   1695 <dd>In addition to the guarantees of <code>monotonic</code>,
   1696 a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
   1697 operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
   1698 <dt><code>release</code></dt>
   1699 <dd>In addition to the guarantees of <code>monotonic</code>, if this operation
   1700 writes a value which is subsequently read by an <code>acquire</code> operation,
   1701 it <i>synchronizes-with</i> that operation.  (This isn't a complete
   1702 description; see the C++0x definition of a release sequence.) This corresponds
   1703 to the C++0x/C1x <code>memory_order_release</code>.</dd>
   1704 <dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
   1705 <code>acquire</code> and <code>release</code> operation on its address.
   1706 This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
   1707 <dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
   1708 <dd>In addition to the guarantees of <code>acq_rel</code>
   1709 (<code>acquire</code> for an operation which only reads, <code>release</code>
   1710 for an operation which only writes), there is a global total order on all
   1711 sequentially-consistent operations on all addresses, which is consistent with
   1712 the <i>happens-before</i> partial order and with the modification orders of
   1713 all the affected addresses. Each sequentially-consistent read sees the last
   1714 preceding write to the same address in this global order. This corresponds
   1715 to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
   1716 </dl>
   1717 
   1718 <p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
   1719 it only <i>synchronizes with</i> or participates in modification and seq_cst
   1720 total orderings with other operations running in the same thread (for example,
   1721 in signal handlers).</p>
   1722 
   1723 </div>
   1724 
   1725 </div>
   1726 
   1727 <!-- *********************************************************************** -->
   1728 <h2><a name="typesystem">Type System</a></h2>
   1729 <!-- *********************************************************************** -->
   1730 
   1731 <div>
   1732 
   1733 <p>The LLVM type system is one of the most important features of the
   1734    intermediate representation.  Being typed enables a number of optimizations
   1735    to be performed on the intermediate representation directly, without having
   1736    to do extra analyses on the side before the transformation.  A strong type
   1737    system makes it easier to read the generated code and enables novel analyses
   1738    and transformations that are not feasible to perform on normal three address
   1739    code representations.</p>
   1740 
   1741 <!-- ======================================================================= -->
   1742 <h3>
   1743   <a name="t_classifications">Type Classifications</a>
   1744 </h3>
   1745 
   1746 <div>
   1747 
   1748 <p>The types fall into a few useful classifications:</p>
   1749 
   1750 <table border="1" cellspacing="0" cellpadding="4">
   1751   <tbody>
   1752     <tr><th>Classification</th><th>Types</th></tr>
   1753     <tr>
   1754       <td><a href="#t_integer">integer</a></td>
   1755       <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
   1756     </tr>
   1757     <tr>
   1758       <td><a href="#t_floating">floating point</a></td>
   1759       <td><tt>half, float, double, x86_fp80, fp128, ppc_fp128</tt></td>
   1760     </tr>
   1761     <tr>
   1762       <td><a name="t_firstclass">first class</a></td>
   1763       <td><a href="#t_integer">integer</a>,
   1764           <a href="#t_floating">floating point</a>,
   1765           <a href="#t_pointer">pointer</a>,
   1766           <a href="#t_vector">vector</a>,
   1767           <a href="#t_struct">structure</a>,
   1768           <a href="#t_array">array</a>,
   1769           <a href="#t_label">label</a>,
   1770           <a href="#t_metadata">metadata</a>.
   1771       </td>
   1772     </tr>
   1773     <tr>
   1774       <td><a href="#t_primitive">primitive</a></td>
   1775       <td><a href="#t_label">label</a>,
   1776           <a href="#t_void">void</a>,
   1777           <a href="#t_integer">integer</a>,
   1778           <a href="#t_floating">floating point</a>,
   1779           <a href="#t_x86mmx">x86mmx</a>,
   1780           <a href="#t_metadata">metadata</a>.</td>
   1781     </tr>
   1782     <tr>
   1783       <td><a href="#t_derived">derived</a></td>
   1784       <td><a href="#t_array">array</a>,
   1785           <a href="#t_function">function</a>,
   1786           <a href="#t_pointer">pointer</a>,
   1787           <a href="#t_struct">structure</a>,
   1788           <a href="#t_vector">vector</a>,
   1789           <a href="#t_opaque">opaque</a>.
   1790       </td>
   1791     </tr>
   1792   </tbody>
   1793 </table>
   1794 
   1795 <p>The <a href="#t_firstclass">first class</a> types are perhaps the most
   1796    important.  Values of these types are the only ones which can be produced by
   1797    instructions.</p>
   1798 
   1799 </div>
   1800 
   1801 <!-- ======================================================================= -->
   1802 <h3>
   1803   <a name="t_primitive">Primitive Types</a>
   1804 </h3>
   1805 
   1806 <div>
   1807 
   1808 <p>The primitive types are the fundamental building blocks of the LLVM
   1809    system.</p>
   1810 
   1811 <!-- _______________________________________________________________________ -->
   1812 <h4>
   1813   <a name="t_integer">Integer Type</a>
   1814 </h4>
   1815 
   1816 <div>
   1817 
   1818 <h5>Overview:</h5>
   1819 <p>The integer type is a very simple type that simply specifies an arbitrary
   1820    bit width for the integer type desired. Any bit width from 1 bit to
   1821    2<sup>23</sup>-1 (about 8 million) can be specified.</p>
   1822 
   1823 <h5>Syntax:</h5>
   1824 <pre>
   1825   iN
   1826 </pre>
   1827 
   1828 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
   1829    value.</p>
   1830 
   1831 <h5>Examples:</h5>
   1832 <table class="layout">
   1833   <tr class="layout">
   1834     <td class="left"><tt>i1</tt></td>
   1835     <td class="left">a single-bit integer.</td>
   1836   </tr>
   1837   <tr class="layout">
   1838     <td class="left"><tt>i32</tt></td>
   1839     <td class="left">a 32-bit integer.</td>
   1840   </tr>
   1841   <tr class="layout">
   1842     <td class="left"><tt>i1942652</tt></td>
   1843     <td class="left">a really big integer of over 1 million bits.</td>
   1844   </tr>
   1845 </table>
   1846 
   1847 </div>
   1848 
   1849 <!-- _______________________________________________________________________ -->
   1850 <h4>
   1851   <a name="t_floating">Floating Point Types</a>
   1852 </h4>
   1853 
   1854 <div>
   1855 
   1856 <table>
   1857   <tbody>
   1858     <tr><th>Type</th><th>Description</th></tr>
   1859     <tr><td><tt>half</tt></td><td>16-bit floating point value</td></tr>
   1860     <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
   1861     <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
   1862     <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
   1863     <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
   1864     <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
   1865   </tbody>
   1866 </table>
   1867 
   1868 </div>
   1869 
   1870 <!-- _______________________________________________________________________ -->
   1871 <h4>
   1872   <a name="t_x86mmx">X86mmx Type</a>
   1873 </h4>
   1874 
   1875 <div>
   1876 
   1877 <h5>Overview:</h5>
   1878 <p>The x86mmx type represents a value held in an MMX register on an x86 machine.  The operations allowed on it are quite limited:  parameters and return values, load and store, and bitcast.  User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type.  There are no arrays, vectors or constants of this type.</p>
   1879 
   1880 <h5>Syntax:</h5>
   1881 <pre>
   1882   x86mmx
   1883 </pre>
   1884 
   1885 </div>
   1886 
   1887 <!-- _______________________________________________________________________ -->
   1888 <h4>
   1889   <a name="t_void">Void Type</a>
   1890 </h4>
   1891 
   1892 <div>
   1893 
   1894 <h5>Overview:</h5>
   1895 <p>The void type does not represent any value and has no size.</p>
   1896 
   1897 <h5>Syntax:</h5>
   1898 <pre>
   1899   void
   1900 </pre>
   1901 
   1902 </div>
   1903 
   1904 <!-- _______________________________________________________________________ -->
   1905 <h4>
   1906   <a name="t_label">Label Type</a>
   1907 </h4>
   1908 
   1909 <div>
   1910 
   1911 <h5>Overview:</h5>
   1912 <p>The label type represents code labels.</p>
   1913 
   1914 <h5>Syntax:</h5>
   1915 <pre>
   1916   label
   1917 </pre>
   1918 
   1919 </div>
   1920 
   1921 <!-- _______________________________________________________________________ -->
   1922 <h4>
   1923   <a name="t_metadata">Metadata Type</a>
   1924 </h4>
   1925 
   1926 <div>
   1927 
   1928 <h5>Overview:</h5>
   1929 <p>The metadata type represents embedded metadata. No derived types may be
   1930    created from metadata except for <a href="#t_function">function</a>
   1931    arguments.
   1932 
   1933 <h5>Syntax:</h5>
   1934 <pre>
   1935   metadata
   1936 </pre>
   1937 
   1938 </div>
   1939 
   1940 </div>
   1941 
   1942 <!-- ======================================================================= -->
   1943 <h3>
   1944   <a name="t_derived">Derived Types</a>
   1945 </h3>
   1946 
   1947 <div>
   1948 
   1949 <p>The real power in LLVM comes from the derived types in the system.  This is
   1950    what allows a programmer to represent arrays, functions, pointers, and other
   1951    useful types.  Each of these types contain one or more element types which
   1952    may be a primitive type, or another derived type.  For example, it is
   1953    possible to have a two dimensional array, using an array as the element type
   1954    of another array.</p>
   1955 
   1956 <!-- _______________________________________________________________________ -->
   1957 <h4>
   1958   <a name="t_aggregate">Aggregate Types</a>
   1959 </h4>
   1960 
   1961 <div>
   1962 
   1963 <p>Aggregate Types are a subset of derived types that can contain multiple
   1964   member types. <a href="#t_array">Arrays</a> and
   1965   <a href="#t_struct">structs</a> are aggregate types.
   1966   <a href="#t_vector">Vectors</a> are not considered to be aggregate types.</p>
   1967 
   1968 </div>
   1969 
   1970 <!-- _______________________________________________________________________ -->
   1971 <h4>
   1972   <a name="t_array">Array Type</a>
   1973 </h4>
   1974 
   1975 <div>
   1976 
   1977 <h5>Overview:</h5>
   1978 <p>The array type is a very simple derived type that arranges elements
   1979    sequentially in memory.  The array type requires a size (number of elements)
   1980    and an underlying data type.</p>
   1981 
   1982 <h5>Syntax:</h5>
   1983 <pre>
   1984   [&lt;# elements&gt; x &lt;elementtype&gt;]
   1985 </pre>
   1986 
   1987 <p>The number of elements is a constant integer value; <tt>elementtype</tt> may
   1988    be any type with a size.</p>
   1989 
   1990 <h5>Examples:</h5>
   1991 <table class="layout">
   1992   <tr class="layout">
   1993     <td class="left"><tt>[40 x i32]</tt></td>
   1994     <td class="left">Array of 40 32-bit integer values.</td>
   1995   </tr>
   1996   <tr class="layout">
   1997     <td class="left"><tt>[41 x i32]</tt></td>
   1998     <td class="left">Array of 41 32-bit integer values.</td>
   1999   </tr>
   2000   <tr class="layout">
   2001     <td class="left"><tt>[4 x i8]</tt></td>
   2002     <td class="left">Array of 4 8-bit integer values.</td>
   2003   </tr>
   2004 </table>
   2005 <p>Here are some examples of multidimensional arrays:</p>
   2006 <table class="layout">
   2007   <tr class="layout">
   2008     <td class="left"><tt>[3 x [4 x i32]]</tt></td>
   2009     <td class="left">3x4 array of 32-bit integer values.</td>
   2010   </tr>
   2011   <tr class="layout">
   2012     <td class="left"><tt>[12 x [10 x float]]</tt></td>
   2013     <td class="left">12x10 array of single precision floating point values.</td>
   2014   </tr>
   2015   <tr class="layout">
   2016     <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
   2017     <td class="left">2x3x4 array of 16-bit integer  values.</td>
   2018   </tr>
   2019 </table>
   2020 
   2021 <p>There is no restriction on indexing beyond the end of the array implied by
   2022    a static type (though there are restrictions on indexing beyond the bounds
   2023    of an allocated object in some cases). This means that single-dimension
   2024    'variable sized array' addressing can be implemented in LLVM with a zero
   2025    length array type. An implementation of 'pascal style arrays' in LLVM could
   2026    use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
   2027 
   2028 </div>
   2029 
   2030 <!-- _______________________________________________________________________ -->
   2031 <h4>
   2032   <a name="t_function">Function Type</a>
   2033 </h4>
   2034 
   2035 <div>
   2036 
   2037 <h5>Overview:</h5>
   2038 <p>The function type can be thought of as a function signature.  It consists of
   2039    a return type and a list of formal parameter types. The return type of a
   2040    function type is a first class type or a void type.</p>
   2041 
   2042 <h5>Syntax:</h5>
   2043 <pre>
   2044   &lt;returntype&gt; (&lt;parameter list&gt;)
   2045 </pre>
   2046 
   2047 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
   2048    specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
   2049    which indicates that the function takes a variable number of arguments.
   2050    Variable argument functions can access their arguments with
   2051    the <a href="#int_varargs">variable argument handling intrinsic</a>
   2052    functions.  '<tt>&lt;returntype&gt;</tt>' is any type except
   2053    <a href="#t_label">label</a>.</p>
   2054 
   2055 <h5>Examples:</h5>
   2056 <table class="layout">
   2057   <tr class="layout">
   2058     <td class="left"><tt>i32 (i32)</tt></td>
   2059     <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
   2060     </td>
   2061   </tr><tr class="layout">
   2062     <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
   2063     </tt></td>
   2064     <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
   2065       an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
   2066       returning <tt>float</tt>.
   2067     </td>
   2068   </tr><tr class="layout">
   2069     <td class="left"><tt>i32 (i8*, ...)</tt></td>
   2070     <td class="left">A vararg function that takes at least one
   2071       <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
   2072       which returns an integer.  This is the signature for <tt>printf</tt> in
   2073       LLVM.
   2074     </td>
   2075   </tr><tr class="layout">
   2076     <td class="left"><tt>{i32, i32} (i32)</tt></td>
   2077     <td class="left">A function taking an <tt>i32</tt>, returning a
   2078         <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
   2079     </td>
   2080   </tr>
   2081 </table>
   2082 
   2083 </div>
   2084 
   2085 <!-- _______________________________________________________________________ -->
   2086 <h4>
   2087   <a name="t_struct">Structure Type</a>
   2088 </h4>
   2089 
   2090 <div>
   2091 
   2092 <h5>Overview:</h5>
   2093 <p>The structure type is used to represent a collection of data members together
   2094   in memory.  The elements of a structure may be any type that has a size.</p>
   2095 
   2096 <p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
   2097    and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
   2098    with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
   2099    Structures in registers are accessed using the
   2100    '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
   2101    '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
   2102   
   2103 <p>Structures may optionally be "packed" structures, which indicate that the 
   2104   alignment of the struct is one byte, and that there is no padding between
   2105   the elements.  In non-packed structs, padding between field types is inserted
   2106   as defined by the TargetData string in the module, which is required to match
   2107   what the underlying code generator expects.</p>
   2108 
   2109 <p>Structures can either be "literal" or "identified".  A literal structure is
   2110   defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
   2111   types are always defined at the top level with a name.  Literal types are
   2112   uniqued by their contents and can never be recursive or opaque since there is
   2113   no way to write one.  Identified types can be recursive, can be opaqued, and are
   2114   never uniqued.
   2115 </p>
   2116   
   2117 <h5>Syntax:</h5>
   2118 <pre>
   2119   %T1 = type { &lt;type list&gt; }     <i>; Identified normal struct type</i>
   2120   %T2 = type &lt;{ &lt;type list&gt; }&gt;   <i>; Identified packed struct type</i>
   2121 </pre>
   2122   
   2123 <h5>Examples:</h5>
   2124 <table class="layout">
   2125   <tr class="layout">
   2126     <td class="left"><tt>{ i32, i32, i32 }</tt></td>
   2127     <td class="left">A triple of three <tt>i32</tt> values</td>
   2128   </tr>
   2129   <tr class="layout">
   2130     <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
   2131     <td class="left">A pair, where the first element is a <tt>float</tt> and the
   2132       second element is a <a href="#t_pointer">pointer</a> to a
   2133       <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
   2134       an <tt>i32</tt>.</td>
   2135   </tr>
   2136   <tr class="layout">
   2137     <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
   2138     <td class="left">A packed struct known to be 5 bytes in size.</td>
   2139   </tr>
   2140 </table>
   2141 
   2142 </div>
   2143   
   2144 <!-- _______________________________________________________________________ -->
   2145 <h4>
   2146   <a name="t_opaque">Opaque Structure Types</a>
   2147 </h4>
   2148 
   2149 <div>
   2150 
   2151 <h5>Overview:</h5>
   2152 <p>Opaque structure types are used to represent named structure types that do
   2153    not have a body specified.  This corresponds (for example) to the C notion of
   2154    a forward declared structure.</p>
   2155 
   2156 <h5>Syntax:</h5>
   2157 <pre>
   2158   %X = type opaque
   2159   %52 = type opaque
   2160 </pre>
   2161 
   2162 <h5>Examples:</h5>
   2163 <table class="layout">
   2164   <tr class="layout">
   2165     <td class="left"><tt>opaque</tt></td>
   2166     <td class="left">An opaque type.</td>
   2167   </tr>
   2168 </table>
   2169 
   2170 </div>
   2171 
   2172 
   2173 
   2174 <!-- _______________________________________________________________________ -->
   2175 <h4>
   2176   <a name="t_pointer">Pointer Type</a>
   2177 </h4>
   2178 
   2179 <div>
   2180 
   2181 <h5>Overview:</h5>
   2182 <p>The pointer type is used to specify memory locations.
   2183    Pointers are commonly used to reference objects in memory.</p>
   2184    
   2185 <p>Pointer types may have an optional address space attribute defining the
   2186    numbered address space where the pointed-to object resides. The default
   2187    address space is number zero. The semantics of non-zero address
   2188    spaces are target-specific.</p>
   2189 
   2190 <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
   2191    permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>
   2192 
   2193 <h5>Syntax:</h5>
   2194 <pre>
   2195   &lt;type&gt; *
   2196 </pre>
   2197 
   2198 <h5>Examples:</h5>
   2199 <table class="layout">
   2200   <tr class="layout">
   2201     <td class="left"><tt>[4 x i32]*</tt></td>
   2202     <td class="left">A <a href="#t_pointer">pointer</a> to <a
   2203                     href="#t_array">array</a> of four <tt>i32</tt> values.</td>
   2204   </tr>
   2205   <tr class="layout">
   2206     <td class="left"><tt>i32 (i32*) *</tt></td>
   2207     <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
   2208       href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
   2209       <tt>i32</tt>.</td>
   2210   </tr>
   2211   <tr class="layout">
   2212     <td class="left"><tt>i32 addrspace(5)*</tt></td>
   2213     <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
   2214      that resides in address space #5.</td>
   2215   </tr>
   2216 </table>
   2217 
   2218 </div>
   2219 
   2220 <!-- _______________________________________________________________________ -->
   2221 <h4>
   2222   <a name="t_vector">Vector Type</a>
   2223 </h4>
   2224 
   2225 <div>
   2226 
   2227 <h5>Overview:</h5>
   2228 <p>A vector type is a simple derived type that represents a vector of elements.
   2229    Vector types are used when multiple primitive data are operated in parallel
   2230    using a single instruction (SIMD).  A vector type requires a size (number of
   2231    elements) and an underlying primitive data type.  Vector types are considered
   2232    <a href="#t_firstclass">first class</a>.</p>
   2233 
   2234 <h5>Syntax:</h5>
   2235 <pre>
   2236   &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
   2237 </pre>
   2238 
   2239 <p>The number of elements is a constant integer value larger than 0; elementtype
   2240    may be any integer or floating point type, or a pointer to these types.
   2241    Vectors of size zero are not allowed. </p>
   2242 
   2243 <h5>Examples:</h5>
   2244 <table class="layout">
   2245   <tr class="layout">
   2246     <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
   2247     <td class="left">Vector of 4 32-bit integer values.</td>
   2248   </tr>
   2249   <tr class="layout">
   2250     <td class="left"><tt>&lt;8 x float&gt;</tt></td>
   2251     <td class="left">Vector of 8 32-bit floating-point values.</td>
   2252   </tr>
   2253   <tr class="layout">
   2254     <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
   2255     <td class="left">Vector of 2 64-bit integer values.</td>
   2256   </tr>
   2257   <tr class="layout">
   2258     <td class="left"><tt>&lt;4 x i64*&gt;</tt></td>
   2259     <td class="left">Vector of 4 pointers to 64-bit integer values.</td>
   2260   </tr>
   2261 </table>
   2262 
   2263 </div>
   2264 
   2265 </div>
   2266 
   2267 </div>
   2268 
   2269 <!-- *********************************************************************** -->
   2270 <h2><a name="constants">Constants</a></h2>
   2271 <!-- *********************************************************************** -->
   2272 
   2273 <div>
   2274 
   2275 <p>LLVM has several different basic types of constants.  This section describes
   2276    them all and their syntax.</p>
   2277 
   2278 <!-- ======================================================================= -->
   2279 <h3>
   2280   <a name="simpleconstants">Simple Constants</a>
   2281 </h3>
   2282 
   2283 <div>
   2284 
   2285 <dl>
   2286   <dt><b>Boolean constants</b></dt>
   2287   <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
   2288       constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
   2289 
   2290   <dt><b>Integer constants</b></dt>
   2291   <dd>Standard integers (such as '4') are constants of
   2292       the <a href="#t_integer">integer</a> type.  Negative numbers may be used
   2293       with integer types.</dd>
   2294 
   2295   <dt><b>Floating point constants</b></dt>
   2296   <dd>Floating point constants use standard decimal notation (e.g. 123.421),
   2297       exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
   2298       notation (see below).  The assembler requires the exact decimal value of a
   2299       floating-point constant.  For example, the assembler accepts 1.25 but
   2300       rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point
   2301       constants must have a <a href="#t_floating">floating point</a> type. </dd>
   2302 
   2303   <dt><b>Null pointer constants</b></dt>
   2304   <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
   2305       and must be of <a href="#t_pointer">pointer type</a>.</dd>
   2306 </dl>
   2307 
   2308 <p>The one non-intuitive notation for constants is the hexadecimal form of
   2309    floating point constants.  For example, the form '<tt>double
   2310    0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
   2311    '<tt>double 4.5e+15</tt>'.  The only time hexadecimal floating point
   2312    constants are required (and the only time that they are generated by the
   2313    disassembler) is when a floating point constant must be emitted but it cannot
   2314    be represented as a decimal floating point number in a reasonable number of
   2315    digits.  For example, NaN's, infinities, and other special values are
   2316    represented in their IEEE hexadecimal format so that assembly and disassembly
   2317    do not cause any bits to change in the constants.</p>
   2318 
   2319 <p>When using the hexadecimal form, constants of types half, float, and double are
   2320    represented using the 16-digit form shown above (which matches the IEEE754
   2321    representation for double); half and float values must, however, be exactly
   2322    representable as IEE754 half and single precision, respectively.
   2323    Hexadecimal format is always used
   2324    for long double, and there are three forms of long double.  The 80-bit format
   2325    used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
   2326    The 128-bit format used by PowerPC (two adjacent doubles) is represented
   2327    by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit format
   2328    is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
   2329    currently supported target uses this format.  Long doubles will only work if
   2330    they match the long double format on your target. The IEEE 16-bit format
   2331    (half precision) is represented by <tt>0xH</tt> followed by 4 hexadecimal
   2332    digits. All hexadecimal formats are big-endian (sign bit at the left).</p>
   2333 
   2334 <p>There are no constants of type x86mmx.</p>
   2335 </div>
   2336 
   2337 <!-- ======================================================================= -->
   2338 <h3>
   2339 <a name="aggregateconstants"></a> <!-- old anchor -->
   2340 <a name="complexconstants">Complex Constants</a>
   2341 </h3>
   2342 
   2343 <div>
   2344 
   2345 <p>Complex constants are a (potentially recursive) combination of simple
   2346    constants and smaller complex constants.</p>
   2347 
   2348 <dl>
   2349   <dt><b>Structure constants</b></dt>
   2350   <dd>Structure constants are represented with notation similar to structure
   2351       type definitions (a comma separated list of elements, surrounded by braces
   2352       (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
   2353       where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
   2354       Structure constants must have <a href="#t_struct">structure type</a>, and
   2355       the number and types of elements must match those specified by the
   2356       type.</dd>
   2357 
   2358   <dt><b>Array constants</b></dt>
   2359   <dd>Array constants are represented with notation similar to array type
   2360      definitions (a comma separated list of elements, surrounded by square
   2361      brackets (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74
   2362      ]</tt>".  Array constants must have <a href="#t_array">array type</a>, and
   2363      the number and types of elements must match those specified by the
   2364      type.</dd>
   2365 
   2366   <dt><b>Vector constants</b></dt>
   2367   <dd>Vector constants are represented with notation similar to vector type
   2368       definitions (a comma separated list of elements, surrounded by
   2369       less-than/greater-than's (<tt>&lt;&gt;</tt>)).  For example: "<tt>&lt; i32
   2370       42, i32 11, i32 74, i32 100 &gt;</tt>".  Vector constants must
   2371       have <a href="#t_vector">vector type</a>, and the number and types of
   2372       elements must match those specified by the type.</dd>
   2373 
   2374   <dt><b>Zero initialization</b></dt>
   2375   <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
   2376       value to zero of <em>any</em> type, including scalar and
   2377       <a href="#t_aggregate">aggregate</a> types.
   2378       This is often used to avoid having to print large zero initializers
   2379       (e.g. for large arrays) and is always exactly equivalent to using explicit
   2380       zero initializers.</dd>
   2381 
   2382   <dt><b>Metadata node</b></dt>
   2383   <dd>A metadata node is a structure-like constant with
   2384       <a href="#t_metadata">metadata type</a>.  For example: "<tt>metadata !{
   2385       i32 0, metadata !"test" }</tt>".  Unlike other constants that are meant to
   2386       be interpreted as part of the instruction stream, metadata is a place to
   2387       attach additional information such as debug info.</dd>
   2388 </dl>
   2389 
   2390 </div>
   2391 
   2392 <!-- ======================================================================= -->
   2393 <h3>
   2394   <a name="globalconstants">Global Variable and Function Addresses</a>
   2395 </h3>
   2396 
   2397 <div>
   2398 
   2399 <p>The addresses of <a href="#globalvars">global variables</a>
   2400    and <a href="#functionstructure">functions</a> are always implicitly valid
   2401    (link-time) constants.  These constants are explicitly referenced when
   2402    the <a href="#identifiers">identifier for the global</a> is used and always
   2403    have <a href="#t_pointer">pointer</a> type. For example, the following is a
   2404    legal LLVM file:</p>
   2405 
   2406 <pre class="doc_code">
   2407 @X = global i32 17
   2408 @Y = global i32 42
   2409 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
   2410 </pre>
   2411 
   2412 </div>
   2413 
   2414 <!-- ======================================================================= -->
   2415 <h3>
   2416   <a name="undefvalues">Undefined Values</a>
   2417 </h3>
   2418 
   2419 <div>
   2420 
   2421 <p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
   2422    indicates that the user of the value may receive an unspecified bit-pattern.
   2423    Undefined values may be of any type (other than '<tt>label</tt>'
   2424    or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
   2425 
   2426 <p>Undefined values are useful because they indicate to the compiler that the
   2427    program is well defined no matter what value is used.  This gives the
   2428    compiler more freedom to optimize.  Here are some examples of (potentially
   2429    surprising) transformations that are valid (in pseudo IR):</p>
   2430 
   2431 
   2432 <pre class="doc_code">
   2433   %A = add %X, undef
   2434   %B = sub %X, undef
   2435   %C = xor %X, undef
   2436 Safe:
   2437   %A = undef
   2438   %B = undef
   2439   %C = undef
   2440 </pre>
   2441 
   2442 <p>This is safe because all of the output bits are affected by the undef bits.
   2443    Any output bit can have a zero or one depending on the input bits.</p>
   2444 
   2445 <pre class="doc_code">
   2446   %A = or %X, undef
   2447   %B = and %X, undef
   2448 Safe:
   2449   %A = -1
   2450   %B = 0
   2451 Unsafe:
   2452   %A = undef
   2453   %B = undef
   2454 </pre>
   2455 
   2456 <p>These logical operations have bits that are not always affected by the input.
   2457    For example, if <tt>%X</tt> has a zero bit, then the output of the
   2458    '<tt>and</tt>' operation will always be a zero for that bit, no matter what
   2459    the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
   2460    optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
   2461    However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
   2462    0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
   2463    all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
   2464    set, allowing the '<tt>or</tt>' to be folded to -1.</p>
   2465 
   2466 <pre class="doc_code">
   2467   %A = select undef, %X, %Y
   2468   %B = select undef, 42, %Y
   2469   %C = select %X, %Y, undef
   2470 Safe:
   2471   %A = %X     (or %Y)
   2472   %B = 42     (or %Y)
   2473   %C = %Y
   2474 Unsafe:
   2475   %A = undef
   2476   %B = undef
   2477   %C = undef
   2478 </pre>
   2479 
   2480 <p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
   2481    branch) conditions can go <em>either way</em>, but they have to come from one
   2482    of the two operands.  In the <tt>%A</tt> example, if <tt>%X</tt> and
   2483    <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
   2484    have to have a cleared low bit. However, in the <tt>%C</tt> example, the
   2485    optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
   2486    same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
   2487    eliminated.</p>
   2488 
   2489 <pre class="doc_code">
   2490   %A = xor undef, undef
   2491 
   2492   %B = undef
   2493   %C = xor %B, %B
   2494 
   2495   %D = undef
   2496   %E = icmp lt %D, 4
   2497   %F = icmp gte %D, 4
   2498 
   2499 Safe:
   2500   %A = undef
   2501   %B = undef
   2502   %C = undef
   2503   %D = undef
   2504   %E = undef
   2505   %F = undef
   2506 </pre>
   2507 
   2508 <p>This example points out that two '<tt>undef</tt>' operands are not
   2509    necessarily the same. This can be surprising to people (and also matches C
   2510    semantics) where they assume that "<tt>X^X</tt>" is always zero, even
   2511    if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
   2512    short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
   2513    its value over its "live range".  This is true because the variable doesn't
   2514    actually <em>have a live range</em>. Instead, the value is logically read
   2515    from arbitrary registers that happen to be around when needed, so the value
   2516    is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
   2517    need to have the same semantics or the core LLVM "replace all uses with"
   2518    concept would not hold.</p>
   2519 
   2520 <pre class="doc_code">
   2521   %A = fdiv undef, %X
   2522   %B = fdiv %X, undef
   2523 Safe:
   2524   %A = undef
   2525 b: unreachable
   2526 </pre>
   2527 
   2528 <p>These examples show the crucial difference between an <em>undefined
   2529   value</em> and <em>undefined behavior</em>. An undefined value (like
   2530   '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
   2531   the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
   2532   the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
   2533   defined on SNaN's. However, in the second example, we can make a more
   2534   aggressive assumption: because the <tt>undef</tt> is allowed to be an
   2535   arbitrary value, we are allowed to assume that it could be zero. Since a
   2536   divide by zero has <em>undefined behavior</em>, we are allowed to assume that
   2537   the operation does not execute at all. This allows us to delete the divide and
   2538   all code after it. Because the undefined operation "can't happen", the
   2539   optimizer can assume that it occurs in dead code.</p>
   2540 
   2541 <pre class="doc_code">
   2542 a:  store undef -> %X
   2543 b:  store %X -> undef
   2544 Safe:
   2545 a: &lt;deleted&gt;
   2546 b: unreachable
   2547 </pre>
   2548 
   2549 <p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
   2550    undefined value can be assumed to not have any effect; we can assume that the
   2551    value is overwritten with bits that happen to match what was already there.
   2552    However, a store <em>to</em> an undefined location could clobber arbitrary
   2553    memory, therefore, it has undefined behavior.</p>
   2554 
   2555 </div>
   2556 
   2557 <!-- ======================================================================= -->
   2558 <h3>
   2559   <a name="poisonvalues">Poison Values</a>
   2560 </h3>
   2561 
   2562 <div>
   2563 
   2564 <p>Poison values are similar to <a href="#undefvalues">undef values</a>, however
   2565    they also represent the fact that an instruction or constant expression which
   2566    cannot evoke side effects has nevertheless detected a condition which results
   2567    in undefined behavior.</p>
   2568 
   2569 <p>There is currently no way of representing a poison value in the IR; they
   2570    only exist when produced by operations such as
   2571    <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
   2572 
   2573 <p>Poison value behavior is defined in terms of value <i>dependence</i>:</p>
   2574 
   2575 <ul>
   2576 <li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
   2577     their operands.</li>
   2578 
   2579 <li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
   2580     to their dynamic predecessor basic block.</li>
   2581 
   2582 <li>Function arguments depend on the corresponding actual argument values in
   2583     the dynamic callers of their functions.</li>
   2584 
   2585 <li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
   2586     <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
   2587     control back to them.</li>
   2588 
   2589 <li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
   2590     <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_resume"><tt>resume</tt></a>,
   2591     or exception-throwing call instructions that dynamically transfer control
   2592     back to them.</li>
   2593 
   2594 <li>Non-volatile loads and stores depend on the most recent stores to all of the
   2595     referenced memory addresses, following the order in the IR
   2596     (including loads and stores implied by intrinsics such as
   2597     <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
   2598 
   2599 <!-- TODO: In the case of multiple threads, this only applies if the store
   2600      "happens-before" the load or store. -->
   2601 
   2602 <!-- TODO: floating-point exception state -->
   2603 
   2604 <li>An instruction with externally visible side effects depends on the most
   2605     recent preceding instruction with externally visible side effects, following
   2606     the order in the IR. (This includes
   2607     <a href="#volatile">volatile operations</a>.)</li>
   2608 
   2609 <li>An instruction <i>control-depends</i> on a
   2610     <a href="#terminators">terminator instruction</a>
   2611     if the terminator instruction has multiple successors and the instruction
   2612     is always executed when control transfers to one of the successors, and
   2613     may not be executed when control is transferred to another.</li>
   2614 
   2615 <li>Additionally, an instruction also <i>control-depends</i> on a terminator
   2616     instruction if the set of instructions it otherwise depends on would be
   2617     different if the terminator had transferred control to a different
   2618     successor.</li>
   2619 
   2620 <li>Dependence is transitive.</li>
   2621 
   2622 </ul>
   2623 
   2624 <p>Poison Values have the same behavior as <a href="#undefvalues">undef values</a>,
   2625    with the additional affect that any instruction which has a <i>dependence</i>
   2626    on a poison value has undefined behavior.</p>
   2627 
   2628 <p>Here are some examples:</p>
   2629 
   2630 <pre class="doc_code">
   2631 entry:
   2632   %poison = sub nuw i32 0, 1           ; Results in a poison value.
   2633   %still_poison = and i32 %poison, 0   ; 0, but also poison.
   2634   %poison_yet_again = getelementptr i32* @h, i32 %still_poison
   2635   store i32 0, i32* %poison_yet_again  ; memory at @h[0] is poisoned
   2636 
   2637   store i32 %poison, i32* @g           ; Poison value stored to memory.
   2638   %poison2 = load i32* @g              ; Poison value loaded back from memory.
   2639 
   2640   store volatile i32 %poison, i32* @g  ; External observation; undefined behavior.
   2641 
   2642   %narrowaddr = bitcast i32* @g to i16*
   2643   %wideaddr = bitcast i32* @g to i64*
   2644   %poison3 = load i16* %narrowaddr     ; Returns a poison value.
   2645   %poison4 = load i64* %wideaddr       ; Returns a poison value.
   2646 
   2647   %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
   2648   br i1 %cmp, label %true, label %end  ; Branch to either destination.
   2649 
   2650 true:
   2651   store volatile i32 0, i32* @g        ; This is control-dependent on %cmp, so
   2652                                        ; it has undefined behavior.
   2653   br label %end
   2654 
   2655 end:
   2656   %p = phi i32 [ 0, %entry ], [ 1, %true ]
   2657                                        ; Both edges into this PHI are
   2658                                        ; control-dependent on %cmp, so this
   2659                                        ; always results in a poison value.
   2660 
   2661   store volatile i32 0, i32* @g        ; This would depend on the store in %true
   2662                                        ; if %cmp is true, or the store in %entry
   2663                                        ; otherwise, so this is undefined behavior.
   2664 
   2665   br i1 %cmp, label %second_true, label %second_end
   2666                                        ; The same branch again, but this time the
   2667                                        ; true block doesn't have side effects.
   2668 
   2669 second_true:
   2670   ; No side effects!
   2671   ret void
   2672 
   2673 second_end:
   2674   store volatile i32 0, i32* @g        ; This time, the instruction always depends
   2675                                        ; on the store in %end. Also, it is
   2676                                        ; control-equivalent to %end, so this is
   2677                                        ; well-defined (ignoring earlier undefined
   2678                                        ; behavior in this example).
   2679 </pre>
   2680 
   2681 </div>
   2682 
   2683 <!-- ======================================================================= -->
   2684 <h3>
   2685   <a name="blockaddress">Addresses of Basic Blocks</a>
   2686 </h3>
   2687 
   2688 <div>
   2689 
   2690 <p><b><tt>blockaddress(@function, %block)</tt></b></p>
   2691 
   2692 <p>The '<tt>blockaddress</tt>' constant computes the address of the specified
   2693    basic block in the specified function, and always has an i8* type.  Taking
   2694    the address of the entry block is illegal.</p>
   2695 
   2696 <p>This value only has defined behavior when used as an operand to the
   2697    '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
   2698    comparisons against null. Pointer equality tests between labels addresses
   2699    results in undefined behavior &mdash; though, again, comparison against null
   2700    is ok, and no label is equal to the null pointer. This may be passed around
   2701    as an opaque pointer sized value as long as the bits are not inspected. This
   2702    allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
   2703    long as the original value is reconstituted before the <tt>indirectbr</tt>
   2704    instruction.</p>
   2705 
   2706 <p>Finally, some targets may provide defined semantics when using the value as
   2707    the operand to an inline assembly, but that is target specific.</p>
   2708 
   2709 </div>
   2710 
   2711 
   2712 <!-- ======================================================================= -->
   2713 <h3>
   2714   <a name="constantexprs">Constant Expressions</a>
   2715 </h3>
   2716 
   2717 <div>
   2718 
   2719 <p>Constant expressions are used to allow expressions involving other constants
   2720    to be used as constants.  Constant expressions may be of
   2721    any <a href="#t_firstclass">first class</a> type and may involve any LLVM
   2722    operation that does not have side effects (e.g. load and call are not
   2723    supported). The following is the syntax for constant expressions:</p>
   2724 
   2725 <dl>
   2726   <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
   2727   <dd>Truncate a constant to another type. The bit size of CST must be larger
   2728       than the bit size of TYPE. Both types must be integers.</dd>
   2729 
   2730   <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
   2731   <dd>Zero extend a constant to another type. The bit size of CST must be
   2732       smaller than the bit size of TYPE.  Both types must be integers.</dd>
   2733 
   2734   <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
   2735   <dd>Sign extend a constant to another type. The bit size of CST must be
   2736       smaller than the bit size of TYPE.  Both types must be integers.</dd>
   2737 
   2738   <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
   2739   <dd>Truncate a floating point constant to another floating point type. The
   2740       size of CST must be larger than the size of TYPE. Both types must be
   2741       floating point.</dd>
   2742 
   2743   <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
   2744   <dd>Floating point extend a constant to another type. The size of CST must be
   2745       smaller or equal to the size of TYPE. Both types must be floating
   2746       point.</dd>
   2747 
   2748   <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
   2749   <dd>Convert a floating point constant to the corresponding unsigned integer
   2750       constant. TYPE must be a scalar or vector integer type. CST must be of
   2751       scalar or vector floating point type. Both CST and TYPE must be scalars,
   2752       or vectors of the same number of elements. If the value won't fit in the
   2753       integer type, the results are undefined.</dd>
   2754 
   2755   <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
   2756   <dd>Convert a floating point constant to the corresponding signed integer
   2757       constant.  TYPE must be a scalar or vector integer type. CST must be of
   2758       scalar or vector floating point type. Both CST and TYPE must be scalars,
   2759       or vectors of the same number of elements. If the value won't fit in the
   2760       integer type, the results are undefined.</dd>
   2761 
   2762   <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
   2763   <dd>Convert an unsigned integer constant to the corresponding floating point
   2764       constant. TYPE must be a scalar or vector floating point type. CST must be
   2765       of scalar or vector integer type. Both CST and TYPE must be scalars, or
   2766       vectors of the same number of elements. If the value won't fit in the
   2767       floating point type, the results are undefined.</dd>
   2768 
   2769   <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
   2770   <dd>Convert a signed integer constant to the corresponding floating point
   2771       constant. TYPE must be a scalar or vector floating point type. CST must be
   2772       of scalar or vector integer type. Both CST and TYPE must be scalars, or
   2773       vectors of the same number of elements. If the value won't fit in the
   2774       floating point type, the results are undefined.</dd>
   2775 
   2776   <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
   2777   <dd>Convert a pointer typed constant to the corresponding integer constant
   2778       <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
   2779       type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
   2780       make it fit in <tt>TYPE</tt>.</dd>
   2781 
   2782   <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
   2783   <dd>Convert an integer constant to a pointer constant.  TYPE must be a pointer
   2784       type.  CST must be of integer type. The CST value is zero extended,
   2785       truncated, or unchanged to make it fit in a pointer size. This one is
   2786       <i>really</i> dangerous!</dd>
   2787 
   2788   <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
   2789   <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
   2790       are the same as those for the <a href="#i_bitcast">bitcast
   2791       instruction</a>.</dd>
   2792 
   2793   <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
   2794   <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
   2795   <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
   2796       constants.  As with the <a href="#i_getelementptr">getelementptr</a>
   2797       instruction, the index list may have zero or more indexes, which are
   2798       required to make sense for the type of "CSTPTR".</dd>
   2799 
   2800   <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
   2801   <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
   2802 
   2803   <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
   2804   <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
   2805 
   2806   <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
   2807   <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
   2808 
   2809   <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
   2810   <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
   2811       constants.</dd>
   2812 
   2813   <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
   2814   <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
   2815     constants.</dd>
   2816 
   2817   <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
   2818   <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
   2819       constants.</dd>
   2820 
   2821   <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
   2822   <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
   2823     constants. The index list is interpreted in a similar manner as indices in
   2824     a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
   2825     index value must be specified.</dd>
   2826 
   2827   <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
   2828   <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
   2829     constants. The index list is interpreted in a similar manner as indices in
   2830     a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
   2831     index value must be specified.</dd>
   2832 
   2833   <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
   2834   <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
   2835       be any of the <a href="#binaryops">binary</a>
   2836       or <a href="#bitwiseops">bitwise binary</a> operations.  The constraints
   2837       on operands are the same as those for the corresponding instruction
   2838       (e.g. no bitwise operations on floating point values are allowed).</dd>
   2839 </dl>
   2840 
   2841 </div>
   2842 
   2843 </div>
   2844 
   2845 <!-- *********************************************************************** -->
   2846 <h2><a name="othervalues">Other Values</a></h2>
   2847 <!-- *********************************************************************** -->
   2848 <div>
   2849 <!-- ======================================================================= -->
   2850 <h3>
   2851 <a name="inlineasm">Inline Assembler Expressions</a>
   2852 </h3>
   2853 
   2854 <div>
   2855 
   2856 <p>LLVM supports inline assembler expressions (as opposed
   2857    to <a href="#moduleasm">Module-Level Inline Assembly</a>) through the use of
   2858    a special value.  This value represents the inline assembler as a string
   2859    (containing the instructions to emit), a list of operand constraints (stored
   2860    as a string), a flag that indicates whether or not the inline asm
   2861    expression has side effects, and a flag indicating whether the function
   2862    containing the asm needs to align its stack conservatively.  An example
   2863    inline assembler expression is:</p>
   2864 
   2865 <pre class="doc_code">
   2866 i32 (i32) asm "bswap $0", "=r,r"
   2867 </pre>
   2868 
   2869 <p>Inline assembler expressions may <b>only</b> be used as the callee operand of
   2870    a <a href="#i_call"><tt>call</tt></a> or an
   2871    <a href="#i_invoke"><tt>invoke</tt></a> instruction.
   2872    Thus, typically we have:</p>
   2873 
   2874 <pre class="doc_code">
   2875 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
   2876 </pre>
   2877 
   2878 <p>Inline asms with side effects not visible in the constraint list must be
   2879    marked as having side effects.  This is done through the use of the
   2880    '<tt>sideeffect</tt>' keyword, like so:</p>
   2881 
   2882 <pre class="doc_code">
   2883 call void asm sideeffect "eieio", ""()
   2884 </pre>
   2885 
   2886 <p>In some cases inline asms will contain code that will not work unless the
   2887    stack is aligned in some way, such as calls or SSE instructions on x86,
   2888    yet will not contain code that does that alignment within the asm.
   2889    The compiler should make conservative assumptions about what the asm might
   2890    contain and should generate its usual stack alignment code in the prologue
   2891    if the '<tt>alignstack</tt>' keyword is present:</p>
   2892 
   2893 <pre class="doc_code">
   2894 call void asm alignstack "eieio", ""()
   2895 </pre>
   2896 
   2897 <p>Inline asms also support using non-standard assembly dialects.  The assumed
   2898    dialect is ATT.  When the '<tt>inteldialect</tt>' keyword is present, the
   2899    inline asm is using the Intel dialect.  Currently, ATT and Intel are the
   2900    only supported dialects.  An example is:</p>
   2901 
   2902 <pre class="doc_code">
   2903 call void asm inteldialect "eieio", ""()
   2904 </pre>
   2905 
   2906 <p>If multiple keywords appear the '<tt>sideeffect</tt>' keyword must come
   2907    first, the '<tt>alignstack</tt>' keyword second and the
   2908    '<tt>inteldialect</tt>' keyword last.</p>
   2909 
   2910 <!--
   2911 <p>TODO: The format of the asm and constraints string still need to be
   2912    documented here.  Constraints on what can be done (e.g. duplication, moving,
   2913    etc need to be documented).  This is probably best done by reference to
   2914    another document that covers inline asm from a holistic perspective.</p>
   2915   -->
   2916 
   2917 <!-- _______________________________________________________________________ -->
   2918 <h4>
   2919   <a name="inlineasm_md">Inline Asm Metadata</a>
   2920 </h4>
   2921 
   2922 <div>
   2923 
   2924 <p>The call instructions that wrap inline asm nodes may have a
   2925    "<tt>!srcloc</tt>" MDNode attached to it that contains a list of constant
   2926    integers.  If present, the code generator will use the integer as the
   2927    location cookie value when report errors through the <tt>LLVMContext</tt>
   2928    error reporting mechanisms.  This allows a front-end to correlate backend
   2929    errors that occur with inline asm back to the source code that produced it.
   2930    For example:</p>
   2931 
   2932 <pre class="doc_code">
   2933 call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
   2934 ...
   2935 !42 = !{ i32 1234567 }
   2936 </pre>
   2937 
   2938 <p>It is up to the front-end to make sense of the magic numbers it places in the
   2939    IR. If the MDNode contains multiple constants, the code generator will use
   2940    the one that corresponds to the line of the asm that the error occurs on.</p>
   2941 
   2942 </div>
   2943 
   2944 </div>
   2945 
   2946 <!-- ======================================================================= -->
   2947 <h3>
   2948   <a name="metadata">Metadata Nodes and Metadata Strings</a>
   2949 </h3>
   2950 
   2951 <div>
   2952 
   2953 <p>LLVM IR allows metadata to be attached to instructions in the program that
   2954    can convey extra information about the code to the optimizers and code
   2955    generator.  One example application of metadata is source-level debug
   2956    information.  There are two metadata primitives: strings and nodes. All
   2957    metadata has the <tt>metadata</tt> type and is identified in syntax by a
   2958    preceding exclamation point ('<tt>!</tt>').</p>
   2959 
   2960 <p>A metadata string is a string surrounded by double quotes.  It can contain
   2961    any character by escaping non-printable characters with "<tt>\xx</tt>" where
   2962    "<tt>xx</tt>" is the two digit hex code.  For example:
   2963    "<tt>!"test\00"</tt>".</p>
   2964 
   2965 <p>Metadata nodes are represented with notation similar to structure constants
   2966    (a comma separated list of elements, surrounded by braces and preceded by an
   2967    exclamation point). Metadata nodes can have any values as their operand. For
   2968    example:</p>
   2969 
   2970 <div class="doc_code">
   2971 <pre>
   2972 !{ metadata !"test\00", i32 10}
   2973 </pre>
   2974 </div>
   2975 
   2976 <p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of 
   2977    metadata nodes, which can be looked up in the module symbol table. For
   2978    example:</p>
   2979 
   2980 <div class="doc_code">
   2981 <pre>
   2982 !foo =  metadata !{!4, !3}
   2983 </pre>
   2984 </div>
   2985 
   2986 <p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt> 
   2987    function is using two metadata arguments:</p>
   2988 
   2989 <div class="doc_code">
   2990 <pre>
   2991 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
   2992 </pre>
   2993 </div>
   2994 
   2995 <p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
   2996    attached to the <tt>add</tt> instruction using the <tt>!dbg</tt>
   2997    identifier:</p>
   2998 
   2999 <div class="doc_code">
   3000 <pre>
   3001 %indvar.next = add i64 %indvar, 1, !dbg !21
   3002 </pre>
   3003 </div>
   3004 
   3005 <p>More information about specific metadata nodes recognized by the optimizers
   3006    and code generator is found below.</p>
   3007 
   3008 <!-- _______________________________________________________________________ -->
   3009 <h4>
   3010   <a name="tbaa">'<tt>tbaa</tt>' Metadata</a>
   3011 </h4>
   3012 
   3013 <div>
   3014 
   3015 <p>In LLVM IR, memory does not have types, so LLVM's own type system is not
   3016    suitable for doing TBAA. Instead, metadata is added to the IR to describe
   3017    a type system of a higher level language. This can be used to implement
   3018    typical C/C++ TBAA, but it can also be used to implement custom alias
   3019    analysis behavior for other languages.</p>
   3020 
   3021 <p>The current metadata format is very simple. TBAA metadata nodes have up to
   3022    three fields, e.g.:</p>
   3023 
   3024 <div class="doc_code">
   3025 <pre>
   3026 !0 = metadata !{ metadata !"an example type tree" }
   3027 !1 = metadata !{ metadata !"int", metadata !0 }
   3028 !2 = metadata !{ metadata !"float", metadata !0 }
   3029 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
   3030 </pre>
   3031 </div>
   3032 
   3033 <p>The first field is an identity field. It can be any value, usually
   3034    a metadata string, which uniquely identifies the type. The most important
   3035    name in the tree is the name of the root node. Two trees with
   3036    different root node names are entirely disjoint, even if they
   3037    have leaves with common names.</p>
   3038 
   3039 <p>The second field identifies the type's parent node in the tree, or
   3040    is null or omitted for a root node. A type is considered to alias
   3041    all of its descendants and all of its ancestors in the tree. Also,
   3042    a type is considered to alias all types in other trees, so that
   3043    bitcode produced from multiple front-ends is handled conservatively.</p>
   3044 
   3045 <p>If the third field is present, it's an integer which if equal to 1
   3046    indicates that the type is "constant" (meaning
   3047    <tt>pointsToConstantMemory</tt> should return true; see
   3048    <a href="AliasAnalysis.html#OtherItfs">other useful
   3049    <tt>AliasAnalysis</tt> methods</a>).</p>
   3050 
   3051 </div>
   3052 
   3053 <!-- _______________________________________________________________________ -->
   3054 <h4>
   3055   <a name="fpmath">'<tt>fpmath</tt>' Metadata</a>
   3056 </h4>
   3057  
   3058 <div>
   3059 
   3060 <p><tt>fpmath</tt> metadata may be attached to any instruction of floating point
   3061   type.  It can be used to express the maximum acceptable error in the result of
   3062   that instruction, in ULPs, thus potentially allowing the compiler to use a
   3063   more efficient but less accurate method of computing it.  ULP is defined as
   3064   follows:</p>
   3065 
   3066 <blockquote>
   3067 
   3068 <p>If <tt>x</tt> is a real number that lies between two finite consecutive
   3069    floating-point numbers <tt>a</tt> and <tt>b</tt>, without being equal to one
   3070    of them, then <tt>ulp(x) = |b - a|</tt>, otherwise <tt>ulp(x)</tt> is the
   3071    distance between the two non-equal finite floating-point numbers nearest
   3072    <tt>x</tt>. Moreover, <tt>ulp(NaN)</tt> is <tt>NaN</tt>.</p>
   3073 
   3074 </blockquote>
   3075 
   3076 <p>The metadata node shall consist of a single positive floating point number
   3077    representing the maximum relative error, for example:</p>
   3078 
   3079 <div class="doc_code">
   3080 <pre>
   3081 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
   3082 </pre>
   3083 </div>
   3084 
   3085 </div>
   3086 
   3087 <!-- _______________________________________________________________________ -->
   3088 <h4>
   3089   <a name="range">'<tt>range</tt>' Metadata</a>
   3090 </h4>
   3091 
   3092 <div>
   3093 <p><tt>range</tt> metadata may be attached only to loads of integer types. It
   3094    expresses the possible ranges the loaded value is in. The ranges are
   3095    represented with a flattened list of integers. The loaded value is known to
   3096    be in the union of the ranges defined by each consecutive pair. Each pair
   3097    has the following properties:</p>
   3098 <ul>
   3099    <li>The type must match the type loaded by the instruction.</li>
   3100    <li>The pair <tt>a,b</tt> represents the range <tt>[a,b)</tt>.</li>
   3101    <li>Both <tt>a</tt> and <tt>b</tt> are constants.</li>
   3102    <li>The range is allowed to wrap.</li>
   3103    <li>The range should not represent the full or empty set. That is,
   3104        <tt>a!=b</tt>. </li>
   3105 </ul>
   3106 <p> In addition, the pairs must be in signed order of the lower bound and
   3107   they must be non-contiguous.</p>
   3108 
   3109 <p>Examples:</p>
   3110 <div class="doc_code">
   3111 <pre>
   3112   %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
   3113   %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
   3114   %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
   3115   %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
   3116 ...
   3117 !0 = metadata !{ i8 0, i8 2 }
   3118 !1 = metadata !{ i8 255, i8 2 }
   3119 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
   3120 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
   3121 </pre>
   3122 </div>
   3123 </div>
   3124 </div>
   3125 
   3126 </div>
   3127 
   3128 <!-- *********************************************************************** -->
   3129 <h2>
   3130   <a name="module_flags">Module Flags Metadata</a>
   3131 </h2>
   3132 <!-- *********************************************************************** -->
   3133 
   3134 <div>
   3135 
   3136 <p>Information about the module as a whole is difficult to convey to LLVM's
   3137    subsystems. The LLVM IR isn't sufficient to transmit this
   3138    information. The <tt>llvm.module.flags</tt> named metadata exists in order to
   3139    facilitate this. These flags are in the form of key / value pairs &mdash;
   3140    much like a dictionary &mdash; making it easy for any subsystem who cares
   3141    about a flag to look it up.</p>
   3142 
   3143 <p>The <tt>llvm.module.flags</tt> metadata contains a list of metadata
   3144    triplets. Each triplet has the following form:</p>
   3145 
   3146 <ul>
   3147   <li>The first element is a <i>behavior</i> flag, which specifies the behavior
   3148       when two (or more) modules are merged together, and it encounters two (or
   3149       more) metadata with the same ID. The supported behaviors are described
   3150       below.</li>
   3151 
   3152   <li>The second element is a metadata string that is a unique ID for the
   3153       metadata. How each ID is interpreted is documented below.</li>
   3154 
   3155   <li>The third element is the value of the flag.</li>
   3156 </ul>
   3157 
   3158 <p>When two (or more) modules are merged together, the resulting
   3159    <tt>llvm.module.flags</tt> metadata is the union of the
   3160    modules' <tt>llvm.module.flags</tt> metadata. The only exception being a flag
   3161    with the <i>Override</i> behavior, which may override another flag's value
   3162    (see below).</p>
   3163 
   3164 <p>The following behaviors are supported:</p>
   3165 
   3166 <table border="1" cellspacing="0" cellpadding="4">
   3167   <tbody>
   3168     <tr>
   3169       <th>Value</th>
   3170       <th>Behavior</th>
   3171     </tr>
   3172     <tr>
   3173       <td>1</td>
   3174       <td align="left">
   3175         <dl>
   3176           <dt><b>Error</b></dt>
   3177           <dd>Emits an error if two values disagree. It is an error to have an ID
   3178               with both an Error and a Warning behavior.</dd>
   3179         </dl>
   3180       </td>
   3181     </tr>
   3182     <tr>
   3183       <td>2</td>
   3184       <td align="left">
   3185         <dl>
   3186           <dt><b>Warning</b></dt>
   3187           <dd>Emits a warning if two values disagree.</dd>
   3188         </dl>
   3189       </td>
   3190     </tr>
   3191     <tr>
   3192       <td>3</td>
   3193       <td align="left">
   3194         <dl>
   3195           <dt><b>Require</b></dt>
   3196           <dd>Emits an error when the specified value is not present or doesn't
   3197               have the specified value. It is an error for two (or more)
   3198               <tt>llvm.module.flags</tt> with the same ID to have the Require
   3199               behavior but different values. There may be multiple Require flags
   3200               per ID.</dd>
   3201         </dl>
   3202       </td>
   3203     </tr>
   3204     <tr>
   3205       <td>4</td>
   3206       <td align="left">
   3207         <dl>
   3208           <dt><b>Override</b></dt>
   3209           <dd>Uses the specified value if the two values disagree. It is an
   3210               error for two (or more) <tt>llvm.module.flags</tt> with the same
   3211               ID to have the Override behavior but different values.</dd>
   3212         </dl>
   3213       </td>
   3214     </tr>
   3215   </tbody>
   3216 </table>
   3217 
   3218 <p>An example of module flags:</p>
   3219 
   3220 <pre class="doc_code">
   3221 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
   3222 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
   3223 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
   3224 !3 = metadata !{ i32 3, metadata !"qux",
   3225   metadata !{
   3226     metadata !"foo", i32 1
   3227   }
   3228 }
   3229 !llvm.module.flags = !{ !0, !1, !2, !3 }
   3230 </pre>
   3231 
   3232 <ul>
   3233   <li><p>Metadata <tt>!0</tt> has the ID <tt>!"foo"</tt> and the value '1'. The
   3234          behavior if two or more <tt>!"foo"</tt> flags are seen is to emit an
   3235          error if their values are not equal.</p></li>
   3236 
   3237   <li><p>Metadata <tt>!1</tt> has the ID <tt>!"bar"</tt> and the value '37'. The
   3238          behavior if two or more <tt>!"bar"</tt> flags are seen is to use the
   3239          value '37' if their values are not equal.</p></li>
   3240 
   3241   <li><p>Metadata <tt>!2</tt> has the ID <tt>!"qux"</tt> and the value '42'. The
   3242          behavior if two or more <tt>!"qux"</tt> flags are seen is to emit a
   3243          warning if their values are not equal.</p></li>
   3244 
   3245   <li><p>Metadata <tt>!3</tt> has the ID <tt>!"qux"</tt> and the value:</p>
   3246 
   3247 <pre class="doc_code">
   3248 metadata !{ metadata !"foo", i32 1 }
   3249 </pre>
   3250 
   3251       <p>The behavior is to emit an error if the <tt>llvm.module.flags</tt> does
   3252          not contain a flag with the ID <tt>!"foo"</tt> that has the value
   3253          '1'. If two or more <tt>!"qux"</tt> flags exist, then they must have
   3254          the same value or an error will be issued.</p></li>
   3255 </ul>
   3256 
   3257 
   3258 <!-- ======================================================================= -->
   3259 <h3>
   3260 <a name="objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a>
   3261 </h3>
   3262 
   3263 <div>
   3264 
   3265 <p>On the Mach-O platform, Objective-C stores metadata about garbage collection
   3266    in a special section called "image info". The metadata consists of a version
   3267    number and a bitmask specifying what types of garbage collection are
   3268    supported (if any) by the file. If two or more modules are linked together
   3269    their garbage collection metadata needs to be merged rather than appended
   3270    together.</p>
   3271 
   3272 <p>The Objective-C garbage collection module flags metadata consists of the
   3273    following key-value pairs:</p>
   3274 
   3275 <table border="1" cellspacing="0" cellpadding="4">
   3276   <col width="30%">
   3277   <tbody>
   3278     <tr>
   3279       <th>Key</th>
   3280       <th>Value</th>
   3281     </tr>
   3282     <tr>
   3283       <td><tt>Objective-C&nbsp;Version</tt></td>
   3284       <td align="left"><b>[Required]</b> &mdash; The Objective-C ABI
   3285          version. Valid values are 1 and 2.</td>
   3286     </tr>
   3287     <tr>
   3288       <td><tt>Objective-C&nbsp;Image&nbsp;Info&nbsp;Version</tt></td>
   3289       <td align="left"><b>[Required]</b> &mdash; The version of the image info
   3290          section. Currently always 0.</td>
   3291     </tr>
   3292     <tr>
   3293       <td><tt>Objective-C&nbsp;Image&nbsp;Info&nbsp;Section</tt></td>
   3294       <td align="left"><b>[Required]</b> &mdash; The section to place the
   3295          metadata. Valid values are <tt>"__OBJC, __image_info, regular"</tt> for
   3296          Objective-C ABI version 1, and <tt>"__DATA,__objc_imageinfo, regular,
   3297          no_dead_strip"</tt> for Objective-C ABI version 2.</td>
   3298     </tr>
   3299     <tr>
   3300       <td><tt>Objective-C&nbsp;Garbage&nbsp;Collection</tt></td>
   3301       <td align="left"><b>[Required]</b> &mdash; Specifies whether garbage
   3302           collection is supported or not. Valid values are 0, for no garbage
   3303           collection, and 2, for garbage collection supported.</td>
   3304     </tr>
   3305     <tr>
   3306       <td><tt>Objective-C&nbsp;GC&nbsp;Only</tt></td>
   3307       <td align="left"><b>[Optional]</b> &mdash; Specifies that only garbage
   3308          collection is supported. If present, its value must be 6. This flag
   3309          requires that the <tt>Objective-C Garbage Collection</tt> flag have the
   3310          value 2.</td>
   3311     </tr>
   3312   </tbody>
   3313 </table>
   3314 
   3315 <p>Some important flag interactions:</p>
   3316 
   3317 <ul>
   3318   <li>If a module with <tt>Objective-C Garbage Collection</tt> set to 0 is
   3319       merged with a module with <tt>Objective-C Garbage Collection</tt> set to
   3320       2, then the resulting module has the <tt>Objective-C Garbage
   3321       Collection</tt> flag set to 0.</li>
   3322 
   3323   <li>A module with <tt>Objective-C Garbage Collection</tt> set to 0 cannot be
   3324       merged with a module with <tt>Objective-C GC Only</tt> set to 6.</li>
   3325 </ul>
   3326 
   3327 </div>
   3328 
   3329 </div>
   3330 
   3331 <!-- *********************************************************************** -->
   3332 <h2>
   3333   <a name="intrinsic_globals">Intrinsic Global Variables</a>
   3334 </h2>
   3335 <!-- *********************************************************************** -->
   3336 <div>
   3337 <p>LLVM has a number of "magic" global variables that contain data that affect
   3338 code generation or other IR semantics.  These are documented here.  All globals
   3339 of this sort should have a section specified as "<tt>llvm.metadata</tt>".  This
   3340 section and all globals that start with "<tt>llvm.</tt>" are reserved for use
   3341 by LLVM.</p>
   3342 
   3343 <!-- ======================================================================= -->
   3344 <h3>
   3345 <a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
   3346 </h3>
   3347 
   3348 <div>
   3349 
   3350 <p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
   3351 href="#linkage_appending">appending linkage</a>.  This array contains a list of
   3352 pointers to global variables and functions which may optionally have a pointer
   3353 cast formed of bitcast or getelementptr.  For example, a legal use of it is:</p>
   3354 
   3355 <div class="doc_code">
   3356 <pre>
   3357 @X = global i8 4
   3358 @Y = global i32 123
   3359 
   3360 @llvm.used = appending global [2 x i8*] [
   3361    i8* @X,
   3362    i8* bitcast (i32* @Y to i8*)
   3363 ], section "llvm.metadata"
   3364 </pre>
   3365 </div>
   3366 
   3367 <p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
   3368    compiler, assembler, and linker are required to treat the symbol as if there
   3369    is a reference to the global that it cannot see.  For example, if a variable
   3370    has internal linkage and no references other than that from
   3371    the <tt>@llvm.used</tt> list, it cannot be deleted.  This is commonly used to
   3372    represent references from inline asms and other things the compiler cannot
   3373    "see", and corresponds to "<tt>attribute((used))</tt>" in GNU C.</p>
   3374 
   3375 <p>On some targets, the code generator must emit a directive to the assembler or
   3376    object file to prevent the assembler and linker from molesting the
   3377    symbol.</p>
   3378 
   3379 </div>
   3380 
   3381 <!-- ======================================================================= -->
   3382 <h3>
   3383   <a name="intg_compiler_used">
   3384     The '<tt>llvm.compiler.used</tt>' Global Variable
   3385   </a>
   3386 </h3>
   3387 
   3388 <div>
   3389 
   3390 <p>The <tt>@llvm.compiler.used</tt> directive is the same as the
   3391    <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
   3392    touching the symbol.  On targets that support it, this allows an intelligent
   3393    linker to optimize references to the symbol without being impeded as it would
   3394    be by <tt>@llvm.used</tt>.</p>
   3395 
   3396 <p>This is a rare construct that should only be used in rare circumstances, and
   3397    should not be exposed to source languages.</p>
   3398 
   3399 </div>
   3400 
   3401 <!-- ======================================================================= -->
   3402 <h3>
   3403 <a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
   3404 </h3>
   3405 
   3406 <div>
   3407 
   3408 <div class="doc_code">
   3409 <pre>
   3410 %0 = type { i32, void ()* }
   3411 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
   3412 </pre>
   3413 </div>
   3414 
   3415 <p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor
   3416    functions and associated priorities.  The functions referenced by this array
   3417    will be called in ascending order of priority (i.e. lowest first) when the
   3418    module is loaded.  The order of functions with the same priority is not
   3419    defined.</p>
   3420 
   3421 </div>
   3422 
   3423 <!-- ======================================================================= -->
   3424 <h3>
   3425 <a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
   3426 </h3>
   3427 
   3428 <div>
   3429 
   3430 <div class="doc_code">
   3431 <pre>
   3432 %0 = type { i32, void ()* }
   3433 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
   3434 </pre>
   3435 </div>
   3436 
   3437 <p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions
   3438    and associated priorities.  The functions referenced by this array will be
   3439    called in descending order of priority (i.e. highest first) when the module
   3440    is loaded.  The order of functions with the same priority is not defined.</p>
   3441 
   3442 </div>
   3443 
   3444 </div>
   3445 
   3446 <!-- *********************************************************************** -->
   3447 <h2><a name="instref">Instruction Reference</a></h2>
   3448 <!-- *********************************************************************** -->
   3449 
   3450 <div>
   3451 
   3452 <p>The LLVM instruction set consists of several different classifications of
   3453    instructions: <a href="#terminators">terminator
   3454    instructions</a>, <a href="#binaryops">binary instructions</a>,
   3455    <a href="#bitwiseops">bitwise binary instructions</a>,
   3456    <a href="#memoryops">memory instructions</a>, and
   3457    <a href="#otherops">other instructions</a>.</p>
   3458 
   3459 <!-- ======================================================================= -->
   3460 <h3>
   3461   <a name="terminators">Terminator Instructions</a>
   3462 </h3>
   3463 
   3464 <div>
   3465 
   3466 <p>As mentioned <a href="#functionstructure">previously</a>, every basic block
   3467    in a program ends with a "Terminator" instruction, which indicates which
   3468    block should be executed after the current block is finished. These
   3469    terminator instructions typically yield a '<tt>void</tt>' value: they produce
   3470    control flow, not values (the one exception being the
   3471    '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
   3472 
   3473 <p>The terminator instructions are: 
   3474    '<a href="#i_ret"><tt>ret</tt></a>', 
   3475    '<a href="#i_br"><tt>br</tt></a>',
   3476    '<a href="#i_switch"><tt>switch</tt></a>', 
   3477    '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
   3478    '<a href="#i_invoke"><tt>invoke</tt></a>', 
   3479    '<a href="#i_resume"><tt>resume</tt></a>', and 
   3480    '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
   3481 
   3482 <!-- _______________________________________________________________________ -->
   3483 <h4>
   3484   <a name="i_ret">'<tt>ret</tt>' Instruction</a>
   3485 </h4>
   3486 
   3487 <div>
   3488 
   3489 <h5>Syntax:</h5>
   3490 <pre>
   3491   ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
   3492   ret void                 <i>; Return from void function</i>
   3493 </pre>
   3494 
   3495 <h5>Overview:</h5>
   3496 <p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
   3497    a value) from a function back to the caller.</p>
   3498 
   3499 <p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
   3500    value and then causes control flow, and one that just causes control flow to
   3501    occur.</p>
   3502 
   3503 <h5>Arguments:</h5>
   3504 <p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
   3505    return value. The type of the return value must be a
   3506    '<a href="#t_firstclass">first class</a>' type.</p>
   3507 
   3508 <p>A function is not <a href="#wellformed">well formed</a> if it it has a
   3509    non-void return type and contains a '<tt>ret</tt>' instruction with no return
   3510    value or a return value with a type that does not match its type, or if it
   3511    has a void return type and contains a '<tt>ret</tt>' instruction with a
   3512    return value.</p>
   3513 
   3514 <h5>Semantics:</h5>
   3515 <p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
   3516    the calling function's context.  If the caller is a
   3517    "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
   3518    instruction after the call.  If the caller was an
   3519    "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
   3520    the beginning of the "normal" destination block.  If the instruction returns
   3521    a value, that value shall set the call or invoke instruction's return
   3522    value.</p>
   3523 
   3524 <h5>Example:</h5>
   3525 <pre>
   3526   ret i32 5                       <i>; Return an integer value of 5</i>
   3527   ret void                        <i>; Return from a void function</i>
   3528   ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
   3529 </pre>
   3530 
   3531 </div>
   3532 <!-- _______________________________________________________________________ -->
   3533 <h4>
   3534   <a name="i_br">'<tt>br</tt>' Instruction</a>
   3535 </h4>
   3536 
   3537 <div>
   3538 
   3539 <h5>Syntax:</h5>
   3540 <pre>
   3541   br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
   3542   br label &lt;dest&gt;          <i>; Unconditional branch</i>
   3543 </pre>
   3544 
   3545 <h5>Overview:</h5>
   3546 <p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
   3547    different basic block in the current function.  There are two forms of this
   3548    instruction, corresponding to a conditional branch and an unconditional
   3549    branch.</p>
   3550 
   3551 <h5>Arguments:</h5>
   3552 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
   3553    '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The unconditional form
   3554    of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
   3555    target.</p>
   3556 
   3557 <h5>Semantics:</h5>
   3558 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
   3559    argument is evaluated.  If the value is <tt>true</tt>, control flows to the
   3560    '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
   3561    control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
   3562 
   3563 <h5>Example:</h5>
   3564 <pre>
   3565 Test:
   3566   %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
   3567   br i1 %cond, label %IfEqual, label %IfUnequal
   3568 IfEqual:
   3569   <a href="#i_ret">ret</a> i32 1
   3570 IfUnequal:
   3571   <a href="#i_ret">ret</a> i32 0
   3572 </pre>
   3573 
   3574 </div>
   3575 
   3576 <!-- _______________________________________________________________________ -->
   3577 <h4>
   3578    <a name="i_switch">'<tt>switch</tt>' Instruction</a>
   3579 </h4>
   3580 
   3581 <div>
   3582 
   3583 <h5>Syntax:</h5>
   3584 <pre>
   3585   switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
   3586 </pre>
   3587 
   3588 <h5>Overview:</h5>
   3589 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
   3590    several different places.  It is a generalization of the '<tt>br</tt>'
   3591    instruction, allowing a branch to occur to one of many possible
   3592    destinations.</p>
   3593 
   3594 <h5>Arguments:</h5>
   3595 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
   3596    comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
   3597    and an array of pairs of comparison value constants and '<tt>label</tt>'s.
   3598    The table is not allowed to contain duplicate constant entries.</p>
   3599 
   3600 <h5>Semantics:</h5>
   3601 <p>The <tt>switch</tt> instruction specifies a table of values and
   3602    destinations. When the '<tt>switch</tt>' instruction is executed, this table
   3603    is searched for the given value.  If the value is found, control flow is
   3604    transferred to the corresponding destination; otherwise, control flow is
   3605    transferred to the default destination.</p>
   3606 
   3607 <h5>Implementation:</h5>
   3608 <p>Depending on properties of the target machine and the particular
   3609    <tt>switch</tt> instruction, this instruction may be code generated in
   3610    different ways.  For example, it could be generated as a series of chained
   3611    conditional branches or with a lookup table.</p>
   3612 
   3613 <h5>Example:</h5>
   3614 <pre>
   3615  <i>; Emulate a conditional br instruction</i>
   3616  %Val = <a href="#i_zext">zext</a> i1 %value to i32
   3617  switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
   3618 
   3619  <i>; Emulate an unconditional br instruction</i>
   3620  switch i32 0, label %dest [ ]
   3621 
   3622  <i>; Implement a jump table:</i>
   3623  switch i32 %val, label %otherwise [ i32 0, label %onzero
   3624                                      i32 1, label %onone
   3625                                      i32 2, label %ontwo ]
   3626 </pre>
   3627 
   3628 </div>
   3629 
   3630 
   3631 <!-- _______________________________________________________________________ -->
   3632 <h4>
   3633    <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
   3634 </h4>
   3635 
   3636 <div>
   3637 
   3638 <h5>Syntax:</h5>
   3639 <pre>
   3640   indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
   3641 </pre>
   3642 
   3643 <h5>Overview:</h5>
   3644 
   3645 <p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
   3646    within the current function, whose address is specified by
   3647    "<tt>address</tt>".  Address must be derived from a <a
   3648    href="#blockaddress">blockaddress</a> constant.</p>
   3649 
   3650 <h5>Arguments:</h5>
   3651 
   3652 <p>The '<tt>address</tt>' argument is the address of the label to jump to.  The
   3653    rest of the arguments indicate the full set of possible destinations that the
   3654    address may point to.  Blocks are allowed to occur multiple times in the
   3655    destination list, though this isn't particularly useful.</p>
   3656 
   3657 <p>This destination list is required so that dataflow analysis has an accurate
   3658    understanding of the CFG.</p>
   3659 
   3660 <h5>Semantics:</h5>
   3661 
   3662 <p>Control transfers to the block specified in the address argument.  All
   3663    possible destination blocks must be listed in the label list, otherwise this
   3664    instruction has undefined behavior.  This implies that jumps to labels
   3665    defined in other functions have undefined behavior as well.</p>
   3666 
   3667 <h5>Implementation:</h5>
   3668 
   3669 <p>This is typically implemented with a jump through a register.</p>
   3670 
   3671 <h5>Example:</h5>
   3672 <pre>
   3673  indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
   3674 </pre>
   3675 
   3676 </div>
   3677 
   3678 
   3679 <!-- _______________________________________________________________________ -->
   3680 <h4>
   3681   <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
   3682 </h4>
   3683 
   3684 <div>
   3685 
   3686 <h5>Syntax:</h5>
   3687 <pre>
   3688   &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
   3689                 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
   3690 </pre>
   3691 
   3692 <h5>Overview:</h5>
   3693 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
   3694    function, with the possibility of control flow transfer to either the
   3695    '<tt>normal</tt>' label or the '<tt>exception</tt>' label.  If the callee
   3696    function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
   3697    control flow will return to the "normal" label.  If the callee (or any
   3698    indirect callees) returns via the "<a href="#i_resume"><tt>resume</tt></a>"
   3699    instruction or other exception handling mechanism, control is interrupted and
   3700    continued at the dynamically nearest "exception" label.</p>
   3701 
   3702 <p>The '<tt>exception</tt>' label is a
   3703    <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
   3704    exception. As such, '<tt>exception</tt>' label is required to have the
   3705    "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
   3706    the information about the behavior of the program after unwinding
   3707    happens, as its first non-PHI instruction. The restrictions on the
   3708    "<tt>landingpad</tt>" instruction's tightly couples it to the
   3709    "<tt>invoke</tt>" instruction, so that the important information contained
   3710    within the "<tt>landingpad</tt>" instruction can't be lost through normal
   3711    code motion.</p>
   3712 
   3713 <h5>Arguments:</h5>
   3714 <p>This instruction requires several arguments:</p>
   3715 
   3716 <ol>
   3717   <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
   3718       convention</a> the call should use.  If none is specified, the call
   3719       defaults to using C calling conventions.</li>
   3720 
   3721   <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
   3722       return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
   3723       '<tt>inreg</tt>' attributes are valid here.</li>
   3724 
   3725   <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
   3726       function value being invoked.  In most cases, this is a direct function
   3727       invocation, but indirect <tt>invoke</tt>s are just as possible, branching
   3728       off an arbitrary pointer to function value.</li>
   3729 
   3730   <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
   3731       function to be invoked. </li>
   3732 
   3733   <li>'<tt>function args</tt>': argument list whose types match the function
   3734       signature argument types and parameter attributes. All arguments must be
   3735       of <a href="#t_firstclass">first class</a> type. If the function
   3736       signature indicates the function accepts a variable number of arguments,
   3737       the extra arguments can be specified.</li>
   3738 
   3739   <li>'<tt>normal label</tt>': the label reached when the called function
   3740       executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
   3741 
   3742   <li>'<tt>exception label</tt>': the label reached when a callee returns via
   3743       the <a href="#i_resume"><tt>resume</tt></a> instruction or other exception
   3744       handling mechanism.</li>
   3745 
   3746   <li>The optional <a href="#fnattrs">function attributes</a> list. Only
   3747       '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
   3748       '<tt>readnone</tt>' attributes are valid here.</li>
   3749 </ol>
   3750 
   3751 <h5>Semantics:</h5>
   3752 <p>This instruction is designed to operate as a standard
   3753    '<tt><a href="#i_call">call</a></tt>' instruction in most regards.  The
   3754    primary difference is that it establishes an association with a label, which
   3755    is used by the runtime library to unwind the stack.</p>
   3756 
   3757 <p>This instruction is used in languages with destructors to ensure that proper
   3758    cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
   3759    exception.  Additionally, this is important for implementation of
   3760    '<tt>catch</tt>' clauses in high-level languages that support them.</p>
   3761 
   3762 <p>For the purposes of the SSA form, the definition of the value returned by the
   3763    '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
   3764    block to the "normal" label. If the callee unwinds then no return value is
   3765    available.</p>
   3766 
   3767 <h5>Example:</h5>
   3768 <pre>
   3769   %retval = invoke i32 @Test(i32 15) to label %Continue
   3770               unwind label %TestCleanup              <i>; {i32}:retval set</i>
   3771   %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
   3772               unwind label %TestCleanup              <i>; {i32}:retval set</i>
   3773 </pre>
   3774 
   3775 </div>
   3776 
   3777  <!-- _______________________________________________________________________ -->
   3778  
   3779 <h4>
   3780   <a name="i_resume">'<tt>resume</tt>' Instruction</a>
   3781 </h4>
   3782 
   3783 <div>
   3784 
   3785 <h5>Syntax:</h5>
   3786 <pre>
   3787   resume &lt;type&gt; &lt;value&gt;
   3788 </pre>
   3789 
   3790 <h5>Overview:</h5>
   3791 <p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
   3792    successors.</p>
   3793 
   3794 <h5>Arguments:</h5>
   3795 <p>The '<tt>resume</tt>' instruction requires one argument, which must have the
   3796    same type as the result of any '<tt>landingpad</tt>' instruction in the same
   3797    function.</p>
   3798 
   3799 <h5>Semantics:</h5>
   3800 <p>The '<tt>resume</tt>' instruction resumes propagation of an existing
   3801    (in-flight) exception whose unwinding was interrupted with
   3802    a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
   3803 
   3804 <h5>Example:</h5>
   3805 <pre>
   3806   resume { i8*, i32 } %exn
   3807 </pre>
   3808 
   3809 </div>
   3810 
   3811 <!-- _______________________________________________________________________ -->
   3812 
   3813 <h4>
   3814   <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
   3815 </h4>
   3816 
   3817 <div>
   3818 
   3819 <h5>Syntax:</h5>
   3820 <pre>
   3821   unreachable
   3822 </pre>
   3823 
   3824 <h5>Overview:</h5>
   3825 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This
   3826    instruction is used to inform the optimizer that a particular portion of the
   3827    code is not reachable.  This can be used to indicate that the code after a
   3828    no-return function cannot be reached, and other facts.</p>
   3829 
   3830 <h5>Semantics:</h5>
   3831 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
   3832 
   3833 </div>
   3834 
   3835 </div>
   3836 
   3837 <!-- ======================================================================= -->
   3838 <h3>
   3839   <a name="binaryops">Binary Operations</a>
   3840 </h3>
   3841 
   3842 <div>
   3843 
   3844 <p>Binary operators are used to do most of the computation in a program.  They
   3845    require two operands of the same type, execute an operation on them, and
   3846    produce a single value.  The operands might represent multiple data, as is
   3847    the case with the <a href="#t_vector">vector</a> data type.  The result value
   3848    has the same type as its operands.</p>
   3849 
   3850 <p>There are several different binary operators:</p>
   3851 
   3852 <!-- _______________________________________________________________________ -->
   3853 <h4>
   3854   <a name="i_add">'<tt>add</tt>' Instruction</a>
   3855 </h4>
   3856 
   3857 <div>
   3858 
   3859 <h5>Syntax:</h5>
   3860 <pre>
   3861   &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3862   &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3863   &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3864   &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3865 </pre>
   3866 
   3867 <h5>Overview:</h5>
   3868 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
   3869 
   3870 <h5>Arguments:</h5>
   3871 <p>The two arguments to the '<tt>add</tt>' instruction must
   3872    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3873    integer values. Both arguments must have identical types.</p>
   3874 
   3875 <h5>Semantics:</h5>
   3876 <p>The value produced is the integer sum of the two operands.</p>
   3877 
   3878 <p>If the sum has unsigned overflow, the result returned is the mathematical
   3879    result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
   3880 
   3881 <p>Because LLVM integers use a two's complement representation, this instruction
   3882    is appropriate for both signed and unsigned integers.</p>
   3883 
   3884 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3885    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3886    <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
   3887    is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
   3888    respectively, occurs.</p>
   3889 
   3890 <h5>Example:</h5>
   3891 <pre>
   3892   &lt;result&gt; = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
   3893 </pre>
   3894 
   3895 </div>
   3896 
   3897 <!-- _______________________________________________________________________ -->
   3898 <h4>
   3899   <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
   3900 </h4>
   3901 
   3902 <div>
   3903 
   3904 <h5>Syntax:</h5>
   3905 <pre>
   3906   &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3907 </pre>
   3908 
   3909 <h5>Overview:</h5>
   3910 <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
   3911 
   3912 <h5>Arguments:</h5>
   3913 <p>The two arguments to the '<tt>fadd</tt>' instruction must be
   3914    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3915    floating point values. Both arguments must have identical types.</p>
   3916 
   3917 <h5>Semantics:</h5>
   3918 <p>The value produced is the floating point sum of the two operands.</p>
   3919 
   3920 <h5>Example:</h5>
   3921 <pre>
   3922   &lt;result&gt; = fadd float 4.0, %var          <i>; yields {float}:result = 4.0 + %var</i>
   3923 </pre>
   3924 
   3925 </div>
   3926 
   3927 <!-- _______________________________________________________________________ -->
   3928 <h4>
   3929    <a name="i_sub">'<tt>sub</tt>' Instruction</a>
   3930 </h4>
   3931 
   3932 <div>
   3933 
   3934 <h5>Syntax:</h5>
   3935 <pre>
   3936   &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3937   &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3938   &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3939   &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3940 </pre>
   3941 
   3942 <h5>Overview:</h5>
   3943 <p>The '<tt>sub</tt>' instruction returns the difference of its two
   3944    operands.</p>
   3945 
   3946 <p>Note that the '<tt>sub</tt>' instruction is used to represent the
   3947    '<tt>neg</tt>' instruction present in most other intermediate
   3948    representations.</p>
   3949 
   3950 <h5>Arguments:</h5>
   3951 <p>The two arguments to the '<tt>sub</tt>' instruction must
   3952    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3953    integer values.  Both arguments must have identical types.</p>
   3954 
   3955 <h5>Semantics:</h5>
   3956 <p>The value produced is the integer difference of the two operands.</p>
   3957 
   3958 <p>If the difference has unsigned overflow, the result returned is the
   3959    mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
   3960    result.</p>
   3961 
   3962 <p>Because LLVM integers use a two's complement representation, this instruction
   3963    is appropriate for both signed and unsigned integers.</p>
   3964 
   3965 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3966    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3967    <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
   3968    is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
   3969    respectively, occurs.</p>
   3970 
   3971 <h5>Example:</h5>
   3972 <pre>
   3973   &lt;result&gt; = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
   3974   &lt;result&gt; = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>
   3975 </pre>
   3976 
   3977 </div>
   3978 
   3979 <!-- _______________________________________________________________________ -->
   3980 <h4>
   3981    <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
   3982 </h4>
   3983 
   3984 <div>
   3985 
   3986 <h5>Syntax:</h5>
   3987 <pre>
   3988   &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3989 </pre>
   3990 
   3991 <h5>Overview:</h5>
   3992 <p>The '<tt>fsub</tt>' instruction returns the difference of its two
   3993    operands.</p>
   3994 
   3995 <p>Note that the '<tt>fsub</tt>' instruction is used to represent the
   3996    '<tt>fneg</tt>' instruction present in most other intermediate
   3997    representations.</p>
   3998 
   3999 <h5>Arguments:</h5>
   4000 <p>The two arguments to the '<tt>fsub</tt>' instruction must be
   4001    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   4002    floating point values.  Both arguments must have identical types.</p>
   4003 
   4004 <h5>Semantics:</h5>
   4005 <p>The value produced is the floating point difference of the two operands.</p>
   4006 
   4007 <h5>Example:</h5>
   4008 <pre>
   4009   &lt;result&gt; = fsub float 4.0, %var           <i>; yields {float}:result = 4.0 - %var</i>
   4010   &lt;result&gt; = fsub float -0.0, %val          <i>; yields {float}:result = -%var</i>
   4011 </pre>
   4012 
   4013 </div>
   4014 
   4015 <!-- _______________________________________________________________________ -->
   4016 <h4>
   4017   <a name="i_mul">'<tt>mul</tt>' Instruction</a>
   4018 </h4>
   4019 
   4020 <div>
   4021 
   4022 <h5>Syntax:</h5>
   4023 <pre>
   4024   &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   4025   &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   4026   &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   4027   &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   4028 </pre>
   4029 
   4030 <h5>Overview:</h5>
   4031 <p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
   4032 
   4033 <h5>Arguments:</h5>
   4034 <p>The two arguments to the '<tt>mul</tt>' instruction must
   4035    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   4036    integer values.  Both arguments must have identical types.</p>
   4037 
   4038 <h5>Semantics:</h5>
   4039 <p>The value produced is the integer product of the two operands.</p>
   4040 
   4041 <p>If the result of the multiplication has unsigned overflow, the result
   4042    returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
   4043    width of the result.</p>
   4044 
   4045 <p>Because LLVM integers use a two's complement representation, and the result
   4046    is the same width as the operands, this instruction returns the correct
   4047    result for both signed and unsigned integers.  If a full product
   4048    (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
   4049    be sign-extended or zero-extended as appropriate to the width of the full
   4050    product.</p>
   4051 
   4052 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   4053    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   4054    <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
   4055    is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
   4056    respectively, occurs.</p>
   4057 
   4058 <h5>Example:</h5>
   4059 <pre>
   4060   &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
   4061 </pre>
   4062 
   4063 </div>
   4064 
   4065 <!-- _______________________________________________________________________ -->
   4066 <h4>
   4067   <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
   4068 </h4>
   4069 
   4070 <div>
   4071 
   4072 <h5>Syntax:</h5>
   4073 <pre>
   4074   &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4075 </pre>
   4076 
   4077 <h5>Overview:</h5>
   4078 <p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
   4079 
   4080 <h5>Arguments:</h5>
   4081 <p>The two arguments to the '<tt>fmul</tt>' instruction must be
   4082    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   4083    floating point values.  Both arguments must have identical types.</p>
   4084 
   4085 <h5>Semantics:</h5>
   4086 <p>The value produced is the floating point product of the two operands.</p>
   4087 
   4088 <h5>Example:</h5>
   4089 <pre>
   4090   &lt;result&gt; = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i>
   4091 </pre>
   4092 
   4093 </div>
   4094 
   4095 <!-- _______________________________________________________________________ -->
   4096 <h4>
   4097   <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
   4098 </h4>
   4099 
   4100 <div>
   4101 
   4102 <h5>Syntax:</h5>
   4103 <pre>
   4104   &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   4105   &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4106 </pre>
   4107 
   4108 <h5>Overview:</h5>
   4109 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
   4110 
   4111 <h5>Arguments:</h5>
   4112 <p>The two arguments to the '<tt>udiv</tt>' instruction must be
   4113    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4114    values.  Both arguments must have identical types.</p>
   4115 
   4116 <h5>Semantics:</h5>
   4117 <p>The value produced is the unsigned integer quotient of the two operands.</p>
   4118 
   4119 <p>Note that unsigned integer division and signed integer division are distinct
   4120    operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
   4121 
   4122 <p>Division by zero leads to undefined behavior.</p>
   4123 
   4124 <p>If the <tt>exact</tt> keyword is present, the result value of the
   4125    <tt>udiv</tt> is a <a href="#poisonvalues">poison value</a> if %op1 is not a
   4126   multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
   4127 
   4128 
   4129 <h5>Example:</h5>
   4130 <pre>
   4131   &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
   4132 </pre>
   4133 
   4134 </div>
   4135 
   4136 <!-- _______________________________________________________________________ -->
   4137 <h4>
   4138   <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
   4139 </h4>
   4140 
   4141 <div>
   4142 
   4143 <h5>Syntax:</h5>
   4144 <pre>
   4145   &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   4146   &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4147 </pre>
   4148 
   4149 <h5>Overview:</h5>
   4150 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
   4151 
   4152 <h5>Arguments:</h5>
   4153 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
   4154    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4155    values.  Both arguments must have identical types.</p>
   4156 
   4157 <h5>Semantics:</h5>
   4158 <p>The value produced is the signed integer quotient of the two operands rounded
   4159    towards zero.</p>
   4160 
   4161 <p>Note that signed integer division and unsigned integer division are distinct
   4162    operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
   4163 
   4164 <p>Division by zero leads to undefined behavior. Overflow also leads to
   4165    undefined behavior; this is a rare case, but can occur, for example, by doing
   4166    a 32-bit division of -2147483648 by -1.</p>
   4167 
   4168 <p>If the <tt>exact</tt> keyword is present, the result value of the
   4169    <tt>sdiv</tt> is a <a href="#poisonvalues">poison value</a> if the result would
   4170    be rounded.</p>
   4171 
   4172 <h5>Example:</h5>
   4173 <pre>
   4174   &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
   4175 </pre>
   4176 
   4177 </div>
   4178 
   4179 <!-- _______________________________________________________________________ -->
   4180 <h4>
   4181   <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
   4182 </h4>
   4183 
   4184 <div>
   4185 
   4186 <h5>Syntax:</h5>
   4187 <pre>
   4188   &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4189 </pre>
   4190 
   4191 <h5>Overview:</h5>
   4192 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
   4193 
   4194 <h5>Arguments:</h5>
   4195 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
   4196    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   4197    floating point values.  Both arguments must have identical types.</p>
   4198 
   4199 <h5>Semantics:</h5>
   4200 <p>The value produced is the floating point quotient of the two operands.</p>
   4201 
   4202 <h5>Example:</h5>
   4203 <pre>
   4204   &lt;result&gt; = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>
   4205 </pre>
   4206 
   4207 </div>
   4208 
   4209 <!-- _______________________________________________________________________ -->
   4210 <h4>
   4211   <a name="i_urem">'<tt>urem</tt>' Instruction</a>
   4212 </h4>
   4213 
   4214 <div>
   4215 
   4216 <h5>Syntax:</h5>
   4217 <pre>
   4218   &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4219 </pre>
   4220 
   4221 <h5>Overview:</h5>
   4222 <p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
   4223    division of its two arguments.</p>
   4224 
   4225 <h5>Arguments:</h5>
   4226 <p>The two arguments to the '<tt>urem</tt>' instruction must be
   4227    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4228    values.  Both arguments must have identical types.</p>
   4229 
   4230 <h5>Semantics:</h5>
   4231 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
   4232    This instruction always performs an unsigned division to get the
   4233    remainder.</p>
   4234 
   4235 <p>Note that unsigned integer remainder and signed integer remainder are
   4236    distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
   4237 
   4238 <p>Taking the remainder of a division by zero leads to undefined behavior.</p>
   4239 
   4240 <h5>Example:</h5>
   4241 <pre>
   4242   &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
   4243 </pre>
   4244 
   4245 </div>
   4246 
   4247 <!-- _______________________________________________________________________ -->
   4248 <h4>
   4249   <a name="i_srem">'<tt>srem</tt>' Instruction</a>
   4250 </h4>
   4251 
   4252 <div>
   4253 
   4254 <h5>Syntax:</h5>
   4255 <pre>
   4256   &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4257 </pre>
   4258 
   4259 <h5>Overview:</h5>
   4260 <p>The '<tt>srem</tt>' instruction returns the remainder from the signed
   4261    division of its two operands. This instruction can also take
   4262    <a href="#t_vector">vector</a> versions of the values in which case the
   4263    elements must be integers.</p>
   4264 
   4265 <h5>Arguments:</h5>
   4266 <p>The two arguments to the '<tt>srem</tt>' instruction must be
   4267    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4268    values.  Both arguments must have identical types.</p>
   4269 
   4270 <h5>Semantics:</h5>
   4271 <p>This instruction returns the <i>remainder</i> of a division (where the result
   4272    is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
   4273    <i>modulo</i> operator (where the result is either zero or has the same sign
   4274    as the divisor, <tt>op2</tt>) of a value.
   4275    For more information about the difference,
   4276    see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
   4277    Math Forum</a>. For a table of how this is implemented in various languages,
   4278    please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
   4279    Wikipedia: modulo operation</a>.</p>
   4280 
   4281 <p>Note that signed integer remainder and unsigned integer remainder are
   4282    distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
   4283 
   4284 <p>Taking the remainder of a division by zero leads to undefined behavior.
   4285    Overflow also leads to undefined behavior; this is a rare case, but can
   4286    occur, for example, by taking the remainder of a 32-bit division of
   4287    -2147483648 by -1.  (The remainder doesn't actually overflow, but this rule
   4288    lets srem be implemented using instructions that return both the result of
   4289    the division and the remainder.)</p>
   4290 
   4291 <h5>Example:</h5>
   4292 <pre>
   4293   &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
   4294 </pre>
   4295 
   4296 </div>
   4297 
   4298 <!-- _______________________________________________________________________ -->
   4299 <h4>
   4300   <a name="i_frem">'<tt>frem</tt>' Instruction</a>
   4301 </h4>
   4302 
   4303 <div>
   4304 
   4305 <h5>Syntax:</h5>
   4306 <pre>
   4307   &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4308 </pre>
   4309 
   4310 <h5>Overview:</h5>
   4311 <p>The '<tt>frem</tt>' instruction returns the remainder from the division of
   4312    its two operands.</p>
   4313 
   4314 <h5>Arguments:</h5>
   4315 <p>The two arguments to the '<tt>frem</tt>' instruction must be
   4316    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   4317    floating point values.  Both arguments must have identical types.</p>
   4318 
   4319 <h5>Semantics:</h5>
   4320 <p>This instruction returns the <i>remainder</i> of a division.  The remainder
   4321    has the same sign as the dividend.</p>
   4322 
   4323 <h5>Example:</h5>
   4324 <pre>
   4325   &lt;result&gt; = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>
   4326 </pre>
   4327 
   4328 </div>
   4329 
   4330 </div>
   4331 
   4332 <!-- ======================================================================= -->
   4333 <h3>
   4334   <a name="bitwiseops">Bitwise Binary Operations</a>
   4335 </h3>
   4336 
   4337 <div>
   4338 
   4339 <p>Bitwise binary operators are used to do various forms of bit-twiddling in a
   4340    program.  They are generally very efficient instructions and can commonly be
   4341    strength reduced from other instructions.  They require two operands of the
   4342    same type, execute an operation on them, and produce a single value.  The
   4343    resulting value is the same type as its operands.</p>
   4344 
   4345 <!-- _______________________________________________________________________ -->
   4346 <h4>
   4347   <a name="i_shl">'<tt>shl</tt>' Instruction</a>
   4348 </h4>
   4349 
   4350 <div>
   4351 
   4352 <h5>Syntax:</h5>
   4353 <pre>
   4354   &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;           <i>; yields {ty}:result</i>
   4355   &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
   4356   &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
   4357   &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4358 </pre>
   4359 
   4360 <h5>Overview:</h5>
   4361 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
   4362    a specified number of bits.</p>
   4363 
   4364 <h5>Arguments:</h5>
   4365 <p>Both arguments to the '<tt>shl</tt>' instruction must be the
   4366     same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   4367     integer type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
   4368 
   4369 <h5>Semantics:</h5>
   4370 <p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
   4371    2<sup>n</sup>, where <tt>n</tt> is the width of the result.  If <tt>op2</tt>
   4372    is (statically or dynamically) negative or equal to or larger than the number
   4373    of bits in <tt>op1</tt>, the result is undefined.  If the arguments are
   4374    vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
   4375    shift amount in <tt>op2</tt>.</p>
   4376 
   4377 <p>If the <tt>nuw</tt> keyword is present, then the shift produces a 
   4378    <a href="#poisonvalues">poison value</a> if it shifts out any non-zero bits.  If
   4379    the <tt>nsw</tt> keyword is present, then the shift produces a
   4380    <a href="#poisonvalues">poison value</a> if it shifts out any bits that disagree
   4381    with the resultant sign bit.  As such, NUW/NSW have the same semantics as
   4382    they would if the shift were expressed as a mul instruction with the same
   4383    nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
   4384 
   4385 <h5>Example:</h5>
   4386 <pre>
   4387   &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
   4388   &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
   4389   &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
   4390   &lt;result&gt; = shl i32 1, 32     <i>; undefined</i>
   4391   &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
   4392 </pre>
   4393 
   4394 </div>
   4395 
   4396 <!-- _______________________________________________________________________ -->
   4397 <h4>
   4398   <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
   4399 </h4>
   4400 
   4401 <div>
   4402 
   4403 <h5>Syntax:</h5>
   4404 <pre>
   4405   &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   4406   &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4407 </pre>
   4408 
   4409 <h5>Overview:</h5>
   4410 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
   4411    operand shifted to the right a specified number of bits with zero fill.</p>
   4412 
   4413 <h5>Arguments:</h5>
   4414 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
   4415    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4416    type. '<tt>op2</tt>' is treated as an unsigned value.</p>
   4417 
   4418 <h5>Semantics:</h5>
   4419 <p>This instruction always performs a logical shift right operation. The most
   4420    significant bits of the result will be filled with zero bits after the shift.
   4421    If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
   4422    number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
   4423    vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
   4424    shift amount in <tt>op2</tt>.</p>
   4425 
   4426 <p>If the <tt>exact</tt> keyword is present, the result value of the
   4427    <tt>lshr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
   4428    shifted out are non-zero.</p>
   4429 
   4430 
   4431 <h5>Example:</h5>
   4432 <pre>
   4433   &lt;result&gt; = lshr i32 4, 1   <i>; yields {i32}:result = 2</i>
   4434   &lt;result&gt; = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
   4435   &lt;result&gt; = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
   4436   &lt;result&gt; = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
   4437   &lt;result&gt; = lshr i32 1, 32  <i>; undefined</i>
   4438   &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
   4439 </pre>
   4440 
   4441 </div>
   4442 
   4443 <!-- _______________________________________________________________________ -->
   4444 <h4>
   4445   <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
   4446 </h4>
   4447 
   4448 <div>
   4449 
   4450 <h5>Syntax:</h5>
   4451 <pre>
   4452   &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   4453   &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4454 </pre>
   4455 
   4456 <h5>Overview:</h5>
   4457 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
   4458    operand shifted to the right a specified number of bits with sign
   4459    extension.</p>
   4460 
   4461 <h5>Arguments:</h5>
   4462 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
   4463    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4464    type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
   4465 
   4466 <h5>Semantics:</h5>
   4467 <p>This instruction always performs an arithmetic shift right operation, The
   4468    most significant bits of the result will be filled with the sign bit
   4469    of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or
   4470    larger than the number of bits in <tt>op1</tt>, the result is undefined. If
   4471    the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
   4472    the corresponding shift amount in <tt>op2</tt>.</p>
   4473 
   4474 <p>If the <tt>exact</tt> keyword is present, the result value of the
   4475    <tt>ashr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
   4476    shifted out are non-zero.</p>
   4477 
   4478 <h5>Example:</h5>
   4479 <pre>
   4480   &lt;result&gt; = ashr i32 4, 1   <i>; yields {i32}:result = 2</i>
   4481   &lt;result&gt; = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
   4482   &lt;result&gt; = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
   4483   &lt;result&gt; = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
   4484   &lt;result&gt; = ashr i32 1, 32  <i>; undefined</i>
   4485   &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
   4486 </pre>
   4487 
   4488 </div>
   4489 
   4490 <!-- _______________________________________________________________________ -->
   4491 <h4>
   4492   <a name="i_and">'<tt>and</tt>' Instruction</a>
   4493 </h4>
   4494 
   4495 <div>
   4496 
   4497 <h5>Syntax:</h5>
   4498 <pre>
   4499   &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4500 </pre>
   4501 
   4502 <h5>Overview:</h5>
   4503 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
   4504    operands.</p>
   4505 
   4506 <h5>Arguments:</h5>
   4507 <p>The two arguments to the '<tt>and</tt>' instruction must be
   4508    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4509    values.  Both arguments must have identical types.</p>
   4510 
   4511 <h5>Semantics:</h5>
   4512 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
   4513 
   4514 <table border="1" cellspacing="0" cellpadding="4">
   4515   <tbody>
   4516     <tr>
   4517       <th>In0</th>
   4518       <th>In1</th>
   4519       <th>Out</th>
   4520     </tr>
   4521     <tr>
   4522       <td>0</td>
   4523       <td>0</td>
   4524       <td>0</td>
   4525     </tr>
   4526     <tr>
   4527       <td>0</td>
   4528       <td>1</td>
   4529       <td>0</td>
   4530     </tr>
   4531     <tr>
   4532       <td>1</td>
   4533       <td>0</td>
   4534       <td>0</td>
   4535     </tr>
   4536     <tr>
   4537       <td>1</td>
   4538       <td>1</td>
   4539       <td>1</td>
   4540     </tr>
   4541   </tbody>
   4542 </table>
   4543 
   4544 <h5>Example:</h5>
   4545 <pre>
   4546   &lt;result&gt; = and i32 4, %var         <i>; yields {i32}:result = 4 &amp; %var</i>
   4547   &lt;result&gt; = and i32 15, 40          <i>; yields {i32}:result = 8</i>
   4548   &lt;result&gt; = and i32 4, 8            <i>; yields {i32}:result = 0</i>
   4549 </pre>
   4550 </div>
   4551 <!-- _______________________________________________________________________ -->
   4552 <h4>
   4553   <a name="i_or">'<tt>or</tt>' Instruction</a>
   4554 </h4>
   4555 
   4556 <div>
   4557 
   4558 <h5>Syntax:</h5>
   4559 <pre>
   4560   &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4561 </pre>
   4562 
   4563 <h5>Overview:</h5>
   4564 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
   4565    two operands.</p>
   4566 
   4567 <h5>Arguments:</h5>
   4568 <p>The two arguments to the '<tt>or</tt>' instruction must be
   4569    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4570    values.  Both arguments must have identical types.</p>
   4571 
   4572 <h5>Semantics:</h5>
   4573 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
   4574 
   4575 <table border="1" cellspacing="0" cellpadding="4">
   4576   <tbody>
   4577     <tr>
   4578       <th>In0</th>
   4579       <th>In1</th>
   4580       <th>Out</th>
   4581     </tr>
   4582     <tr>
   4583       <td>0</td>
   4584       <td>0</td>
   4585       <td>0</td>
   4586     </tr>
   4587     <tr>
   4588       <td>0</td>
   4589       <td>1</td>
   4590       <td>1</td>
   4591     </tr>
   4592     <tr>
   4593       <td>1</td>
   4594       <td>0</td>
   4595       <td>1</td>
   4596     </tr>
   4597     <tr>
   4598       <td>1</td>
   4599       <td>1</td>
   4600       <td>1</td>
   4601     </tr>
   4602   </tbody>
   4603 </table>
   4604 
   4605 <h5>Example:</h5>
   4606 <pre>
   4607   &lt;result&gt; = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
   4608   &lt;result&gt; = or i32 15, 40          <i>; yields {i32}:result = 47</i>
   4609   &lt;result&gt; = or i32 4, 8            <i>; yields {i32}:result = 12</i>
   4610 </pre>
   4611 
   4612 </div>
   4613 
   4614 <!-- _______________________________________________________________________ -->
   4615 <h4>
   4616   <a name="i_xor">'<tt>xor</tt>' Instruction</a>
   4617 </h4>
   4618 
   4619 <div>
   4620 
   4621 <h5>Syntax:</h5>
   4622 <pre>
   4623   &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4624 </pre>
   4625 
   4626 <h5>Overview:</h5>
   4627 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
   4628    its two operands.  The <tt>xor</tt> is used to implement the "one's
   4629    complement" operation, which is the "~" operator in C.</p>
   4630 
   4631 <h5>Arguments:</h5>
   4632 <p>The two arguments to the '<tt>xor</tt>' instruction must be
   4633    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4634    values.  Both arguments must have identical types.</p>
   4635 
   4636 <h5>Semantics:</h5>
   4637 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
   4638 
   4639 <table border="1" cellspacing="0" cellpadding="4">
   4640   <tbody>
   4641     <tr>
   4642       <th>In0</th>
   4643       <th>In1</th>
   4644       <th>Out</th>
   4645     </tr>
   4646     <tr>
   4647       <td>0</td>
   4648       <td>0</td>
   4649       <td>0</td>
   4650     </tr>
   4651     <tr>
   4652       <td>0</td>
   4653       <td>1</td>
   4654       <td>1</td>
   4655     </tr>
   4656     <tr>
   4657       <td>1</td>
   4658       <td>0</td>
   4659       <td>1</td>
   4660     </tr>
   4661     <tr>
   4662       <td>1</td>
   4663       <td>1</td>
   4664       <td>0</td>
   4665     </tr>
   4666   </tbody>
   4667 </table>
   4668 
   4669 <h5>Example:</h5>
   4670 <pre>
   4671   &lt;result&gt; = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
   4672   &lt;result&gt; = xor i32 15, 40          <i>; yields {i32}:result = 39</i>
   4673   &lt;result&gt; = xor i32 4, 8            <i>; yields {i32}:result = 12</i>
   4674   &lt;result&gt; = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>
   4675 </pre>
   4676 
   4677 </div>
   4678 
   4679 </div>
   4680 
   4681 <!-- ======================================================================= -->
   4682 <h3>
   4683   <a name="vectorops">Vector Operations</a>
   4684 </h3>
   4685 
   4686 <div>
   4687 
   4688 <p>LLVM supports several instructions to represent vector operations in a
   4689    target-independent manner.  These instructions cover the element-access and
   4690    vector-specific operations needed to process vectors effectively.  While LLVM
   4691    does directly support these vector operations, many sophisticated algorithms
   4692    will want to use target-specific intrinsics to take full advantage of a
   4693    specific target.</p>
   4694 
   4695 <!-- _______________________________________________________________________ -->
   4696 <h4>
   4697    <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
   4698 </h4>
   4699 
   4700 <div>
   4701 
   4702 <h5>Syntax:</h5>
   4703 <pre>
   4704   &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt;    <i>; yields &lt;ty&gt;</i>
   4705 </pre>
   4706 
   4707 <h5>Overview:</h5>
   4708 <p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
   4709    from a vector at a specified index.</p>
   4710 
   4711 
   4712 <h5>Arguments:</h5>
   4713 <p>The first operand of an '<tt>extractelement</tt>' instruction is a value
   4714    of <a href="#t_vector">vector</a> type.  The second operand is an index
   4715    indicating the position from which to extract the element.  The index may be
   4716    a variable.</p>
   4717 
   4718 <h5>Semantics:</h5>
   4719 <p>The result is a scalar of the same type as the element type of
   4720    <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
   4721    <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
   4722    results are undefined.</p>
   4723 
   4724 <h5>Example:</h5>
   4725 <pre>
   4726   &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0    <i>; yields i32</i>
   4727 </pre>
   4728 
   4729 </div>
   4730 
   4731 <!-- _______________________________________________________________________ -->
   4732 <h4>
   4733    <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
   4734 </h4>
   4735 
   4736 <div>
   4737 
   4738 <h5>Syntax:</h5>
   4739 <pre>
   4740   &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
   4741 </pre>
   4742 
   4743 <h5>Overview:</h5>
   4744 <p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
   4745    vector at a specified index.</p>
   4746 
   4747 <h5>Arguments:</h5>
   4748 <p>The first operand of an '<tt>insertelement</tt>' instruction is a value
   4749    of <a href="#t_vector">vector</a> type.  The second operand is a scalar value
   4750    whose type must equal the element type of the first operand.  The third
   4751    operand is an index indicating the position at which to insert the value.
   4752    The index may be a variable.</p>
   4753 
   4754 <h5>Semantics:</h5>
   4755 <p>The result is a vector of the same type as <tt>val</tt>.  Its element values
   4756    are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
   4757    value <tt>elt</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
   4758    results are undefined.</p>
   4759 
   4760 <h5>Example:</h5>
   4761 <pre>
   4762   &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0    <i>; yields &lt;4 x i32&gt;</i>
   4763 </pre>
   4764 
   4765 </div>
   4766 
   4767 <!-- _______________________________________________________________________ -->
   4768 <h4>
   4769    <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
   4770 </h4>
   4771 
   4772 <div>
   4773 
   4774 <h5>Syntax:</h5>
   4775 <pre>
   4776   &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt;    <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
   4777 </pre>
   4778 
   4779 <h5>Overview:</h5>
   4780 <p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
   4781    from two input vectors, returning a vector with the same element type as the
   4782    input and length that is the same as the shuffle mask.</p>
   4783 
   4784 <h5>Arguments:</h5>
   4785 <p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
   4786    with the same type.  The third argument is a shuffle mask whose
   4787    element type is always 'i32'.  The result of the instruction is a vector
   4788    whose length is the same as the shuffle mask and whose element type is the
   4789    same as the element type of the first two operands.</p>
   4790 
   4791 <p>The shuffle mask operand is required to be a constant vector with either
   4792    constant integer or undef values.</p>
   4793 
   4794 <h5>Semantics:</h5>
   4795 <p>The elements of the two input vectors are numbered from left to right across
   4796    both of the vectors.  The shuffle mask operand specifies, for each element of
   4797    the result vector, which element of the two input vectors the result element
   4798    gets.  The element selector may be undef (meaning "don't care") and the
   4799    second operand may be undef if performing a shuffle from only one vector.</p>
   4800 
   4801 <h5>Example:</h5>
   4802 <pre>
   4803   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
   4804                           &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt;  <i>; yields &lt;4 x i32&gt;</i>
   4805   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
   4806                           &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
   4807   &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
   4808                           &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i>
   4809   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
   4810                           &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt;  <i>; yields &lt;8 x i32&gt;</i>
   4811 </pre>
   4812 
   4813 </div>
   4814 
   4815 </div>
   4816 
   4817 <!-- ======================================================================= -->
   4818 <h3>
   4819   <a name="aggregateops">Aggregate Operations</a>
   4820 </h3>
   4821 
   4822 <div>
   4823 
   4824 <p>LLVM supports several instructions for working with
   4825   <a href="#t_aggregate">aggregate</a> values.</p>
   4826 
   4827 <!-- _______________________________________________________________________ -->
   4828 <h4>
   4829    <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
   4830 </h4>
   4831 
   4832 <div>
   4833 
   4834 <h5>Syntax:</h5>
   4835 <pre>
   4836   &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
   4837 </pre>
   4838 
   4839 <h5>Overview:</h5>
   4840 <p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
   4841    from an <a href="#t_aggregate">aggregate</a> value.</p>
   4842 
   4843 <h5>Arguments:</h5>
   4844 <p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
   4845    of <a href="#t_struct">struct</a> or
   4846    <a href="#t_array">array</a> type.  The operands are constant indices to
   4847    specify which value to extract in a similar manner as indices in a
   4848    '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
   4849    <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
   4850      <ul>
   4851        <li>Since the value being indexed is not a pointer, the first index is
   4852            omitted and assumed to be zero.</li>
   4853        <li>At least one index must be specified.</li>
   4854        <li>Not only struct indices but also array indices must be in
   4855            bounds.</li>
   4856      </ul>
   4857 
   4858 <h5>Semantics:</h5>
   4859 <p>The result is the value at the position in the aggregate specified by the
   4860    index operands.</p>
   4861 
   4862 <h5>Example:</h5>
   4863 <pre>
   4864   &lt;result&gt; = extractvalue {i32, float} %agg, 0    <i>; yields i32</i>
   4865 </pre>
   4866 
   4867 </div>
   4868 
   4869 <!-- _______________________________________________________________________ -->
   4870 <h4>
   4871    <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
   4872 </h4>
   4873 
   4874 <div>
   4875 
   4876 <h5>Syntax:</h5>
   4877 <pre>
   4878   &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}*    <i>; yields &lt;aggregate type&gt;</i>
   4879 </pre>
   4880 
   4881 <h5>Overview:</h5>
   4882 <p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
   4883    in an <a href="#t_aggregate">aggregate</a> value.</p>
   4884 
   4885 <h5>Arguments:</h5>
   4886 <p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
   4887    of <a href="#t_struct">struct</a> or
   4888    <a href="#t_array">array</a> type.  The second operand is a first-class
   4889    value to insert.  The following operands are constant indices indicating
   4890    the position at which to insert the value in a similar manner as indices in a
   4891    '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction.  The
   4892    value to insert must have the same type as the value identified by the
   4893    indices.</p>
   4894 
   4895 <h5>Semantics:</h5>
   4896 <p>The result is an aggregate of the same type as <tt>val</tt>.  Its value is
   4897    that of <tt>val</tt> except that the value at the position specified by the
   4898    indices is that of <tt>elt</tt>.</p>
   4899 
   4900 <h5>Example:</h5>
   4901 <pre>
   4902   %agg1 = insertvalue {i32, float} undef, i32 1, 0              <i>; yields {i32 1, float undef}</i>
   4903   %agg2 = insertvalue {i32, float} %agg1, float %val, 1         <i>; yields {i32 1, float %val}</i>
   4904   %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0    <i>; yields {i32 1, float %val}</i>
   4905 </pre>
   4906 
   4907 </div>
   4908 
   4909 </div>
   4910 
   4911 <!-- ======================================================================= -->
   4912 <h3>
   4913   <a name="memoryops">Memory Access and Addressing Operations</a>
   4914 </h3>
   4915 
   4916 <div>
   4917 
   4918 <p>A key design point of an SSA-based representation is how it represents
   4919    memory.  In LLVM, no memory locations are in SSA form, which makes things
   4920    very simple.  This section describes how to read, write, and allocate
   4921    memory in LLVM.</p>
   4922 
   4923 <!-- _______________________________________________________________________ -->
   4924 <h4>
   4925   <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
   4926 </h4>
   4927 
   4928 <div>
   4929 
   4930 <h5>Syntax:</h5>
   4931 <pre>
   4932   &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
   4933 </pre>
   4934 
   4935 <h5>Overview:</h5>
   4936 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
   4937    currently executing function, to be automatically released when this function
   4938    returns to its caller. The object is always allocated in the generic address
   4939    space (address space zero).</p>
   4940 
   4941 <h5>Arguments:</h5>
   4942 <p>The '<tt>alloca</tt>' instruction
   4943    allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
   4944    runtime stack, returning a pointer of the appropriate type to the program.
   4945    If "NumElements" is specified, it is the number of elements allocated,
   4946    otherwise "NumElements" is defaulted to be one.  If a constant alignment is
   4947    specified, the value result of the allocation is guaranteed to be aligned to
   4948    at least that boundary.  If not specified, or if zero, the target can choose
   4949    to align the allocation on any convenient boundary compatible with the
   4950    type.</p>
   4951 
   4952 <p>'<tt>type</tt>' may be any sized type.</p>
   4953 
   4954 <h5>Semantics:</h5>
   4955 <p>Memory is allocated; a pointer is returned.  The operation is undefined if
   4956    there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d
   4957    memory is automatically released when the function returns.  The
   4958    '<tt>alloca</tt>' instruction is commonly used to represent automatic
   4959    variables that must have an address available.  When the function returns
   4960    (either with the <tt><a href="#i_ret">ret</a></tt>
   4961    or <tt><a href="#i_resume">resume</a></tt> instructions), the memory is
   4962    reclaimed.  Allocating zero bytes is legal, but the result is undefined.
   4963    The order in which memory is allocated (ie., which way the stack grows) is
   4964    not specified.</p>
   4965 
   4966 <p>
   4967 
   4968 <h5>Example:</h5>
   4969 <pre>
   4970   %ptr = alloca i32                             <i>; yields {i32*}:ptr</i>
   4971   %ptr = alloca i32, i32 4                      <i>; yields {i32*}:ptr</i>
   4972   %ptr = alloca i32, i32 4, align 1024          <i>; yields {i32*}:ptr</i>
   4973   %ptr = alloca i32, align 1024                 <i>; yields {i32*}:ptr</i>
   4974 </pre>
   4975 
   4976 </div>
   4977 
   4978 <!-- _______________________________________________________________________ -->
   4979 <h4>
   4980   <a name="i_load">'<tt>load</tt>' Instruction</a>
   4981 </h4>
   4982 
   4983 <div>
   4984 
   4985 <h5>Syntax:</h5>
   4986 <pre>
   4987   &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;][, !invariant.load !&lt;index&gt;]
   4988   &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
   4989   !&lt;index&gt; = !{ i32 1 }
   4990 </pre>
   4991 
   4992 <h5>Overview:</h5>
   4993 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
   4994 
   4995 <h5>Arguments:</h5>
   4996 <p>The argument to the '<tt>load</tt>' instruction specifies the memory address
   4997    from which to load.  The pointer must point to
   4998    a <a href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
   4999    marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
   5000    number or order of execution of this <tt>load</tt> with other <a
   5001    href="#volatile">volatile operations</a>.</p>
   5002 
   5003 <p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
   5004    <a href="#ordering">ordering</a> and optional <code>singlethread</code>
   5005    argument.  The <code>release</code> and <code>acq_rel</code> orderings are
   5006    not valid on <code>load</code> instructions.  Atomic loads produce <a
   5007    href="#memorymodel">defined</a> results when they may see multiple atomic
   5008    stores.  The type of the pointee must be an integer type whose bit width
   5009    is a power of two greater than or equal to eight and less than or equal
   5010    to a target-specific size limit. <code>align</code> must be explicitly 
   5011    specified on atomic loads, and the load has undefined behavior if the
   5012    alignment is not set to a value which is at least the size in bytes of
   5013    the pointee. <code>!nontemporal</code> does not have any defined semantics
   5014    for atomic loads.</p>
   5015 
   5016 <p>The optional constant <tt>align</tt> argument specifies the alignment of the
   5017    operation (that is, the alignment of the memory address). A value of 0 or an
   5018    omitted <tt>align</tt> argument means that the operation has the preferential
   5019    alignment for the target. It is the responsibility of the code emitter to
   5020    ensure that the alignment information is correct. Overestimating the
   5021    alignment results in undefined behavior. Underestimating the alignment may
   5022    produce less efficient code. An alignment of 1 is always safe.</p>
   5023 
   5024 <p>The optional <tt>!nontemporal</tt> metadata must reference a single
   5025    metatadata name &lt;index&gt; corresponding to a metadata node with
   5026    one <tt>i32</tt> entry of value 1.  The existence of
   5027    the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
   5028    and code generator that this load is not expected to be reused in the cache.
   5029    The code generator may select special instructions to save cache bandwidth,
   5030    such as the <tt>MOVNT</tt> instruction on x86.</p>
   5031 
   5032 <p>The optional <tt>!invariant.load</tt> metadata must reference a single
   5033    metatadata name &lt;index&gt; corresponding to a metadata node with no
   5034    entries.  The existence of the <tt>!invariant.load</tt> metatadata on the
   5035    instruction tells the optimizer and code generator that this load address
   5036    points to memory which does not change value during program execution.
   5037    The optimizer may then move this load around, for example, by hoisting it
   5038    out of loops using loop invariant code motion.</p>
   5039 
   5040 <h5>Semantics:</h5>
   5041 <p>The location of memory pointed to is loaded.  If the value being loaded is of
   5042    scalar type then the number of bytes read does not exceed the minimum number
   5043    of bytes needed to hold all bits of the type.  For example, loading an
   5044    <tt>i24</tt> reads at most three bytes.  When loading a value of a type like
   5045    <tt>i20</tt> with a size that is not an integral number of bytes, the result
   5046    is undefined if the value was not originally written using a store of the
   5047    same type.</p>
   5048 
   5049 <h5>Examples:</h5>
   5050 <pre>
   5051   %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
   5052   <a href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
   5053   %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
   5054 </pre>
   5055 
   5056 </div>
   5057 
   5058 <!-- _______________________________________________________________________ -->
   5059 <h4>
   5060   <a name="i_store">'<tt>store</tt>' Instruction</a>
   5061 </h4>
   5062 
   5063 <div>
   5064 
   5065 <h5>Syntax:</h5>
   5066 <pre>
   5067   store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]        <i>; yields {void}</i>
   5068   store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;  <i>; yields {void}</i>
   5069 </pre>
   5070 
   5071 <h5>Overview:</h5>
   5072 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
   5073 
   5074 <h5>Arguments:</h5>
   5075 <p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
   5076    and an address at which to store it.  The type of the
   5077    '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
   5078    the <a href="#t_firstclass">first class</a> type of the
   5079    '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
   5080    <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
   5081    order of execution of this <tt>store</tt> with other <a
   5082    href="#volatile">volatile operations</a>.</p>
   5083 
   5084 <p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
   5085    <a href="#ordering">ordering</a> and optional <code>singlethread</code>
   5086    argument.  The <code>acquire</code> and <code>acq_rel</code> orderings aren't
   5087    valid on <code>store</code> instructions.  Atomic loads produce <a
   5088    href="#memorymodel">defined</a> results when they may see multiple atomic
   5089    stores. The type of the pointee must be an integer type whose bit width
   5090    is a power of two greater than or equal to eight and less than or equal
   5091    to a target-specific size limit. <code>align</code> must be explicitly 
   5092    specified on atomic stores, and the store has undefined behavior if the
   5093    alignment is not set to a value which is at least the size in bytes of
   5094    the pointee. <code>!nontemporal</code> does not have any defined semantics
   5095    for atomic stores.</p>
   5096 
   5097 <p>The optional constant "align" argument specifies the alignment of the
   5098    operation (that is, the alignment of the memory address). A value of 0 or an
   5099    omitted "align" argument means that the operation has the preferential
   5100    alignment for the target. It is the responsibility of the code emitter to
   5101    ensure that the alignment information is correct. Overestimating the
   5102    alignment results in an undefined behavior. Underestimating the alignment may
   5103    produce less efficient code. An alignment of 1 is always safe.</p>
   5104 
   5105 <p>The optional !nontemporal metadata must reference a single metatadata
   5106    name &lt;index&gt; corresponding to a metadata node with one i32 entry of
   5107    value 1.  The existence of the !nontemporal metatadata on the
   5108    instruction tells the optimizer and code generator that this load is
   5109    not expected to be reused in the cache.  The code generator may
   5110    select special instructions to save cache bandwidth, such as the
   5111    MOVNT instruction on x86.</p>
   5112 
   5113 
   5114 <h5>Semantics:</h5>
   5115 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
   5116    location specified by the '<tt>&lt;pointer&gt;</tt>' operand.  If
   5117    '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
   5118    does not exceed the minimum number of bytes needed to hold all bits of the
   5119    type.  For example, storing an <tt>i24</tt> writes at most three bytes.  When
   5120    writing a value of a type like <tt>i20</tt> with a size that is not an
   5121    integral number of bytes, it is unspecified what happens to the extra bits
   5122    that do not belong to the type, but they will typically be overwritten.</p>
   5123 
   5124 <h5>Example:</h5>
   5125 <pre>
   5126   %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
   5127   store i32 3, i32* %ptr                          <i>; yields {void}</i>
   5128   %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
   5129 </pre>
   5130 
   5131 </div>
   5132 
   5133 <!-- _______________________________________________________________________ -->
   5134 <h4>
   5135 <a name="i_fence">'<tt>fence</tt>' Instruction</a>
   5136 </h4>
   5137 
   5138 <div>
   5139 
   5140 <h5>Syntax:</h5>
   5141 <pre>
   5142   fence [singlethread] &lt;ordering&gt;                   <i>; yields {void}</i>
   5143 </pre>
   5144 
   5145 <h5>Overview:</h5>
   5146 <p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
   5147 between operations.</p>
   5148 
   5149 <h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
   5150 href="#ordering">ordering</a> argument which defines what
   5151 <i>synchronizes-with</i> edges they add.  They can only be given
   5152 <code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
   5153 <code>seq_cst</code> orderings.</p>
   5154 
   5155 <h5>Semantics:</h5>
   5156 <p>A fence <var>A</var> which has (at least) <code>release</code> ordering
   5157 semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
   5158 <code>acquire</code> ordering semantics if and only if there exist atomic
   5159 operations <var>X</var> and <var>Y</var>, both operating on some atomic object
   5160 <var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
   5161 <var>X</var> modifies <var>M</var> (either directly or through some side effect
   5162 of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
   5163 <var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
   5164 <i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
   5165 than an explicit <code>fence</code>, one (but not both) of the atomic operations
   5166 <var>X</var> or <var>Y</var> might provide a <code>release</code> or
   5167 <code>acquire</code> (resp.) ordering constraint and still
   5168 <i>synchronize-with</i> the explicit <code>fence</code> and establish the
   5169 <i>happens-before</i> edge.</p>
   5170 
   5171 <p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
   5172 having both <code>acquire</code> and <code>release</code> semantics specified
   5173 above, participates in the global program order of other <code>seq_cst</code>
   5174 operations and/or fences.</p>
   5175 
   5176 <p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
   5177 specifies that the fence only synchronizes with other fences in the same
   5178 thread.  (This is useful for interacting with signal handlers.)</p>
   5179 
   5180 <h5>Example:</h5>
   5181 <pre>
   5182   fence acquire                          <i>; yields {void}</i>
   5183   fence singlethread seq_cst             <i>; yields {void}</i>
   5184 </pre>
   5185 
   5186 </div>
   5187 
   5188 <!-- _______________________________________________________________________ -->
   5189 <h4>
   5190 <a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
   5191 </h4>
   5192 
   5193 <div>
   5194 
   5195 <h5>Syntax:</h5>
   5196 <pre>
   5197   cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt;  <i>; yields {ty}</i>
   5198 </pre>
   5199 
   5200 <h5>Overview:</h5>
   5201 <p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
   5202 It loads a value in memory and compares it to a given value. If they are
   5203 equal, it stores a new value into the memory.</p>
   5204 
   5205 <h5>Arguments:</h5>
   5206 <p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
   5207 address to operate on, a value to compare to the value currently be at that
   5208 address, and a new value to place at that address if the compared values are
   5209 equal.  The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
   5210 bit width is a power of two greater than or equal to eight and less than
   5211 or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
   5212 '<var>&lt;new&gt;</var>' must have the same type, and the type of
   5213 '<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
   5214 <code>cmpxchg</code> is marked as <code>volatile</code>, then the
   5215 optimizer is not allowed to modify the number or order of execution
   5216 of this <code>cmpxchg</code> with other <a href="#volatile">volatile
   5217 operations</a>.</p>
   5218 
   5219 <!-- FIXME: Extend allowed types. -->
   5220 
   5221 <p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
   5222 <code>cmpxchg</code> synchronizes with other atomic operations.</p>
   5223 
   5224 <p>The optional "<code>singlethread</code>" argument declares that the
   5225 <code>cmpxchg</code> is only atomic with respect to code (usually signal
   5226 handlers) running in the same thread as the <code>cmpxchg</code>.  Otherwise the
   5227 cmpxchg is atomic with respect to all other code in the system.</p>
   5228 
   5229 <p>The pointer passed into cmpxchg must have alignment greater than or equal to
   5230 the size in memory of the operand.
   5231 
   5232 <h5>Semantics:</h5>
   5233 <p>The contents of memory at the location specified by the
   5234 '<tt>&lt;pointer&gt;</tt>' operand is read and compared to
   5235 '<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
   5236 '<tt>&lt;new&gt;</tt>' is written.  The original value at the location
   5237 is returned.
   5238 
   5239 <p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
   5240 purpose of identifying <a href="#release_sequence">release sequences</a>.  A
   5241 failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
   5242 parameter determined by dropping any <code>release</code> part of the
   5243 <code>cmpxchg</code>'s ordering.</p>
   5244 
   5245 <!--
   5246 FIXME: Is compare_exchange_weak() necessary?  (Consider after we've done
   5247 optimization work on ARM.)
   5248 
   5249 FIXME: Is a weaker ordering constraint on failure helpful in practice?
   5250 -->
   5251 
   5252 <h5>Example:</h5>
   5253 <pre>
   5254 entry:
   5255   %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered                   <i>; yields {i32}</i>
   5256   <a href="#i_br">br</a> label %loop
   5257 
   5258 loop:
   5259   %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
   5260   %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
   5261   %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared          <i>; yields {i32}</i>
   5262   %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
   5263   <a href="#i_br">br</a> i1 %success, label %done, label %loop
   5264 
   5265 done:
   5266   ...
   5267 </pre>
   5268 
   5269 </div>
   5270 
   5271 <!-- _______________________________________________________________________ -->
   5272 <h4>
   5273 <a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
   5274 </h4>
   5275 
   5276 <div>
   5277 
   5278 <h5>Syntax:</h5>
   5279 <pre>
   5280   atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt;                   <i>; yields {ty}</i>
   5281 </pre>
   5282 
   5283 <h5>Overview:</h5>
   5284 <p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
   5285 
   5286 <h5>Arguments:</h5>
   5287 <p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
   5288 operation to apply, an address whose value to modify, an argument to the
   5289 operation.  The operation must be one of the following keywords:</p>
   5290 <ul>
   5291   <li>xchg</li>
   5292   <li>add</li>
   5293   <li>sub</li>
   5294   <li>and</li>
   5295   <li>nand</li>
   5296   <li>or</li>
   5297   <li>xor</li>
   5298   <li>max</li>
   5299   <li>min</li>
   5300   <li>umax</li>
   5301   <li>umin</li>
   5302 </ul>
   5303 
   5304 <p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
   5305 bit width is a power of two greater than or equal to eight and less than
   5306 or equal to a target-specific size limit.  The type of the
   5307 '<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
   5308 If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
   5309 optimizer is not allowed to modify the number or order of execution of this
   5310 <code>atomicrmw</code> with other <a href="#volatile">volatile
   5311   operations</a>.</p>
   5312 
   5313 <!-- FIXME: Extend allowed types. -->
   5314 
   5315 <h5>Semantics:</h5>
   5316 <p>The contents of memory at the location specified by the
   5317 '<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
   5318 back.  The original value at the location is returned.  The modification is
   5319 specified by the <var>operation</var> argument:</p>
   5320 
   5321 <ul>
   5322   <li>xchg: <code>*ptr = val</code></li>
   5323   <li>add: <code>*ptr = *ptr + val</code></li>
   5324   <li>sub: <code>*ptr = *ptr - val</code></li>
   5325   <li>and: <code>*ptr = *ptr &amp; val</code></li>
   5326   <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
   5327   <li>or: <code>*ptr = *ptr | val</code></li>
   5328   <li>xor: <code>*ptr = *ptr ^ val</code></li>
   5329   <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
   5330   <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
   5331   <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
   5332   <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
   5333 </ul>
   5334 
   5335 <h5>Example:</h5>
   5336 <pre>
   5337   %old = atomicrmw add i32* %ptr, i32 1 acquire                        <i>; yields {i32}</i>
   5338 </pre>
   5339 
   5340 </div>
   5341 
   5342 <!-- _______________________________________________________________________ -->
   5343 <h4>
   5344    <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
   5345 </h4>
   5346 
   5347 <div>
   5348 
   5349 <h5>Syntax:</h5>
   5350 <pre>
   5351   &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
   5352   &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
   5353   &lt;result&gt; = getelementptr &lt;ptr vector&gt; ptrval, &lt;vector index type&gt; idx 
   5354 </pre>
   5355 
   5356 <h5>Overview:</h5>
   5357 <p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
   5358    subelement of an <a href="#t_aggregate">aggregate</a> data structure.
   5359    It performs address calculation only and does not access memory.</p>
   5360 
   5361 <h5>Arguments:</h5>
   5362 <p>The first argument is always a pointer or a vector of pointers,
   5363    and forms the basis of the
   5364    calculation. The remaining arguments are indices that indicate which of the
   5365    elements of the aggregate object are indexed. The interpretation of each
   5366    index is dependent on the type being indexed into. The first index always
   5367    indexes the pointer value given as the first argument, the second index
   5368    indexes a value of the type pointed to (not necessarily the value directly
   5369    pointed to, since the first index can be non-zero), etc. The first type
   5370    indexed into must be a pointer value, subsequent types can be arrays,
   5371    vectors, and structs. Note that subsequent types being indexed into
   5372    can never be pointers, since that would require loading the pointer before
   5373    continuing calculation.</p>
   5374 
   5375 <p>The type of each index argument depends on the type it is indexing into.
   5376    When indexing into a (optionally packed) structure, only <tt>i32</tt>
   5377    integer <b>constants</b> are allowed.  When indexing into an array, pointer
   5378    or vector, integers of any width are allowed, and they are not required to be
   5379    constant.  These integers are treated as signed values where relevant.</p>
   5380 
   5381 <p>For example, let's consider a C code fragment and how it gets compiled to
   5382    LLVM:</p>
   5383 
   5384 <pre class="doc_code">
   5385 struct RT {
   5386   char A;
   5387   int B[10][20];
   5388   char C;
   5389 };
   5390 struct ST {
   5391   int X;
   5392   double Y;
   5393   struct RT Z;
   5394 };
   5395 
   5396 int *foo(struct ST *s) {
   5397   return &amp;s[1].Z.B[5][13];
   5398 }
   5399 </pre>
   5400 
   5401 <p>The LLVM code generated by Clang is:</p>
   5402 
   5403 <pre class="doc_code">
   5404 %struct.RT = <a href="#namedtypes">type</a> { i8, [10 x [20 x i32]], i8 }
   5405 %struct.ST = <a href="#namedtypes">type</a> { i32, double, %struct.RT }
   5406 
   5407 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
   5408 entry:
   5409   %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
   5410   ret i32* %arrayidx
   5411 }
   5412 </pre>
   5413 
   5414 <h5>Semantics:</h5>
   5415 <p>In the example above, the first index is indexing into the
   5416    '<tt>%struct.ST*</tt>' type, which is a pointer, yielding a
   5417    '<tt>%struct.ST</tt>' = '<tt>{ i32, double, %struct.RT }</tt>' type, a
   5418    structure. The second index indexes into the third element of the structure,
   5419    yielding a '<tt>%struct.RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]], i8 }</tt>'
   5420    type, another structure. The third index indexes into the second element of
   5421    the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an array. The
   5422    two dimensions of the array are subscripted into, yielding an '<tt>i32</tt>'
   5423    type. The '<tt>getelementptr</tt>' instruction returns a pointer to this
   5424    element, thus computing a value of '<tt>i32*</tt>' type.</p>
   5425 
   5426 <p>Note that it is perfectly legal to index partially through a structure,
   5427    returning a pointer to an inner element.  Because of this, the LLVM code for
   5428    the given testcase is equivalent to:</p>
   5429 
   5430 <pre class="doc_code">
   5431 define i32* @foo(%struct.ST* %s) {
   5432   %t1 = getelementptr %struct.ST* %s, i32 1                 <i>; yields %struct.ST*:%t1</i>
   5433   %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2         <i>; yields %struct.RT*:%t2</i>
   5434   %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1         <i>; yields [10 x [20 x i32]]*:%t3</i>
   5435   %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i>
   5436   %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i>
   5437   ret i32* %t5
   5438 }
   5439 </pre>
   5440 
   5441 <p>If the <tt>inbounds</tt> keyword is present, the result value of the
   5442    <tt>getelementptr</tt> is a <a href="#poisonvalues">poison value</a> if the
   5443    base pointer is not an <i>in bounds</i> address of an allocated object,
   5444    or if any of the addresses that would be formed by successive addition of
   5445    the offsets implied by the indices to the base address with infinitely
   5446    precise signed arithmetic are not an <i>in bounds</i> address of that
   5447    allocated object. The <i>in bounds</i> addresses for an allocated object
   5448    are all the addresses that point into the object, plus the address one
   5449    byte past the end.
   5450    In cases where the base is a vector of pointers the <tt>inbounds</tt> keyword
   5451    applies to each of the computations element-wise. </p>
   5452 
   5453 <p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
   5454    the base address with silently-wrapping two's complement arithmetic. If the
   5455    offsets have a different width from the pointer, they are sign-extended or
   5456    truncated to the width of the pointer. The result value of the
   5457    <tt>getelementptr</tt> may be outside the object pointed to by the base
   5458    pointer. The result value may not necessarily be used to access memory
   5459    though, even if it happens to point into allocated storage. See the
   5460    <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
   5461    information.</p>
   5462 
   5463 <p>The getelementptr instruction is often confusing.  For some more insight into
   5464    how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
   5465 
   5466 <h5>Example:</h5>
   5467 <pre>
   5468     <i>; yields [12 x i8]*:aptr</i>
   5469     %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
   5470     <i>; yields i8*:vptr</i>
   5471     %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
   5472     <i>; yields i8*:eptr</i>
   5473     %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
   5474     <i>; yields i32*:iptr</i>
   5475     %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
   5476 </pre>
   5477 
   5478 <p>In cases where the pointer argument is a vector of pointers, only a
   5479    single index may be used, and the number of vector elements has to be
   5480    the same.  For example: </p>
   5481 <pre class="doc_code">
   5482  %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
   5483 </pre>
   5484 
   5485 </div>
   5486 
   5487 </div>
   5488 
   5489 <!-- ======================================================================= -->
   5490 <h3>
   5491   <a name="convertops">Conversion Operations</a>
   5492 </h3>
   5493 
   5494 <div>
   5495 
   5496 <p>The instructions in this category are the conversion instructions (casting)
   5497    which all take a single operand and a type. They perform various bit
   5498    conversions on the operand.</p>
   5499 
   5500 <!-- _______________________________________________________________________ -->
   5501 <h4>
   5502    <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
   5503 </h4>
   5504 
   5505 <div>
   5506 
   5507 <h5>Syntax:</h5>
   5508 <pre>
   5509   &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5510 </pre>
   5511 
   5512 <h5>Overview:</h5>
   5513 <p>The '<tt>trunc</tt>' instruction truncates its operand to the
   5514    type <tt>ty2</tt>.</p>
   5515 
   5516 <h5>Arguments:</h5>
   5517 <p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
   5518    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   5519    of the same number of integers.
   5520    The bit size of the <tt>value</tt> must be larger than
   5521    the bit size of the destination type, <tt>ty2</tt>.
   5522    Equal sized types are not allowed.</p>
   5523 
   5524 <h5>Semantics:</h5>
   5525 <p>The '<tt>trunc</tt>' instruction truncates the high order bits
   5526    in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
   5527    source size must be larger than the destination size, <tt>trunc</tt> cannot
   5528    be a <i>no-op cast</i>.  It will always truncate bits.</p>
   5529 
   5530 <h5>Example:</h5>
   5531 <pre>
   5532   %X = trunc i32 257 to i8                        <i>; yields i8:1</i>
   5533   %Y = trunc i32 123 to i1                        <i>; yields i1:true</i>
   5534   %Z = trunc i32 122 to i1                        <i>; yields i1:false</i>
   5535   %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
   5536 </pre>
   5537 
   5538 </div>
   5539 
   5540 <!-- _______________________________________________________________________ -->
   5541 <h4>
   5542    <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
   5543 </h4>
   5544 
   5545 <div>
   5546 
   5547 <h5>Syntax:</h5>
   5548 <pre>
   5549   &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5550 </pre>
   5551 
   5552 <h5>Overview:</h5>
   5553 <p>The '<tt>zext</tt>' instruction zero extends its operand to type
   5554    <tt>ty2</tt>.</p>
   5555 
   5556 
   5557 <h5>Arguments:</h5>
   5558 <p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
   5559    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   5560    of the same number of integers.
   5561    The bit size of the <tt>value</tt> must be smaller than
   5562    the bit size of the destination type,
   5563    <tt>ty2</tt>.</p>
   5564 
   5565 <h5>Semantics:</h5>
   5566 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
   5567    bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
   5568 
   5569 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
   5570 
   5571 <h5>Example:</h5>
   5572 <pre>
   5573   %X = zext i32 257 to i64              <i>; yields i64:257</i>
   5574   %Y = zext i1 true to i32              <i>; yields i32:1</i>
   5575   %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
   5576 </pre>
   5577 
   5578 </div>
   5579 
   5580 <!-- _______________________________________________________________________ -->
   5581 <h4>
   5582    <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
   5583 </h4>
   5584 
   5585 <div>
   5586 
   5587 <h5>Syntax:</h5>
   5588 <pre>
   5589   &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5590 </pre>
   5591 
   5592 <h5>Overview:</h5>
   5593 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
   5594 
   5595 <h5>Arguments:</h5>
   5596 <p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
   5597    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   5598    of the same number of integers.
   5599    The bit size of the <tt>value</tt> must be smaller than
   5600    the bit size of the destination type,
   5601    <tt>ty2</tt>.</p>
   5602 
   5603 <h5>Semantics:</h5>
   5604 <p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
   5605    bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
   5606    of the type <tt>ty2</tt>.</p>
   5607 
   5608 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
   5609 
   5610 <h5>Example:</h5>
   5611 <pre>
   5612   %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>
   5613   %Y = sext i1 true to i32             <i>; yields i32:-1</i>
   5614   %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
   5615 </pre>
   5616 
   5617 </div>
   5618 
   5619 <!-- _______________________________________________________________________ -->
   5620 <h4>
   5621    <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
   5622 </h4>
   5623 
   5624 <div>
   5625 
   5626 <h5>Syntax:</h5>
   5627 <pre>
   5628   &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5629 </pre>
   5630 
   5631 <h5>Overview:</h5>
   5632 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
   5633    <tt>ty2</tt>.</p>
   5634 
   5635 <h5>Arguments:</h5>
   5636 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
   5637    point</a> value to cast and a <a href="#t_floating">floating point</a> type
   5638    to cast it to. The size of <tt>value</tt> must be larger than the size of
   5639    <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
   5640    <i>no-op cast</i>.</p>
   5641 
   5642 <h5>Semantics:</h5>
   5643 <p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
   5644    <a href="#t_floating">floating point</a> type to a smaller
   5645    <a href="#t_floating">floating point</a> type.  If the value cannot fit
   5646    within the destination type, <tt>ty2</tt>, then the results are
   5647    undefined.</p>
   5648 
   5649 <h5>Example:</h5>
   5650 <pre>
   5651   %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>
   5652   %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>
   5653 </pre>
   5654 
   5655 </div>
   5656 
   5657 <!-- _______________________________________________________________________ -->
   5658 <h4>
   5659    <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
   5660 </h4>
   5661 
   5662 <div>
   5663 
   5664 <h5>Syntax:</h5>
   5665 <pre>
   5666   &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5667 </pre>
   5668 
   5669 <h5>Overview:</h5>
   5670 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
   5671    floating point value.</p>
   5672 
   5673 <h5>Arguments:</h5>
   5674 <p>The '<tt>fpext</tt>' instruction takes a
   5675    <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
   5676    a <a href="#t_floating">floating point</a> type to cast it to. The source
   5677    type must be smaller than the destination type.</p>
   5678 
   5679 <h5>Semantics:</h5>
   5680 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
   5681    <a href="#t_floating">floating point</a> type to a larger
   5682    <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
   5683    used to make a <i>no-op cast</i> because it always changes bits. Use
   5684    <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
   5685 
   5686 <h5>Example:</h5>
   5687 <pre>
   5688   %X = fpext float 3.125 to double         <i>; yields double:3.125000e+00</i>
   5689   %Y = fpext double %X to fp128            <i>; yields fp128:0xL00000000000000004000900000000000</i>
   5690 </pre>
   5691 
   5692 </div>
   5693 
   5694 <!-- _______________________________________________________________________ -->
   5695 <h4>
   5696    <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
   5697 </h4>
   5698 
   5699 <div>
   5700 
   5701 <h5>Syntax:</h5>
   5702 <pre>
   5703   &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5704 </pre>
   5705 
   5706 <h5>Overview:</h5>
   5707 <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
   5708    unsigned integer equivalent of type <tt>ty2</tt>.</p>
   5709 
   5710 <h5>Arguments:</h5>
   5711 <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
   5712    scalar or vector <a href="#t_floating">floating point</a> value, and a type
   5713    to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
   5714    type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
   5715    vector integer type with the same number of elements as <tt>ty</tt></p>
   5716 
   5717 <h5>Semantics:</h5>
   5718 <p>The '<tt>fptoui</tt>' instruction converts its
   5719    <a href="#t_floating">floating point</a> operand into the nearest (rounding
   5720    towards zero) unsigned integer value. If the value cannot fit
   5721    in <tt>ty2</tt>, the results are undefined.</p>
   5722 
   5723 <h5>Example:</h5>
   5724 <pre>
   5725   %X = fptoui double 123.0 to i32      <i>; yields i32:123</i>
   5726   %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>
   5727   %Z = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
   5728 </pre>
   5729 
   5730 </div>
   5731 
   5732 <!-- _______________________________________________________________________ -->
   5733 <h4>
   5734    <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
   5735 </h4>
   5736 
   5737 <div>
   5738 
   5739 <h5>Syntax:</h5>
   5740 <pre>
   5741   &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5742 </pre>
   5743 
   5744 <h5>Overview:</h5>
   5745 <p>The '<tt>fptosi</tt>' instruction converts
   5746    <a href="#t_floating">floating point</a> <tt>value</tt> to
   5747    type <tt>ty2</tt>.</p>
   5748 
   5749 <h5>Arguments:</h5>
   5750 <p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
   5751    scalar or vector <a href="#t_floating">floating point</a> value, and a type
   5752    to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
   5753    type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
   5754    vector integer type with the same number of elements as <tt>ty</tt></p>
   5755 
   5756 <h5>Semantics:</h5>
   5757 <p>The '<tt>fptosi</tt>' instruction converts its
   5758    <a href="#t_floating">floating point</a> operand into the nearest (rounding
   5759    towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
   5760    the results are undefined.</p>
   5761 
   5762 <h5>Example:</h5>
   5763 <pre>
   5764   %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
   5765   %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>
   5766   %Z = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
   5767 </pre>
   5768 
   5769 </div>
   5770 
   5771 <!-- _______________________________________________________________________ -->
   5772 <h4>
   5773    <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
   5774 </h4>
   5775 
   5776 <div>
   5777 
   5778 <h5>Syntax:</h5>
   5779 <pre>
   5780   &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5781 </pre>
   5782 
   5783 <h5>Overview:</h5>
   5784 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
   5785    integer and converts that value to the <tt>ty2</tt> type.</p>
   5786 
   5787 <h5>Arguments:</h5>
   5788 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
   5789    scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
   5790    it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
   5791    type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
   5792    floating point type with the same number of elements as <tt>ty</tt></p>
   5793 
   5794 <h5>Semantics:</h5>
   5795 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
   5796    integer quantity and converts it to the corresponding floating point
   5797    value. If the value cannot fit in the floating point value, the results are
   5798    undefined.</p>
   5799 
   5800 <h5>Example:</h5>
   5801 <pre>
   5802   %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
   5803   %Y = uitofp i8 -1 to double          <i>; yields double:255.0</i>
   5804 </pre>
   5805 
   5806 </div>
   5807 
   5808 <!-- _______________________________________________________________________ -->
   5809 <h4>
   5810    <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
   5811 </h4>
   5812 
   5813 <div>
   5814 
   5815 <h5>Syntax:</h5>
   5816 <pre>
   5817   &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5818 </pre>
   5819 
   5820 <h5>Overview:</h5>
   5821 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
   5822    and converts that value to the <tt>ty2</tt> type.</p>
   5823 
   5824 <h5>Arguments:</h5>
   5825 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
   5826    scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
   5827    it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
   5828    type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
   5829    floating point type with the same number of elements as <tt>ty</tt></p>
   5830 
   5831 <h5>Semantics:</h5>
   5832 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
   5833    quantity and converts it to the corresponding floating point value. If the
   5834    value cannot fit in the floating point value, the results are undefined.</p>
   5835 
   5836 <h5>Example:</h5>
   5837 <pre>
   5838   %X = sitofp i32 257 to float         <i>; yields float:257.0</i>
   5839   %Y = sitofp i8 -1 to double          <i>; yields double:-1.0</i>
   5840 </pre>
   5841 
   5842 </div>
   5843 
   5844 <!-- _______________________________________________________________________ -->
   5845 <h4>
   5846    <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
   5847 </h4>
   5848 
   5849 <div>
   5850 
   5851 <h5>Syntax:</h5>
   5852 <pre>
   5853   &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5854 </pre>
   5855 
   5856 <h5>Overview:</h5>
   5857 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer or a vector of
   5858    pointers <tt>value</tt> to
   5859    the integer (or vector of integers) type <tt>ty2</tt>.</p>
   5860 
   5861 <h5>Arguments:</h5>
   5862 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
   5863    must be a a value of type <a href="#t_pointer">pointer</a> or a vector of
   5864     pointers, and a type to cast it to
   5865    <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> or a vector
   5866    of integers type.</p>
   5867 
   5868 <h5>Semantics:</h5>
   5869 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
   5870    <tt>ty2</tt> by interpreting the pointer value as an integer and either
   5871    truncating or zero extending that value to the size of the integer type. If
   5872    <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
   5873    <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
   5874    are the same size, then nothing is done (<i>no-op cast</i>) other than a type
   5875    change.</p>
   5876 
   5877 <h5>Example:</h5>
   5878 <pre>
   5879   %X = ptrtoint i32* %P to i8                         <i>; yields truncation on 32-bit architecture</i>
   5880   %Y = ptrtoint i32* %P to i64                        <i>; yields zero extension on 32-bit architecture</i>
   5881   %Z = ptrtoint &lt;4 x i32*&gt; %P to &lt;4 x i64&gt;<i>; yields vector zero extension for a vector of addresses on 32-bit architecture</i>
   5882 </pre>
   5883 
   5884 </div>
   5885 
   5886 <!-- _______________________________________________________________________ -->
   5887 <h4>
   5888    <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
   5889 </h4>
   5890 
   5891 <div>
   5892 
   5893 <h5>Syntax:</h5>
   5894 <pre>
   5895   &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5896 </pre>
   5897 
   5898 <h5>Overview:</h5>
   5899 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
   5900    pointer type, <tt>ty2</tt>.</p>
   5901 
   5902 <h5>Arguments:</h5>
   5903 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
   5904    value to cast, and a type to cast it to, which must be a
   5905    <a href="#t_pointer">pointer</a> type.</p>
   5906 
   5907 <h5>Semantics:</h5>
   5908 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
   5909    <tt>ty2</tt> by applying either a zero extension or a truncation depending on
   5910    the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
   5911    size of a pointer then a truncation is done. If <tt>value</tt> is smaller
   5912    than the size of a pointer then a zero extension is done. If they are the
   5913    same size, nothing is done (<i>no-op cast</i>).</p>
   5914 
   5915 <h5>Example:</h5>
   5916 <pre>
   5917   %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i>
   5918   %Y = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
   5919   %Z = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
   5920   %Z = inttoptr &lt;4 x i32&gt; %G to &lt;4 x i8*&gt;<i>; yields truncation of vector G to four pointers</i>
   5921 </pre>
   5922 
   5923 </div>
   5924 
   5925 <!-- _______________________________________________________________________ -->
   5926 <h4>
   5927    <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
   5928 </h4>
   5929 
   5930 <div>
   5931 
   5932 <h5>Syntax:</h5>
   5933 <pre>
   5934   &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5935 </pre>
   5936 
   5937 <h5>Overview:</h5>
   5938 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
   5939    <tt>ty2</tt> without changing any bits.</p>
   5940 
   5941 <h5>Arguments:</h5>
   5942 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
   5943    non-aggregate first class value, and a type to cast it to, which must also be
   5944    a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
   5945    of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
   5946    identical. If the source type is a pointer, the destination type must also be
   5947    a pointer.  This instruction supports bitwise conversion of vectors to
   5948    integers and to vectors of other types (as long as they have the same
   5949    size).</p>
   5950 
   5951 <h5>Semantics:</h5>
   5952 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
   5953    <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
   5954    this conversion.  The conversion is done as if the <tt>value</tt> had been
   5955    stored to memory and read back as type <tt>ty2</tt>.
   5956    Pointer (or vector of pointers) types may only be converted to other pointer
   5957    (or vector of pointers) types with this instruction. To convert
   5958    pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
   5959    <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
   5960 
   5961 <h5>Example:</h5>
   5962 <pre>
   5963   %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i>
   5964   %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>
   5965   %Z = bitcast &lt;2 x int&gt; %V to i64;        <i>; yields i64: %V</i>
   5966   %Z = bitcast &lt;2 x i32*&gt; %V to &lt;2 x i64*&gt; <i>; yields &lt;2 x i64*&gt;</i>
   5967 </pre>
   5968 
   5969 </div>
   5970 
   5971 </div>
   5972 
   5973 <!-- ======================================================================= -->
   5974 <h3>
   5975   <a name="otherops">Other Operations</a>
   5976 </h3>
   5977 
   5978 <div>
   5979 
   5980 <p>The instructions in this category are the "miscellaneous" instructions, which
   5981    defy better classification.</p>
   5982 
   5983 <!-- _______________________________________________________________________ -->
   5984 <h4>
   5985   <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
   5986 </h4>
   5987 
   5988 <div>
   5989 
   5990 <h5>Syntax:</h5>
   5991 <pre>
   5992   &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
   5993 </pre>
   5994 
   5995 <h5>Overview:</h5>
   5996 <p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
   5997    boolean values based on comparison of its two integer, integer vector,
   5998    pointer, or pointer vector operands.</p>
   5999 
   6000 <h5>Arguments:</h5>
   6001 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
   6002    the condition code indicating the kind of comparison to perform. It is not a
   6003    value, just a keyword. The possible condition code are:</p>
   6004 
   6005 <ol>
   6006   <li><tt>eq</tt>: equal</li>
   6007   <li><tt>ne</tt>: not equal </li>
   6008   <li><tt>ugt</tt>: unsigned greater than</li>
   6009   <li><tt>uge</tt>: unsigned greater or equal</li>
   6010   <li><tt>ult</tt>: unsigned less than</li>
   6011   <li><tt>ule</tt>: unsigned less or equal</li>
   6012   <li><tt>sgt</tt>: signed greater than</li>
   6013   <li><tt>sge</tt>: signed greater or equal</li>
   6014   <li><tt>slt</tt>: signed less than</li>
   6015   <li><tt>sle</tt>: signed less or equal</li>
   6016 </ol>
   6017 
   6018 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
   6019    <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
   6020    typed.  They must also be identical types.</p>
   6021 
   6022 <h5>Semantics:</h5>
   6023 <p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
   6024    condition code given as <tt>cond</tt>. The comparison performed always yields
   6025    either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
   6026    result, as follows:</p>
   6027 
   6028 <ol>
   6029   <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
   6030       <tt>false</tt> otherwise. No sign interpretation is necessary or
   6031       performed.</li>
   6032 
   6033   <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
   6034       <tt>false</tt> otherwise. No sign interpretation is necessary or
   6035       performed.</li>
   6036 
   6037   <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
   6038       <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   6039 
   6040   <li><tt>uge</tt>: interprets the operands as unsigned values and yields
   6041       <tt>true</tt> if <tt>op1</tt> is greater than or equal
   6042       to <tt>op2</tt>.</li>
   6043 
   6044   <li><tt>ult</tt>: interprets the operands as unsigned values and yields
   6045       <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
   6046 
   6047   <li><tt>ule</tt>: interprets the operands as unsigned values and yields
   6048       <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   6049 
   6050   <li><tt>sgt</tt>: interprets the operands as signed values and yields
   6051       <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   6052 
   6053   <li><tt>sge</tt>: interprets the operands as signed values and yields
   6054       <tt>true</tt> if <tt>op1</tt> is greater than or equal
   6055       to <tt>op2</tt>.</li>
   6056 
   6057   <li><tt>slt</tt>: interprets the operands as signed values and yields
   6058       <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
   6059 
   6060   <li><tt>sle</tt>: interprets the operands as signed values and yields
   6061       <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   6062 </ol>
   6063 
   6064 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
   6065    values are compared as if they were integers.</p>
   6066 
   6067 <p>If the operands are integer vectors, then they are compared element by
   6068    element. The result is an <tt>i1</tt> vector with the same number of elements
   6069    as the values being compared.  Otherwise, the result is an <tt>i1</tt>.</p>
   6070 
   6071 <h5>Example:</h5>
   6072 <pre>
   6073   &lt;result&gt; = icmp eq i32 4, 5          <i>; yields: result=false</i>
   6074   &lt;result&gt; = icmp ne float* %X, %X     <i>; yields: result=false</i>
   6075   &lt;result&gt; = icmp ult i16  4, 5        <i>; yields: result=true</i>
   6076   &lt;result&gt; = icmp sgt i16  4, 5        <i>; yields: result=false</i>
   6077   &lt;result&gt; = icmp ule i16 -4, 5        <i>; yields: result=false</i>
   6078   &lt;result&gt; = icmp sge i16  4, 5        <i>; yields: result=false</i>
   6079 </pre>
   6080 
   6081 <p>Note that the code generator does not yet support vector types with
   6082    the <tt>icmp</tt> instruction.</p>
   6083 
   6084 </div>
   6085 
   6086 <!-- _______________________________________________________________________ -->
   6087 <h4>
   6088   <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
   6089 </h4>
   6090 
   6091 <div>
   6092 
   6093 <h5>Syntax:</h5>
   6094 <pre>
   6095   &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;     <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
   6096 </pre>
   6097 
   6098 <h5>Overview:</h5>
   6099 <p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
   6100    values based on comparison of its operands.</p>
   6101 
   6102 <p>If the operands are floating point scalars, then the result type is a boolean
   6103 (<a href="#t_integer"><tt>i1</tt></a>).</p>
   6104 
   6105 <p>If the operands are floating point vectors, then the result type is a vector
   6106    of boolean with the same number of elements as the operands being
   6107    compared.</p>
   6108 
   6109 <h5>Arguments:</h5>
   6110 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
   6111    the condition code indicating the kind of comparison to perform. It is not a
   6112    value, just a keyword. The possible condition code are:</p>
   6113 
   6114 <ol>
   6115   <li><tt>false</tt>: no comparison, always returns false</li>
   6116   <li><tt>oeq</tt>: ordered and equal</li>
   6117   <li><tt>ogt</tt>: ordered and greater than </li>
   6118   <li><tt>oge</tt>: ordered and greater than or equal</li>
   6119   <li><tt>olt</tt>: ordered and less than </li>
   6120   <li><tt>ole</tt>: ordered and less than or equal</li>
   6121   <li><tt>one</tt>: ordered and not equal</li>
   6122   <li><tt>ord</tt>: ordered (no nans)</li>
   6123   <li><tt>ueq</tt>: unordered or equal</li>
   6124   <li><tt>ugt</tt>: unordered or greater than </li>
   6125   <li><tt>uge</tt>: unordered or greater than or equal</li>
   6126   <li><tt>ult</tt>: unordered or less than </li>
   6127   <li><tt>ule</tt>: unordered or less than or equal</li>
   6128   <li><tt>une</tt>: unordered or not equal</li>
   6129   <li><tt>uno</tt>: unordered (either nans)</li>
   6130   <li><tt>true</tt>: no comparison, always returns true</li>
   6131 </ol>
   6132 
   6133 <p><i>Ordered</i> means that neither operand is a QNAN while
   6134    <i>unordered</i> means that either operand may be a QNAN.</p>
   6135 
   6136 <p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
   6137    a <a href="#t_floating">floating point</a> type or
   6138    a <a href="#t_vector">vector</a> of floating point type.  They must have
   6139    identical types.</p>
   6140 
   6141 <h5>Semantics:</h5>
   6142 <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
   6143    according to the condition code given as <tt>cond</tt>.  If the operands are
   6144    vectors, then the vectors are compared element by element.  Each comparison
   6145    performed always yields an <a href="#t_integer">i1</a> result, as
   6146    follows:</p>
   6147 
   6148 <ol>
   6149   <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
   6150 
   6151   <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   6152       <tt>op1</tt> is equal to <tt>op2</tt>.</li>
   6153 
   6154   <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   6155       <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   6156 
   6157   <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   6158       <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
   6159 
   6160   <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   6161       <tt>op1</tt> is less than <tt>op2</tt>.</li>
   6162 
   6163   <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   6164       <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   6165 
   6166   <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   6167       <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
   6168 
   6169   <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
   6170 
   6171   <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
   6172       <tt>op1</tt> is equal to <tt>op2</tt>.</li>
   6173 
   6174   <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
   6175       <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   6176 
   6177   <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
   6178       <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
   6179 
   6180   <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
   6181       <tt>op1</tt> is less than <tt>op2</tt>.</li>
   6182 
   6183   <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
   6184       <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   6185 
   6186   <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
   6187       <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
   6188 
   6189   <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
   6190 
   6191   <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
   6192 </ol>
   6193 
   6194 <h5>Example:</h5>
   6195 <pre>
   6196   &lt;result&gt; = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
   6197   &lt;result&gt; = fcmp one float 4.0, 5.0    <i>; yields: result=true</i>
   6198   &lt;result&gt; = fcmp olt float 4.0, 5.0    <i>; yields: result=true</i>
   6199   &lt;result&gt; = fcmp ueq double 1.0, 2.0   <i>; yields: result=false</i>
   6200 </pre>
   6201 
   6202 <p>Note that the code generator does not yet support vector types with
   6203    the <tt>fcmp</tt> instruction.</p>
   6204 
   6205 </div>
   6206 
   6207 <!-- _______________________________________________________________________ -->
   6208 <h4>
   6209   <a name="i_phi">'<tt>phi</tt>' Instruction</a>
   6210 </h4>
   6211 
   6212 <div>
   6213 
   6214 <h5>Syntax:</h5>
   6215 <pre>
   6216   &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
   6217 </pre>
   6218 
   6219 <h5>Overview:</h5>
   6220 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
   6221    SSA graph representing the function.</p>
   6222 
   6223 <h5>Arguments:</h5>
   6224 <p>The type of the incoming values is specified with the first type field. After
   6225    this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
   6226    one pair for each predecessor basic block of the current block.  Only values
   6227    of <a href="#t_firstclass">first class</a> type may be used as the value
   6228    arguments to the PHI node.  Only labels may be used as the label
   6229    arguments.</p>
   6230 
   6231 <p>There must be no non-phi instructions between the start of a basic block and
   6232    the PHI instructions: i.e. PHI instructions must be first in a basic
   6233    block.</p>
   6234 
   6235 <p>For the purposes of the SSA form, the use of each incoming value is deemed to
   6236    occur on the edge from the corresponding predecessor block to the current
   6237    block (but after any definition of an '<tt>invoke</tt>' instruction's return
   6238    value on the same edge).</p>
   6239 
   6240 <h5>Semantics:</h5>
   6241 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
   6242    specified by the pair corresponding to the predecessor basic block that
   6243    executed just prior to the current block.</p>
   6244 
   6245 <h5>Example:</h5>
   6246 <pre>
   6247 Loop:       ; Infinite loop that counts from 0 on up...
   6248   %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
   6249   %nextindvar = add i32 %indvar, 1
   6250   br label %Loop
   6251 </pre>
   6252 
   6253 </div>
   6254 
   6255 <!-- _______________________________________________________________________ -->
   6256 <h4>
   6257    <a name="i_select">'<tt>select</tt>' Instruction</a>
   6258 </h4>
   6259 
   6260 <div>
   6261 
   6262 <h5>Syntax:</h5>
   6263 <pre>
   6264   &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt;             <i>; yields ty</i>
   6265 
   6266   <i>selty</i> is either i1 or {&lt;N x i1&gt;}
   6267 </pre>
   6268 
   6269 <h5>Overview:</h5>
   6270 <p>The '<tt>select</tt>' instruction is used to choose one value based on a
   6271    condition, without branching.</p>
   6272 
   6273 
   6274 <h5>Arguments:</h5>
   6275 <p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
   6276    values indicating the condition, and two values of the
   6277    same <a href="#t_firstclass">first class</a> type.  If the val1/val2 are
   6278    vectors and the condition is a scalar, then entire vectors are selected, not
   6279    individual elements.</p>
   6280 
   6281 <h5>Semantics:</h5>
   6282 <p>If the condition is an i1 and it evaluates to 1, the instruction returns the
   6283    first value argument; otherwise, it returns the second value argument.</p>
   6284 
   6285 <p>If the condition is a vector of i1, then the value arguments must be vectors
   6286    of the same size, and the selection is done element by element.</p>
   6287 
   6288 <h5>Example:</h5>
   6289 <pre>
   6290   %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>
   6291 </pre>
   6292 
   6293 </div>
   6294 
   6295 <!-- _______________________________________________________________________ -->
   6296 <h4>
   6297   <a name="i_call">'<tt>call</tt>' Instruction</a>
   6298 </h4>
   6299 
   6300 <div>
   6301 
   6302 <h5>Syntax:</h5>
   6303 <pre>
   6304   &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
   6305 </pre>
   6306 
   6307 <h5>Overview:</h5>
   6308 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
   6309 
   6310 <h5>Arguments:</h5>
   6311 <p>This instruction requires several arguments:</p>
   6312 
   6313 <ol>
   6314   <li>The optional "tail" marker indicates that the callee function does not
   6315       access any allocas or varargs in the caller.  Note that calls may be
   6316       marked "tail" even if they do not occur before
   6317       a <a href="#i_ret"><tt>ret</tt></a> instruction.  If the "tail" marker is
   6318       present, the function call is eligible for tail call optimization,
   6319       but <a href="CodeGenerator.html#tailcallopt">might not in fact be
   6320       optimized into a jump</a>.  The code generator may optimize calls marked
   6321       "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
   6322       sibling call optimization</a> when the caller and callee have
   6323       matching signatures, or 2) forced tail call optimization when the
   6324       following extra requirements are met:
   6325       <ul>
   6326         <li>Caller and callee both have the calling
   6327             convention <tt>fastcc</tt>.</li>
   6328         <li>The call is in tail position (ret immediately follows call and ret
   6329             uses value of call or is void).</li>
   6330         <li>Option <tt>-tailcallopt</tt> is enabled,
   6331             or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
   6332         <li><a href="CodeGenerator.html#tailcallopt">Platform specific
   6333             constraints are met.</a></li>
   6334       </ul>
   6335   </li>
   6336 
   6337   <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
   6338       convention</a> the call should use.  If none is specified, the call
   6339       defaults to using C calling conventions.  The calling convention of the
   6340       call must match the calling convention of the target function, or else the
   6341       behavior is undefined.</li>
   6342 
   6343   <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
   6344       return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
   6345       '<tt>inreg</tt>' attributes are valid here.</li>
   6346 
   6347   <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
   6348       type of the return value.  Functions that return no value are marked
   6349       <tt><a href="#t_void">void</a></tt>.</li>
   6350 
   6351   <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
   6352       being invoked.  The argument types must match the types implied by this
   6353       signature.  This type can be omitted if the function is not varargs and if
   6354       the function type does not return a pointer to a function.</li>
   6355 
   6356   <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
   6357       be invoked. In most cases, this is a direct function invocation, but
   6358       indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
   6359       to function value.</li>
   6360 
   6361   <li>'<tt>function args</tt>': argument list whose types match the function
   6362       signature argument types and parameter attributes. All arguments must be
   6363       of <a href="#t_firstclass">first class</a> type. If the function
   6364       signature indicates the function accepts a variable number of arguments,
   6365       the extra arguments can be specified.</li>
   6366 
   6367   <li>The optional <a href="#fnattrs">function attributes</a> list. Only
   6368       '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
   6369       '<tt>readnone</tt>' attributes are valid here.</li>
   6370 </ol>
   6371 
   6372 <h5>Semantics:</h5>
   6373 <p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
   6374    a specified function, with its incoming arguments bound to the specified
   6375    values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
   6376    function, control flow continues with the instruction after the function
   6377    call, and the return value of the function is bound to the result
   6378    argument.</p>
   6379 
   6380 <h5>Example:</h5>
   6381 <pre>
   6382   %retval = call i32 @test(i32 %argc)
   6383   call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        <i>; yields i32</i>
   6384   %X = tail call i32 @foo()                                    <i>; yields i32</i>
   6385   %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()  <i>; yields i32</i>
   6386   call void %foo(i8 97 signext)
   6387 
   6388   %struct.A = type { i32, i8 }
   6389   %r = call %struct.A @foo()                        <i>; yields { 32, i8 }</i>
   6390   %gr = extractvalue %struct.A %r, 0                <i>; yields i32</i>
   6391   %gr1 = extractvalue %struct.A %r, 1               <i>; yields i8</i>
   6392   %Z = call void @foo() noreturn                    <i>; indicates that %foo never returns normally</i>
   6393   %ZZ = call zeroext i32 @bar()                     <i>; Return value is %zero extended</i>
   6394 </pre>
   6395 
   6396 <p>llvm treats calls to some functions with names and arguments that match the
   6397 standard C99 library as being the C99 library functions, and may perform
   6398 optimizations or generate code for them under that assumption.  This is
   6399 something we'd like to change in the future to provide better support for
   6400 freestanding environments and non-C-based languages.</p>
   6401 
   6402 </div>
   6403 
   6404 <!-- _______________________________________________________________________ -->
   6405 <h4>
   6406   <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
   6407 </h4>
   6408 
   6409 <div>
   6410 
   6411 <h5>Syntax:</h5>
   6412 <pre>
   6413   &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
   6414 </pre>
   6415 
   6416 <h5>Overview:</h5>
   6417 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
   6418    the "variable argument" area of a function call.  It is used to implement the
   6419    <tt>va_arg</tt> macro in C.</p>
   6420 
   6421 <h5>Arguments:</h5>
   6422 <p>This instruction takes a <tt>va_list*</tt> value and the type of the
   6423    argument. It returns a value of the specified argument type and increments
   6424    the <tt>va_list</tt> to point to the next argument.  The actual type
   6425    of <tt>va_list</tt> is target specific.</p>
   6426 
   6427 <h5>Semantics:</h5>
   6428 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
   6429    from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
   6430    to the next argument.  For more information, see the variable argument
   6431    handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
   6432 
   6433 <p>It is legal for this instruction to be called in a function which does not
   6434    take a variable number of arguments, for example, the <tt>vfprintf</tt>
   6435    function.</p>
   6436 
   6437 <p><tt>va_arg</tt> is an LLVM instruction instead of
   6438    an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
   6439    argument.</p>
   6440 
   6441 <h5>Example:</h5>
   6442 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
   6443 
   6444 <p>Note that the code generator does not yet fully support va_arg on many
   6445    targets. Also, it does not currently support va_arg with aggregate types on
   6446    any target.</p>
   6447 
   6448 </div>
   6449 
   6450 <!-- _______________________________________________________________________ -->
   6451 <h4>
   6452   <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
   6453 </h4>
   6454 
   6455 <div>
   6456 
   6457 <h5>Syntax:</h5>
   6458 <pre>
   6459   &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
   6460   &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
   6461 
   6462   &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
   6463   &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
   6464 </pre>
   6465 
   6466 <h5>Overview:</h5>
   6467 <p>The '<tt>landingpad</tt>' instruction is used by
   6468    <a href="ExceptionHandling.html#overview">LLVM's exception handling
   6469    system</a> to specify that a basic block is a landing pad &mdash; one where
   6470    the exception lands, and corresponds to the code found in the
   6471    <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
   6472    defines values supplied by the personality function (<tt>pers_fn</tt>) upon
   6473    re-entry to the function. The <tt>resultval</tt> has the
   6474    type <tt>resultty</tt>.</p>
   6475 
   6476 <h5>Arguments:</h5>
   6477 <p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
   6478    function associated with the unwinding mechanism. The optional
   6479    <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
   6480 
   6481 <p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
   6482    or <tt>filter</tt> &mdash; and contains the global variable representing the
   6483    "type" that may be caught or filtered respectively. Unlike the
   6484    <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
   6485    its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
   6486    throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
   6487    one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
   6488 
   6489 <h5>Semantics:</h5>
   6490 <p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
   6491    personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
   6492    therefore the "result type" of the <tt>landingpad</tt> instruction. As with
   6493    calling conventions, how the personality function results are represented in
   6494    LLVM IR is target specific.</p>
   6495 
   6496 <p>The clauses are applied in order from top to bottom. If two
   6497    <tt>landingpad</tt> instructions are merged together through inlining, the
   6498    clauses from the calling function are appended to the list of clauses.
   6499    When the call stack is being unwound due to an exception being thrown, the
   6500    exception is compared against each <tt>clause</tt> in turn.  If it doesn't
   6501    match any of the clauses, and the <tt>cleanup</tt> flag is not set, then
   6502    unwinding continues further up the call stack.</p>
   6503 
   6504 <p>The <tt>landingpad</tt> instruction has several restrictions:</p>
   6505 
   6506 <ul>
   6507   <li>A landing pad block is a basic block which is the unwind destination of an
   6508       '<tt>invoke</tt>' instruction.</li>
   6509   <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
   6510       first non-PHI instruction.</li>
   6511   <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
   6512       pad block.</li>
   6513   <li>A basic block that is not a landing pad block may not include a
   6514       '<tt>landingpad</tt>' instruction.</li>
   6515   <li>All '<tt>landingpad</tt>' instructions in a function must have the same
   6516       personality function.</li>
   6517 </ul>
   6518 
   6519 <h5>Example:</h5>
   6520 <pre>
   6521   ;; A landing pad which can catch an integer.
   6522   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6523            catch i8** @_ZTIi
   6524   ;; A landing pad that is a cleanup.
   6525   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6526            cleanup
   6527   ;; A landing pad which can catch an integer and can only throw a double.
   6528   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6529            catch i8** @_ZTIi
   6530            filter [1 x i8**] [@_ZTId]
   6531 </pre>
   6532 
   6533 </div>
   6534 
   6535 </div>
   6536 
   6537 </div>
   6538 
   6539 <!-- *********************************************************************** -->
   6540 <h2><a name="intrinsics">Intrinsic Functions</a></h2>
   6541 <!-- *********************************************************************** -->
   6542 
   6543 <div>
   6544 
   6545 <p>LLVM supports the notion of an "intrinsic function".  These functions have
   6546    well known names and semantics and are required to follow certain
   6547    restrictions.  Overall, these intrinsics represent an extension mechanism for
   6548    the LLVM language that does not require changing all of the transformations
   6549    in LLVM when adding to the language (or the bitcode reader/writer, the
   6550    parser, etc...).</p>
   6551 
   6552 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
   6553    prefix is reserved in LLVM for intrinsic names; thus, function names may not
   6554    begin with this prefix.  Intrinsic functions must always be external
   6555    functions: you cannot define the body of intrinsic functions.  Intrinsic
   6556    functions may only be used in call or invoke instructions: it is illegal to
   6557    take the address of an intrinsic function.  Additionally, because intrinsic
   6558    functions are part of the LLVM language, it is required if any are added that
   6559    they be documented here.</p>
   6560 
   6561 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
   6562    family of functions that perform the same operation but on different data
   6563    types. Because LLVM can represent over 8 million different integer types,
   6564    overloading is used commonly to allow an intrinsic function to operate on any
   6565    integer type. One or more of the argument types or the result type can be
   6566    overloaded to accept any integer type. Argument types may also be defined as
   6567    exactly matching a previous argument's type or the result type. This allows
   6568    an intrinsic function which accepts multiple arguments, but needs all of them
   6569    to be of the same type, to only be overloaded with respect to a single
   6570    argument or the result.</p>
   6571 
   6572 <p>Overloaded intrinsics will have the names of its overloaded argument types
   6573    encoded into its function name, each preceded by a period. Only those types
   6574    which are overloaded result in a name suffix. Arguments whose type is matched
   6575    against another type do not. For example, the <tt>llvm.ctpop</tt> function
   6576    can take an integer of any width and returns an integer of exactly the same
   6577    integer width. This leads to a family of functions such as
   6578    <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
   6579    %val)</tt>.  Only one type, the return type, is overloaded, and only one type
   6580    suffix is required. Because the argument's type is matched against the return
   6581    type, it does not require its own name suffix.</p>
   6582 
   6583 <p>To learn how to add an intrinsic function, please see the
   6584    <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
   6585 
   6586 <!-- ======================================================================= -->
   6587 <h3>
   6588   <a name="int_varargs">Variable Argument Handling Intrinsics</a>
   6589 </h3>
   6590 
   6591 <div>
   6592 
   6593 <p>Variable argument support is defined in LLVM with
   6594    the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
   6595    intrinsic functions.  These functions are related to the similarly named
   6596    macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
   6597 
   6598 <p>All of these functions operate on arguments that use a target-specific value
   6599    type "<tt>va_list</tt>".  The LLVM assembly language reference manual does
   6600    not define what this type is, so all transformations should be prepared to
   6601    handle these functions regardless of the type used.</p>
   6602 
   6603 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
   6604    instruction and the variable argument handling intrinsic functions are
   6605    used.</p>
   6606 
   6607 <pre class="doc_code">
   6608 define i32 @test(i32 %X, ...) {
   6609   ; Initialize variable argument processing
   6610   %ap = alloca i8*
   6611   %ap2 = bitcast i8** %ap to i8*
   6612   call void @llvm.va_start(i8* %ap2)
   6613 
   6614   ; Read a single integer argument
   6615   %tmp = va_arg i8** %ap, i32
   6616 
   6617   ; Demonstrate usage of llvm.va_copy and llvm.va_end
   6618   %aq = alloca i8*
   6619   %aq2 = bitcast i8** %aq to i8*
   6620   call void @llvm.va_copy(i8* %aq2, i8* %ap2)
   6621   call void @llvm.va_end(i8* %aq2)
   6622 
   6623   ; Stop processing of arguments.
   6624   call void @llvm.va_end(i8* %ap2)
   6625   ret i32 %tmp
   6626 }
   6627 
   6628 declare void @llvm.va_start(i8*)
   6629 declare void @llvm.va_copy(i8*, i8*)
   6630 declare void @llvm.va_end(i8*)
   6631 </pre>
   6632 
   6633 <!-- _______________________________________________________________________ -->
   6634 <h4>
   6635   <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
   6636 </h4>
   6637 
   6638 
   6639 <div>
   6640 
   6641 <h5>Syntax:</h5>
   6642 <pre>
   6643   declare void %llvm.va_start(i8* &lt;arglist&gt;)
   6644 </pre>
   6645 
   6646 <h5>Overview:</h5>
   6647 <p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
   6648    for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
   6649 
   6650 <h5>Arguments:</h5>
   6651 <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
   6652 
   6653 <h5>Semantics:</h5>
   6654 <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
   6655    macro available in C.  In a target-dependent way, it initializes
   6656    the <tt>va_list</tt> element to which the argument points, so that the next
   6657    call to <tt>va_arg</tt> will produce the first variable argument passed to
   6658    the function.  Unlike the C <tt>va_start</tt> macro, this intrinsic does not
   6659    need to know the last argument of the function as the compiler can figure
   6660    that out.</p>
   6661 
   6662 </div>
   6663 
   6664 <!-- _______________________________________________________________________ -->
   6665 <h4>
   6666  <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
   6667 </h4>
   6668 
   6669 <div>
   6670 
   6671 <h5>Syntax:</h5>
   6672 <pre>
   6673   declare void @llvm.va_end(i8* &lt;arglist&gt;)
   6674 </pre>
   6675 
   6676 <h5>Overview:</h5>
   6677 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
   6678    which has been initialized previously
   6679    with <tt><a href="#int_va_start">llvm.va_start</a></tt>
   6680    or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
   6681 
   6682 <h5>Arguments:</h5>
   6683 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
   6684 
   6685 <h5>Semantics:</h5>
   6686 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
   6687    macro available in C.  In a target-dependent way, it destroys
   6688    the <tt>va_list</tt> element to which the argument points.  Calls
   6689    to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
   6690    and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
   6691    with calls to <tt>llvm.va_end</tt>.</p>
   6692 
   6693 </div>
   6694 
   6695 <!-- _______________________________________________________________________ -->
   6696 <h4>
   6697   <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
   6698 </h4>
   6699 
   6700 <div>
   6701 
   6702 <h5>Syntax:</h5>
   6703 <pre>
   6704   declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
   6705 </pre>
   6706 
   6707 <h5>Overview:</h5>
   6708 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
   6709    from the source argument list to the destination argument list.</p>
   6710 
   6711 <h5>Arguments:</h5>
   6712 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
   6713    The second argument is a pointer to a <tt>va_list</tt> element to copy
   6714    from.</p>
   6715 
   6716 <h5>Semantics:</h5>
   6717 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
   6718    macro available in C.  In a target-dependent way, it copies the
   6719    source <tt>va_list</tt> element into the destination <tt>va_list</tt>
   6720    element.  This intrinsic is necessary because
   6721    the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
   6722    arbitrarily complex and require, for example, memory allocation.</p>
   6723 
   6724 </div>
   6725 
   6726 </div>
   6727 
   6728 <!-- ======================================================================= -->
   6729 <h3>
   6730   <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
   6731 </h3>
   6732 
   6733 <div>
   6734 
   6735 <p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
   6736 Collection</a> (GC) requires the implementation and generation of these
   6737 intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
   6738 roots on the stack</a>, as well as garbage collector implementations that
   6739 require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
   6740 barriers.  Front-ends for type-safe garbage collected languages should generate
   6741 these intrinsics to make use of the LLVM garbage collectors.  For more details,
   6742 see <a href="GarbageCollection.html">Accurate Garbage Collection with
   6743 LLVM</a>.</p>
   6744 
   6745 <p>The garbage collection intrinsics only operate on objects in the generic
   6746    address space (address space zero).</p>
   6747 
   6748 <!-- _______________________________________________________________________ -->
   6749 <h4>
   6750   <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
   6751 </h4>
   6752 
   6753 <div>
   6754 
   6755 <h5>Syntax:</h5>
   6756 <pre>
   6757   declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
   6758 </pre>
   6759 
   6760 <h5>Overview:</h5>
   6761 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
   6762    the code generator, and allows some metadata to be associated with it.</p>
   6763 
   6764 <h5>Arguments:</h5>
   6765 <p>The first argument specifies the address of a stack object that contains the
   6766    root pointer.  The second pointer (which must be either a constant or a
   6767    global value address) contains the meta-data to be associated with the
   6768    root.</p>
   6769 
   6770 <h5>Semantics:</h5>
   6771 <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
   6772    location.  At compile-time, the code generator generates information to allow
   6773    the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
   6774    intrinsic may only be used in a function which <a href="#gc">specifies a GC
   6775    algorithm</a>.</p>
   6776 
   6777 </div>
   6778 
   6779 <!-- _______________________________________________________________________ -->
   6780 <h4>
   6781   <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
   6782 </h4>
   6783 
   6784 <div>
   6785 
   6786 <h5>Syntax:</h5>
   6787 <pre>
   6788   declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
   6789 </pre>
   6790 
   6791 <h5>Overview:</h5>
   6792 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
   6793    locations, allowing garbage collector implementations that require read
   6794    barriers.</p>
   6795 
   6796 <h5>Arguments:</h5>
   6797 <p>The second argument is the address to read from, which should be an address
   6798    allocated from the garbage collector.  The first object is a pointer to the
   6799    start of the referenced object, if needed by the language runtime (otherwise
   6800    null).</p>
   6801 
   6802 <h5>Semantics:</h5>
   6803 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
   6804    instruction, but may be replaced with substantially more complex code by the
   6805    garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
   6806    may only be used in a function which <a href="#gc">specifies a GC
   6807    algorithm</a>.</p>
   6808 
   6809 </div>
   6810 
   6811 <!-- _______________________________________________________________________ -->
   6812 <h4>
   6813   <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
   6814 </h4>
   6815 
   6816 <div>
   6817 
   6818 <h5>Syntax:</h5>
   6819 <pre>
   6820   declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
   6821 </pre>
   6822 
   6823 <h5>Overview:</h5>
   6824 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
   6825    locations, allowing garbage collector implementations that require write
   6826    barriers (such as generational or reference counting collectors).</p>
   6827 
   6828 <h5>Arguments:</h5>
   6829 <p>The first argument is the reference to store, the second is the start of the
   6830    object to store it to, and the third is the address of the field of Obj to
   6831    store to.  If the runtime does not require a pointer to the object, Obj may
   6832    be null.</p>
   6833 
   6834 <h5>Semantics:</h5>
   6835 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
   6836    instruction, but may be replaced with substantially more complex code by the
   6837    garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
   6838    may only be used in a function which <a href="#gc">specifies a GC
   6839    algorithm</a>.</p>
   6840 
   6841 </div>
   6842 
   6843 </div>
   6844 
   6845 <!-- ======================================================================= -->
   6846 <h3>
   6847   <a name="int_codegen">Code Generator Intrinsics</a>
   6848 </h3>
   6849 
   6850 <div>
   6851 
   6852 <p>These intrinsics are provided by LLVM to expose special features that may
   6853    only be implemented with code generator support.</p>
   6854 
   6855 <!-- _______________________________________________________________________ -->
   6856 <h4>
   6857   <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
   6858 </h4>
   6859 
   6860 <div>
   6861 
   6862 <h5>Syntax:</h5>
   6863 <pre>
   6864   declare i8  *@llvm.returnaddress(i32 &lt;level&gt;)
   6865 </pre>
   6866 
   6867 <h5>Overview:</h5>
   6868 <p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
   6869    target-specific value indicating the return address of the current function
   6870    or one of its callers.</p>
   6871 
   6872 <h5>Arguments:</h5>
   6873 <p>The argument to this intrinsic indicates which function to return the address
   6874    for.  Zero indicates the calling function, one indicates its caller, etc.
   6875    The argument is <b>required</b> to be a constant integer value.</p>
   6876 
   6877 <h5>Semantics:</h5>
   6878 <p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
   6879    indicating the return address of the specified call frame, or zero if it
   6880    cannot be identified.  The value returned by this intrinsic is likely to be
   6881    incorrect or 0 for arguments other than zero, so it should only be used for
   6882    debugging purposes.</p>
   6883 
   6884 <p>Note that calling this intrinsic does not prevent function inlining or other
   6885    aggressive transformations, so the value returned may not be that of the
   6886    obvious source-language caller.</p>
   6887 
   6888 </div>
   6889 
   6890 <!-- _______________________________________________________________________ -->
   6891 <h4>
   6892   <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
   6893 </h4>
   6894 
   6895 <div>
   6896 
   6897 <h5>Syntax:</h5>
   6898 <pre>
   6899   declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
   6900 </pre>
   6901 
   6902 <h5>Overview:</h5>
   6903 <p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
   6904    target-specific frame pointer value for the specified stack frame.</p>
   6905 
   6906 <h5>Arguments:</h5>
   6907 <p>The argument to this intrinsic indicates which function to return the frame
   6908    pointer for.  Zero indicates the calling function, one indicates its caller,
   6909    etc.  The argument is <b>required</b> to be a constant integer value.</p>
   6910 
   6911 <h5>Semantics:</h5>
   6912 <p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
   6913    indicating the frame address of the specified call frame, or zero if it
   6914    cannot be identified.  The value returned by this intrinsic is likely to be
   6915    incorrect or 0 for arguments other than zero, so it should only be used for
   6916    debugging purposes.</p>
   6917 
   6918 <p>Note that calling this intrinsic does not prevent function inlining or other
   6919    aggressive transformations, so the value returned may not be that of the
   6920    obvious source-language caller.</p>
   6921 
   6922 </div>
   6923 
   6924 <!-- _______________________________________________________________________ -->
   6925 <h4>
   6926   <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
   6927 </h4>
   6928 
   6929 <div>
   6930 
   6931 <h5>Syntax:</h5>
   6932 <pre>
   6933   declare i8* @llvm.stacksave()
   6934 </pre>
   6935 
   6936 <h5>Overview:</h5>
   6937 <p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
   6938    of the function stack, for use
   6939    with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>.  This is
   6940    useful for implementing language features like scoped automatic variable
   6941    sized arrays in C99.</p>
   6942 
   6943 <h5>Semantics:</h5>
   6944 <p>This intrinsic returns a opaque pointer value that can be passed
   6945    to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When
   6946    an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
   6947    from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
   6948    to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
   6949    In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
   6950    stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
   6951 
   6952 </div>
   6953 
   6954 <!-- _______________________________________________________________________ -->
   6955 <h4>
   6956   <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
   6957 </h4>
   6958 
   6959 <div>
   6960 
   6961 <h5>Syntax:</h5>
   6962 <pre>
   6963   declare void @llvm.stackrestore(i8* %ptr)
   6964 </pre>
   6965 
   6966 <h5>Overview:</h5>
   6967 <p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
   6968    the function stack to the state it was in when the
   6969    corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
   6970    executed.  This is useful for implementing language features like scoped
   6971    automatic variable sized arrays in C99.</p>
   6972 
   6973 <h5>Semantics:</h5>
   6974 <p>See the description
   6975    for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
   6976 
   6977 </div>
   6978 
   6979 <!-- _______________________________________________________________________ -->
   6980 <h4>
   6981   <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
   6982 </h4>
   6983 
   6984 <div>
   6985 
   6986 <h5>Syntax:</h5>
   6987 <pre>
   6988   declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
   6989 </pre>
   6990 
   6991 <h5>Overview:</h5>
   6992 <p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
   6993    insert a prefetch instruction if supported; otherwise, it is a noop.
   6994    Prefetches have no effect on the behavior of the program but can change its
   6995    performance characteristics.</p>
   6996 
   6997 <h5>Arguments:</h5>
   6998 <p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
   6999    specifier determining if the fetch should be for a read (0) or write (1),
   7000    and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
   7001    locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
   7002    specifies whether the prefetch is performed on the data (1) or instruction (0)
   7003    cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
   7004    must be constant integers.</p>
   7005 
   7006 <h5>Semantics:</h5>
   7007 <p>This intrinsic does not modify the behavior of the program.  In particular,
   7008    prefetches cannot trap and do not produce a value.  On targets that support
   7009    this intrinsic, the prefetch can provide hints to the processor cache for
   7010    better performance.</p>
   7011 
   7012 </div>
   7013 
   7014 <!-- _______________________________________________________________________ -->
   7015 <h4>
   7016   <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
   7017 </h4>
   7018 
   7019 <div>
   7020 
   7021 <h5>Syntax:</h5>
   7022 <pre>
   7023   declare void @llvm.pcmarker(i32 &lt;id&gt;)
   7024 </pre>
   7025 
   7026 <h5>Overview:</h5>
   7027 <p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
   7028    Counter (PC) in a region of code to simulators and other tools.  The method
   7029    is target specific, but it is expected that the marker will use exported
   7030    symbols to transmit the PC of the marker.  The marker makes no guarantees
   7031    that it will remain with any specific instruction after optimizations.  It is
   7032    possible that the presence of a marker will inhibit optimizations.  The
   7033    intended use is to be inserted after optimizations to allow correlations of
   7034    simulation runs.</p>
   7035 
   7036 <h5>Arguments:</h5>
   7037 <p><tt>id</tt> is a numerical id identifying the marker.</p>
   7038 
   7039 <h5>Semantics:</h5>
   7040 <p>This intrinsic does not modify the behavior of the program.  Backends that do
   7041    not support this intrinsic may ignore it.</p>
   7042 
   7043 </div>
   7044 
   7045 <!-- _______________________________________________________________________ -->
   7046 <h4>
   7047   <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
   7048 </h4>
   7049 
   7050 <div>
   7051 
   7052 <h5>Syntax:</h5>
   7053 <pre>
   7054   declare i64 @llvm.readcyclecounter()
   7055 </pre>
   7056 
   7057 <h5>Overview:</h5>
   7058 <p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
   7059    counter register (or similar low latency, high accuracy clocks) on those
   7060    targets that support it.  On X86, it should map to RDTSC.  On Alpha, it
   7061    should map to RPCC.  As the backing counters overflow quickly (on the order
   7062    of 9 seconds on alpha), this should only be used for small timings.</p>
   7063 
   7064 <h5>Semantics:</h5>
   7065 <p>When directly supported, reading the cycle counter should not modify any
   7066    memory.  Implementations are allowed to either return a application specific
   7067    value or a system wide value.  On backends without support, this is lowered
   7068    to a constant 0.</p>
   7069 
   7070 </div>
   7071 
   7072 </div>
   7073 
   7074 <!-- ======================================================================= -->
   7075 <h3>
   7076   <a name="int_libc">Standard C Library Intrinsics</a>
   7077 </h3>
   7078 
   7079 <div>
   7080 
   7081 <p>LLVM provides intrinsics for a few important standard C library functions.
   7082    These intrinsics allow source-language front-ends to pass information about
   7083    the alignment of the pointer arguments to the code generator, providing
   7084    opportunity for more efficient code generation.</p>
   7085 
   7086 <!-- _______________________________________________________________________ -->
   7087 <h4>
   7088   <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
   7089 </h4>
   7090 
   7091 <div>
   7092 
   7093 <h5>Syntax:</h5>
   7094 <p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
   7095    integer bit width and for different address spaces. Not all targets support
   7096    all bit widths however.</p>
   7097 
   7098 <pre>
   7099   declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   7100                                           i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   7101   declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   7102                                           i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   7103 </pre>
   7104 
   7105 <h5>Overview:</h5>
   7106 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
   7107    source location to the destination location.</p>
   7108 
   7109 <p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
   7110    intrinsics do not return a value, takes extra alignment/isvolatile arguments
   7111    and the pointers can be in specified address spaces.</p>
   7112 
   7113 <h5>Arguments:</h5>
   7114 
   7115 <p>The first argument is a pointer to the destination, the second is a pointer
   7116    to the source.  The third argument is an integer argument specifying the
   7117    number of bytes to copy, the fourth argument is the alignment of the
   7118    source and destination locations, and the fifth is a boolean indicating a
   7119    volatile access.</p>
   7120 
   7121 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   7122    then the caller guarantees that both the source and destination pointers are
   7123    aligned to that boundary.</p>
   7124 
   7125 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   7126    <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
   7127    The detailed access behavior is not very cleanly specified and it is unwise
   7128    to depend on it.</p>
   7129 
   7130 <h5>Semantics:</h5>
   7131 
   7132 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
   7133    source location to the destination location, which are not allowed to
   7134    overlap.  It copies "len" bytes of memory over.  If the argument is known to
   7135    be aligned to some boundary, this can be specified as the fourth argument,
   7136    otherwise it should be set to 0 or 1.</p>
   7137 
   7138 </div>
   7139 
   7140 <!-- _______________________________________________________________________ -->
   7141 <h4>
   7142   <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
   7143 </h4>
   7144 
   7145 <div>
   7146 
   7147 <h5>Syntax:</h5>
   7148 <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
   7149    width and for different address space. Not all targets support all bit
   7150    widths however.</p>
   7151 
   7152 <pre>
   7153   declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   7154                                            i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   7155   declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   7156                                            i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   7157 </pre>
   7158 
   7159 <h5>Overview:</h5>
   7160 <p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
   7161    source location to the destination location. It is similar to the
   7162    '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
   7163    overlap.</p>
   7164 
   7165 <p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
   7166    intrinsics do not return a value, takes extra alignment/isvolatile arguments
   7167    and the pointers can be in specified address spaces.</p>
   7168 
   7169 <h5>Arguments:</h5>
   7170 
   7171 <p>The first argument is a pointer to the destination, the second is a pointer
   7172    to the source.  The third argument is an integer argument specifying the
   7173    number of bytes to copy, the fourth argument is the alignment of the
   7174    source and destination locations, and the fifth is a boolean indicating a
   7175    volatile access.</p>
   7176 
   7177 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   7178    then the caller guarantees that the source and destination pointers are
   7179    aligned to that boundary.</p>
   7180 
   7181 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   7182    <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
   7183    The detailed access behavior is not very cleanly specified and it is unwise
   7184    to depend on it.</p>
   7185 
   7186 <h5>Semantics:</h5>
   7187 
   7188 <p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
   7189    source location to the destination location, which may overlap.  It copies
   7190    "len" bytes of memory over.  If the argument is known to be aligned to some
   7191    boundary, this can be specified as the fourth argument, otherwise it should
   7192    be set to 0 or 1.</p>
   7193 
   7194 </div>
   7195 
   7196 <!-- _______________________________________________________________________ -->
   7197 <h4>
   7198   <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
   7199 </h4>
   7200 
   7201 <div>
   7202 
   7203 <h5>Syntax:</h5>
   7204 <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
   7205    width and for different address spaces. However, not all targets support all
   7206    bit widths.</p>
   7207 
   7208 <pre>
   7209   declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
   7210                                      i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   7211   declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
   7212                                      i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   7213 </pre>
   7214 
   7215 <h5>Overview:</h5>
   7216 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
   7217    particular byte value.</p>
   7218 
   7219 <p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
   7220    intrinsic does not return a value and takes extra alignment/volatile
   7221    arguments.  Also, the destination can be in an arbitrary address space.</p>
   7222 
   7223 <h5>Arguments:</h5>
   7224 <p>The first argument is a pointer to the destination to fill, the second is the
   7225    byte value with which to fill it, the third argument is an integer argument
   7226    specifying the number of bytes to fill, and the fourth argument is the known
   7227    alignment of the destination location.</p>
   7228 
   7229 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   7230    then the caller guarantees that the destination pointer is aligned to that
   7231    boundary.</p>
   7232 
   7233 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   7234    <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
   7235    The detailed access behavior is not very cleanly specified and it is unwise
   7236    to depend on it.</p>
   7237 
   7238 <h5>Semantics:</h5>
   7239 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
   7240    at the destination location.  If the argument is known to be aligned to some
   7241    boundary, this can be specified as the fourth argument, otherwise it should
   7242    be set to 0 or 1.</p>
   7243 
   7244 </div>
   7245 
   7246 <!-- _______________________________________________________________________ -->
   7247 <h4>
   7248   <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
   7249 </h4>
   7250 
   7251 <div>
   7252 
   7253 <h5>Syntax:</h5>
   7254 <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
   7255    floating point or vector of floating point type. Not all targets support all
   7256    types however.</p>
   7257 
   7258 <pre>
   7259   declare float     @llvm.sqrt.f32(float %Val)
   7260   declare double    @llvm.sqrt.f64(double %Val)
   7261   declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
   7262   declare fp128     @llvm.sqrt.f128(fp128 %Val)
   7263   declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
   7264 </pre>
   7265 
   7266 <h5>Overview:</h5>
   7267 <p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
   7268    returning the same value as the libm '<tt>sqrt</tt>' functions would.
   7269    Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
   7270    behavior for negative numbers other than -0.0 (which allows for better
   7271    optimization, because there is no need to worry about errno being
   7272    set).  <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
   7273 
   7274 <h5>Arguments:</h5>
   7275 <p>The argument and return value are floating point numbers of the same
   7276    type.</p>
   7277 
   7278 <h5>Semantics:</h5>
   7279 <p>This function returns the sqrt of the specified operand if it is a
   7280    nonnegative floating point number.</p>
   7281 
   7282 </div>
   7283 
   7284 <!-- _______________________________________________________________________ -->
   7285 <h4>
   7286   <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
   7287 </h4>
   7288 
   7289 <div>
   7290 
   7291 <h5>Syntax:</h5>
   7292 <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
   7293    floating point or vector of floating point type. Not all targets support all
   7294    types however.</p>
   7295 
   7296 <pre>
   7297   declare float     @llvm.powi.f32(float  %Val, i32 %power)
   7298   declare double    @llvm.powi.f64(double %Val, i32 %power)
   7299   declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
   7300   declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
   7301   declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
   7302 </pre>
   7303 
   7304 <h5>Overview:</h5>
   7305 <p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
   7306    specified (positive or negative) power.  The order of evaluation of
   7307    multiplications is not defined.  When a vector of floating point type is
   7308    used, the second argument remains a scalar integer value.</p>
   7309 
   7310 <h5>Arguments:</h5>
   7311 <p>The second argument is an integer power, and the first is a value to raise to
   7312    that power.</p>
   7313 
   7314 <h5>Semantics:</h5>
   7315 <p>This function returns the first value raised to the second power with an
   7316    unspecified sequence of rounding operations.</p>
   7317 
   7318 </div>
   7319 
   7320 <!-- _______________________________________________________________________ -->
   7321 <h4>
   7322   <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
   7323 </h4>
   7324 
   7325 <div>
   7326 
   7327 <h5>Syntax:</h5>
   7328 <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
   7329    floating point or vector of floating point type. Not all targets support all
   7330    types however.</p>
   7331 
   7332 <pre>
   7333   declare float     @llvm.sin.f32(float  %Val)
   7334   declare double    @llvm.sin.f64(double %Val)
   7335   declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
   7336   declare fp128     @llvm.sin.f128(fp128 %Val)
   7337   declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
   7338 </pre>
   7339 
   7340 <h5>Overview:</h5>
   7341 <p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
   7342 
   7343 <h5>Arguments:</h5>
   7344 <p>The argument and return value are floating point numbers of the same
   7345    type.</p>
   7346 
   7347 <h5>Semantics:</h5>
   7348 <p>This function returns the sine of the specified operand, returning the same
   7349    values as the libm <tt>sin</tt> functions would, and handles error conditions
   7350    in the same way.</p>
   7351 
   7352 </div>
   7353 
   7354 <!-- _______________________________________________________________________ -->
   7355 <h4>
   7356   <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
   7357 </h4>
   7358 
   7359 <div>
   7360 
   7361 <h5>Syntax:</h5>
   7362 <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
   7363    floating point or vector of floating point type. Not all targets support all
   7364    types however.</p>
   7365 
   7366 <pre>
   7367   declare float     @llvm.cos.f32(float  %Val)
   7368   declare double    @llvm.cos.f64(double %Val)
   7369   declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
   7370   declare fp128     @llvm.cos.f128(fp128 %Val)
   7371   declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
   7372 </pre>
   7373 
   7374 <h5>Overview:</h5>
   7375 <p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
   7376 
   7377 <h5>Arguments:</h5>
   7378 <p>The argument and return value are floating point numbers of the same
   7379    type.</p>
   7380 
   7381 <h5>Semantics:</h5>
   7382 <p>This function returns the cosine of the specified operand, returning the same
   7383    values as the libm <tt>cos</tt> functions would, and handles error conditions
   7384    in the same way.</p>
   7385 
   7386 </div>
   7387 
   7388 <!-- _______________________________________________________________________ -->
   7389 <h4>
   7390   <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
   7391 </h4>
   7392 
   7393 <div>
   7394 
   7395 <h5>Syntax:</h5>
   7396 <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
   7397    floating point or vector of floating point type. Not all targets support all
   7398    types however.</p>
   7399 
   7400 <pre>
   7401   declare float     @llvm.pow.f32(float  %Val, float %Power)
   7402   declare double    @llvm.pow.f64(double %Val, double %Power)
   7403   declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
   7404   declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
   7405   declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
   7406 </pre>
   7407 
   7408 <h5>Overview:</h5>
   7409 <p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
   7410    specified (positive or negative) power.</p>
   7411 
   7412 <h5>Arguments:</h5>
   7413 <p>The second argument is a floating point power, and the first is a value to
   7414    raise to that power.</p>
   7415 
   7416 <h5>Semantics:</h5>
   7417 <p>This function returns the first value raised to the second power, returning
   7418    the same values as the libm <tt>pow</tt> functions would, and handles error
   7419    conditions in the same way.</p>
   7420 
   7421 </div>
   7422 
   7423 <!-- _______________________________________________________________________ -->
   7424 <h4>
   7425   <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
   7426 </h4>
   7427 
   7428 <div>
   7429 
   7430 <h5>Syntax:</h5>
   7431 <p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
   7432    floating point or vector of floating point type. Not all targets support all
   7433    types however.</p>
   7434 
   7435 <pre>
   7436   declare float     @llvm.exp.f32(float  %Val)
   7437   declare double    @llvm.exp.f64(double %Val)
   7438   declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
   7439   declare fp128     @llvm.exp.f128(fp128 %Val)
   7440   declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
   7441 </pre>
   7442 
   7443 <h5>Overview:</h5>
   7444 <p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
   7445 
   7446 <h5>Arguments:</h5>
   7447 <p>The argument and return value are floating point numbers of the same
   7448    type.</p>
   7449 
   7450 <h5>Semantics:</h5>
   7451 <p>This function returns the same values as the libm <tt>exp</tt> functions
   7452    would, and handles error conditions in the same way.</p>
   7453 
   7454 </div>
   7455 
   7456 <!-- _______________________________________________________________________ -->
   7457 <h4>
   7458   <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
   7459 </h4>
   7460 
   7461 <div>
   7462 
   7463 <h5>Syntax:</h5>
   7464 <p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
   7465    floating point or vector of floating point type. Not all targets support all
   7466    types however.</p>
   7467 
   7468 <pre>
   7469   declare float     @llvm.log.f32(float  %Val)
   7470   declare double    @llvm.log.f64(double %Val)
   7471   declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
   7472   declare fp128     @llvm.log.f128(fp128 %Val)
   7473   declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
   7474 </pre>
   7475 
   7476 <h5>Overview:</h5>
   7477 <p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
   7478 
   7479 <h5>Arguments:</h5>
   7480 <p>The argument and return value are floating point numbers of the same
   7481    type.</p>
   7482 
   7483 <h5>Semantics:</h5>
   7484 <p>This function returns the same values as the libm <tt>log</tt> functions
   7485    would, and handles error conditions in the same way.</p>
   7486 
   7487 </div>
   7488 
   7489 <!-- _______________________________________________________________________ -->
   7490 <h4>
   7491   <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
   7492 </h4>
   7493 
   7494 <div>
   7495 
   7496 <h5>Syntax:</h5>
   7497 <p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
   7498    floating point or vector of floating point type. Not all targets support all
   7499    types however.</p>
   7500 
   7501 <pre>
   7502   declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
   7503   declare double    @llvm.fma.f64(double %a, double %b, double %c)
   7504   declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
   7505   declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
   7506   declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
   7507 </pre>
   7508 
   7509 <h5>Overview:</h5>
   7510 <p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
   7511    operation.</p>
   7512 
   7513 <h5>Arguments:</h5>
   7514 <p>The argument and return value are floating point numbers of the same
   7515    type.</p>
   7516 
   7517 <h5>Semantics:</h5>
   7518 <p>This function returns the same values as the libm <tt>fma</tt> functions
   7519    would.</p>
   7520 
   7521 </div>
   7522 
   7523 <!-- _______________________________________________________________________ -->
   7524 <h4>
   7525   <a name="int_fabs">'<tt>llvm.fabs.*</tt>' Intrinsic</a>
   7526 </h4>
   7527 
   7528 <div>
   7529 
   7530 <h5>Syntax:</h5>
   7531 <p>This is an overloaded intrinsic. You can use <tt>llvm.fabs</tt> on any
   7532    floating point or vector of floating point type. Not all targets support all
   7533    types however.</p>
   7534 
   7535 <pre>
   7536   declare float     @llvm.fabs.f32(float  %Val)
   7537   declare double    @llvm.fabs.f64(double %Val)
   7538   declare x86_fp80  @llvm.fabs.f80(x86_fp80  %Val)
   7539   declare fp128     @llvm.fabs.f128(fp128 %Val)
   7540   declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128  %Val)
   7541 </pre>
   7542 
   7543 <h5>Overview:</h5>
   7544 <p>The '<tt>llvm.fabs.*</tt>' intrinsics return the absolute value of
   7545    the operand.</p>
   7546 
   7547 <h5>Arguments:</h5>
   7548 <p>The argument and return value are floating point numbers of the same
   7549    type.</p>
   7550 
   7551 <h5>Semantics:</h5>
   7552 <p>This function returns the same values as the libm <tt>fabs</tt> functions
   7553    would, and handles error conditions in the same way.</p>
   7554 
   7555 </div>
   7556 
   7557 <!-- _______________________________________________________________________ -->
   7558 <h4>
   7559   <a name="int_floor">'<tt>llvm.floor.*</tt>' Intrinsic</a>
   7560 </h4>
   7561 
   7562 <div>
   7563 
   7564 <h5>Syntax:</h5>
   7565 <p>This is an overloaded intrinsic. You can use <tt>llvm.floor</tt> on any
   7566    floating point or vector of floating point type. Not all targets support all
   7567    types however.</p>
   7568 
   7569 <pre>
   7570   declare float     @llvm.floor.f32(float  %Val)
   7571   declare double    @llvm.floor.f64(double %Val)
   7572   declare x86_fp80  @llvm.floor.f80(x86_fp80  %Val)
   7573   declare fp128     @llvm.floor.f128(fp128 %Val)
   7574   declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128  %Val)
   7575 </pre>
   7576 
   7577 <h5>Overview:</h5>
   7578 <p>The '<tt>llvm.floor.*</tt>' intrinsics return the floor of
   7579    the operand.</p>
   7580 
   7581 <h5>Arguments:</h5>
   7582 <p>The argument and return value are floating point numbers of the same
   7583    type.</p>
   7584 
   7585 <h5>Semantics:</h5>
   7586 <p>This function returns the same values as the libm <tt>floor</tt> functions
   7587    would, and handles error conditions in the same way.</p>
   7588 
   7589 </div>
   7590 
   7591 </div>
   7592 
   7593 <!-- ======================================================================= -->
   7594 <h3>
   7595   <a name="int_manip">Bit Manipulation Intrinsics</a>
   7596 </h3>
   7597 
   7598 <div>
   7599 
   7600 <p>LLVM provides intrinsics for a few important bit manipulation operations.
   7601    These allow efficient code generation for some algorithms.</p>
   7602 
   7603 <!-- _______________________________________________________________________ -->
   7604 <h4>
   7605   <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
   7606 </h4>
   7607 
   7608 <div>
   7609 
   7610 <h5>Syntax:</h5>
   7611 <p>This is an overloaded intrinsic function. You can use bswap on any integer
   7612    type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
   7613 
   7614 <pre>
   7615   declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
   7616   declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
   7617   declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
   7618 </pre>
   7619 
   7620 <h5>Overview:</h5>
   7621 <p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
   7622    values with an even number of bytes (positive multiple of 16 bits).  These
   7623    are useful for performing operations on data that is not in the target's
   7624    native byte order.</p>
   7625 
   7626 <h5>Semantics:</h5>
   7627 <p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
   7628    and low byte of the input i16 swapped.  Similarly,
   7629    the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
   7630    bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
   7631    2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
   7632    The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
   7633    extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
   7634    more, respectively).</p>
   7635 
   7636 </div>
   7637 
   7638 <!-- _______________________________________________________________________ -->
   7639 <h4>
   7640   <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
   7641 </h4>
   7642 
   7643 <div>
   7644 
   7645 <h5>Syntax:</h5>
   7646 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
   7647    width, or on any vector with integer elements. Not all targets support all
   7648   bit widths or vector types, however.</p>
   7649 
   7650 <pre>
   7651   declare i8 @llvm.ctpop.i8(i8  &lt;src&gt;)
   7652   declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
   7653   declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
   7654   declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
   7655   declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
   7656   declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
   7657 </pre>
   7658 
   7659 <h5>Overview:</h5>
   7660 <p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
   7661    in a value.</p>
   7662 
   7663 <h5>Arguments:</h5>
   7664 <p>The only argument is the value to be counted.  The argument may be of any
   7665    integer type, or a vector with integer elements.
   7666    The return type must match the argument type.</p>
   7667 
   7668 <h5>Semantics:</h5>
   7669 <p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
   7670    element of a vector.</p>
   7671 
   7672 </div>
   7673 
   7674 <!-- _______________________________________________________________________ -->
   7675 <h4>
   7676   <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
   7677 </h4>
   7678 
   7679 <div>
   7680 
   7681 <h5>Syntax:</h5>
   7682 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
   7683    integer bit width, or any vector whose elements are integers. Not all
   7684    targets support all bit widths or vector types, however.</p>
   7685 
   7686 <pre>
   7687   declare i8   @llvm.ctlz.i8  (i8   &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7688   declare i16  @llvm.ctlz.i16 (i16  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7689   declare i32  @llvm.ctlz.i32 (i32  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7690   declare i64  @llvm.ctlz.i64 (i64  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7691   declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7692   declase &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7693 </pre>
   7694 
   7695 <h5>Overview:</h5>
   7696 <p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
   7697    leading zeros in a variable.</p>
   7698 
   7699 <h5>Arguments:</h5>
   7700 <p>The first argument is the value to be counted. This argument may be of any
   7701    integer type, or a vectory with integer element type. The return type
   7702    must match the first argument type.</p>
   7703 
   7704 <p>The second argument must be a constant and is a flag to indicate whether the
   7705    intrinsic should ensure that a zero as the first argument produces a defined
   7706    result. Historically some architectures did not provide a defined result for
   7707    zero values as efficiently, and many algorithms are now predicated on
   7708    avoiding zero-value inputs.</p>
   7709 
   7710 <h5>Semantics:</h5>
   7711 <p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
   7712    zeros in a variable, or within each element of the vector.
   7713    If <tt>src == 0</tt> then the result is the size in bits of the type of
   7714    <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
   7715    For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
   7716 
   7717 </div>
   7718 
   7719 <!-- _______________________________________________________________________ -->
   7720 <h4>
   7721   <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
   7722 </h4>
   7723 
   7724 <div>
   7725 
   7726 <h5>Syntax:</h5>
   7727 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
   7728    integer bit width, or any vector of integer elements. Not all targets
   7729    support all bit widths or vector types, however.</p>
   7730 
   7731 <pre>
   7732   declare i8   @llvm.cttz.i8  (i8   &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7733   declare i16  @llvm.cttz.i16 (i16  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7734   declare i32  @llvm.cttz.i32 (i32  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7735   declare i64  @llvm.cttz.i64 (i64  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7736   declare i256 @llvm.cttz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7737   declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
   7738 </pre>
   7739 
   7740 <h5>Overview:</h5>
   7741 <p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
   7742    trailing zeros.</p>
   7743 
   7744 <h5>Arguments:</h5>
   7745 <p>The first argument is the value to be counted. This argument may be of any
   7746    integer type, or a vectory with integer element type. The return type
   7747    must match the first argument type.</p>
   7748 
   7749 <p>The second argument must be a constant and is a flag to indicate whether the
   7750    intrinsic should ensure that a zero as the first argument produces a defined
   7751    result. Historically some architectures did not provide a defined result for
   7752    zero values as efficiently, and many algorithms are now predicated on
   7753    avoiding zero-value inputs.</p>
   7754 
   7755 <h5>Semantics:</h5>
   7756 <p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
   7757    zeros in a variable, or within each element of a vector.
   7758    If <tt>src == 0</tt> then the result is the size in bits of the type of
   7759    <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
   7760    For example, <tt>llvm.cttz(2) = 1</tt>.</p>
   7761 
   7762 </div>
   7763 
   7764 </div>
   7765 
   7766 <!-- ======================================================================= -->
   7767 <h3>
   7768   <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
   7769 </h3>
   7770 
   7771 <div>
   7772 
   7773 <p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
   7774 
   7775 <!-- _______________________________________________________________________ -->
   7776 <h4>
   7777   <a name="int_sadd_overflow">
   7778     '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
   7779   </a>
   7780 </h4>
   7781 
   7782 <div>
   7783 
   7784 <h5>Syntax:</h5>
   7785 <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
   7786    on any integer bit width.</p>
   7787 
   7788 <pre>
   7789   declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
   7790   declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   7791   declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
   7792 </pre>
   7793 
   7794 <h5>Overview:</h5>
   7795 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
   7796    a signed addition of the two arguments, and indicate whether an overflow
   7797    occurred during the signed summation.</p>
   7798 
   7799 <h5>Arguments:</h5>
   7800 <p>The arguments (%a and %b) and the first element of the result structure may
   7801    be of integer types of any bit width, but they must have the same bit
   7802    width. The second element of the result structure must be of
   7803    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7804    undergo signed addition.</p>
   7805 
   7806 <h5>Semantics:</h5>
   7807 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
   7808    a signed addition of the two variables. They return a structure &mdash; the
   7809    first element of which is the signed summation, and the second element of
   7810    which is a bit specifying if the signed summation resulted in an
   7811    overflow.</p>
   7812 
   7813 <h5>Examples:</h5>
   7814 <pre>
   7815   %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   7816   %sum = extractvalue {i32, i1} %res, 0
   7817   %obit = extractvalue {i32, i1} %res, 1
   7818   br i1 %obit, label %overflow, label %normal
   7819 </pre>
   7820 
   7821 </div>
   7822 
   7823 <!-- _______________________________________________________________________ -->
   7824 <h4>
   7825   <a name="int_uadd_overflow">
   7826     '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
   7827   </a>
   7828 </h4>
   7829 
   7830 <div>
   7831 
   7832 <h5>Syntax:</h5>
   7833 <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
   7834    on any integer bit width.</p>
   7835 
   7836 <pre>
   7837   declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
   7838   declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   7839   declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
   7840 </pre>
   7841 
   7842 <h5>Overview:</h5>
   7843 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
   7844    an unsigned addition of the two arguments, and indicate whether a carry
   7845    occurred during the unsigned summation.</p>
   7846 
   7847 <h5>Arguments:</h5>
   7848 <p>The arguments (%a and %b) and the first element of the result structure may
   7849    be of integer types of any bit width, but they must have the same bit
   7850    width. The second element of the result structure must be of
   7851    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7852    undergo unsigned addition.</p>
   7853 
   7854 <h5>Semantics:</h5>
   7855 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
   7856    an unsigned addition of the two arguments. They return a structure &mdash;
   7857    the first element of which is the sum, and the second element of which is a
   7858    bit specifying if the unsigned summation resulted in a carry.</p>
   7859 
   7860 <h5>Examples:</h5>
   7861 <pre>
   7862   %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   7863   %sum = extractvalue {i32, i1} %res, 0
   7864   %obit = extractvalue {i32, i1} %res, 1
   7865   br i1 %obit, label %carry, label %normal
   7866 </pre>
   7867 
   7868 </div>
   7869 
   7870 <!-- _______________________________________________________________________ -->
   7871 <h4>
   7872   <a name="int_ssub_overflow">
   7873     '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
   7874   </a>
   7875 </h4>
   7876 
   7877 <div>
   7878 
   7879 <h5>Syntax:</h5>
   7880 <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
   7881    on any integer bit width.</p>
   7882 
   7883 <pre>
   7884   declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
   7885   declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   7886   declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
   7887 </pre>
   7888 
   7889 <h5>Overview:</h5>
   7890 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
   7891    a signed subtraction of the two arguments, and indicate whether an overflow
   7892    occurred during the signed subtraction.</p>
   7893 
   7894 <h5>Arguments:</h5>
   7895 <p>The arguments (%a and %b) and the first element of the result structure may
   7896    be of integer types of any bit width, but they must have the same bit
   7897    width. The second element of the result structure must be of
   7898    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7899    undergo signed subtraction.</p>
   7900 
   7901 <h5>Semantics:</h5>
   7902 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
   7903    a signed subtraction of the two arguments. They return a structure &mdash;
   7904    the first element of which is the subtraction, and the second element of
   7905    which is a bit specifying if the signed subtraction resulted in an
   7906    overflow.</p>
   7907 
   7908 <h5>Examples:</h5>
   7909 <pre>
   7910   %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   7911   %sum = extractvalue {i32, i1} %res, 0
   7912   %obit = extractvalue {i32, i1} %res, 1
   7913   br i1 %obit, label %overflow, label %normal
   7914 </pre>
   7915 
   7916 </div>
   7917 
   7918 <!-- _______________________________________________________________________ -->
   7919 <h4>
   7920   <a name="int_usub_overflow">
   7921     '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
   7922   </a>
   7923 </h4>
   7924 
   7925 <div>
   7926 
   7927 <h5>Syntax:</h5>
   7928 <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
   7929    on any integer bit width.</p>
   7930 
   7931 <pre>
   7932   declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
   7933   declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   7934   declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
   7935 </pre>
   7936 
   7937 <h5>Overview:</h5>
   7938 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
   7939    an unsigned subtraction of the two arguments, and indicate whether an
   7940    overflow occurred during the unsigned subtraction.</p>
   7941 
   7942 <h5>Arguments:</h5>
   7943 <p>The arguments (%a and %b) and the first element of the result structure may
   7944    be of integer types of any bit width, but they must have the same bit
   7945    width. The second element of the result structure must be of
   7946    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7947    undergo unsigned subtraction.</p>
   7948 
   7949 <h5>Semantics:</h5>
   7950 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
   7951    an unsigned subtraction of the two arguments. They return a structure &mdash;
   7952    the first element of which is the subtraction, and the second element of
   7953    which is a bit specifying if the unsigned subtraction resulted in an
   7954    overflow.</p>
   7955 
   7956 <h5>Examples:</h5>
   7957 <pre>
   7958   %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   7959   %sum = extractvalue {i32, i1} %res, 0
   7960   %obit = extractvalue {i32, i1} %res, 1
   7961   br i1 %obit, label %overflow, label %normal
   7962 </pre>
   7963 
   7964 </div>
   7965 
   7966 <!-- _______________________________________________________________________ -->
   7967 <h4>
   7968   <a name="int_smul_overflow">
   7969     '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
   7970   </a>
   7971 </h4>
   7972 
   7973 <div>
   7974 
   7975 <h5>Syntax:</h5>
   7976 <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
   7977    on any integer bit width.</p>
   7978 
   7979 <pre>
   7980   declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
   7981   declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   7982   declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
   7983 </pre>
   7984 
   7985 <h5>Overview:</h5>
   7986 
   7987 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
   7988    a signed multiplication of the two arguments, and indicate whether an
   7989    overflow occurred during the signed multiplication.</p>
   7990 
   7991 <h5>Arguments:</h5>
   7992 <p>The arguments (%a and %b) and the first element of the result structure may
   7993    be of integer types of any bit width, but they must have the same bit
   7994    width. The second element of the result structure must be of
   7995    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7996    undergo signed multiplication.</p>
   7997 
   7998 <h5>Semantics:</h5>
   7999 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
   8000    a signed multiplication of the two arguments. They return a structure &mdash;
   8001    the first element of which is the multiplication, and the second element of
   8002    which is a bit specifying if the signed multiplication resulted in an
   8003    overflow.</p>
   8004 
   8005 <h5>Examples:</h5>
   8006 <pre>
   8007   %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   8008   %sum = extractvalue {i32, i1} %res, 0
   8009   %obit = extractvalue {i32, i1} %res, 1
   8010   br i1 %obit, label %overflow, label %normal
   8011 </pre>
   8012 
   8013 </div>
   8014 
   8015 <!-- _______________________________________________________________________ -->
   8016 <h4>
   8017   <a name="int_umul_overflow">
   8018     '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
   8019   </a>
   8020 </h4>
   8021 
   8022 <div>
   8023 
   8024 <h5>Syntax:</h5>
   8025 <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
   8026    on any integer bit width.</p>
   8027 
   8028 <pre>
   8029   declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
   8030   declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   8031   declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
   8032 </pre>
   8033 
   8034 <h5>Overview:</h5>
   8035 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
   8036    a unsigned multiplication of the two arguments, and indicate whether an
   8037    overflow occurred during the unsigned multiplication.</p>
   8038 
   8039 <h5>Arguments:</h5>
   8040 <p>The arguments (%a and %b) and the first element of the result structure may
   8041    be of integer types of any bit width, but they must have the same bit
   8042    width. The second element of the result structure must be of
   8043    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   8044    undergo unsigned multiplication.</p>
   8045 
   8046 <h5>Semantics:</h5>
   8047 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
   8048    an unsigned multiplication of the two arguments. They return a structure
   8049    &mdash; the first element of which is the multiplication, and the second
   8050    element of which is a bit specifying if the unsigned multiplication resulted
   8051    in an overflow.</p>
   8052 
   8053 <h5>Examples:</h5>
   8054 <pre>
   8055   %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   8056   %sum = extractvalue {i32, i1} %res, 0
   8057   %obit = extractvalue {i32, i1} %res, 1
   8058   br i1 %obit, label %overflow, label %normal
   8059 </pre>
   8060 
   8061 </div>
   8062 
   8063 </div>
   8064 
   8065 <!-- ======================================================================= -->
   8066 <h3>
   8067   <a name="spec_arithmetic">Specialised Arithmetic Intrinsics</a>
   8068 </h3>
   8069 
   8070 <!-- _______________________________________________________________________ -->
   8071 
   8072 <h4>
   8073   <a name="fmuladd">'<tt>llvm.fmuladd.*</tt>' Intrinsic</a>
   8074 </h4>
   8075 
   8076 <div>
   8077 
   8078 <h5>Syntax:</h5>
   8079 <pre>
   8080   declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
   8081   declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
   8082 </pre>
   8083 
   8084 <h5>Overview:</h5>
   8085 <p>The '<tt>llvm.fmuladd.*</tt>' intrinsic functions represent multiply-add
   8086 expressions that can be fused if the code generator determines that the fused
   8087 expression would be legal and efficient.</p>
   8088 
   8089 <h5>Arguments:</h5>
   8090 <p>The '<tt>llvm.fmuladd.*</tt>' intrinsics each take three arguments: two
   8091 multiplicands, a and b, and an addend c.</p>
   8092 
   8093 <h5>Semantics:</h5>
   8094 <p>The expression:</p>
   8095 <pre>
   8096   %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
   8097 </pre>
   8098 <p>is equivalent to the expression a * b + c, except that rounding will not be
   8099 performed between the multiplication and addition steps if the code generator
   8100 fuses the operations. Fusion is not guaranteed, even if the target platform
   8101 supports it. If a fused multiply-add is required the corresponding llvm.fma.*
   8102 intrinsic function should be used instead.</p>
   8103 
   8104 <h5>Examples:</h5>
   8105 <pre>
   8106   %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
   8107 </pre>
   8108 
   8109 </div>
   8110 
   8111 <!-- ======================================================================= -->
   8112 <h3>
   8113   <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
   8114 </h3>
   8115 
   8116 <div>
   8117 
   8118 <p>For most target platforms, half precision floating point is a storage-only
   8119    format. This means that it is
   8120    a dense encoding (in memory) but does not support computation in the
   8121    format.</p>
   8122    
   8123 <p>This means that code must first load the half-precision floating point
   8124    value as an i16, then convert it to float with <a
   8125    href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
   8126    Computation can then be performed on the float value (including extending to
   8127    double etc).  To store the value back to memory, it is first converted to
   8128    float if needed, then converted to i16 with
   8129    <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
   8130    storing as an i16 value.</p>
   8131 
   8132 <!-- _______________________________________________________________________ -->
   8133 <h4>
   8134   <a name="int_convert_to_fp16">
   8135     '<tt>llvm.convert.to.fp16</tt>' Intrinsic
   8136   </a>
   8137 </h4>
   8138 
   8139 <div>
   8140 
   8141 <h5>Syntax:</h5>
   8142 <pre>
   8143   declare i16 @llvm.convert.to.fp16(f32 %a)
   8144 </pre>
   8145 
   8146 <h5>Overview:</h5>
   8147 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
   8148    a conversion from single precision floating point format to half precision
   8149    floating point format.</p>
   8150 
   8151 <h5>Arguments:</h5>
   8152 <p>The intrinsic function contains single argument - the value to be
   8153    converted.</p>
   8154 
   8155 <h5>Semantics:</h5>
   8156 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
   8157    a conversion from single precision floating point format to half precision
   8158    floating point format. The return value is an <tt>i16</tt> which
   8159    contains the converted number.</p>
   8160 
   8161 <h5>Examples:</h5>
   8162 <pre>
   8163   %res = call i16 @llvm.convert.to.fp16(f32 %a)
   8164   store i16 %res, i16* @x, align 2
   8165 </pre>
   8166 
   8167 </div>
   8168 
   8169 <!-- _______________________________________________________________________ -->
   8170 <h4>
   8171   <a name="int_convert_from_fp16">
   8172     '<tt>llvm.convert.from.fp16</tt>' Intrinsic
   8173   </a>
   8174 </h4>
   8175 
   8176 <div>
   8177 
   8178 <h5>Syntax:</h5>
   8179 <pre>
   8180   declare f32 @llvm.convert.from.fp16(i16 %a)
   8181 </pre>
   8182 
   8183 <h5>Overview:</h5>
   8184 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
   8185    a conversion from half precision floating point format to single precision
   8186    floating point format.</p>
   8187 
   8188 <h5>Arguments:</h5>
   8189 <p>The intrinsic function contains single argument - the value to be
   8190    converted.</p>
   8191 
   8192 <h5>Semantics:</h5>
   8193 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
   8194    conversion from half single precision floating point format to single
   8195    precision floating point format. The input half-float value is represented by
   8196    an <tt>i16</tt> value.</p>
   8197 
   8198 <h5>Examples:</h5>
   8199 <pre>
   8200   %a = load i16* @x, align 2
   8201   %res = call f32 @llvm.convert.from.fp16(i16 %a)
   8202 </pre>
   8203 
   8204 </div>
   8205 
   8206 </div>
   8207 
   8208 <!-- ======================================================================= -->
   8209 <h3>
   8210   <a name="int_debugger">Debugger Intrinsics</a>
   8211 </h3>
   8212 
   8213 <div>
   8214 
   8215 <p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
   8216    prefix), are described in
   8217    the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
   8218    Level Debugging</a> document.</p>
   8219 
   8220 </div>
   8221 
   8222 <!-- ======================================================================= -->
   8223 <h3>
   8224   <a name="int_eh">Exception Handling Intrinsics</a>
   8225 </h3>
   8226 
   8227 <div>
   8228 
   8229 <p>The LLVM exception handling intrinsics (which all start with
   8230    <tt>llvm.eh.</tt> prefix), are described in
   8231    the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
   8232    Handling</a> document.</p>
   8233 
   8234 </div>
   8235 
   8236 <!-- ======================================================================= -->
   8237 <h3>
   8238   <a name="int_trampoline">Trampoline Intrinsics</a>
   8239 </h3>
   8240 
   8241 <div>
   8242 
   8243 <p>These intrinsics make it possible to excise one parameter, marked with
   8244    the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
   8245    The result is a callable
   8246    function pointer lacking the nest parameter - the caller does not need to
   8247    provide a value for it.  Instead, the value to use is stored in advance in a
   8248    "trampoline", a block of memory usually allocated on the stack, which also
   8249    contains code to splice the nest value into the argument list.  This is used
   8250    to implement the GCC nested function address extension.</p>
   8251 
   8252 <p>For example, if the function is
   8253    <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
   8254    pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as
   8255    follows:</p>
   8256 
   8257 <pre class="doc_code">
   8258   %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
   8259   %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
   8260   call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
   8261   %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
   8262   %fp = bitcast i8* %p to i32 (i32, i32)*
   8263 </pre>
   8264 
   8265 <p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
   8266    to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
   8267 
   8268 <!-- _______________________________________________________________________ -->
   8269 <h4>
   8270   <a name="int_it">
   8271     '<tt>llvm.init.trampoline</tt>' Intrinsic
   8272   </a>
   8273 </h4>
   8274 
   8275 <div>
   8276 
   8277 <h5>Syntax:</h5>
   8278 <pre>
   8279   declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
   8280 </pre>
   8281 
   8282 <h5>Overview:</h5>
   8283 <p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
   8284    turning it into a trampoline.</p>
   8285 
   8286 <h5>Arguments:</h5>
   8287 <p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
   8288    pointers.  The <tt>tramp</tt> argument must point to a sufficiently large and
   8289    sufficiently aligned block of memory; this memory is written to by the
   8290    intrinsic.  Note that the size and the alignment are target-specific - LLVM
   8291    currently provides no portable way of determining them, so a front-end that
   8292    generates this intrinsic needs to have some target-specific knowledge.
   8293    The <tt>func</tt> argument must hold a function bitcast to
   8294    an <tt>i8*</tt>.</p>
   8295 
   8296 <h5>Semantics:</h5>
   8297 <p>The block of memory pointed to by <tt>tramp</tt> is filled with target
   8298    dependent code, turning it into a function.  Then <tt>tramp</tt> needs to be
   8299    passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
   8300    which can be <a href="#int_trampoline">bitcast (to a new function) and
   8301    called</a>.  The new function's signature is the same as that of
   8302    <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
   8303    removed.  At most one such <tt>nest</tt> argument is allowed, and it must be of
   8304    pointer type.  Calling the new function is equivalent to calling <tt>func</tt>
   8305    with the same argument list, but with <tt>nval</tt> used for the missing
   8306    <tt>nest</tt> argument.  If, after calling <tt>llvm.init.trampoline</tt>, the
   8307    memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
   8308    to the returned function pointer is undefined.</p>
   8309 </div>
   8310 
   8311 <!-- _______________________________________________________________________ -->
   8312 <h4>
   8313   <a name="int_at">
   8314     '<tt>llvm.adjust.trampoline</tt>' Intrinsic
   8315   </a>
   8316 </h4>
   8317 
   8318 <div>
   8319 
   8320 <h5>Syntax:</h5>
   8321 <pre>
   8322   declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
   8323 </pre>
   8324 
   8325 <h5>Overview:</h5>
   8326 <p>This performs any required machine-specific adjustment to the address of a
   8327    trampoline (passed as <tt>tramp</tt>).</p>
   8328 
   8329 <h5>Arguments:</h5>
   8330 <p><tt>tramp</tt> must point to a block of memory which already has trampoline code
   8331    filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
   8332    </a>.</p>
   8333 
   8334 <h5>Semantics:</h5>
   8335 <p>On some architectures the address of the code to be executed needs to be
   8336    different to the address where the trampoline is actually stored.  This
   8337    intrinsic returns the executable address corresponding to <tt>tramp</tt>
   8338    after performing the required machine specific adjustments.
   8339    The pointer returned can then be <a href="#int_trampoline"> bitcast and
   8340    executed</a>.
   8341 </p>
   8342 
   8343 </div>
   8344 
   8345 </div>
   8346 
   8347 <!-- ======================================================================= -->
   8348 <h3>
   8349   <a name="int_memorymarkers">Memory Use Markers</a>
   8350 </h3>
   8351 
   8352 <div>
   8353 
   8354 <p>This class of intrinsics exists to information about the lifetime of memory
   8355    objects and ranges where variables are immutable.</p>
   8356 
   8357 <!-- _______________________________________________________________________ -->
   8358 <h4>
   8359   <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
   8360 </h4>
   8361 
   8362 <div>
   8363 
   8364 <h5>Syntax:</h5>
   8365 <pre>
   8366   declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   8367 </pre>
   8368 
   8369 <h5>Overview:</h5>
   8370 <p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
   8371    object's lifetime.</p>
   8372 
   8373 <h5>Arguments:</h5>
   8374 <p>The first argument is a constant integer representing the size of the
   8375    object, or -1 if it is variable sized.  The second argument is a pointer to
   8376    the object.</p>
   8377 
   8378 <h5>Semantics:</h5>
   8379 <p>This intrinsic indicates that before this point in the code, the value of the
   8380    memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
   8381    never be used and has an undefined value.  A load from the pointer that
   8382    precedes this intrinsic can be replaced with
   8383    <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
   8384 
   8385 </div>
   8386 
   8387 <!-- _______________________________________________________________________ -->
   8388 <h4>
   8389   <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
   8390 </h4>
   8391 
   8392 <div>
   8393 
   8394 <h5>Syntax:</h5>
   8395 <pre>
   8396   declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   8397 </pre>
   8398 
   8399 <h5>Overview:</h5>
   8400 <p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
   8401    object's lifetime.</p>
   8402 
   8403 <h5>Arguments:</h5>
   8404 <p>The first argument is a constant integer representing the size of the
   8405    object, or -1 if it is variable sized.  The second argument is a pointer to
   8406    the object.</p>
   8407 
   8408 <h5>Semantics:</h5>
   8409 <p>This intrinsic indicates that after this point in the code, the value of the
   8410    memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
   8411    never be used and has an undefined value.  Any stores into the memory object
   8412    following this intrinsic may be removed as dead.
   8413 
   8414 </div>
   8415 
   8416 <!-- _______________________________________________________________________ -->
   8417 <h4>
   8418   <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
   8419 </h4>
   8420 
   8421 <div>
   8422 
   8423 <h5>Syntax:</h5>
   8424 <pre>
   8425   declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   8426 </pre>
   8427 
   8428 <h5>Overview:</h5>
   8429 <p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
   8430    a memory object will not change.</p>
   8431 
   8432 <h5>Arguments:</h5>
   8433 <p>The first argument is a constant integer representing the size of the
   8434    object, or -1 if it is variable sized.  The second argument is a pointer to
   8435    the object.</p>
   8436 
   8437 <h5>Semantics:</h5>
   8438 <p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
   8439    the return value, the referenced memory location is constant and
   8440    unchanging.</p>
   8441 
   8442 </div>
   8443 
   8444 <!-- _______________________________________________________________________ -->
   8445 <h4>
   8446   <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
   8447 </h4>
   8448 
   8449 <div>
   8450 
   8451 <h5>Syntax:</h5>
   8452 <pre>
   8453   declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   8454 </pre>
   8455 
   8456 <h5>Overview:</h5>
   8457 <p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
   8458    a memory object are mutable.</p>
   8459 
   8460 <h5>Arguments:</h5>
   8461 <p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
   8462    The second argument is a constant integer representing the size of the
   8463    object, or -1 if it is variable sized and the third argument is a pointer
   8464    to the object.</p>
   8465 
   8466 <h5>Semantics:</h5>
   8467 <p>This intrinsic indicates that the memory is mutable again.</p>
   8468 
   8469 </div>
   8470 
   8471 </div>
   8472 
   8473 <!-- ======================================================================= -->
   8474 <h3>
   8475   <a name="int_general">General Intrinsics</a>
   8476 </h3>
   8477 
   8478 <div>
   8479 
   8480 <p>This class of intrinsics is designed to be generic and has no specific
   8481    purpose.</p>
   8482 
   8483 <!-- _______________________________________________________________________ -->
   8484 <h4>
   8485   <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
   8486 </h4>
   8487 
   8488 <div>
   8489 
   8490 <h5>Syntax:</h5>
   8491 <pre>
   8492   declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8493 </pre>
   8494 
   8495 <h5>Overview:</h5>
   8496 <p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
   8497 
   8498 <h5>Arguments:</h5>
   8499 <p>The first argument is a pointer to a value, the second is a pointer to a
   8500    global string, the third is a pointer to a global string which is the source
   8501    file name, and the last argument is the line number.</p>
   8502 
   8503 <h5>Semantics:</h5>
   8504 <p>This intrinsic allows annotation of local variables with arbitrary strings.
   8505    This can be useful for special purpose optimizations that want to look for
   8506    these annotations.  These have no other defined use; they are ignored by code
   8507    generation and optimization.</p>
   8508 
   8509 </div>
   8510 
   8511 <!-- _______________________________________________________________________ -->
   8512 <h4>
   8513   <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
   8514 </h4>
   8515 
   8516 <div>
   8517 
   8518 <h5>Syntax:</h5>
   8519 <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
   8520    any integer bit width.</p>
   8521 
   8522 <pre>
   8523   declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8524   declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8525   declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8526   declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8527   declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   8528 </pre>
   8529 
   8530 <h5>Overview:</h5>
   8531 <p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
   8532 
   8533 <h5>Arguments:</h5>
   8534 <p>The first argument is an integer value (result of some expression), the
   8535    second is a pointer to a global string, the third is a pointer to a global
   8536    string which is the source file name, and the last argument is the line
   8537    number.  It returns the value of the first argument.</p>
   8538 
   8539 <h5>Semantics:</h5>
   8540 <p>This intrinsic allows annotations to be put on arbitrary expressions with
   8541    arbitrary strings.  This can be useful for special purpose optimizations that
   8542    want to look for these annotations.  These have no other defined use; they
   8543    are ignored by code generation and optimization.</p>
   8544 
   8545 </div>
   8546 
   8547 <!-- _______________________________________________________________________ -->
   8548 <h4>
   8549   <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
   8550 </h4>
   8551 
   8552 <div>
   8553 
   8554 <h5>Syntax:</h5>
   8555 <pre>
   8556   declare void @llvm.trap() noreturn nounwind
   8557 </pre>
   8558 
   8559 <h5>Overview:</h5>
   8560 <p>The '<tt>llvm.trap</tt>' intrinsic.</p>
   8561 
   8562 <h5>Arguments:</h5>
   8563 <p>None.</p>
   8564 
   8565 <h5>Semantics:</h5>
   8566 <p>This intrinsic is lowered to the target dependent trap instruction. If the
   8567    target does not have a trap instruction, this intrinsic will be lowered to
   8568    a call of the <tt>abort()</tt> function.</p>
   8569 
   8570 </div>
   8571 
   8572 <!-- _______________________________________________________________________ -->
   8573 <h4>
   8574   <a name="int_debugtrap">'<tt>llvm.debugtrap</tt>' Intrinsic</a>
   8575 </h4>
   8576 
   8577 <div>
   8578 
   8579 <h5>Syntax:</h5>
   8580 <pre>
   8581   declare void @llvm.debugtrap() nounwind
   8582 </pre>
   8583 
   8584 <h5>Overview:</h5>
   8585 <p>The '<tt>llvm.debugtrap</tt>' intrinsic.</p>
   8586 
   8587 <h5>Arguments:</h5>
   8588 <p>None.</p>
   8589 
   8590 <h5>Semantics:</h5>
   8591 <p>This intrinsic is lowered to code which is intended to cause an execution
   8592    trap with the intention of requesting the attention of a debugger.</p>
   8593 
   8594 </div>
   8595 
   8596 <!-- _______________________________________________________________________ -->
   8597 <h4>
   8598   <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
   8599 </h4>
   8600 
   8601 <div>
   8602 
   8603 <h5>Syntax:</h5>
   8604 <pre>
   8605   declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
   8606 </pre>
   8607 
   8608 <h5>Overview:</h5>
   8609 <p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
   8610    stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
   8611    ensure that it is placed on the stack before local variables.</p>
   8612 
   8613 <h5>Arguments:</h5>
   8614 <p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
   8615    arguments. The first argument is the value loaded from the stack
   8616    guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
   8617    that has enough space to hold the value of the guard.</p>
   8618 
   8619 <h5>Semantics:</h5>
   8620 <p>This intrinsic causes the prologue/epilogue inserter to force the position of
   8621    the <tt>AllocaInst</tt> stack slot to be before local variables on the
   8622    stack. This is to ensure that if a local variable on the stack is
   8623    overwritten, it will destroy the value of the guard. When the function exits,
   8624    the guard on the stack is checked against the original guard. If they are
   8625    different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
   8626    function.</p>
   8627 
   8628 </div>
   8629 
   8630 <!-- _______________________________________________________________________ -->
   8631 <h4>
   8632   <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
   8633 </h4>
   8634 
   8635 <div>
   8636 
   8637 <h5>Syntax:</h5>
   8638 <pre>
   8639   declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;min&gt;)
   8640   declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;min&gt;)
   8641 </pre>
   8642 
   8643 <h5>Overview:</h5>
   8644 <p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
   8645    the optimizers to determine at compile time whether a) an operation (like
   8646    memcpy) will overflow a buffer that corresponds to an object, or b) that a
   8647    runtime check for overflow isn't necessary. An object in this context means
   8648    an allocation of a specific class, structure, array, or other object.</p>
   8649 
   8650 <h5>Arguments:</h5>
   8651 <p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
   8652    argument is a pointer to or into the <tt>object</tt>. The second argument
   8653    is a boolean and determines whether <tt>llvm.objectsize</tt> returns 0 (if
   8654    true) or -1 (if false) when the object size is unknown.
   8655    The second argument only accepts constants.</p>
   8656    
   8657 <h5>Semantics:</h5>
   8658 <p>The <tt>llvm.objectsize</tt> intrinsic is lowered to a constant representing
   8659    the size of the object concerned. If the size cannot be determined at compile
   8660    time, <tt>llvm.objectsize</tt> returns <tt>i32/i64 -1 or 0</tt>
   8661    (depending on the <tt>min</tt> argument).</p>
   8662 
   8663 </div>
   8664 <!-- _______________________________________________________________________ -->
   8665 <h4>
   8666   <a name="int_expect">'<tt>llvm.expect</tt>' Intrinsic</a>
   8667 </h4>
   8668 
   8669 <div>
   8670 
   8671 <h5>Syntax:</h5>
   8672 <pre>
   8673   declare i32 @llvm.expect.i32(i32 &lt;val&gt;, i32 &lt;expected_val&gt;)
   8674   declare i64 @llvm.expect.i64(i64 &lt;val&gt;, i64 &lt;expected_val&gt;)
   8675 </pre>
   8676 
   8677 <h5>Overview:</h5>
   8678 <p>The <tt>llvm.expect</tt> intrinsic provides information about expected (the
   8679    most probable) value of <tt>val</tt>, which can be used by optimizers.</p>
   8680 
   8681 <h5>Arguments:</h5>
   8682 <p>The <tt>llvm.expect</tt> intrinsic takes two arguments. The first
   8683    argument is a value. The second argument is an expected value, this needs to
   8684    be a constant value, variables are not allowed.</p>
   8685 
   8686 <h5>Semantics:</h5>
   8687 <p>This intrinsic is lowered to the <tt>val</tt>.</p>
   8688 </div>
   8689 
   8690 <!-- _______________________________________________________________________ -->
   8691 <h4>
   8692   <a name="int_donothing">'<tt>llvm.donothing</tt>' Intrinsic</a>
   8693 </h4>
   8694 
   8695 <div>
   8696 
   8697 <h5>Syntax:</h5>
   8698 <pre>
   8699   declare void @llvm.donothing() nounwind readnone
   8700 </pre>
   8701 
   8702 <h5>Overview:</h5>
   8703 <p>The <tt>llvm.donothing</tt> intrinsic doesn't perform any operation. It's the
   8704 only intrinsic that can be called with an invoke instruction.</p>
   8705 
   8706 <h5>Arguments:</h5>
   8707 <p>None.</p>
   8708 
   8709 <h5>Semantics:</h5>
   8710 <p>This intrinsic does nothing, and it's removed by optimizers and ignored by
   8711 codegen.</p>
   8712 </div>
   8713 
   8714 </div>
   8715 
   8716 </div>
   8717 <!-- *********************************************************************** -->
   8718 <hr>
   8719 <address>
   8720   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   8721   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   8722   <a href="http://validator.w3.org/check/referer"><img
   8723   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
   8724 
   8725   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   8726   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   8727   Last modified: $Date$
   8728 </address>
   8729 
   8730 </body>
   8731 </html>
   8732