Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <meta http-equiv="Content-type" content="text/html;charset=UTF-8">
      6   <title>LLVM Programmer's Manual</title>
      7   <link rel="stylesheet" href="_static/llvm.css" type="text/css">
      8 </head>
      9 <body>
     10 
     11 <h1>
     12   LLVM Programmer's Manual
     13 </h1>
     14 
     15 <ol>
     16   <li><a href="#introduction">Introduction</a></li>
     17   <li><a href="#general">General Information</a>
     18     <ul>
     19       <li><a href="#stl">The C++ Standard Template Library</a></li>
     20 <!--
     21       <li>The <tt>-time-passes</tt> option</li>
     22       <li>How to use the LLVM Makefile system</li>
     23       <li>How to write a regression test</li>
     24 
     25 --> 
     26     </ul>
     27   </li>
     28   <li><a href="#apis">Important and useful LLVM APIs</a>
     29     <ul>
     30       <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
     31 and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
     32       <li><a href="#string_apis">Passing strings (the <tt>StringRef</tt>
     33 and <tt>Twine</tt> classes)</a>
     34         <ul>
     35           <li><a href="#StringRef">The <tt>StringRef</tt> class</a> </li>
     36           <li><a href="#Twine">The <tt>Twine</tt> class</a> </li>
     37         </ul>
     38       </li>
     39       <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
     40 option</a>
     41         <ul>
     42           <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
     43 and the <tt>-debug-only</tt> option</a> </li>
     44         </ul>
     45       </li>
     46       <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
     47 option</a></li>
     48 <!--
     49       <li>The <tt>InstVisitor</tt> template
     50       <li>The general graph API
     51 --> 
     52       <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
     53     </ul>
     54   </li>
     55   <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
     56     <ul>
     57     <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
     58     <ul>
     59       <li><a href="#dss_arrayref">llvm/ADT/ArrayRef.h</a></li>
     60       <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
     61       <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
     62       <li><a href="#dss_tinyptrvector">"llvm/ADT/TinyPtrVector.h"</a></li>
     63       <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
     64       <li><a href="#dss_vector">&lt;vector&gt;</a></li>
     65       <li><a href="#dss_deque">&lt;deque&gt;</a></li>
     66       <li><a href="#dss_list">&lt;list&gt;</a></li>
     67       <li><a href="#dss_ilist">llvm/ADT/ilist.h</a></li>
     68       <li><a href="#dss_packedvector">llvm/ADT/PackedVector.h</a></li>
     69       <li><a href="#dss_other">Other Sequential Container Options</a></li>
     70     </ul></li>
     71     <li><a href="#ds_string">String-like containers</a>
     72     <ul>
     73       <li><a href="#dss_stringref">llvm/ADT/StringRef.h</a></li>
     74       <li><a href="#dss_twine">llvm/ADT/Twine.h</a></li>
     75       <li><a href="#dss_smallstring">llvm/ADT/SmallString.h</a></li>
     76       <li><a href="#dss_stdstring">std::string</a></li>
     77     </ul></li>
     78     <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
     79     <ul>
     80       <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
     81       <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
     82       <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
     83       <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
     84       <li><a href="#dss_sparseset">"llvm/ADT/SparseSet.h"</a></li>
     85       <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
     86       <li><a href="#dss_set">&lt;set&gt;</a></li>
     87       <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
     88       <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
     89       <li><a href="#dss_immutableset">"llvm/ADT/ImmutableSet.h"</a></li>
     90       <li><a href="#dss_otherset">Other Set-Like Container Options</a></li>
     91     </ul></li>
     92     <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
     93     <ul>
     94       <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
     95       <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
     96       <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
     97       <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
     98       <li><a href="#dss_valuemap">"llvm/ADT/ValueMap.h"</a></li>
     99       <li><a href="#dss_intervalmap">"llvm/ADT/IntervalMap.h"</a></li>
    100       <li><a href="#dss_map">&lt;map&gt;</a></li>
    101       <li><a href="#dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a></li>
    102       <li><a href="#dss_immutablemap">"llvm/ADT/ImmutableMap.h"</a></li>
    103       <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
    104     </ul></li>
    105     <li><a href="#ds_bit">BitVector-like containers</a>
    106     <ul>
    107       <li><a href="#dss_bitvector">A dense bitvector</a></li>
    108       <li><a href="#dss_smallbitvector">A "small" dense bitvector</a></li>
    109       <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
    110     </ul></li>
    111   </ul>
    112   </li>
    113   <li><a href="#common">Helpful Hints for Common Operations</a>
    114     <ul>
    115       <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
    116         <ul>
    117           <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
    118 in a <tt>Function</tt></a> </li>
    119           <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
    120 in a <tt>BasicBlock</tt></a> </li>
    121           <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
    122 in a <tt>Function</tt></a> </li>
    123           <li><a href="#iterate_convert">Turning an iterator into a
    124 class pointer</a> </li>
    125           <li><a href="#iterate_complex">Finding call sites: a more
    126 complex example</a> </li>
    127           <li><a href="#calls_and_invokes">Treating calls and invokes
    128 the same way</a> </li>
    129           <li><a href="#iterate_chains">Iterating over def-use &amp;
    130 use-def chains</a> </li>
    131           <li><a href="#iterate_preds">Iterating over predecessors &amp;
    132 successors of blocks</a></li>
    133         </ul>
    134       </li>
    135       <li><a href="#simplechanges">Making simple changes</a>
    136         <ul>
    137           <li><a href="#schanges_creating">Creating and inserting new
    138 		 <tt>Instruction</tt>s</a> </li>
    139           <li><a href="#schanges_deleting">Deleting 		 <tt>Instruction</tt>s</a> </li>
    140           <li><a href="#schanges_replacing">Replacing an 		 <tt>Instruction</tt>
    141 with another <tt>Value</tt></a> </li>
    142           <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>  
    143         </ul>
    144       </li>
    145       <li><a href="#create_types">How to Create Types</a></li>
    146 <!--
    147     <li>Working with the Control Flow Graph
    148     <ul>
    149       <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
    150       <li>
    151       <li>
    152     </ul>
    153 --> 
    154     </ul>
    155   </li>
    156 
    157   <li><a href="#threading">Threads and LLVM</a>
    158   <ul>
    159     <li><a href="#startmultithreaded">Entering and Exiting Multithreaded Mode
    160         </a></li>
    161     <li><a href="#shutdown">Ending execution with <tt>llvm_shutdown()</tt></a></li>
    162     <li><a href="#managedstatic">Lazy initialization with <tt>ManagedStatic</tt></a></li>
    163     <li><a href="#llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a></li>
    164     <li><a href="#jitthreading">Threads and the JIT</a></li>
    165   </ul>
    166   </li>
    167 
    168   <li><a href="#advanced">Advanced Topics</a>
    169   <ul>
    170 
    171   <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> class</a></li>
    172   <li><a href="#UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a></li>
    173   </ul></li>
    174 
    175   <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
    176     <ul>
    177       <li><a href="#Type">The <tt>Type</tt> class</a> </li>
    178       <li><a href="#Module">The <tt>Module</tt> class</a></li>
    179       <li><a href="#Value">The <tt>Value</tt> class</a>
    180       <ul>
    181         <li><a href="#User">The <tt>User</tt> class</a>
    182         <ul>
    183           <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
    184           <li><a href="#Constant">The <tt>Constant</tt> class</a>
    185           <ul>
    186             <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
    187             <ul>
    188               <li><a href="#Function">The <tt>Function</tt> class</a></li>
    189               <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
    190             </ul>
    191             </li>
    192           </ul>
    193           </li>
    194         </ul>
    195         </li>
    196         <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
    197         <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
    198       </ul>
    199       </li>
    200     </ul>
    201   </li>
    202 </ol>
    203 
    204 <div class="doc_author">    
    205   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a>, 
    206                 <a href="mailto:dhurjati (a] cs.uiuc.edu">Dinakar Dhurjati</a>, 
    207                 <a href="mailto:ggreif (a] gmail.com">Gabor Greif</a>, 
    208                 <a href="mailto:jstanley (a] cs.uiuc.edu">Joel Stanley</a>,
    209                 <a href="mailto:rspencer (a] x10sys.com">Reid Spencer</a> and
    210                 <a href="mailto:owen (a] apple.com">Owen Anderson</a></p>
    211 </div>
    212 
    213 <!-- *********************************************************************** -->
    214 <h2>
    215   <a name="introduction">Introduction </a>
    216 </h2>
    217 <!-- *********************************************************************** -->
    218 
    219 <div>
    220 
    221 <p>This document is meant to highlight some of the important classes and
    222 interfaces available in the LLVM source-base.  This manual is not
    223 intended to explain what LLVM is, how it works, and what LLVM code looks
    224 like.  It assumes that you know the basics of LLVM and are interested
    225 in writing transformations or otherwise analyzing or manipulating the
    226 code.</p>
    227 
    228 <p>This document should get you oriented so that you can find your
    229 way in the continuously growing source code that makes up the LLVM
    230 infrastructure. Note that this manual is not intended to serve as a
    231 replacement for reading the source code, so if you think there should be
    232 a method in one of these classes to do something, but it's not listed,
    233 check the source.  Links to the <a href="/doxygen/">doxygen</a> sources
    234 are provided to make this as easy as possible.</p>
    235 
    236 <p>The first section of this document describes general information that is
    237 useful to know when working in the LLVM infrastructure, and the second describes
    238 the Core LLVM classes.  In the future this manual will be extended with
    239 information describing how to use extension libraries, such as dominator
    240 information, CFG traversal routines, and useful utilities like the <tt><a
    241 href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
    242 
    243 </div>
    244 
    245 <!-- *********************************************************************** -->
    246 <h2>
    247   <a name="general">General Information</a>
    248 </h2>
    249 <!-- *********************************************************************** -->
    250 
    251 <div>
    252 
    253 <p>This section contains general information that is useful if you are working
    254 in the LLVM source-base, but that isn't specific to any particular API.</p>
    255 
    256 <!-- ======================================================================= -->
    257 <h3>
    258   <a name="stl">The C++ Standard Template Library</a>
    259 </h3>
    260 
    261 <div>
    262 
    263 <p>LLVM makes heavy use of the C++ Standard Template Library (STL),
    264 perhaps much more than you are used to, or have seen before.  Because of
    265 this, you might want to do a little background reading in the
    266 techniques used and capabilities of the library.  There are many good
    267 pages that discuss the STL, and several books on the subject that you
    268 can get, so it will not be discussed in this document.</p>
    269 
    270 <p>Here are some useful links:</p>
    271 
    272 <ol>
    273 
    274 <li><a href="http://www.dinkumware.com/manuals/#Standard C++ Library">Dinkumware
    275 C++ Library reference</a> - an excellent reference for the STL and other parts
    276 of the standard C++ library.</li>
    277 
    278 <li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
    279 O'Reilly book in the making.  It has a decent Standard Library
    280 Reference that rivals Dinkumware's, and is unfortunately no longer free since the
    281 book has been published.</li>
    282 
    283 <li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
    284 Questions</a></li>
    285 
    286 <li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
    287 Contains a useful <a
    288 href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
    289 STL</a>.</li>
    290 
    291 <li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
    292 Page</a></li>
    293 
    294 <li><a href="http://64.78.49.204/">
    295 Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
    296 the book).</a></li>
    297 
    298 </ol>
    299   
    300 <p>You are also encouraged to take a look at the <a
    301 href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
    302 to write maintainable code more than where to put your curly braces.</p>
    303 
    304 </div>
    305 
    306 <!-- ======================================================================= -->
    307 <h3>
    308   <a name="stl">Other useful references</a>
    309 </h3>
    310 
    311 <div>
    312 
    313 <ol>
    314 <li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
    315 static and shared libraries across platforms</a></li>
    316 </ol>
    317 
    318 </div>
    319 
    320 </div>
    321 
    322 <!-- *********************************************************************** -->
    323 <h2>
    324   <a name="apis">Important and useful LLVM APIs</a>
    325 </h2>
    326 <!-- *********************************************************************** -->
    327 
    328 <div>
    329 
    330 <p>Here we highlight some LLVM APIs that are generally useful and good to
    331 know about when writing transformations.</p>
    332 
    333 <!-- ======================================================================= -->
    334 <h3>
    335   <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
    336   <tt>dyn_cast&lt;&gt;</tt> templates</a>
    337 </h3>
    338 
    339 <div>
    340 
    341 <p>The LLVM source-base makes extensive use of a custom form of RTTI.
    342 These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
    343 operator, but they don't have some drawbacks (primarily stemming from
    344 the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
    345 have a v-table). Because they are used so often, you must know what they
    346 do and how they work. All of these templates are defined in the <a
    347  href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
    348 file (note that you very rarely have to include this file directly).</p>
    349 
    350 <dl>
    351   <dt><tt>isa&lt;&gt;</tt>: </dt>
    352 
    353   <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
    354   "<tt>instanceof</tt>" operator.  It returns true or false depending on whether
    355   a reference or pointer points to an instance of the specified class.  This can
    356   be very useful for constraint checking of various sorts (example below).</p>
    357   </dd>
    358 
    359   <dt><tt>cast&lt;&gt;</tt>: </dt>
    360 
    361   <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
    362   converts a pointer or reference from a base class to a derived class, causing
    363   an assertion failure if it is not really an instance of the right type.  This
    364   should be used in cases where you have some information that makes you believe
    365   that something is of the right type.  An example of the <tt>isa&lt;&gt;</tt>
    366   and <tt>cast&lt;&gt;</tt> template is:</p>
    367 
    368 <div class="doc_code">
    369 <pre>
    370 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
    371   if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
    372     return true;
    373 
    374   // <i>Otherwise, it must be an instruction...</i>
    375   return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
    376 }
    377 </pre>
    378 </div>
    379 
    380   <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
    381   by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
    382   operator.</p>
    383 
    384   </dd>
    385 
    386   <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
    387 
    388   <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
    389   It checks to see if the operand is of the specified type, and if so, returns a
    390   pointer to it (this operator does not work with references). If the operand is
    391   not of the correct type, a null pointer is returned.  Thus, this works very
    392   much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
    393   used in the same circumstances.  Typically, the <tt>dyn_cast&lt;&gt;</tt>
    394   operator is used in an <tt>if</tt> statement or some other flow control
    395   statement like this:</p>
    396 
    397 <div class="doc_code">
    398 <pre>
    399 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
    400   // <i>...</i>
    401 }
    402 </pre>
    403 </div>
    404    
    405   <p>This form of the <tt>if</tt> statement effectively combines together a call
    406   to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
    407   statement, which is very convenient.</p>
    408 
    409   <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
    410   <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
    411   abused.  In particular, you should not use big chained <tt>if/then/else</tt>
    412   blocks to check for lots of different variants of classes.  If you find
    413   yourself wanting to do this, it is much cleaner and more efficient to use the
    414   <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
    415 
    416   </dd>
    417 
    418   <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
    419   
    420   <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
    421   <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
    422   argument (which it then propagates).  This can sometimes be useful, allowing
    423   you to combine several null checks into one.</p></dd>
    424 
    425   <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
    426 
    427   <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
    428   <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
    429   as an argument (which it then propagates).  This can sometimes be useful,
    430   allowing you to combine several null checks into one.</p></dd>
    431 
    432 </dl>
    433 
    434 <p>These five templates can be used with any classes, whether they have a
    435 v-table or not.  To add support for these templates, you simply need to add
    436 <tt>classof</tt> static methods to the class you are interested casting
    437 to. Describing this is currently outside the scope of this document, but there
    438 are lots of examples in the LLVM source base.</p>
    439 
    440 </div>
    441 
    442 
    443 <!-- ======================================================================= -->
    444 <h3>
    445   <a name="string_apis">Passing strings (the <tt>StringRef</tt>
    446 and <tt>Twine</tt> classes)</a>
    447 </h3>
    448 
    449 <div>
    450 
    451 <p>Although LLVM generally does not do much string manipulation, we do have
    452 several important APIs which take strings.  Two important examples are the
    453 Value class -- which has names for instructions, functions, etc. -- and the
    454 StringMap class which is used extensively in LLVM and Clang.</p>
    455 
    456 <p>These are generic classes, and they need to be able to accept strings which
    457 may have embedded null characters.  Therefore, they cannot simply take
    458 a <tt>const char *</tt>, and taking a <tt>const std::string&amp;</tt> requires
    459 clients to perform a heap allocation which is usually unnecessary.  Instead,
    460 many LLVM APIs use a <tt>StringRef</tt> or a <tt>const Twine&amp;</tt> for
    461 passing strings efficiently.</p>
    462 
    463 <!-- _______________________________________________________________________ -->
    464 <h4>
    465   <a name="StringRef">The <tt>StringRef</tt> class</a>
    466 </h4>
    467 
    468 <div>
    469 
    470 <p>The <tt>StringRef</tt> data type represents a reference to a constant string
    471 (a character array and a length) and supports the common operations available
    472 on <tt>std:string</tt>, but does not require heap allocation.</p>
    473 
    474 <p>It can be implicitly constructed using a C style null-terminated string,
    475 an <tt>std::string</tt>, or explicitly with a character pointer and length.
    476 For example, the <tt>StringRef</tt> find function is declared as:</p>
    477 
    478 <pre class="doc_code">
    479   iterator find(StringRef Key);
    480 </pre>
    481 
    482 <p>and clients can call it using any one of:</p>
    483 
    484 <pre class="doc_code">
    485   Map.find("foo");                 <i>// Lookup "foo"</i>
    486   Map.find(std::string("bar"));    <i>// Lookup "bar"</i>
    487   Map.find(StringRef("\0baz", 4)); <i>// Lookup "\0baz"</i>
    488 </pre>
    489 
    490 <p>Similarly, APIs which need to return a string may return a <tt>StringRef</tt>
    491 instance, which can be used directly or converted to an <tt>std::string</tt>
    492 using the <tt>str</tt> member function.  See 
    493 "<tt><a href="/doxygen/classllvm_1_1StringRef_8h-source.html">llvm/ADT/StringRef.h</a></tt>"
    494 for more information.</p>
    495 
    496 <p>You should rarely use the <tt>StringRef</tt> class directly, because it contains
    497 pointers to external memory it is not generally safe to store an instance of the
    498 class (unless you know that the external storage will not be freed). StringRef is
    499 small and pervasive enough in LLVM that it should always be passed by value.</p>
    500 
    501 </div>
    502 
    503 <!-- _______________________________________________________________________ -->
    504 <h4>
    505   <a name="Twine">The <tt>Twine</tt> class</a>
    506 </h4>
    507 
    508 <div>
    509 
    510 <p>The <tt><a href="/doxygen/classllvm_1_1Twine.html">Twine</a></tt> class is an
    511 efficient way for APIs to accept concatenated strings.  For example, a common
    512 LLVM paradigm is to name one instruction based on
    513 the name of another instruction with a suffix, for example:</p>
    514 
    515 <div class="doc_code">
    516 <pre>
    517     New = CmpInst::Create(<i>...</i>, SO->getName() + ".cmp");
    518 </pre>
    519 </div>
    520 
    521 <p>The <tt>Twine</tt> class is effectively a lightweight
    522 <a href="http://en.wikipedia.org/wiki/Rope_(computer_science)">rope</a>
    523 which points to temporary (stack allocated) objects.  Twines can be implicitly
    524 constructed as the result of the plus operator applied to strings (i.e., a C
    525 strings, an <tt>std::string</tt>, or a <tt>StringRef</tt>).  The twine delays
    526 the actual concatenation of strings until it is actually required, at which
    527 point it can be efficiently rendered directly into a character array.  This
    528 avoids unnecessary heap allocation involved in constructing the temporary
    529 results of string concatenation. See
    530 "<tt><a href="/doxygen/Twine_8h_source.html">llvm/ADT/Twine.h</a></tt>"
    531 and <a href="#dss_twine">here</a> for more information.</p>
    532 
    533 <p>As with a <tt>StringRef</tt>, <tt>Twine</tt> objects point to external memory
    534 and should almost never be stored or mentioned directly.  They are intended
    535 solely for use when defining a function which should be able to efficiently
    536 accept concatenated strings.</p>
    537 
    538 </div>
    539 
    540 </div>
    541 
    542 <!-- ======================================================================= -->
    543 <h3>
    544   <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
    545 </h3>
    546 
    547 <div>
    548 
    549 <p>Often when working on your pass you will put a bunch of debugging printouts
    550 and other code into your pass.  After you get it working, you want to remove
    551 it, but you may need it again in the future (to work out new bugs that you run
    552 across).</p>
    553 
    554 <p> Naturally, because of this, you don't want to delete the debug printouts,
    555 but you don't want them to always be noisy.  A standard compromise is to comment
    556 them out, allowing you to enable them if you need them in the future.</p>
    557 
    558 <p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
    559 file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
    560 this problem.  Basically, you can put arbitrary code into the argument of the
    561 <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
    562 tool) is run with the '<tt>-debug</tt>' command line argument:</p>
    563 
    564 <div class="doc_code">
    565 <pre>
    566 DEBUG(errs() &lt;&lt; "I am here!\n");
    567 </pre>
    568 </div>
    569 
    570 <p>Then you can run your pass like this:</p>
    571 
    572 <div class="doc_code">
    573 <pre>
    574 $ opt &lt; a.bc &gt; /dev/null -mypass
    575 <i>&lt;no output&gt;</i>
    576 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
    577 I am here!
    578 </pre>
    579 </div>
    580 
    581 <p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
    582 to not have to create "yet another" command line option for the debug output for
    583 your pass.  Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
    584 so they do not cause a performance impact at all (for the same reason, they
    585 should also not contain side-effects!).</p>
    586 
    587 <p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
    588 enable or disable it directly in gdb.  Just use "<tt>set DebugFlag=0</tt>" or
    589 "<tt>set DebugFlag=1</tt>" from the gdb if the program is running.  If the
    590 program hasn't been started yet, you can always just run it with
    591 <tt>-debug</tt>.</p>
    592 
    593 <!-- _______________________________________________________________________ -->
    594 <h4>
    595   <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
    596   the <tt>-debug-only</tt> option</a>
    597 </h4>
    598 
    599 <div>
    600 
    601 <p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
    602 just turns on <b>too much</b> information (such as when working on the code
    603 generator).  If you want to enable debug information with more fine-grained
    604 control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
    605 option as follows:</p>
    606 
    607 <div class="doc_code">
    608 <pre>
    609 #undef  DEBUG_TYPE
    610 DEBUG(errs() &lt;&lt; "No debug type\n");
    611 #define DEBUG_TYPE "foo"
    612 DEBUG(errs() &lt;&lt; "'foo' debug type\n");
    613 #undef  DEBUG_TYPE
    614 #define DEBUG_TYPE "bar"
    615 DEBUG(errs() &lt;&lt; "'bar' debug type\n"));
    616 #undef  DEBUG_TYPE
    617 #define DEBUG_TYPE ""
    618 DEBUG(errs() &lt;&lt; "No debug type (2)\n");
    619 </pre>
    620 </div>
    621 
    622 <p>Then you can run your pass like this:</p>
    623 
    624 <div class="doc_code">
    625 <pre>
    626 $ opt &lt; a.bc &gt; /dev/null -mypass
    627 <i>&lt;no output&gt;</i>
    628 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
    629 No debug type
    630 'foo' debug type
    631 'bar' debug type
    632 No debug type (2)
    633 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
    634 'foo' debug type
    635 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
    636 'bar' debug type
    637 </pre>
    638 </div>
    639 
    640 <p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
    641 a file, to specify the debug type for the entire module (if you do this before
    642 you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
    643 <tt>#undef</tt>'s).  Also, you should use names more meaningful than "foo" and
    644 "bar", because there is no system in place to ensure that names do not
    645 conflict. If two different modules use the same string, they will all be turned
    646 on when the name is specified. This allows, for example, all debug information
    647 for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
    648 even if the source lives in multiple files.</p>
    649 
    650 <p>The <tt>DEBUG_WITH_TYPE</tt> macro is also available for situations where you
    651 would like to set <tt>DEBUG_TYPE</tt>, but only for one specific <tt>DEBUG</tt>
    652 statement. It takes an additional first parameter, which is the type to use. For
    653 example, the preceding example could be written as:</p>
    654 
    655 
    656 <div class="doc_code">
    657 <pre>
    658 DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type\n");
    659 DEBUG_WITH_TYPE("foo", errs() &lt;&lt; "'foo' debug type\n");
    660 DEBUG_WITH_TYPE("bar", errs() &lt;&lt; "'bar' debug type\n"));
    661 DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type (2)\n");
    662 </pre>
    663 </div>
    664 
    665 </div>
    666 
    667 </div>
    668 
    669 <!-- ======================================================================= -->
    670 <h3>
    671   <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
    672   option</a>
    673 </h3>
    674 
    675 <div>
    676 
    677 <p>The "<tt><a
    678 href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
    679 provides a class named <tt>Statistic</tt> that is used as a unified way to
    680 keep track of what the LLVM compiler is doing and how effective various
    681 optimizations are.  It is useful to see what optimizations are contributing to
    682 making a particular program run faster.</p>
    683 
    684 <p>Often you may run your pass on some big program, and you're interested to see
    685 how many times it makes a certain transformation.  Although you can do this with
    686 hand inspection, or some ad-hoc method, this is a real pain and not very useful
    687 for big programs.  Using the <tt>Statistic</tt> class makes it very easy to
    688 keep track of this information, and the calculated information is presented in a
    689 uniform manner with the rest of the passes being executed.</p>
    690 
    691 <p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
    692 it are as follows:</p>
    693 
    694 <ol>
    695     <li><p>Define your statistic like this:</p>
    696 
    697 <div class="doc_code">
    698 <pre>
    699 #define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname"   <i>// This goes before any #includes.</i>
    700 STATISTIC(NumXForms, "The # of times I did stuff");
    701 </pre>
    702 </div>
    703 
    704   <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
    705     specified by the first argument.  The pass name is taken from the DEBUG_TYPE
    706     macro, and the description is taken from the second argument.  The variable
    707     defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
    708 
    709     <li><p>Whenever you make a transformation, bump the counter:</p>
    710 
    711 <div class="doc_code">
    712 <pre>
    713 ++NumXForms;   // <i>I did stuff!</i>
    714 </pre>
    715 </div>
    716 
    717     </li>
    718   </ol>
    719 
    720   <p>That's all you have to do.  To get '<tt>opt</tt>' to print out the
    721   statistics gathered, use the '<tt>-stats</tt>' option:</p>
    722 
    723 <div class="doc_code">
    724 <pre>
    725 $ opt -stats -mypassname &lt; program.bc &gt; /dev/null
    726 <i>... statistics output ...</i>
    727 </pre>
    728 </div>
    729 
    730   <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
    731 suite, it gives a report that looks like this:</p>
    732 
    733 <div class="doc_code">
    734 <pre>
    735    7646 bitcodewriter   - Number of normal instructions
    736     725 bitcodewriter   - Number of oversized instructions
    737  129996 bitcodewriter   - Number of bitcode bytes written
    738    2817 raise           - Number of insts DCEd or constprop'd
    739    3213 raise           - Number of cast-of-self removed
    740    5046 raise           - Number of expression trees converted
    741      75 raise           - Number of other getelementptr's formed
    742     138 raise           - Number of load/store peepholes
    743      42 deadtypeelim    - Number of unused typenames removed from symtab
    744     392 funcresolve     - Number of varargs functions resolved
    745      27 globaldce       - Number of global variables removed
    746       2 adce            - Number of basic blocks removed
    747     134 cee             - Number of branches revectored
    748      49 cee             - Number of setcc instruction eliminated
    749     532 gcse            - Number of loads removed
    750    2919 gcse            - Number of instructions removed
    751      86 indvars         - Number of canonical indvars added
    752      87 indvars         - Number of aux indvars removed
    753      25 instcombine     - Number of dead inst eliminate
    754     434 instcombine     - Number of insts combined
    755     248 licm            - Number of load insts hoisted
    756    1298 licm            - Number of insts hoisted to a loop pre-header
    757       3 licm            - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
    758      75 mem2reg         - Number of alloca's promoted
    759    1444 cfgsimplify     - Number of blocks simplified
    760 </pre>
    761 </div>
    762 
    763 <p>Obviously, with so many optimizations, having a unified framework for this
    764 stuff is very nice.  Making your pass fit well into the framework makes it more
    765 maintainable and useful.</p>
    766 
    767 </div>
    768 
    769 <!-- ======================================================================= -->
    770 <h3>
    771   <a name="ViewGraph">Viewing graphs while debugging code</a>
    772 </h3>
    773 
    774 <div>
    775 
    776 <p>Several of the important data structures in LLVM are graphs: for example
    777 CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
    778 LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
    779 <a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
    780 DAGs</a>.  In many cases, while debugging various parts of the compiler, it is
    781 nice to instantly visualize these graphs.</p>
    782 
    783 <p>LLVM provides several callbacks that are available in a debug build to do
    784 exactly that.  If you call the <tt>Function::viewCFG()</tt> method, for example,
    785 the current LLVM tool will pop up a window containing the CFG for the function
    786 where each basic block is a node in the graph, and each node contains the
    787 instructions in the block.  Similarly, there also exists 
    788 <tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
    789 <tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
    790 and the <tt>SelectionDAG::viewGraph()</tt> methods.  Within GDB, for example,
    791 you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
    792 up a window.  Alternatively, you can sprinkle calls to these functions in your
    793 code in places you want to debug.</p>
    794 
    795 <p>Getting this to work requires a small amount of configuration.  On Unix
    796 systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
    797 toolkit, and make sure 'dot' and 'gv' are in your path.  If you are running on
    798 Mac OS/X, download and install the Mac OS/X <a 
    799 href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
    800 <tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
    801 it) to your path.  Once in your system and path are set up, rerun the LLVM
    802 configure script and rebuild LLVM to enable this functionality.</p>
    803 
    804 <p><tt>SelectionDAG</tt> has been extended to make it easier to locate
    805 <i>interesting</i> nodes in large complex graphs.  From gdb, if you
    806 <tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
    807 next <tt>call DAG.viewGraph()</tt> would highlight the node in the
    808 specified color (choices of colors can be found at <a
    809 href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
    810 complex node attributes can be provided with <tt>call
    811 DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
    812 found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
    813 Attributes</a>.)  If you want to restart and clear all the current graph
    814 attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
    815 
    816 <p>Note that graph visualization features are compiled out of Release builds
    817 to reduce file size.  This means that you need a Debug+Asserts or 
    818 Release+Asserts build to use these features.</p>
    819 
    820 </div>
    821 
    822 </div>
    823 
    824 <!-- *********************************************************************** -->
    825 <h2>
    826   <a name="datastructure">Picking the Right Data Structure for a Task</a>
    827 </h2>
    828 <!-- *********************************************************************** -->
    829 
    830 <div>
    831 
    832 <p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
    833  and we commonly use STL data structures.  This section describes the trade-offs
    834  you should consider when you pick one.</p>
    835 
    836 <p>
    837 The first step is a choose your own adventure: do you want a sequential
    838 container, a set-like container, or a map-like container?  The most important
    839 thing when choosing a container is the algorithmic properties of how you plan to
    840 access the container.  Based on that, you should use:</p>
    841 
    842 <ul>
    843 <li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
    844     of an value based on another value.  Map-like containers also support
    845     efficient queries for containment (whether a key is in the map).  Map-like
    846     containers generally do not support efficient reverse mapping (values to
    847     keys).  If you need that, use two maps.  Some map-like containers also
    848     support efficient iteration through the keys in sorted order.  Map-like
    849     containers are the most expensive sort, only use them if you need one of
    850     these capabilities.</li>
    851 
    852 <li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
    853     stuff into a container that automatically eliminates duplicates.  Some
    854     set-like containers support efficient iteration through the elements in
    855     sorted order.  Set-like containers are more expensive than sequential
    856     containers.
    857 </li>
    858 
    859 <li>a <a href="#ds_sequential">sequential</a> container provides
    860     the most efficient way to add elements and keeps track of the order they are
    861     added to the collection.  They permit duplicates and support efficient
    862     iteration, but do not support efficient look-up based on a key.
    863 </li>
    864 
    865 <li>a <a href="#ds_string">string</a> container is a specialized sequential
    866     container or reference structure that is used for character or byte
    867     arrays.</li>
    868 
    869 <li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
    870     perform set operations on sets of numeric id's, while automatically
    871     eliminating duplicates.  Bit containers require a maximum of 1 bit for each
    872     identifier you want to store.
    873 </li>
    874 </ul>
    875 
    876 <p>
    877 Once the proper category of container is determined, you can fine tune the
    878 memory use, constant factors, and cache behaviors of access by intelligently
    879 picking a member of the category.  Note that constant factors and cache behavior
    880 can be a big deal.  If you have a vector that usually only contains a few
    881 elements (but could contain many), for example, it's much better to use
    882 <a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
    883 .  Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
    884 cost of adding the elements to the container. </p>
    885 
    886 <!-- ======================================================================= -->
    887 <h3>
    888   <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
    889 </h3>
    890 
    891 <div>
    892 There are a variety of sequential containers available for you, based on your
    893 needs.  Pick the first in this section that will do what you want.
    894   
    895 <!-- _______________________________________________________________________ -->
    896 <h4>
    897   <a name="dss_arrayref">llvm/ADT/ArrayRef.h</a>
    898 </h4>
    899 
    900 <div>
    901 <p>The llvm::ArrayRef class is the preferred class to use in an interface that
    902    accepts a sequential list of elements in memory and just reads from them.  By
    903    taking an ArrayRef, the API can be passed a fixed size array, an std::vector,
    904    an llvm::SmallVector and anything else that is contiguous in memory.
    905 </p>
    906 </div>
    907 
    908 
    909   
    910 <!-- _______________________________________________________________________ -->
    911 <h4>
    912   <a name="dss_fixedarrays">Fixed Size Arrays</a>
    913 </h4>
    914 
    915 <div>
    916 <p>Fixed size arrays are very simple and very fast.  They are good if you know
    917 exactly how many elements you have, or you have a (low) upper bound on how many
    918 you have.</p>
    919 </div>
    920 
    921 <!-- _______________________________________________________________________ -->
    922 <h4>
    923   <a name="dss_heaparrays">Heap Allocated Arrays</a>
    924 </h4>
    925 
    926 <div>
    927 <p>Heap allocated arrays (new[] + delete[]) are also simple.  They are good if
    928 the number of elements is variable, if you know how many elements you will need
    929 before the array is allocated, and if the array is usually large (if not,
    930 consider a <a href="#dss_smallvector">SmallVector</a>).  The cost of a heap
    931 allocated array is the cost of the new/delete (aka malloc/free).  Also note that
    932 if you are allocating an array of a type with a constructor, the constructor and
    933 destructors will be run for every element in the array (re-sizable vectors only
    934 construct those elements actually used).</p>
    935 </div>
    936 
    937 <!-- _______________________________________________________________________ -->
    938 <h4>
    939   <a name="dss_tinyptrvector">"llvm/ADT/TinyPtrVector.h"</a>
    940 </h4>
    941 
    942 
    943 <div>
    944 <p><tt>TinyPtrVector&lt;Type&gt;</tt> is a highly specialized collection class
    945 that is optimized to avoid allocation in the case when a vector has zero or one
    946 elements.  It has two major restrictions: 1) it can only hold values of pointer
    947 type, and 2) it cannot hold a null pointer.</p>
    948   
    949 <p>Since this container is highly specialized, it is rarely used.</p>
    950   
    951 </div>
    952     
    953 <!-- _______________________________________________________________________ -->
    954 <h4>
    955   <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
    956 </h4>
    957 
    958 <div>
    959 <p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
    960 just like <tt>vector&lt;Type&gt;</tt>:
    961 it supports efficient iteration, lays out elements in memory order (so you can
    962 do pointer arithmetic between elements), supports efficient push_back/pop_back
    963 operations, supports efficient random access to its elements, etc.</p>
    964 
    965 <p>The advantage of SmallVector is that it allocates space for
    966 some number of elements (N) <b>in the object itself</b>.  Because of this, if
    967 the SmallVector is dynamically smaller than N, no malloc is performed.  This can
    968 be a big win in cases where the malloc/free call is far more expensive than the
    969 code that fiddles around with the elements.</p>
    970 
    971 <p>This is good for vectors that are "usually small" (e.g. the number of
    972 predecessors/successors of a block is usually less than 8).  On the other hand,
    973 this makes the size of the SmallVector itself large, so you don't want to
    974 allocate lots of them (doing so will waste a lot of space).  As such,
    975 SmallVectors are most useful when on the stack.</p>
    976 
    977 <p>SmallVector also provides a nice portable and efficient replacement for
    978 <tt>alloca</tt>.</p>
    979 
    980 </div>
    981 
    982 <!-- _______________________________________________________________________ -->
    983 <h4>
    984   <a name="dss_vector">&lt;vector&gt;</a>
    985 </h4>
    986 
    987 <div>
    988 <p>
    989 std::vector is well loved and respected.  It is useful when SmallVector isn't:
    990 when the size of the vector is often large (thus the small optimization will
    991 rarely be a benefit) or if you will be allocating many instances of the vector
    992 itself (which would waste space for elements that aren't in the container).
    993 vector is also useful when interfacing with code that expects vectors :).
    994 </p>
    995 
    996 <p>One worthwhile note about std::vector: avoid code like this:</p>
    997 
    998 <div class="doc_code">
    999 <pre>
   1000 for ( ... ) {
   1001    std::vector&lt;foo&gt; V;
   1002    // make use of V.
   1003 }
   1004 </pre>
   1005 </div>
   1006 
   1007 <p>Instead, write this as:</p>
   1008 
   1009 <div class="doc_code">
   1010 <pre>
   1011 std::vector&lt;foo&gt; V;
   1012 for ( ... ) {
   1013    // make use of V.
   1014    V.clear();
   1015 }
   1016 </pre>
   1017 </div>
   1018 
   1019 <p>Doing so will save (at least) one heap allocation and free per iteration of
   1020 the loop.</p>
   1021 
   1022 </div>
   1023 
   1024 <!-- _______________________________________________________________________ -->
   1025 <h4>
   1026   <a name="dss_deque">&lt;deque&gt;</a>
   1027 </h4>
   1028 
   1029 <div>
   1030 <p>std::deque is, in some senses, a generalized version of std::vector.  Like
   1031 std::vector, it provides constant time random access and other similar
   1032 properties, but it also provides efficient access to the front of the list.  It
   1033 does not guarantee continuity of elements within memory.</p>
   1034 
   1035 <p>In exchange for this extra flexibility, std::deque has significantly higher
   1036 constant factor costs than std::vector.  If possible, use std::vector or
   1037 something cheaper.</p>
   1038 </div>
   1039 
   1040 <!-- _______________________________________________________________________ -->
   1041 <h4>
   1042   <a name="dss_list">&lt;list&gt;</a>
   1043 </h4>
   1044 
   1045 <div>
   1046 <p>std::list is an extremely inefficient class that is rarely useful.
   1047 It performs a heap allocation for every element inserted into it, thus having an
   1048 extremely high constant factor, particularly for small data types.  std::list
   1049 also only supports bidirectional iteration, not random access iteration.</p>
   1050 
   1051 <p>In exchange for this high cost, std::list supports efficient access to both
   1052 ends of the list (like std::deque, but unlike std::vector or SmallVector).  In
   1053 addition, the iterator invalidation characteristics of std::list are stronger
   1054 than that of a vector class: inserting or removing an element into the list does
   1055 not invalidate iterator or pointers to other elements in the list.</p>
   1056 </div>
   1057 
   1058 <!-- _______________________________________________________________________ -->
   1059 <h4>
   1060   <a name="dss_ilist">llvm/ADT/ilist.h</a>
   1061 </h4>
   1062 
   1063 <div>
   1064 <p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list.  It is
   1065 intrusive, because it requires the element to store and provide access to the
   1066 prev/next pointers for the list.</p>
   1067 
   1068 <p><tt>ilist</tt> has the same drawbacks as <tt>std::list</tt>, and additionally
   1069 requires an <tt>ilist_traits</tt> implementation for the element type, but it
   1070 provides some novel characteristics.  In particular, it can efficiently store
   1071 polymorphic objects, the traits class is informed when an element is inserted or
   1072 removed from the list, and <tt>ilist</tt>s are guaranteed to support a
   1073 constant-time splice operation.</p>
   1074 
   1075 <p>These properties are exactly what we want for things like
   1076 <tt>Instruction</tt>s and basic blocks, which is why these are implemented with
   1077 <tt>ilist</tt>s.</p>
   1078 
   1079 Related classes of interest are explained in the following subsections:
   1080     <ul>
   1081       <li><a href="#dss_ilist_traits">ilist_traits</a></li>
   1082       <li><a href="#dss_iplist">iplist</a></li>
   1083       <li><a href="#dss_ilist_node">llvm/ADT/ilist_node.h</a></li>
   1084       <li><a href="#dss_ilist_sentinel">Sentinels</a></li>
   1085     </ul>
   1086 </div>
   1087 
   1088 <!-- _______________________________________________________________________ -->
   1089 <h4>
   1090   <a name="dss_packedvector">llvm/ADT/PackedVector.h</a>
   1091 </h4>
   1092 
   1093 <div>
   1094 <p>
   1095 Useful for storing a vector of values using only a few number of bits for each
   1096 value. Apart from the standard operations of a vector-like container, it can
   1097 also perform an 'or' set operation. 
   1098 </p>
   1099 
   1100 <p>For example:</p>
   1101 
   1102 <div class="doc_code">
   1103 <pre>
   1104 enum State {
   1105     None = 0x0,
   1106     FirstCondition = 0x1,
   1107     SecondCondition = 0x2,
   1108     Both = 0x3
   1109 };
   1110 
   1111 State get() {
   1112     PackedVector&lt;State, 2&gt; Vec1;
   1113     Vec1.push_back(FirstCondition);
   1114 
   1115     PackedVector&lt;State, 2&gt; Vec2;
   1116     Vec2.push_back(SecondCondition);
   1117 
   1118     Vec1 |= Vec2;
   1119     return Vec1[0]; // returns 'Both'.
   1120 }
   1121 </pre>
   1122 </div>
   1123 
   1124 </div>
   1125 
   1126 <!-- _______________________________________________________________________ -->
   1127 <h4>
   1128   <a name="dss_ilist_traits">ilist_traits</a>
   1129 </h4>
   1130 
   1131 <div>
   1132 <p><tt>ilist_traits&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s customization
   1133 mechanism. <tt>iplist&lt;T&gt;</tt> (and consequently <tt>ilist&lt;T&gt;</tt>)
   1134 publicly derive from this traits class.</p>
   1135 </div>
   1136 
   1137 <!-- _______________________________________________________________________ -->
   1138 <h4>
   1139   <a name="dss_iplist">iplist</a>
   1140 </h4>
   1141 
   1142 <div>
   1143 <p><tt>iplist&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s base and as such
   1144 supports a slightly narrower interface. Notably, inserters from
   1145 <tt>T&amp;</tt> are absent.</p>
   1146 
   1147 <p><tt>ilist_traits&lt;T&gt;</tt> is a public base of this class and can be
   1148 used for a wide variety of customizations.</p>
   1149 </div>
   1150 
   1151 <!-- _______________________________________________________________________ -->
   1152 <h4>
   1153   <a name="dss_ilist_node">llvm/ADT/ilist_node.h</a>
   1154 </h4>
   1155 
   1156 <div>
   1157 <p><tt>ilist_node&lt;T&gt;</tt> implements a the forward and backward links
   1158 that are expected by the <tt>ilist&lt;T&gt;</tt> (and analogous containers)
   1159 in the default manner.</p>
   1160 
   1161 <p><tt>ilist_node&lt;T&gt;</tt>s are meant to be embedded in the node type
   1162 <tt>T</tt>, usually <tt>T</tt> publicly derives from
   1163 <tt>ilist_node&lt;T&gt;</tt>.</p>
   1164 </div>
   1165 
   1166 <!-- _______________________________________________________________________ -->
   1167 <h4>
   1168   <a name="dss_ilist_sentinel">Sentinels</a>
   1169 </h4>
   1170 
   1171 <div>
   1172 <p><tt>ilist</tt>s have another specialty that must be considered. To be a good
   1173 citizen in the C++ ecosystem, it needs to support the standard container
   1174 operations, such as <tt>begin</tt> and <tt>end</tt> iterators, etc. Also, the
   1175 <tt>operator--</tt> must work correctly on the <tt>end</tt> iterator in the
   1176 case of non-empty <tt>ilist</tt>s.</p>
   1177 
   1178 <p>The only sensible solution to this problem is to allocate a so-called
   1179 <i>sentinel</i> along with the intrusive list, which serves as the <tt>end</tt>
   1180 iterator, providing the back-link to the last element. However conforming to the
   1181 C++ convention it is illegal to <tt>operator++</tt> beyond the sentinel and it
   1182 also must not be dereferenced.</p>
   1183 
   1184 <p>These constraints allow for some implementation freedom to the <tt>ilist</tt>
   1185 how to allocate and store the sentinel. The corresponding policy is dictated
   1186 by <tt>ilist_traits&lt;T&gt;</tt>. By default a <tt>T</tt> gets heap-allocated
   1187 whenever the need for a sentinel arises.</p>
   1188 
   1189 <p>While the default policy is sufficient in most cases, it may break down when
   1190 <tt>T</tt> does not provide a default constructor. Also, in the case of many
   1191 instances of <tt>ilist</tt>s, the memory overhead of the associated sentinels
   1192 is wasted. To alleviate the situation with numerous and voluminous
   1193 <tt>T</tt>-sentinels, sometimes a trick is employed, leading to <i>ghostly
   1194 sentinels</i>.</p>
   1195 
   1196 <p>Ghostly sentinels are obtained by specially-crafted <tt>ilist_traits&lt;T&gt;</tt>
   1197 which superpose the sentinel with the <tt>ilist</tt> instance in memory. Pointer
   1198 arithmetic is used to obtain the sentinel, which is relative to the
   1199 <tt>ilist</tt>'s <tt>this</tt> pointer. The <tt>ilist</tt> is augmented by an
   1200 extra pointer, which serves as the back-link of the sentinel. This is the only
   1201 field in the ghostly sentinel which can be legally accessed.</p>
   1202 </div>
   1203 
   1204 <!-- _______________________________________________________________________ -->
   1205 <h4>
   1206   <a name="dss_other">Other Sequential Container options</a>
   1207 </h4>
   1208 
   1209 <div>
   1210 <p>Other STL containers are available, such as std::string.</p>
   1211 
   1212 <p>There are also various STL adapter classes such as std::queue,
   1213 std::priority_queue, std::stack, etc.  These provide simplified access to an
   1214 underlying container but don't affect the cost of the container itself.</p>
   1215 
   1216 </div>
   1217 </div>
   1218 
   1219 <!-- ======================================================================= -->
   1220 <h3>
   1221   <a name="ds_string">String-like containers</a>
   1222 </h3>
   1223 
   1224 <div>
   1225 
   1226 <p>
   1227 There are a variety of ways to pass around and use strings in C and C++, and
   1228 LLVM adds a few new options to choose from.  Pick the first option on this list
   1229 that will do what you need, they are ordered according to their relative cost.
   1230 </p>
   1231 <p>
   1232 Note that is is generally preferred to <em>not</em> pass strings around as 
   1233 "<tt>const char*</tt>"'s.  These have a number of problems, including the fact
   1234 that they cannot represent embedded nul ("\0") characters, and do not have a
   1235 length available efficiently.  The general replacement for '<tt>const 
   1236 char*</tt>' is StringRef.
   1237 </p>
   1238   
   1239 <p>For more information on choosing string containers for APIs, please see
   1240 <a href="#string_apis">Passing strings</a>.</p>
   1241   
   1242   
   1243 <!-- _______________________________________________________________________ -->
   1244 <h4>
   1245   <a name="dss_stringref">llvm/ADT/StringRef.h</a>
   1246 </h4>
   1247 
   1248 <div>
   1249 <p>
   1250 The StringRef class is a simple value class that contains a pointer to a
   1251 character and a length, and is quite related to the <a 
   1252 href="#dss_arrayref">ArrayRef</a> class (but specialized for arrays of
   1253 characters).  Because StringRef carries a length with it, it safely handles
   1254 strings with embedded nul characters in it, getting the length does not require
   1255 a strlen call, and it even has very convenient APIs for slicing and dicing the
   1256 character range that it represents.
   1257 </p>
   1258   
   1259 <p>
   1260 StringRef is ideal for passing simple strings around that are known to be live,
   1261 either because they are C string literals, std::string, a C array, or a
   1262 SmallVector.  Each of these cases has an efficient implicit conversion to
   1263 StringRef, which doesn't result in a dynamic strlen being executed.
   1264 </p>
   1265   
   1266 <p>StringRef has a few major limitations which make more powerful string
   1267 containers useful:</p>
   1268   
   1269 <ol>
   1270 <li>You cannot directly convert a StringRef to a 'const char*' because there is
   1271 no way to add a trailing nul (unlike the .c_str() method on various stronger
   1272 classes).</li>
   1273 
   1274   
   1275 <li>StringRef doesn't own or keep alive the underlying string bytes.
   1276 As such it can easily lead to dangling pointers, and is not suitable for
   1277 embedding in datastructures in most cases (instead, use an std::string or
   1278 something like that).</li>
   1279   
   1280 <li>For the same reason, StringRef cannot be used as the return value of a
   1281 method if the method "computes" the result string.  Instead, use
   1282 std::string.</li>
   1283     
   1284 <li>StringRef's do not allow you to mutate the pointed-to string bytes and it
   1285 doesn't allow you to insert or remove bytes from the range.  For editing 
   1286 operations like this, it interoperates with the <a 
   1287 href="#dss_twine">Twine</a> class.</li>
   1288 </ol>
   1289   
   1290 <p>Because of its strengths and limitations, it is very common for a function to
   1291 take a StringRef and for a method on an object to return a StringRef that
   1292 points into some string that it owns.</p>
   1293   
   1294 </div>
   1295   
   1296 <!-- _______________________________________________________________________ -->
   1297 <h4>
   1298   <a name="dss_twine">llvm/ADT/Twine.h</a>
   1299 </h4>
   1300 
   1301 <div>
   1302   <p>
   1303   The Twine class is used as an intermediary datatype for APIs that want to take
   1304   a string that can be constructed inline with a series of concatenations.
   1305   Twine works by forming recursive instances of the Twine datatype (a simple
   1306   value object) on the stack as temporary objects, linking them together into a
   1307   tree which is then linearized when the Twine is consumed.  Twine is only safe
   1308   to use as the argument to a function, and should always be a const reference,
   1309   e.g.:
   1310   </p>
   1311   
   1312   <pre>
   1313     void foo(const Twine &amp;T);
   1314     ...
   1315     StringRef X = ...
   1316     unsigned i = ...
   1317     foo(X + "." + Twine(i));
   1318   </pre>
   1319   
   1320   <p>This example forms a string like "blarg.42" by concatenating the values
   1321   together, and does not form intermediate strings containing "blarg" or
   1322   "blarg.".
   1323   </p>
   1324   
   1325   <p>Because Twine is constructed with temporary objects on the stack, and
   1326   because these instances are destroyed at the end of the current statement,
   1327   it is an inherently dangerous API.  For example, this simple variant contains
   1328   undefined behavior and will probably crash:</p>
   1329   
   1330   <pre>
   1331     void foo(const Twine &amp;T);
   1332     ...
   1333     StringRef X = ...
   1334     unsigned i = ...
   1335     const Twine &amp;Tmp = X + "." + Twine(i);
   1336     foo(Tmp);
   1337   </pre>
   1338 
   1339   <p>... because the temporaries are destroyed before the call.  That said,
   1340   Twine's are much more efficient than intermediate std::string temporaries, and
   1341   they work really well with StringRef.  Just be aware of their limitations.</p>
   1342   
   1343 </div>
   1344 
   1345   
   1346 <!-- _______________________________________________________________________ -->
   1347 <h4>
   1348   <a name="dss_smallstring">llvm/ADT/SmallString.h</a>
   1349 </h4>
   1350 
   1351 <div>
   1352   
   1353 <p>SmallString is a subclass of <a href="#dss_smallvector">SmallVector</a> that
   1354 adds some convenience APIs like += that takes StringRef's.  SmallString avoids
   1355 allocating memory in the case when the preallocated space is enough to hold its
   1356 data, and it calls back to general heap allocation when required.  Since it owns
   1357 its data, it is very safe to use and supports full mutation of the string.</p>
   1358   
   1359 <p>Like SmallVector's, the big downside to SmallString is their sizeof.  While
   1360 they are optimized for small strings, they themselves are not particularly
   1361 small.  This means that they work great for temporary scratch buffers on the
   1362 stack, but should not generally be put into the heap: it is very rare to 
   1363 see a SmallString as the member of a frequently-allocated heap data structure
   1364 or returned by-value.
   1365 </p>
   1366 
   1367 </div>
   1368   
   1369 <!-- _______________________________________________________________________ -->
   1370 <h4>
   1371   <a name="dss_stdstring">std::string</a>
   1372 </h4>
   1373 
   1374 <div>
   1375   
   1376   <p>The standard C++ std::string class is a very general class that (like
   1377   SmallString) owns its underlying data.  sizeof(std::string) is very reasonable
   1378   so it can be embedded into heap data structures and returned by-value.
   1379   On the other hand, std::string is highly inefficient for inline editing (e.g.
   1380   concatenating a bunch of stuff together) and because it is provided by the
   1381   standard library, its performance characteristics depend a lot of the host
   1382   standard library (e.g. libc++ and MSVC provide a highly optimized string
   1383   class, GCC contains a really slow implementation).
   1384   </p>
   1385 
   1386   <p>The major disadvantage of std::string is that almost every operation that
   1387   makes them larger can allocate memory, which is slow.  As such, it is better
   1388   to use SmallVector or Twine as a scratch buffer, but then use std::string to
   1389   persist the result.</p>
   1390 
   1391   
   1392 </div>
   1393   
   1394 <!-- end of strings -->
   1395 </div>
   1396 
   1397   
   1398 <!-- ======================================================================= -->
   1399 <h3>
   1400   <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
   1401 </h3>
   1402 
   1403 <div>
   1404 
   1405 <p>Set-like containers are useful when you need to canonicalize multiple values
   1406 into a single representation.  There are several different choices for how to do
   1407 this, providing various trade-offs.</p>
   1408 
   1409 <!-- _______________________________________________________________________ -->
   1410 <h4>
   1411   <a name="dss_sortedvectorset">A sorted 'vector'</a>
   1412 </h4>
   1413 
   1414 <div>
   1415 
   1416 <p>If you intend to insert a lot of elements, then do a lot of queries, a
   1417 great approach is to use a vector (or other sequential container) with
   1418 std::sort+std::unique to remove duplicates.  This approach works really well if
   1419 your usage pattern has these two distinct phases (insert then query), and can be
   1420 coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
   1421 </p>
   1422 
   1423 <p>
   1424 This combination provides the several nice properties: the result data is
   1425 contiguous in memory (good for cache locality), has few allocations, is easy to
   1426 address (iterators in the final vector are just indices or pointers), and can be
   1427 efficiently queried with a standard binary or radix search.</p>
   1428 
   1429 </div>
   1430 
   1431 <!-- _______________________________________________________________________ -->
   1432 <h4>
   1433   <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
   1434 </h4>
   1435 
   1436 <div>
   1437 
   1438 <p>If you have a set-like data structure that is usually small and whose elements
   1439 are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice.  This set
   1440 has space for N elements in place (thus, if the set is dynamically smaller than
   1441 N, no malloc traffic is required) and accesses them with a simple linear search.
   1442 When the set grows beyond 'N' elements, it allocates a more expensive representation that
   1443 guarantees efficient access (for most types, it falls back to std::set, but for
   1444 pointers it uses something far better, <a
   1445 href="#dss_smallptrset">SmallPtrSet</a>).</p>
   1446 
   1447 <p>The magic of this class is that it handles small sets extremely efficiently,
   1448 but gracefully handles extremely large sets without loss of efficiency.  The
   1449 drawback is that the interface is quite small: it supports insertion, queries
   1450 and erasing, but does not support iteration.</p>
   1451 
   1452 </div>
   1453 
   1454 <!-- _______________________________________________________________________ -->
   1455 <h4>
   1456   <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
   1457 </h4>
   1458 
   1459 <div>
   1460 
   1461 <p>SmallPtrSet has all the advantages of <tt>SmallSet</tt> (and a <tt>SmallSet</tt> of pointers is 
   1462 transparently implemented with a <tt>SmallPtrSet</tt>), but also supports iterators.  If
   1463 more than 'N' insertions are performed, a single quadratically
   1464 probed hash table is allocated and grows as needed, providing extremely
   1465 efficient access (constant time insertion/deleting/queries with low constant
   1466 factors) and is very stingy with malloc traffic.</p>
   1467 
   1468 <p>Note that, unlike <tt>std::set</tt>, the iterators of <tt>SmallPtrSet</tt> are invalidated
   1469 whenever an insertion occurs.  Also, the values visited by the iterators are not
   1470 visited in sorted order.</p>
   1471 
   1472 </div>
   1473 
   1474 <!-- _______________________________________________________________________ -->
   1475 <h4>
   1476   <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
   1477 </h4>
   1478 
   1479 <div>
   1480 
   1481 <p>
   1482 DenseSet is a simple quadratically probed hash table.  It excels at supporting
   1483 small values: it uses a single allocation to hold all of the pairs that
   1484 are currently inserted in the set.  DenseSet is a great way to unique small
   1485 values that are not simple pointers (use <a 
   1486 href="#dss_smallptrset">SmallPtrSet</a> for pointers).  Note that DenseSet has
   1487 the same requirements for the value type that <a 
   1488 href="#dss_densemap">DenseMap</a> has.
   1489 </p>
   1490 
   1491 </div>
   1492 
   1493 <!-- _______________________________________________________________________ -->
   1494 <h4>
   1495   <a name="dss_sparseset">"llvm/ADT/SparseSet.h"</a>
   1496 </h4>
   1497 
   1498 <div>
   1499 
   1500 <p>SparseSet holds a small number of objects identified by unsigned keys of
   1501 moderate size. It uses a lot of memory, but provides operations that are
   1502 almost as fast as a vector. Typical keys are physical registers, virtual
   1503 registers, or numbered basic blocks.</p>
   1504 
   1505 <p>SparseSet is useful for algorithms that need very fast clear/find/insert/erase
   1506 and fast iteration over small sets.  It is not intended for building composite
   1507 data structures.</p>
   1508 
   1509 </div>
   1510 
   1511 <!-- _______________________________________________________________________ -->
   1512 <h4>
   1513   <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
   1514 </h4>
   1515 
   1516 <div>
   1517 
   1518 <p>
   1519 FoldingSet is an aggregate class that is really good at uniquing
   1520 expensive-to-create or polymorphic objects.  It is a combination of a chained
   1521 hash table with intrusive links (uniqued objects are required to inherit from
   1522 FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
   1523 its ID process.</p>
   1524 
   1525 <p>Consider a case where you want to implement a "getOrCreateFoo" method for
   1526 a complex object (for example, a node in the code generator).  The client has a
   1527 description of *what* it wants to generate (it knows the opcode and all the
   1528 operands), but we don't want to 'new' a node, then try inserting it into a set
   1529 only to find out it already exists, at which point we would have to delete it
   1530 and return the node that already exists.
   1531 </p>
   1532 
   1533 <p>To support this style of client, FoldingSet perform a query with a
   1534 FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
   1535 element that we want to query for.  The query either returns the element
   1536 matching the ID or it returns an opaque ID that indicates where insertion should
   1537 take place.  Construction of the ID usually does not require heap traffic.</p>
   1538 
   1539 <p>Because FoldingSet uses intrusive links, it can support polymorphic objects
   1540 in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
   1541 Because the elements are individually allocated, pointers to the elements are
   1542 stable: inserting or removing elements does not invalidate any pointers to other
   1543 elements.
   1544 </p>
   1545 
   1546 </div>
   1547 
   1548 <!-- _______________________________________________________________________ -->
   1549 <h4>
   1550   <a name="dss_set">&lt;set&gt;</a>
   1551 </h4>
   1552 
   1553 <div>
   1554 
   1555 <p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
   1556 many things but great at nothing.  std::set allocates memory for each element
   1557 inserted (thus it is very malloc intensive) and typically stores three pointers
   1558 per element in the set (thus adding a large amount of per-element space
   1559 overhead).  It offers guaranteed log(n) performance, which is not particularly
   1560 fast from a complexity standpoint (particularly if the elements of the set are
   1561 expensive to compare, like strings), and has extremely high constant factors for
   1562 lookup, insertion and removal.</p>
   1563 
   1564 <p>The advantages of std::set are that its iterators are stable (deleting or
   1565 inserting an element from the set does not affect iterators or pointers to other
   1566 elements) and that iteration over the set is guaranteed to be in sorted order.
   1567 If the elements in the set are large, then the relative overhead of the pointers
   1568 and malloc traffic is not a big deal, but if the elements of the set are small,
   1569 std::set is almost never a good choice.</p>
   1570 
   1571 </div>
   1572 
   1573 <!-- _______________________________________________________________________ -->
   1574 <h4>
   1575   <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
   1576 </h4>
   1577 
   1578 <div>
   1579 <p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
   1580 a set-like container along with a <a href="#ds_sequential">Sequential 
   1581 Container</a>.  The important property
   1582 that this provides is efficient insertion with uniquing (duplicate elements are
   1583 ignored) with iteration support.  It implements this by inserting elements into
   1584 both a set-like container and the sequential container, using the set-like
   1585 container for uniquing and the sequential container for iteration.
   1586 </p>
   1587 
   1588 <p>The difference between SetVector and other sets is that the order of
   1589 iteration is guaranteed to match the order of insertion into the SetVector.
   1590 This property is really important for things like sets of pointers.  Because
   1591 pointer values are non-deterministic (e.g. vary across runs of the program on
   1592 different machines), iterating over the pointers in the set will
   1593 not be in a well-defined order.</p>
   1594 
   1595 <p>
   1596 The drawback of SetVector is that it requires twice as much space as a normal
   1597 set and has the sum of constant factors from the set-like container and the 
   1598 sequential container that it uses.  Use it *only* if you need to iterate over 
   1599 the elements in a deterministic order.  SetVector is also expensive to delete
   1600 elements out of (linear time), unless you use it's "pop_back" method, which is
   1601 faster.
   1602 </p>
   1603 
   1604 <p><tt>SetVector</tt> is an adapter class that defaults to
   1605    using <tt>std::vector</tt> and a size 16 <tt>SmallSet</tt> for the underlying
   1606    containers, so it is quite expensive. However,
   1607    <tt>"llvm/ADT/SetVector.h"</tt> also provides a <tt>SmallSetVector</tt>
   1608    class, which defaults to using a <tt>SmallVector</tt> and <tt>SmallSet</tt>
   1609    of a specified size. If you use this, and if your sets are dynamically
   1610    smaller than <tt>N</tt>, you will save a lot of heap traffic.</p>
   1611 
   1612 </div>
   1613 
   1614 <!-- _______________________________________________________________________ -->
   1615 <h4>
   1616   <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
   1617 </h4>
   1618 
   1619 <div>
   1620 
   1621 <p>
   1622 UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
   1623 retains a unique ID for each element inserted into the set.  It internally
   1624 contains a map and a vector, and it assigns a unique ID for each value inserted
   1625 into the set.</p>
   1626 
   1627 <p>UniqueVector is very expensive: its cost is the sum of the cost of
   1628 maintaining both the map and vector, it has high complexity, high constant
   1629 factors, and produces a lot of malloc traffic.  It should be avoided.</p>
   1630 
   1631 </div>
   1632 
   1633 <!-- _______________________________________________________________________ -->
   1634 <h4>
   1635   <a name="dss_immutableset">"llvm/ADT/ImmutableSet.h"</a>
   1636 </h4>
   1637 
   1638 <div>
   1639 
   1640 <p>
   1641 ImmutableSet is an immutable (functional) set implementation based on an AVL
   1642 tree.
   1643 Adding or removing elements is done through a Factory object and results in the
   1644 creation of a new ImmutableSet object.
   1645 If an ImmutableSet already exists with the given contents, then the existing one
   1646 is returned; equality is compared with a FoldingSetNodeID.
   1647 The time and space complexity of add or remove operations is logarithmic in the
   1648 size of the original set.
   1649 
   1650 <p>
   1651 There is no method for returning an element of the set, you can only check for
   1652 membership.
   1653 
   1654 </div>
   1655 
   1656 
   1657 <!-- _______________________________________________________________________ -->
   1658 <h4>
   1659   <a name="dss_otherset">Other Set-Like Container Options</a>
   1660 </h4>
   1661 
   1662 <div>
   1663 
   1664 <p>
   1665 The STL provides several other options, such as std::multiset and the various 
   1666 "hash_set" like containers (whether from C++ TR1 or from the SGI library). We
   1667 never use hash_set and unordered_set because they are generally very expensive 
   1668 (each insertion requires a malloc) and very non-portable.
   1669 </p>
   1670 
   1671 <p>std::multiset is useful if you're not interested in elimination of
   1672 duplicates, but has all the drawbacks of std::set.  A sorted vector (where you 
   1673 don't delete duplicate entries) or some other approach is almost always
   1674 better.</p>
   1675 
   1676 </div>
   1677 
   1678 </div>
   1679 
   1680 <!-- ======================================================================= -->
   1681 <h3>
   1682   <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
   1683 </h3>
   1684 
   1685 <div>
   1686 Map-like containers are useful when you want to associate data to a key.  As
   1687 usual, there are a lot of different ways to do this. :)
   1688 
   1689 <!-- _______________________________________________________________________ -->
   1690 <h4>
   1691   <a name="dss_sortedvectormap">A sorted 'vector'</a>
   1692 </h4>
   1693 
   1694 <div>
   1695 
   1696 <p>
   1697 If your usage pattern follows a strict insert-then-query approach, you can
   1698 trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
   1699 for set-like containers</a>.  The only difference is that your query function
   1700 (which uses std::lower_bound to get efficient log(n) lookup) should only compare
   1701 the key, not both the key and value.  This yields the same advantages as sorted
   1702 vectors for sets.
   1703 </p>
   1704 </div>
   1705 
   1706 <!-- _______________________________________________________________________ -->
   1707 <h4>
   1708   <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
   1709 </h4>
   1710 
   1711 <div>
   1712 
   1713 <p>
   1714 Strings are commonly used as keys in maps, and they are difficult to support
   1715 efficiently: they are variable length, inefficient to hash and compare when
   1716 long, expensive to copy, etc.  StringMap is a specialized container designed to
   1717 cope with these issues.  It supports mapping an arbitrary range of bytes to an
   1718 arbitrary other object.</p>
   1719 
   1720 <p>The StringMap implementation uses a quadratically-probed hash table, where
   1721 the buckets store a pointer to the heap allocated entries (and some other
   1722 stuff).  The entries in the map must be heap allocated because the strings are
   1723 variable length.  The string data (key) and the element object (value) are
   1724 stored in the same allocation with the string data immediately after the element
   1725 object.  This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
   1726 to the key string for a value.</p>
   1727 
   1728 <p>The StringMap is very fast for several reasons: quadratic probing is very
   1729 cache efficient for lookups, the hash value of strings in buckets is not
   1730 recomputed when looking up an element, StringMap rarely has to touch the
   1731 memory for unrelated objects when looking up a value (even when hash collisions
   1732 happen), hash table growth does not recompute the hash values for strings
   1733 already in the table, and each pair in the map is store in a single allocation
   1734 (the string data is stored in the same allocation as the Value of a pair).</p>
   1735 
   1736 <p>StringMap also provides query methods that take byte ranges, so it only ever
   1737 copies a string if a value is inserted into the table.</p>
   1738 
   1739 <p>StringMap iteratation order, however, is not guaranteed to be deterministic,
   1740 so any uses which require that should instead use a std::map.</p>
   1741 </div>
   1742 
   1743 <!-- _______________________________________________________________________ -->
   1744 <h4>
   1745   <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
   1746 </h4>
   1747 
   1748 <div>
   1749 <p>
   1750 IndexedMap is a specialized container for mapping small dense integers (or
   1751 values that can be mapped to small dense integers) to some other type.  It is
   1752 internally implemented as a vector with a mapping function that maps the keys to
   1753 the dense integer range.
   1754 </p>
   1755 
   1756 <p>
   1757 This is useful for cases like virtual registers in the LLVM code generator: they
   1758 have a dense mapping that is offset by a compile-time constant (the first
   1759 virtual register ID).</p>
   1760 
   1761 </div>
   1762 
   1763 <!-- _______________________________________________________________________ -->
   1764 <h4>
   1765   <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
   1766 </h4>
   1767 
   1768 <div>
   1769 
   1770 <p>
   1771 DenseMap is a simple quadratically probed hash table.  It excels at supporting
   1772 small keys and values: it uses a single allocation to hold all of the pairs that
   1773 are currently inserted in the map.  DenseMap is a great way to map pointers to
   1774 pointers, or map other small types to each other.
   1775 </p>
   1776 
   1777 <p>
   1778 There are several aspects of DenseMap that you should be aware of, however.  The
   1779 iterators in a DenseMap are invalidated whenever an insertion occurs, unlike
   1780 map.  Also, because DenseMap allocates space for a large number of key/value
   1781 pairs (it starts with 64 by default), it will waste a lot of space if your keys
   1782 or values are large.  Finally, you must implement a partial specialization of
   1783 DenseMapInfo for the key that you want, if it isn't already supported.  This
   1784 is required to tell DenseMap about two special marker values (which can never be
   1785 inserted into the map) that it needs internally.</p>
   1786 
   1787 <p>
   1788 DenseMap's find_as() method supports lookup operations using an alternate key
   1789 type. This is useful in cases where the normal key type is expensive to
   1790 construct, but cheap to compare against. The DenseMapInfo is responsible for
   1791 defining the appropriate comparison and hashing methods for each alternate
   1792 key type used.
   1793 </p>
   1794 
   1795 </div>
   1796 
   1797 <!-- _______________________________________________________________________ -->
   1798 <h4>
   1799   <a name="dss_valuemap">"llvm/ADT/ValueMap.h"</a>
   1800 </h4>
   1801 
   1802 <div>
   1803 
   1804 <p>
   1805 ValueMap is a wrapper around a <a href="#dss_densemap">DenseMap</a> mapping
   1806 Value*s (or subclasses) to another type.  When a Value is deleted or RAUW'ed,
   1807 ValueMap will update itself so the new version of the key is mapped to the same
   1808 value, just as if the key were a WeakVH.  You can configure exactly how this
   1809 happens, and what else happens on these two events, by passing
   1810 a <code>Config</code> parameter to the ValueMap template.</p>
   1811 
   1812 </div>
   1813 
   1814 <!-- _______________________________________________________________________ -->
   1815 <h4>
   1816   <a name="dss_intervalmap">"llvm/ADT/IntervalMap.h"</a>
   1817 </h4>
   1818 
   1819 <div>
   1820 
   1821 <p> IntervalMap is a compact map for small keys and values. It maps key
   1822 intervals instead of single keys, and it will automatically coalesce adjacent
   1823 intervals. When then map only contains a few intervals, they are stored in the
   1824 map object itself to avoid allocations.</p>
   1825 
   1826 <p> The IntervalMap iterators are quite big, so they should not be passed around
   1827 as STL iterators. The heavyweight iterators allow a smaller data structure.</p>
   1828 
   1829 </div>
   1830 
   1831 <!-- _______________________________________________________________________ -->
   1832 <h4>
   1833   <a name="dss_map">&lt;map&gt;</a>
   1834 </h4>
   1835 
   1836 <div>
   1837 
   1838 <p>
   1839 std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
   1840 a single allocation per pair inserted into the map, it offers log(n) lookup with
   1841 an extremely large constant factor, imposes a space penalty of 3 pointers per
   1842 pair in the map, etc.</p>
   1843 
   1844 <p>std::map is most useful when your keys or values are very large, if you need
   1845 to iterate over the collection in sorted order, or if you need stable iterators
   1846 into the map (i.e. they don't get invalidated if an insertion or deletion of
   1847 another element takes place).</p>
   1848 
   1849 </div>
   1850 
   1851 <!-- _______________________________________________________________________ -->
   1852 <h4>
   1853   <a name="dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a>
   1854 </h4>
   1855 
   1856 <div>
   1857 
   1858 <p>IntEqClasses provides a compact representation of equivalence classes of
   1859 small integers. Initially, each integer in the range 0..n-1 has its own
   1860 equivalence class. Classes can be joined by passing two class representatives to
   1861 the join(a, b) method. Two integers are in the same class when findLeader()
   1862 returns the same representative.</p>
   1863 
   1864 <p>Once all equivalence classes are formed, the map can be compressed so each
   1865 integer 0..n-1 maps to an equivalence class number in the range 0..m-1, where m
   1866 is the total number of equivalence classes. The map must be uncompressed before
   1867 it can be edited again.</p>
   1868 
   1869 </div>
   1870 
   1871 <!-- _______________________________________________________________________ -->
   1872 <h4>
   1873   <a name="dss_immutablemap">"llvm/ADT/ImmutableMap.h"</a>
   1874 </h4>
   1875 
   1876 <div>
   1877 
   1878 <p>
   1879 ImmutableMap is an immutable (functional) map implementation based on an AVL
   1880 tree.
   1881 Adding or removing elements is done through a Factory object and results in the
   1882 creation of a new ImmutableMap object.
   1883 If an ImmutableMap already exists with the given key set, then the existing one
   1884 is returned; equality is compared with a FoldingSetNodeID.
   1885 The time and space complexity of add or remove operations is logarithmic in the
   1886 size of the original map.
   1887 
   1888 </div>
   1889 
   1890 <!-- _______________________________________________________________________ -->
   1891 <h4>
   1892   <a name="dss_othermap">Other Map-Like Container Options</a>
   1893 </h4>
   1894 
   1895 <div>
   1896 
   1897 <p>
   1898 The STL provides several other options, such as std::multimap and the various 
   1899 "hash_map" like containers (whether from C++ TR1 or from the SGI library). We
   1900 never use hash_set and unordered_set because they are generally very expensive 
   1901 (each insertion requires a malloc) and very non-portable.</p>
   1902 
   1903 <p>std::multimap is useful if you want to map a key to multiple values, but has
   1904 all the drawbacks of std::map.  A sorted vector or some other approach is almost
   1905 always better.</p>
   1906 
   1907 </div>
   1908 
   1909 </div>
   1910 
   1911 <!-- ======================================================================= -->
   1912 <h3>
   1913   <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
   1914 </h3>
   1915 
   1916 <div>
   1917 <p>Unlike the other containers, there are only two bit storage containers, and 
   1918 choosing when to use each is relatively straightforward.</p>
   1919 
   1920 <p>One additional option is 
   1921 <tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
   1922 implementation in many common compilers (e.g. commonly available versions of 
   1923 GCC) is extremely inefficient and 2) the C++ standards committee is likely to
   1924 deprecate this container and/or change it significantly somehow.  In any case,
   1925 please don't use it.</p>
   1926 
   1927 <!-- _______________________________________________________________________ -->
   1928 <h4>
   1929   <a name="dss_bitvector">BitVector</a>
   1930 </h4>
   1931 
   1932 <div>
   1933 <p> The BitVector container provides a dynamic size set of bits for manipulation.
   1934 It supports individual bit setting/testing, as well as set operations.  The set
   1935 operations take time O(size of bitvector), but operations are performed one word
   1936 at a time, instead of one bit at a time.  This makes the BitVector very fast for
   1937 set operations compared to other containers.  Use the BitVector when you expect
   1938 the number of set bits to be high (IE a dense set).
   1939 </p>
   1940 </div>
   1941 
   1942 <!-- _______________________________________________________________________ -->
   1943 <h4>
   1944   <a name="dss_smallbitvector">SmallBitVector</a>
   1945 </h4>
   1946 
   1947 <div>
   1948 <p> The SmallBitVector container provides the same interface as BitVector, but
   1949 it is optimized for the case where only a small number of bits, less than
   1950 25 or so, are needed. It also transparently supports larger bit counts, but
   1951 slightly less efficiently than a plain BitVector, so SmallBitVector should
   1952 only be used when larger counts are rare.
   1953 </p>
   1954 
   1955 <p>
   1956 At this time, SmallBitVector does not support set operations (and, or, xor),
   1957 and its operator[] does not provide an assignable lvalue.
   1958 </p>
   1959 </div>
   1960 
   1961 <!-- _______________________________________________________________________ -->
   1962 <h4>
   1963   <a name="dss_sparsebitvector">SparseBitVector</a>
   1964 </h4>
   1965 
   1966 <div>
   1967 <p> The SparseBitVector container is much like BitVector, with one major
   1968 difference: Only the bits that are set, are stored.  This makes the
   1969 SparseBitVector much more space efficient than BitVector when the set is sparse,
   1970 as well as making set operations O(number of set bits) instead of O(size of
   1971 universe).  The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
   1972 (either forwards or reverse) is O(1) worst case.  Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1).  As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
   1973 </p>
   1974 </div>
   1975 
   1976 </div>
   1977 
   1978 </div>
   1979 
   1980 <!-- *********************************************************************** -->
   1981 <h2>
   1982   <a name="common">Helpful Hints for Common Operations</a>
   1983 </h2>
   1984 <!-- *********************************************************************** -->
   1985 
   1986 <div>
   1987 
   1988 <p>This section describes how to perform some very simple transformations of
   1989 LLVM code.  This is meant to give examples of common idioms used, showing the
   1990 practical side of LLVM transformations.  <p> Because this is a "how-to" section,
   1991 you should also read about the main classes that you will be working with.  The
   1992 <a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
   1993 and descriptions of the main classes that you should know about.</p>
   1994 
   1995 <!-- NOTE: this section should be heavy on example code -->
   1996 <!-- ======================================================================= -->
   1997 <h3>
   1998   <a name="inspection">Basic Inspection and Traversal Routines</a>
   1999 </h3>
   2000 
   2001 <div>
   2002 
   2003 <p>The LLVM compiler infrastructure have many different data structures that may
   2004 be traversed.  Following the example of the C++ standard template library, the
   2005 techniques used to traverse these various data structures are all basically the
   2006 same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
   2007 method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
   2008 function returns an iterator pointing to one past the last valid element of the
   2009 sequence, and there is some <tt>XXXiterator</tt> data type that is common
   2010 between the two operations.</p>
   2011 
   2012 <p>Because the pattern for iteration is common across many different aspects of
   2013 the program representation, the standard template library algorithms may be used
   2014 on them, and it is easier to remember how to iterate. First we show a few common
   2015 examples of the data structures that need to be traversed.  Other data
   2016 structures are traversed in very similar ways.</p>
   2017 
   2018 <!-- _______________________________________________________________________ -->
   2019 <h4>
   2020   <a name="iterate_function">Iterating over the </a><a
   2021   href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
   2022   href="#Function"><tt>Function</tt></a>
   2023 </h4>
   2024 
   2025 <div>
   2026 
   2027 <p>It's quite common to have a <tt>Function</tt> instance that you'd like to
   2028 transform in some way; in particular, you'd like to manipulate its
   2029 <tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over all of
   2030 the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
   2031 an example that prints the name of a <tt>BasicBlock</tt> and the number of
   2032 <tt>Instruction</tt>s it contains:</p>
   2033 
   2034 <div class="doc_code">
   2035 <pre>
   2036 // <i>func is a pointer to a Function instance</i>
   2037 for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
   2038   // <i>Print out the name of the basic block if it has one, and then the</i>
   2039   // <i>number of instructions that it contains</i>
   2040   errs() &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
   2041              &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
   2042 </pre>
   2043 </div>
   2044 
   2045 <p>Note that i can be used as if it were a pointer for the purposes of
   2046 invoking member functions of the <tt>Instruction</tt> class.  This is
   2047 because the indirection operator is overloaded for the iterator
   2048 classes.  In the above code, the expression <tt>i-&gt;size()</tt> is
   2049 exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
   2050 
   2051 </div>
   2052 
   2053 <!-- _______________________________________________________________________ -->
   2054 <h4>
   2055   <a name="iterate_basicblock">Iterating over the </a><a
   2056   href="#Instruction"><tt>Instruction</tt></a>s in a <a
   2057   href="#BasicBlock"><tt>BasicBlock</tt></a>
   2058 </h4>
   2059 
   2060 <div>
   2061 
   2062 <p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
   2063 easy to iterate over the individual instructions that make up
   2064 <tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
   2065 a <tt>BasicBlock</tt>:</p>
   2066 
   2067 <div class="doc_code">
   2068 <pre>
   2069 // <i>blk is a pointer to a BasicBlock instance</i>
   2070 for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
   2071    // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
   2072    // <i>is overloaded for Instruction&amp;</i>
   2073    errs() &lt;&lt; *i &lt;&lt; "\n";
   2074 </pre>
   2075 </div>
   2076 
   2077 <p>However, this isn't really the best way to print out the contents of a
   2078 <tt>BasicBlock</tt>!  Since the ostream operators are overloaded for virtually
   2079 anything you'll care about, you could have just invoked the print routine on the
   2080 basic block itself: <tt>errs() &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
   2081 
   2082 </div>
   2083 
   2084 <!-- _______________________________________________________________________ -->
   2085 <h4>
   2086   <a name="iterate_institer">Iterating over the </a><a
   2087   href="#Instruction"><tt>Instruction</tt></a>s in a <a
   2088   href="#Function"><tt>Function</tt></a>
   2089 </h4>
   2090 
   2091 <div>
   2092 
   2093 <p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
   2094 <tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
   2095 <tt>InstIterator</tt> should be used instead. You'll need to include <a
   2096 href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
   2097 and then instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a
   2098 small example that shows how to dump all instructions in a function to the standard error stream:<p>
   2099 
   2100 <div class="doc_code">
   2101 <pre>
   2102 #include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
   2103 
   2104 // <i>F is a pointer to a Function instance</i>
   2105 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
   2106   errs() &lt;&lt; *I &lt;&lt; "\n";
   2107 </pre>
   2108 </div>
   2109 
   2110 <p>Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a
   2111 work list with its initial contents.  For example, if you wanted to
   2112 initialize a work list to contain all instructions in a <tt>Function</tt>
   2113 F, all you would need to do is something like:</p>
   2114 
   2115 <div class="doc_code">
   2116 <pre>
   2117 std::set&lt;Instruction*&gt; worklist;
   2118 // or better yet, SmallPtrSet&lt;Instruction*, 64&gt; worklist;
   2119 
   2120 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
   2121    worklist.insert(&amp;*I);
   2122 </pre>
   2123 </div>
   2124 
   2125 <p>The STL set <tt>worklist</tt> would now contain all instructions in the
   2126 <tt>Function</tt> pointed to by F.</p>
   2127 
   2128 </div>
   2129 
   2130 <!-- _______________________________________________________________________ -->
   2131 <h4>
   2132   <a name="iterate_convert">Turning an iterator into a class pointer (and
   2133   vice-versa)</a>
   2134 </h4>
   2135 
   2136 <div>
   2137 
   2138 <p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
   2139 instance when all you've got at hand is an iterator.  Well, extracting
   2140 a reference or a pointer from an iterator is very straight-forward.
   2141 Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
   2142 is a <tt>BasicBlock::const_iterator</tt>:</p>
   2143 
   2144 <div class="doc_code">
   2145 <pre>
   2146 Instruction&amp; inst = *i;   // <i>Grab reference to instruction reference</i>
   2147 Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
   2148 const Instruction&amp; inst = *j;
   2149 </pre>
   2150 </div>
   2151 
   2152 <p>However, the iterators you'll be working with in the LLVM framework are
   2153 special: they will automatically convert to a ptr-to-instance type whenever they
   2154 need to.  Instead of dereferencing the iterator and then taking the address of
   2155 the result, you can simply assign the iterator to the proper pointer type and
   2156 you get the dereference and address-of operation as a result of the assignment
   2157 (behind the scenes, this is a result of overloading casting mechanisms).  Thus
   2158 the last line of the last example,</p>
   2159 
   2160 <div class="doc_code">
   2161 <pre>
   2162 Instruction *pinst = &amp;*i;
   2163 </pre>
   2164 </div>
   2165 
   2166 <p>is semantically equivalent to</p>
   2167 
   2168 <div class="doc_code">
   2169 <pre>
   2170 Instruction *pinst = i;
   2171 </pre>
   2172 </div>
   2173 
   2174 <p>It's also possible to turn a class pointer into the corresponding iterator,
   2175 and this is a constant time operation (very efficient).  The following code
   2176 snippet illustrates use of the conversion constructors provided by LLVM
   2177 iterators.  By using these, you can explicitly grab the iterator of something
   2178 without actually obtaining it via iteration over some structure:</p>
   2179 
   2180 <div class="doc_code">
   2181 <pre>
   2182 void printNextInstruction(Instruction* inst) {
   2183   BasicBlock::iterator it(inst);
   2184   ++it; // <i>After this line, it refers to the instruction after *inst</i>
   2185   if (it != inst-&gt;getParent()-&gt;end()) errs() &lt;&lt; *it &lt;&lt; "\n";
   2186 }
   2187 </pre>
   2188 </div>
   2189 
   2190 <p>Unfortunately, these implicit conversions come at a cost; they prevent
   2191 these iterators from conforming to standard iterator conventions, and thus
   2192 from being usable with standard algorithms and containers. For example, they
   2193 prevent the following code, where <tt>B</tt> is a <tt>BasicBlock</tt>,
   2194 from compiling:</p>
   2195 
   2196 <div class="doc_code">
   2197 <pre>
   2198   llvm::SmallVector&lt;llvm::Instruction *, 16&gt;(B-&gt;begin(), B-&gt;end());
   2199 </pre>
   2200 </div>
   2201 
   2202 <p>Because of this, these implicit conversions may be removed some day,
   2203 and <tt>operator*</tt> changed to return a pointer instead of a reference.</p>
   2204 
   2205 </div>
   2206 
   2207 <!--_______________________________________________________________________-->
   2208 <h4>
   2209   <a name="iterate_complex">Finding call sites: a slightly more complex
   2210   example</a>
   2211 </h4>
   2212 
   2213 <div>
   2214 
   2215 <p>Say that you're writing a FunctionPass and would like to count all the
   2216 locations in the entire module (that is, across every <tt>Function</tt>) where a
   2217 certain function (i.e., some <tt>Function</tt>*) is already in scope.  As you'll
   2218 learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
   2219 much more straight-forward manner, but this example will allow us to explore how
   2220 you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
   2221 is what we want to do:</p>
   2222 
   2223 <div class="doc_code">
   2224 <pre>
   2225 initialize callCounter to zero
   2226 for each Function f in the Module
   2227   for each BasicBlock b in f
   2228     for each Instruction i in b
   2229       if (i is a CallInst and calls the given function)
   2230         increment callCounter
   2231 </pre>
   2232 </div>
   2233 
   2234 <p>And the actual code is (remember, because we're writing a
   2235 <tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
   2236 override the <tt>runOnFunction</tt> method):</p>
   2237 
   2238 <div class="doc_code">
   2239 <pre>
   2240 Function* targetFunc = ...;
   2241 
   2242 class OurFunctionPass : public FunctionPass {
   2243   public:
   2244     OurFunctionPass(): callCounter(0) { }
   2245 
   2246     virtual runOnFunction(Function&amp; F) {
   2247       for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
   2248         for (BasicBlock::iterator i = b-&gt;begin(), ie = b-&gt;end(); i != ie; ++i) {
   2249           if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
   2250  href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
   2251             // <i>We know we've encountered a call instruction, so we</i>
   2252             // <i>need to determine if it's a call to the</i>
   2253             // <i>function pointed to by m_func or not.</i>
   2254             if (callInst-&gt;getCalledFunction() == targetFunc)
   2255               ++callCounter;
   2256           }
   2257         }
   2258       }
   2259     }
   2260 
   2261   private:
   2262     unsigned callCounter;
   2263 };
   2264 </pre>
   2265 </div>
   2266 
   2267 </div>
   2268 
   2269 <!--_______________________________________________________________________-->
   2270 <h4>
   2271   <a name="calls_and_invokes">Treating calls and invokes the same way</a>
   2272 </h4>
   2273 
   2274 <div>
   2275 
   2276 <p>You may have noticed that the previous example was a bit oversimplified in
   2277 that it did not deal with call sites generated by 'invoke' instructions. In
   2278 this, and in other situations, you may find that you want to treat
   2279 <tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
   2280 most-specific common base class is <tt>Instruction</tt>, which includes lots of
   2281 less closely-related things. For these cases, LLVM provides a handy wrapper
   2282 class called <a
   2283 href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
   2284 It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
   2285 methods that provide functionality common to <tt>CallInst</tt>s and
   2286 <tt>InvokeInst</tt>s.</p>
   2287 
   2288 <p>This class has "value semantics": it should be passed by value, not by
   2289 reference and it should not be dynamically allocated or deallocated using
   2290 <tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
   2291 assignable and constructable, with costs equivalents to that of a bare pointer.
   2292 If you look at its definition, it has only a single pointer member.</p>
   2293 
   2294 </div>
   2295 
   2296 <!--_______________________________________________________________________-->
   2297 <h4>
   2298   <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
   2299 </h4>
   2300 
   2301 <div>
   2302 
   2303 <p>Frequently, we might have an instance of the <a
   2304 href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
   2305 determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of all
   2306 <tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
   2307 For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
   2308 particular function <tt>foo</tt>. Finding all of the instructions that
   2309 <i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
   2310 of <tt>F</tt>:</p>
   2311 
   2312 <div class="doc_code">
   2313 <pre>
   2314 Function *F = ...;
   2315 
   2316 for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
   2317   if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
   2318     errs() &lt;&lt; "F is used in instruction:\n";
   2319     errs() &lt;&lt; *Inst &lt;&lt; "\n";
   2320   }
   2321 </pre>
   2322 </div>
   2323 
   2324 <p>Note that dereferencing a <tt>Value::use_iterator</tt> is not a very cheap
   2325 operation. Instead of performing <tt>*i</tt> above several times, consider
   2326 doing it only once in the loop body and reusing its result.</p>
   2327 
   2328 <p>Alternatively, it's common to have an instance of the <a
   2329 href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
   2330 <tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used by a
   2331 <tt>User</tt> is known as a <i>use-def</i> chain.  Instances of class
   2332 <tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
   2333 all of the values that a particular instruction uses (that is, the operands of
   2334 the particular <tt>Instruction</tt>):</p>
   2335 
   2336 <div class="doc_code">
   2337 <pre>
   2338 Instruction *pi = ...;
   2339 
   2340 for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
   2341   Value *v = *i;
   2342   // <i>...</i>
   2343 }
   2344 </pre>
   2345 </div>
   2346 
   2347 <p>Declaring objects as <tt>const</tt> is an important tool of enforcing
   2348 mutation free algorithms (such as analyses, etc.). For this purpose above
   2349 iterators come in constant flavors as <tt>Value::const_use_iterator</tt>
   2350 and <tt>Value::const_op_iterator</tt>.  They automatically arise when
   2351 calling <tt>use/op_begin()</tt> on <tt>const Value*</tt>s or
   2352 <tt>const User*</tt>s respectively.  Upon dereferencing, they return
   2353 <tt>const Use*</tt>s. Otherwise the above patterns remain unchanged.</p>
   2354 
   2355 </div>
   2356 
   2357 <!--_______________________________________________________________________-->
   2358 <h4>
   2359   <a name="iterate_preds">Iterating over predecessors &amp;
   2360 successors of blocks</a>
   2361 </h4>
   2362 
   2363 <div>
   2364 
   2365 <p>Iterating over the predecessors and successors of a block is quite easy
   2366 with the routines defined in <tt>"llvm/Support/CFG.h"</tt>.  Just use code like
   2367 this to iterate over all predecessors of BB:</p>
   2368 
   2369 <div class="doc_code">
   2370 <pre>
   2371 #include "llvm/Support/CFG.h"
   2372 BasicBlock *BB = ...;
   2373 
   2374 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2375   BasicBlock *Pred = *PI;
   2376   // <i>...</i>
   2377 }
   2378 </pre>
   2379 </div>
   2380 
   2381 <p>Similarly, to iterate over successors use
   2382 succ_iterator/succ_begin/succ_end.</p>
   2383 
   2384 </div>
   2385 
   2386 </div>
   2387 
   2388 <!-- ======================================================================= -->
   2389 <h3>
   2390   <a name="simplechanges">Making simple changes</a>
   2391 </h3>
   2392 
   2393 <div>
   2394 
   2395 <p>There are some primitive transformation operations present in the LLVM
   2396 infrastructure that are worth knowing about.  When performing
   2397 transformations, it's fairly common to manipulate the contents of basic
   2398 blocks. This section describes some of the common methods for doing so
   2399 and gives example code.</p>
   2400 
   2401 <!--_______________________________________________________________________-->
   2402 <h4>
   2403   <a name="schanges_creating">Creating and inserting new
   2404   <tt>Instruction</tt>s</a>
   2405 </h4>
   2406 
   2407 <div>
   2408 
   2409 <p><i>Instantiating Instructions</i></p>
   2410 
   2411 <p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
   2412 constructor for the kind of instruction to instantiate and provide the necessary
   2413 parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
   2414 (const-ptr-to) <tt>Type</tt>. Thus:</p> 
   2415 
   2416 <div class="doc_code">
   2417 <pre>
   2418 AllocaInst* ai = new AllocaInst(Type::Int32Ty);
   2419 </pre>
   2420 </div>
   2421 
   2422 <p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
   2423 one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
   2424 subclass is likely to have varying default parameters which change the semantics
   2425 of the instruction, so refer to the <a
   2426 href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
   2427 Instruction</a> that you're interested in instantiating.</p>
   2428 
   2429 <p><i>Naming values</i></p>
   2430 
   2431 <p>It is very useful to name the values of instructions when you're able to, as
   2432 this facilitates the debugging of your transformations.  If you end up looking
   2433 at generated LLVM machine code, you definitely want to have logical names
   2434 associated with the results of instructions!  By supplying a value for the
   2435 <tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
   2436 associate a logical name with the result of the instruction's execution at
   2437 run time.  For example, say that I'm writing a transformation that dynamically
   2438 allocates space for an integer on the stack, and that integer is going to be
   2439 used as some kind of index by some other code.  To accomplish this, I place an
   2440 <tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
   2441 <tt>Function</tt>, and I'm intending to use it within the same
   2442 <tt>Function</tt>. I might do:</p>
   2443 
   2444 <div class="doc_code">
   2445 <pre>
   2446 AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
   2447 </pre>
   2448 </div>
   2449 
   2450 <p>where <tt>indexLoc</tt> is now the logical name of the instruction's
   2451 execution value, which is a pointer to an integer on the run time stack.</p>
   2452 
   2453 <p><i>Inserting instructions</i></p>
   2454 
   2455 <p>There are essentially two ways to insert an <tt>Instruction</tt>
   2456 into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
   2457 
   2458 <ul>
   2459   <li>Insertion into an explicit instruction list
   2460 
   2461     <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
   2462     <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
   2463     before <tt>*pi</tt>, we do the following: </p>
   2464 
   2465 <div class="doc_code">
   2466 <pre>
   2467 BasicBlock *pb = ...;
   2468 Instruction *pi = ...;
   2469 Instruction *newInst = new Instruction(...);
   2470 
   2471 pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
   2472 </pre>
   2473 </div>
   2474 
   2475     <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
   2476     the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
   2477     classes provide constructors which take a pointer to a
   2478     <tt>BasicBlock</tt> to be appended to. For example code that
   2479     looked like: </p>
   2480 
   2481 <div class="doc_code">
   2482 <pre>
   2483 BasicBlock *pb = ...;
   2484 Instruction *newInst = new Instruction(...);
   2485 
   2486 pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
   2487 </pre>
   2488 </div>
   2489 
   2490     <p>becomes: </p>
   2491 
   2492 <div class="doc_code">
   2493 <pre>
   2494 BasicBlock *pb = ...;
   2495 Instruction *newInst = new Instruction(..., pb);
   2496 </pre>
   2497 </div>
   2498 
   2499     <p>which is much cleaner, especially if you are creating
   2500     long instruction streams.</p></li>
   2501 
   2502   <li>Insertion into an implicit instruction list
   2503 
   2504     <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
   2505     are implicitly associated with an existing instruction list: the instruction
   2506     list of the enclosing basic block. Thus, we could have accomplished the same
   2507     thing as the above code without being given a <tt>BasicBlock</tt> by doing:
   2508     </p>
   2509 
   2510 <div class="doc_code">
   2511 <pre>
   2512 Instruction *pi = ...;
   2513 Instruction *newInst = new Instruction(...);
   2514 
   2515 pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
   2516 </pre>
   2517 </div>
   2518 
   2519     <p>In fact, this sequence of steps occurs so frequently that the
   2520     <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
   2521     constructors which take (as a default parameter) a pointer to an
   2522     <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
   2523     precede.  That is, <tt>Instruction</tt> constructors are capable of
   2524     inserting the newly-created instance into the <tt>BasicBlock</tt> of a
   2525     provided instruction, immediately before that instruction.  Using an
   2526     <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
   2527     parameter, the above code becomes:</p>
   2528 
   2529 <div class="doc_code">
   2530 <pre>
   2531 Instruction* pi = ...;
   2532 Instruction* newInst = new Instruction(..., pi);
   2533 </pre>
   2534 </div>
   2535 
   2536     <p>which is much cleaner, especially if you're creating a lot of
   2537     instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
   2538 </ul>
   2539 
   2540 </div>
   2541 
   2542 <!--_______________________________________________________________________-->
   2543 <h4>
   2544   <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
   2545 </h4>
   2546 
   2547 <div>
   2548 
   2549 <p>Deleting an instruction from an existing sequence of instructions that form a
   2550 <a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward: just
   2551 call the instruction's eraseFromParent() method.  For example:</p>
   2552 
   2553 <div class="doc_code">
   2554 <pre>
   2555 <a href="#Instruction">Instruction</a> *I = .. ;
   2556 I-&gt;eraseFromParent();
   2557 </pre>
   2558 </div>
   2559 
   2560 <p>This unlinks the instruction from its containing basic block and deletes 
   2561 it.  If you'd just like to unlink the instruction from its containing basic
   2562 block but not delete it, you can use the <tt>removeFromParent()</tt> method.</p>
   2563 
   2564 </div>
   2565 
   2566 <!--_______________________________________________________________________-->
   2567 <h4>
   2568   <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
   2569   <tt>Value</tt></a>
   2570 </h4>
   2571 
   2572 <div>
   2573 
   2574 <h5><i>Replacing individual instructions</i></h5>
   2575 
   2576 <p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
   2577 permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
   2578 and <tt>ReplaceInstWithInst</tt>.</p>
   2579 
   2580 <h5><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h5>
   2581 
   2582 <div>
   2583 <ul>
   2584   <li><tt>ReplaceInstWithValue</tt>
   2585 
   2586     <p>This function replaces all uses of a given instruction with a value,
   2587     and then removes the original instruction. The following example
   2588     illustrates the replacement of the result of a particular
   2589     <tt>AllocaInst</tt> that allocates memory for a single integer with a null
   2590     pointer to an integer.</p>
   2591 
   2592 <div class="doc_code">
   2593 <pre>
   2594 AllocaInst* instToReplace = ...;
   2595 BasicBlock::iterator ii(instToReplace);
   2596 
   2597 ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
   2598                      Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
   2599 </pre></div></li>
   2600 
   2601   <li><tt>ReplaceInstWithInst</tt> 
   2602 
   2603     <p>This function replaces a particular instruction with another
   2604     instruction, inserting the new instruction into the basic block at the
   2605     location where the old instruction was, and replacing any uses of the old
   2606     instruction with the new instruction. The following example illustrates
   2607     the replacement of one <tt>AllocaInst</tt> with another.</p>
   2608 
   2609 <div class="doc_code">
   2610 <pre>
   2611 AllocaInst* instToReplace = ...;
   2612 BasicBlock::iterator ii(instToReplace);
   2613 
   2614 ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
   2615                     new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
   2616 </pre></div></li>
   2617 </ul>
   2618 
   2619 </div>
   2620 
   2621 <h5><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></h5>
   2622 
   2623 <p>You can use <tt>Value::replaceAllUsesWith</tt> and
   2624 <tt>User::replaceUsesOfWith</tt> to change more than one use at a time.  See the
   2625 doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
   2626 and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
   2627 information.</p>
   2628 
   2629 <!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
   2630 include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
   2631 ReplaceInstWithValue, ReplaceInstWithInst -->
   2632 
   2633 </div>
   2634 
   2635 <!--_______________________________________________________________________-->
   2636 <h4>
   2637   <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
   2638 </h4>
   2639 
   2640 <div>
   2641 
   2642 <p>Deleting a global variable from a module is just as easy as deleting an 
   2643 Instruction. First, you must have a pointer to the global variable that you wish
   2644  to delete.  You use this pointer to erase it from its parent, the module.
   2645  For example:</p>
   2646 
   2647 <div class="doc_code">
   2648 <pre>
   2649 <a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
   2650 
   2651 GV-&gt;eraseFromParent();
   2652 </pre>
   2653 </div>
   2654 
   2655 </div>
   2656 
   2657 </div>
   2658 
   2659 <!-- ======================================================================= -->
   2660 <h3>
   2661   <a name="create_types">How to Create Types</a>
   2662 </h3>
   2663 
   2664 <div>
   2665 
   2666 <p>In generating IR, you may need some complex types.  If you know these types
   2667 statically, you can use <tt>TypeBuilder&lt;...&gt;::get()</tt>, defined
   2668 in <tt>llvm/Support/TypeBuilder.h</tt>, to retrieve them.  <tt>TypeBuilder</tt>
   2669 has two forms depending on whether you're building types for cross-compilation
   2670 or native library use.  <tt>TypeBuilder&lt;T, true&gt;</tt> requires
   2671 that <tt>T</tt> be independent of the host environment, meaning that it's built
   2672 out of types from
   2673 the <a href="/doxygen/namespacellvm_1_1types.html"><tt>llvm::types</tt></a>
   2674 namespace and pointers, functions, arrays, etc. built of
   2675 those.  <tt>TypeBuilder&lt;T, false&gt;</tt> additionally allows native C types
   2676 whose size may depend on the host compiler.  For example,</p>
   2677 
   2678 <div class="doc_code">
   2679 <pre>
   2680 FunctionType *ft = TypeBuilder&lt;types::i&lt;8&gt;(types::i&lt;32&gt;*), true&gt;::get();
   2681 </pre>
   2682 </div>
   2683 
   2684 <p>is easier to read and write than the equivalent</p>
   2685 
   2686 <div class="doc_code">
   2687 <pre>
   2688 std::vector&lt;const Type*&gt; params;
   2689 params.push_back(PointerType::getUnqual(Type::Int32Ty));
   2690 FunctionType *ft = FunctionType::get(Type::Int8Ty, params, false);
   2691 </pre>
   2692 </div>
   2693 
   2694 <p>See the <a href="/doxygen/TypeBuilder_8h-source.html#l00001">class
   2695 comment</a> for more details.</p>
   2696 
   2697 </div>
   2698 
   2699 </div>
   2700 
   2701 <!-- *********************************************************************** -->
   2702 <h2>
   2703   <a name="threading">Threads and LLVM</a>
   2704 </h2>
   2705 <!-- *********************************************************************** -->
   2706 
   2707 <div>
   2708 <p>
   2709 This section describes the interaction of the LLVM APIs with multithreading,
   2710 both on the part of client applications, and in the JIT, in the hosted
   2711 application.
   2712 </p>
   2713 
   2714 <p>
   2715 Note that LLVM's support for multithreading is still relatively young.  Up 
   2716 through version 2.5, the execution of threaded hosted applications was
   2717 supported, but not threaded client access to the APIs.  While this use case is
   2718 now supported, clients <em>must</em> adhere to the guidelines specified below to
   2719 ensure proper operation in multithreaded mode.
   2720 </p>
   2721 
   2722 <p>
   2723 Note that, on Unix-like platforms, LLVM requires the presence of GCC's atomic
   2724 intrinsics in order to support threaded operation.  If you need a
   2725 multhreading-capable LLVM on a platform without a suitably modern system
   2726 compiler, consider compiling LLVM and LLVM-GCC in single-threaded mode, and 
   2727 using the resultant compiler to build a copy of LLVM with multithreading
   2728 support.
   2729 </p>
   2730 
   2731 <!-- ======================================================================= -->
   2732 <h3>
   2733   <a name="startmultithreaded">Entering and Exiting Multithreaded Mode</a>
   2734 </h3>
   2735 
   2736 <div>
   2737 
   2738 <p>
   2739 In order to properly protect its internal data structures while avoiding 
   2740 excessive locking overhead in the single-threaded case, the LLVM must intialize
   2741 certain data structures necessary to provide guards around its internals.  To do
   2742 so, the client program must invoke <tt>llvm_start_multithreaded()</tt> before
   2743 making any concurrent LLVM API calls.  To subsequently tear down these
   2744 structures, use the <tt>llvm_stop_multithreaded()</tt> call.  You can also use
   2745 the <tt>llvm_is_multithreaded()</tt> call to check the status of multithreaded
   2746 mode.
   2747 </p>
   2748 
   2749 <p>
   2750 Note that both of these calls must be made <em>in isolation</em>.  That is to
   2751 say that no other LLVM API calls may be executing at any time during the 
   2752 execution of <tt>llvm_start_multithreaded()</tt> or <tt>llvm_stop_multithreaded
   2753 </tt>.  It's is the client's responsibility to enforce this isolation.
   2754 </p>
   2755 
   2756 <p>
   2757 The return value of <tt>llvm_start_multithreaded()</tt> indicates the success or
   2758 failure of the initialization.  Failure typically indicates that your copy of
   2759 LLVM was built without multithreading support, typically because GCC atomic
   2760 intrinsics were not found in your system compiler.  In this case, the LLVM API
   2761 will not be safe for concurrent calls.  However, it <em>will</em> be safe for
   2762 hosting threaded applications in the JIT, though <a href="#jitthreading">care
   2763 must be taken</a> to ensure that side exits and the like do not accidentally
   2764 result in concurrent LLVM API calls.
   2765 </p>
   2766 </div>
   2767 
   2768 <!-- ======================================================================= -->
   2769 <h3>
   2770   <a name="shutdown">Ending Execution with <tt>llvm_shutdown()</tt></a>
   2771 </h3>
   2772 
   2773 <div>
   2774 <p>
   2775 When you are done using the LLVM APIs, you should call <tt>llvm_shutdown()</tt>
   2776 to deallocate memory used for internal structures.  This will also invoke 
   2777 <tt>llvm_stop_multithreaded()</tt> if LLVM is operating in multithreaded mode.
   2778 As such, <tt>llvm_shutdown()</tt> requires the same isolation guarantees as
   2779 <tt>llvm_stop_multithreaded()</tt>.
   2780 </p>
   2781 
   2782 <p>
   2783 Note that, if you use scope-based shutdown, you can use the
   2784 <tt>llvm_shutdown_obj</tt> class, which calls <tt>llvm_shutdown()</tt> in its
   2785 destructor.
   2786 </div>
   2787 
   2788 <!-- ======================================================================= -->
   2789 <h3>
   2790   <a name="managedstatic">Lazy Initialization with <tt>ManagedStatic</tt></a>
   2791 </h3>
   2792 
   2793 <div>
   2794 <p>
   2795 <tt>ManagedStatic</tt> is a utility class in LLVM used to implement static
   2796 initialization of static resources, such as the global type tables.  Before the
   2797 invocation of <tt>llvm_shutdown()</tt>, it implements a simple lazy 
   2798 initialization scheme.  Once <tt>llvm_start_multithreaded()</tt> returns,
   2799 however, it uses double-checked locking to implement thread-safe lazy
   2800 initialization.
   2801 </p>
   2802 
   2803 <p>
   2804 Note that, because no other threads are allowed to issue LLVM API calls before
   2805 <tt>llvm_start_multithreaded()</tt> returns, it is possible to have 
   2806 <tt>ManagedStatic</tt>s of <tt>llvm::sys::Mutex</tt>s.
   2807 </p>
   2808 
   2809 <p>
   2810 The <tt>llvm_acquire_global_lock()</tt> and <tt>llvm_release_global_lock</tt> 
   2811 APIs provide access to the global lock used to implement the double-checked
   2812 locking for lazy initialization.  These should only be used internally to LLVM,
   2813 and only if you know what you're doing!
   2814 </p>
   2815 </div>
   2816 
   2817 <!-- ======================================================================= -->
   2818 <h3>
   2819   <a name="llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a>
   2820 </h3>
   2821 
   2822 <div>
   2823 <p>
   2824 <tt>LLVMContext</tt> is an opaque class in the LLVM API which clients can use
   2825 to operate multiple, isolated instances of LLVM concurrently within the same
   2826 address space.  For instance, in a hypothetical compile-server, the compilation
   2827 of an individual translation unit is conceptually independent from all the 
   2828 others, and it would be desirable to be able to compile incoming translation 
   2829 units concurrently on independent server threads.  Fortunately, 
   2830 <tt>LLVMContext</tt> exists to enable just this kind of scenario!
   2831 </p>
   2832 
   2833 <p>
   2834 Conceptually, <tt>LLVMContext</tt> provides isolation.  Every LLVM entity 
   2835 (<tt>Module</tt>s, <tt>Value</tt>s, <tt>Type</tt>s, <tt>Constant</tt>s, etc.)
   2836 in LLVM's in-memory IR belongs to an <tt>LLVMContext</tt>.  Entities in 
   2837 different contexts <em>cannot</em> interact with each other: <tt>Module</tt>s in
   2838 different contexts cannot be linked together, <tt>Function</tt>s cannot be added
   2839 to <tt>Module</tt>s in different contexts, etc.  What this means is that is is
   2840 safe to compile on multiple threads simultaneously, as long as no two threads
   2841 operate on entities within the same context.
   2842 </p>
   2843 
   2844 <p>
   2845 In practice, very few places in the API require the explicit specification of a
   2846 <tt>LLVMContext</tt>, other than the <tt>Type</tt> creation/lookup APIs.
   2847 Because every <tt>Type</tt> carries a reference to its owning context, most
   2848 other entities can determine what context they belong to by looking at their
   2849 own <tt>Type</tt>.  If you are adding new entities to LLVM IR, please try to
   2850 maintain this interface design.
   2851 </p>
   2852 
   2853 <p>
   2854 For clients that do <em>not</em> require the benefits of isolation, LLVM 
   2855 provides a convenience API <tt>getGlobalContext()</tt>.  This returns a global,
   2856 lazily initialized <tt>LLVMContext</tt> that may be used in situations where
   2857 isolation is not a concern.
   2858 </p>
   2859 </div>
   2860 
   2861 <!-- ======================================================================= -->
   2862 <h3>
   2863   <a name="jitthreading">Threads and the JIT</a>
   2864 </h3>
   2865 
   2866 <div>
   2867 <p>
   2868 LLVM's "eager" JIT compiler is safe to use in threaded programs.  Multiple
   2869 threads can call <tt>ExecutionEngine::getPointerToFunction()</tt> or
   2870 <tt>ExecutionEngine::runFunction()</tt> concurrently, and multiple threads can
   2871 run code output by the JIT concurrently.  The user must still ensure that only
   2872 one thread accesses IR in a given <tt>LLVMContext</tt> while another thread
   2873 might be modifying it.  One way to do that is to always hold the JIT lock while
   2874 accessing IR outside the JIT (the JIT <em>modifies</em> the IR by adding
   2875 <tt>CallbackVH</tt>s).  Another way is to only
   2876 call <tt>getPointerToFunction()</tt> from the <tt>LLVMContext</tt>'s thread.
   2877 </p>
   2878 
   2879 <p>When the JIT is configured to compile lazily (using
   2880 <tt>ExecutionEngine::DisableLazyCompilation(false)</tt>), there is currently a
   2881 <a href="http://llvm.org/bugs/show_bug.cgi?id=5184">race condition</a> in
   2882 updating call sites after a function is lazily-jitted.  It's still possible to
   2883 use the lazy JIT in a threaded program if you ensure that only one thread at a
   2884 time can call any particular lazy stub and that the JIT lock guards any IR
   2885 access, but we suggest using only the eager JIT in threaded programs.
   2886 </p>
   2887 </div>
   2888 
   2889 </div>
   2890 
   2891 <!-- *********************************************************************** -->
   2892 <h2>
   2893   <a name="advanced">Advanced Topics</a>
   2894 </h2>
   2895 <!-- *********************************************************************** -->
   2896 
   2897 <div>
   2898 <p>
   2899 This section describes some of the advanced or obscure API's that most clients
   2900 do not need to be aware of.  These API's tend manage the inner workings of the
   2901 LLVM system, and only need to be accessed in unusual circumstances.
   2902 </p>
   2903 
   2904   
   2905 <!-- ======================================================================= -->
   2906 <h3>
   2907   <a name="SymbolTable">The <tt>ValueSymbolTable</tt> class</a>
   2908 </h3>
   2909 
   2910 <div>
   2911 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
   2912 ValueSymbolTable</a></tt> class provides a symbol table that the <a
   2913 href="#Function"><tt>Function</tt></a> and <a href="#Module">
   2914 <tt>Module</tt></a> classes use for naming value definitions. The symbol table
   2915 can provide a name for any <a href="#Value"><tt>Value</tt></a>. 
   2916 </p>
   2917 
   2918 <p>Note that the <tt>SymbolTable</tt> class should not be directly accessed 
   2919 by most clients.  It should only be used when iteration over the symbol table 
   2920 names themselves are required, which is very special purpose.  Note that not 
   2921 all LLVM
   2922 <tt><a href="#Value">Value</a></tt>s have names, and those without names (i.e. they have
   2923 an empty name) do not exist in the symbol table.
   2924 </p>
   2925 
   2926 <p>Symbol tables support iteration over the values in the symbol
   2927 table with <tt>begin/end/iterator</tt> and supports querying to see if a
   2928 specific name is in the symbol table (with <tt>lookup</tt>).  The
   2929 <tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
   2930 simply call <tt>setName</tt> on a value, which will autoinsert it into the
   2931 appropriate symbol table.</p>
   2932 
   2933 </div>
   2934 
   2935 
   2936 
   2937 <!-- ======================================================================= -->
   2938 <h3>
   2939   <a name="UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a>
   2940 </h3>
   2941 
   2942 <div>
   2943 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1User.html">
   2944 User</a></tt> class provides a basis for expressing the ownership of <tt>User</tt>
   2945 towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
   2946 Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
   2947 Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
   2948 addition and removal.</p>
   2949 
   2950 <!-- ______________________________________________________________________ -->
   2951 <h4>
   2952   <a name="Use2User">
   2953     Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects
   2954   </a>
   2955 </h4>
   2956 
   2957 <div>
   2958 <p>
   2959 A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
   2960 or refer to them out-of-line by means of a pointer. A mixed variant
   2961 (some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
   2962 that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
   2963 </p>
   2964 
   2965 <p>
   2966 We have 2 different layouts in the <tt>User</tt> (sub)classes:
   2967 <ul>
   2968 <li><p>Layout a)
   2969 The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
   2970 object and there are a fixed number of them.</p>
   2971 
   2972 <li><p>Layout b)
   2973 The <tt>Use</tt> object(s) are referenced by a pointer to an
   2974 array from the <tt>User</tt> object and there may be a variable
   2975 number of them.</p>
   2976 </ul>
   2977 <p>
   2978 As of v2.4 each layout still possesses a direct pointer to the
   2979 start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
   2980 we stick to this redundancy for the sake of simplicity.
   2981 The <tt>User</tt> object also stores the number of <tt>Use</tt> objects it
   2982 has. (Theoretically this information can also be calculated
   2983 given the scheme presented below.)</p>
   2984 <p>
   2985 Special forms of allocation operators (<tt>operator new</tt>)
   2986 enforce the following memory layouts:</p>
   2987 
   2988 <ul>
   2989 <li><p>Layout a) is modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
   2990 
   2991 <pre>
   2992 ...---.---.---.---.-------...
   2993   | P | P | P | P | User
   2994 '''---'---'---'---'-------'''
   2995 </pre>
   2996 
   2997 <li><p>Layout b) is modelled by pointing at the <tt>Use[]</tt> array.</p>
   2998 <pre>
   2999 .-------...
   3000 | User
   3001 '-------'''
   3002     |
   3003     v
   3004     .---.---.---.---...
   3005     | P | P | P | P |
   3006     '---'---'---'---'''
   3007 </pre>
   3008 </ul>
   3009 <i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
   3010     is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
   3011 
   3012 </div>
   3013 
   3014 <!-- ______________________________________________________________________ -->
   3015 <h4>
   3016   <a name="Waymarking">The waymarking algorithm</a>
   3017 </h4>
   3018 
   3019 <div>
   3020 <p>
   3021 Since the <tt>Use</tt> objects are deprived of the direct (back)pointer to
   3022 their <tt>User</tt> objects, there must be a fast and exact method to
   3023 recover it. This is accomplished by the following scheme:</p>
   3024 
   3025 A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> allows to find the
   3026 start of the <tt>User</tt> object:
   3027 <ul>
   3028 <li><tt>00</tt> &mdash;&gt; binary digit 0</li>
   3029 <li><tt>01</tt> &mdash;&gt; binary digit 1</li>
   3030 <li><tt>10</tt> &mdash;&gt; stop and calculate (<tt>s</tt>)</li>
   3031 <li><tt>11</tt> &mdash;&gt; full stop (<tt>S</tt>)</li>
   3032 </ul>
   3033 <p>
   3034 Given a <tt>Use*</tt>, all we have to do is to walk till we get
   3035 a stop and we either have a <tt>User</tt> immediately behind or
   3036 we have to walk to the next stop picking up digits
   3037 and calculating the offset:</p>
   3038 <pre>
   3039 .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
   3040 | 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
   3041 '---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
   3042     |+15                |+10            |+6         |+3     |+1
   3043     |                   |               |           |       |__>
   3044     |                   |               |           |__________>
   3045     |                   |               |______________________>
   3046     |                   |______________________________________>
   3047     |__________________________________________________________>
   3048 </pre>
   3049 <p>
   3050 Only the significant number of bits need to be stored between the
   3051 stops, so that the <i>worst case is 20 memory accesses</i> when there are
   3052 1000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
   3053 
   3054 </div>
   3055 
   3056 <!-- ______________________________________________________________________ -->
   3057 <h4>
   3058   <a name="ReferenceImpl">Reference implementation</a>
   3059 </h4>
   3060 
   3061 <div>
   3062 <p>
   3063 The following literate Haskell fragment demonstrates the concept:</p>
   3064 
   3065 <div class="doc_code">
   3066 <pre>
   3067 > import Test.QuickCheck
   3068 > 
   3069 > digits :: Int -> [Char] -> [Char]
   3070 > digits 0 acc = '0' : acc
   3071 > digits 1 acc = '1' : acc
   3072 > digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
   3073 > 
   3074 > dist :: Int -> [Char] -> [Char]
   3075 > dist 0 [] = ['S']
   3076 > dist 0 acc = acc
   3077 > dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
   3078 > dist n acc = dist (n - 1) $ dist 1 acc
   3079 > 
   3080 > takeLast n ss = reverse $ take n $ reverse ss
   3081 > 
   3082 > test = takeLast 40 $ dist 20 []
   3083 > 
   3084 </pre>
   3085 </div>
   3086 <p>
   3087 Printing &lt;test&gt; gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
   3088 <p>
   3089 The reverse algorithm computes the length of the string just by examining
   3090 a certain prefix:</p>
   3091 
   3092 <div class="doc_code">
   3093 <pre>
   3094 > pref :: [Char] -> Int
   3095 > pref "S" = 1
   3096 > pref ('s':'1':rest) = decode 2 1 rest
   3097 > pref (_:rest) = 1 + pref rest
   3098 > 
   3099 > decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
   3100 > decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
   3101 > decode walk acc _ = walk + acc
   3102 > 
   3103 </pre>
   3104 </div>
   3105 <p>
   3106 Now, as expected, printing &lt;pref test&gt; gives <tt>40</tt>.</p>
   3107 <p>
   3108 We can <i>quickCheck</i> this with following property:</p>
   3109 
   3110 <div class="doc_code">
   3111 <pre>
   3112 > testcase = dist 2000 []
   3113 > testcaseLength = length testcase
   3114 > 
   3115 > identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
   3116 >     where arr = takeLast n testcase
   3117 > 
   3118 </pre>
   3119 </div>
   3120 <p>
   3121 As expected &lt;quickCheck identityProp&gt; gives:</p>
   3122 
   3123 <pre>
   3124 *Main> quickCheck identityProp
   3125 OK, passed 100 tests.
   3126 </pre>
   3127 <p>
   3128 Let's be a bit more exhaustive:</p>
   3129 
   3130 <div class="doc_code">
   3131 <pre>
   3132 > 
   3133 > deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
   3134 > 
   3135 </pre>
   3136 </div>
   3137 <p>
   3138 And here is the result of &lt;deepCheck identityProp&gt;:</p>
   3139 
   3140 <pre>
   3141 *Main> deepCheck identityProp
   3142 OK, passed 500 tests.
   3143 </pre>
   3144 
   3145 </div>
   3146 
   3147 <!-- ______________________________________________________________________ -->
   3148 <h4>
   3149   <a name="Tagging">Tagging considerations</a>
   3150 </h4>
   3151 
   3152 <div>
   3153 
   3154 <p>
   3155 To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
   3156 never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
   3157 new <tt>Use**</tt> on every modification. Accordingly getters must strip the
   3158 tag bits.</p>
   3159 <p>
   3160 For layout b) instead of the <tt>User</tt> we find a pointer (<tt>User*</tt> with LSBit set).
   3161 Following this pointer brings us to the <tt>User</tt>. A portable trick ensures
   3162 that the first bytes of <tt>User</tt> (if interpreted as a pointer) never has
   3163 the LSBit set. (Portability is relying on the fact that all known compilers place the
   3164 <tt>vptr</tt> in the first word of the instances.)</p>
   3165 
   3166 </div>
   3167 
   3168 </div>
   3169 
   3170 </div>
   3171 
   3172 <!-- *********************************************************************** -->
   3173 <h2>
   3174   <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
   3175 </h2>
   3176 <!-- *********************************************************************** -->
   3177 
   3178 <div>
   3179 <p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
   3180 <br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
   3181 
   3182 <p>The Core LLVM classes are the primary means of representing the program
   3183 being inspected or transformed.  The core LLVM classes are defined in
   3184 header files in the <tt>include/llvm/</tt> directory, and implemented in
   3185 the <tt>lib/VMCore</tt> directory.</p>
   3186 
   3187 <!-- ======================================================================= -->
   3188 <h3>
   3189   <a name="Type">The <tt>Type</tt> class and Derived Types</a>
   3190 </h3>
   3191 
   3192 <div>
   3193 
   3194   <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
   3195   a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
   3196   through its subclasses. Certain primitive types (<tt>VoidType</tt>,
   3197   <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden 
   3198   subclasses. They are hidden because they offer no useful functionality beyond
   3199   what the <tt>Type</tt> class offers except to distinguish themselves from 
   3200   other subclasses of <tt>Type</tt>.</p>
   3201   <p>All other types are subclasses of <tt>DerivedType</tt>.  Types can be 
   3202   named, but this is not a requirement. There exists exactly 
   3203   one instance of a given shape at any one time.  This allows type equality to
   3204   be performed with address equality of the Type Instance. That is, given two 
   3205   <tt>Type*</tt> values, the types are identical if the pointers are identical.
   3206   </p>
   3207 
   3208 <!-- _______________________________________________________________________ -->
   3209 <h4>
   3210   <a name="m_Type">Important Public Methods</a>
   3211 </h4>
   3212 
   3213 <div>
   3214 
   3215 <ul>
   3216   <li><tt>bool isIntegerTy() const</tt>: Returns true for any integer type.</li>
   3217 
   3218   <li><tt>bool isFloatingPointTy()</tt>: Return true if this is one of the five
   3219   floating point types.</li>
   3220 
   3221   <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
   3222   that don't have a size are abstract types, labels and void.</li>
   3223 
   3224 </ul>
   3225 </div>
   3226 
   3227 <!-- _______________________________________________________________________ -->
   3228 <h4>
   3229   <a name="derivedtypes">Important Derived Types</a>
   3230 </h4>
   3231 <div>
   3232 <dl>
   3233   <dt><tt>IntegerType</tt></dt>
   3234   <dd>Subclass of DerivedType that represents integer types of any bit width. 
   3235   Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and 
   3236   <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
   3237   <ul>
   3238     <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
   3239     type of a specific bit width.</li>
   3240     <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
   3241     type.</li>
   3242   </ul>
   3243   </dd>
   3244   <dt><tt>SequentialType</tt></dt>
   3245   <dd>This is subclassed by ArrayType, PointerType and VectorType.
   3246     <ul>
   3247       <li><tt>const Type * getElementType() const</tt>: Returns the type of each
   3248       of the elements in the sequential type. </li>
   3249     </ul>
   3250   </dd>
   3251   <dt><tt>ArrayType</tt></dt>
   3252   <dd>This is a subclass of SequentialType and defines the interface for array 
   3253   types.
   3254     <ul>
   3255       <li><tt>unsigned getNumElements() const</tt>: Returns the number of 
   3256       elements in the array. </li>
   3257     </ul>
   3258   </dd>
   3259   <dt><tt>PointerType</tt></dt>
   3260   <dd>Subclass of SequentialType for pointer types.</dd>
   3261   <dt><tt>VectorType</tt></dt>
   3262   <dd>Subclass of SequentialType for vector types. A 
   3263   vector type is similar to an ArrayType but is distinguished because it is 
   3264   a first class type whereas ArrayType is not. Vector types are used for 
   3265   vector operations and are usually small vectors of of an integer or floating 
   3266   point type.</dd>
   3267   <dt><tt>StructType</tt></dt>
   3268   <dd>Subclass of DerivedTypes for struct types.</dd>
   3269   <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
   3270   <dd>Subclass of DerivedTypes for function types.
   3271     <ul>
   3272       <li><tt>bool isVarArg() const</tt>: Returns true if it's a vararg
   3273       function</li>
   3274       <li><tt> const Type * getReturnType() const</tt>: Returns the
   3275       return type of the function.</li>
   3276       <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
   3277       the type of the ith parameter.</li>
   3278       <li><tt> const unsigned getNumParams() const</tt>: Returns the
   3279       number of formal parameters.</li>
   3280     </ul>
   3281   </dd>
   3282 </dl>
   3283 </div>
   3284 
   3285 </div>
   3286 
   3287 <!-- ======================================================================= -->
   3288 <h3>
   3289   <a name="Module">The <tt>Module</tt> class</a>
   3290 </h3>
   3291 
   3292 <div>
   3293 
   3294 <p><tt>#include "<a
   3295 href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
   3296 <a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
   3297 
   3298 <p>The <tt>Module</tt> class represents the top level structure present in LLVM
   3299 programs.  An LLVM module is effectively either a translation unit of the
   3300 original program or a combination of several translation units merged by the
   3301 linker.  The <tt>Module</tt> class keeps track of a list of <a
   3302 href="#Function"><tt>Function</tt></a>s, a list of <a
   3303 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
   3304 href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few
   3305 helpful member functions that try to make common operations easy.</p>
   3306 
   3307 <!-- _______________________________________________________________________ -->
   3308 <h4>
   3309   <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
   3310 </h4>
   3311 
   3312 <div>
   3313 
   3314 <ul>
   3315   <li><tt>Module::Module(std::string name = "")</tt>
   3316 
   3317   <p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
   3318 provide a name for it (probably based on the name of the translation unit).</p>
   3319   </li>
   3320 
   3321   <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
   3322     <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
   3323 
   3324     <tt>begin()</tt>, <tt>end()</tt>
   3325     <tt>size()</tt>, <tt>empty()</tt>
   3326 
   3327     <p>These are forwarding methods that make it easy to access the contents of
   3328     a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
   3329     list.</p></li>
   3330 
   3331   <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
   3332 
   3333     <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is
   3334     necessary to use when you need to update the list or perform a complex
   3335     action that doesn't have a forwarding method.</p>
   3336 
   3337     <p><!--  Global Variable --></p></li> 
   3338 </ul>
   3339 
   3340 <hr>
   3341 
   3342 <ul>
   3343   <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
   3344 
   3345     <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
   3346 
   3347     <tt>global_begin()</tt>, <tt>global_end()</tt>
   3348     <tt>global_size()</tt>, <tt>global_empty()</tt>
   3349 
   3350     <p> These are forwarding methods that make it easy to access the contents of
   3351     a <tt>Module</tt> object's <a
   3352     href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
   3353 
   3354   <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
   3355 
   3356     <p>Returns the list of <a
   3357     href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.  This is necessary to
   3358     use when you need to update the list or perform a complex action that
   3359     doesn't have a forwarding method.</p>
   3360 
   3361     <p><!--  Symbol table stuff --> </p></li>
   3362 </ul>
   3363 
   3364 <hr>
   3365 
   3366 <ul>
   3367   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
   3368 
   3369     <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
   3370     for this <tt>Module</tt>.</p>
   3371 
   3372     <p><!--  Convenience methods --></p></li>
   3373 </ul>
   3374 
   3375 <hr>
   3376 
   3377 <ul>
   3378 
   3379   <li><tt><a href="#Function">Function</a> *getFunction(StringRef Name) const
   3380     </tt>
   3381 
   3382     <p>Look up the specified function in the <tt>Module</tt> <a
   3383     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
   3384     <tt>null</tt>.</p></li>
   3385 
   3386   <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
   3387   std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
   3388 
   3389     <p>Look up the specified function in the <tt>Module</tt> <a
   3390     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
   3391     external declaration for the function and return it.</p></li>
   3392 
   3393   <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
   3394 
   3395     <p>If there is at least one entry in the <a
   3396     href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
   3397     href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty
   3398     string.</p></li>
   3399 
   3400   <li><tt>bool addTypeName(const std::string &amp;Name, const <a
   3401   href="#Type">Type</a> *Ty)</tt>
   3402 
   3403     <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
   3404     mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
   3405     name, true is returned and the <a
   3406     href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
   3407 </ul>
   3408 
   3409 </div>
   3410 
   3411 </div>
   3412 
   3413 <!-- ======================================================================= -->
   3414 <h3>
   3415   <a name="Value">The <tt>Value</tt> class</a>
   3416 </h3>
   3417 
   3418 <div>
   3419 
   3420 <p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
   3421 <br> 
   3422 doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
   3423 
   3424 <p>The <tt>Value</tt> class is the most important class in the LLVM Source
   3425 base.  It represents a typed value that may be used (among other things) as an
   3426 operand to an instruction.  There are many different types of <tt>Value</tt>s,
   3427 such as <a href="#Constant"><tt>Constant</tt></a>s,<a
   3428 href="#Argument"><tt>Argument</tt></a>s. Even <a
   3429 href="#Instruction"><tt>Instruction</tt></a>s and <a
   3430 href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
   3431 
   3432 <p>A particular <tt>Value</tt> may be used many times in the LLVM representation
   3433 for a program.  For example, an incoming argument to a function (represented
   3434 with an instance of the <a href="#Argument">Argument</a> class) is "used" by
   3435 every instruction in the function that references the argument.  To keep track
   3436 of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
   3437 href="#User"><tt>User</tt></a>s that is using it (the <a
   3438 href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
   3439 graph that can refer to <tt>Value</tt>s).  This use list is how LLVM represents
   3440 def-use information in the program, and is accessible through the <tt>use_</tt>*
   3441 methods, shown below.</p>
   3442 
   3443 <p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
   3444 and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
   3445 method. In addition, all LLVM values can be named.  The "name" of the
   3446 <tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
   3447 
   3448 <div class="doc_code">
   3449 <pre>
   3450 %<b>foo</b> = add i32 1, 2
   3451 </pre>
   3452 </div>
   3453 
   3454 <p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
   3455 that the name of any value may be missing (an empty string), so names should
   3456 <b>ONLY</b> be used for debugging (making the source code easier to read,
   3457 debugging printouts), they should not be used to keep track of values or map
   3458 between them.  For this purpose, use a <tt>std::map</tt> of pointers to the
   3459 <tt>Value</tt> itself instead.</p>
   3460 
   3461 <p>One important aspect of LLVM is that there is no distinction between an SSA
   3462 variable and the operation that produces it.  Because of this, any reference to
   3463 the value produced by an instruction (or the value available as an incoming
   3464 argument, for example) is represented as a direct pointer to the instance of
   3465 the class that
   3466 represents this value.  Although this may take some getting used to, it
   3467 simplifies the representation and makes it easier to manipulate.</p>
   3468 
   3469 <!-- _______________________________________________________________________ -->
   3470 <h4>
   3471   <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
   3472 </h4>
   3473 
   3474 <div>
   3475 
   3476 <ul>
   3477   <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
   3478 use-list<br>
   3479     <tt>Value::const_use_iterator</tt> - Typedef for const_iterator over
   3480 the use-list<br>
   3481     <tt>unsigned use_size()</tt> - Returns the number of users of the
   3482 value.<br>
   3483     <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
   3484     <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
   3485 the use-list.<br>
   3486     <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
   3487 use-list.<br>
   3488     <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
   3489 element in the list.
   3490     <p> These methods are the interface to access the def-use
   3491 information in LLVM.  As with all other iterators in LLVM, the naming
   3492 conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
   3493   </li>
   3494   <li><tt><a href="#Type">Type</a> *getType() const</tt>
   3495     <p>This method returns the Type of the Value.</p>
   3496   </li>
   3497   <li><tt>bool hasName() const</tt><br>
   3498     <tt>std::string getName() const</tt><br>
   3499     <tt>void setName(const std::string &amp;Name)</tt>
   3500     <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
   3501 be aware of the <a href="#nameWarning">precaution above</a>.</p>
   3502   </li>
   3503   <li><tt>void replaceAllUsesWith(Value *V)</tt>
   3504 
   3505     <p>This method traverses the use list of a <tt>Value</tt> changing all <a
   3506     href="#User"><tt>User</tt>s</a> of the current value to refer to
   3507     "<tt>V</tt>" instead.  For example, if you detect that an instruction always
   3508     produces a constant value (for example through constant folding), you can
   3509     replace all uses of the instruction with the constant like this:</p>
   3510 
   3511 <div class="doc_code">
   3512 <pre>
   3513 Inst-&gt;replaceAllUsesWith(ConstVal);
   3514 </pre>
   3515 </div>
   3516 
   3517 </ul>
   3518 
   3519 </div>
   3520 
   3521 </div>
   3522 
   3523 <!-- ======================================================================= -->
   3524 <h3>
   3525   <a name="User">The <tt>User</tt> class</a>
   3526 </h3>
   3527 
   3528 <div>
   3529   
   3530 <p>
   3531 <tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
   3532 doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
   3533 Superclass: <a href="#Value"><tt>Value</tt></a></p>
   3534 
   3535 <p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
   3536 refer to <a href="#Value"><tt>Value</tt></a>s.  It exposes a list of "Operands"
   3537 that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
   3538 referring to.  The <tt>User</tt> class itself is a subclass of
   3539 <tt>Value</tt>.</p>
   3540 
   3541 <p>The operands of a <tt>User</tt> point directly to the LLVM <a
   3542 href="#Value"><tt>Value</tt></a> that it refers to.  Because LLVM uses Static
   3543 Single Assignment (SSA) form, there can only be one definition referred to,
   3544 allowing this direct connection.  This connection provides the use-def
   3545 information in LLVM.</p>
   3546 
   3547 <!-- _______________________________________________________________________ -->
   3548 <h4>
   3549   <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
   3550 </h4>
   3551 
   3552 <div>
   3553 
   3554 <p>The <tt>User</tt> class exposes the operand list in two ways: through
   3555 an index access interface and through an iterator based interface.</p>
   3556 
   3557 <ul>
   3558   <li><tt>Value *getOperand(unsigned i)</tt><br>
   3559     <tt>unsigned getNumOperands()</tt>
   3560     <p> These two methods expose the operands of the <tt>User</tt> in a
   3561 convenient form for direct access.</p></li>
   3562 
   3563   <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
   3564 list<br>
   3565     <tt>op_iterator op_begin()</tt> - Get an iterator to the start of 
   3566 the operand list.<br>
   3567     <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
   3568 operand list.
   3569     <p> Together, these methods make up the iterator based interface to
   3570 the operands of a <tt>User</tt>.</p></li>
   3571 </ul>
   3572 
   3573 </div>    
   3574 
   3575 </div>
   3576 
   3577 <!-- ======================================================================= -->
   3578 <h3>
   3579   <a name="Instruction">The <tt>Instruction</tt> class</a>
   3580 </h3>
   3581 
   3582 <div>
   3583 
   3584 <p><tt>#include "</tt><tt><a
   3585 href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
   3586 doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
   3587 Superclasses: <a href="#User"><tt>User</tt></a>, <a
   3588 href="#Value"><tt>Value</tt></a></p>
   3589 
   3590 <p>The <tt>Instruction</tt> class is the common base class for all LLVM
   3591 instructions.  It provides only a few methods, but is a very commonly used
   3592 class.  The primary data tracked by the <tt>Instruction</tt> class itself is the
   3593 opcode (instruction type) and the parent <a
   3594 href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
   3595 into.  To represent a specific type of instruction, one of many subclasses of
   3596 <tt>Instruction</tt> are used.</p>
   3597 
   3598 <p> Because the <tt>Instruction</tt> class subclasses the <a
   3599 href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
   3600 way as for other <a href="#User"><tt>User</tt></a>s (with the
   3601 <tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
   3602 <tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
   3603 the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
   3604 file contains some meta-data about the various different types of instructions
   3605 in LLVM.  It describes the enum values that are used as opcodes (for example
   3606 <tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
   3607 concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
   3608 example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
   3609 href="#CmpInst">CmpInst</a></tt>).  Unfortunately, the use of macros in
   3610 this file confuses doxygen, so these enum values don't show up correctly in the
   3611 <a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
   3612 
   3613 <!-- _______________________________________________________________________ -->
   3614 <h4>
   3615   <a name="s_Instruction">
   3616     Important Subclasses of the <tt>Instruction</tt> class
   3617   </a>
   3618 </h4>
   3619 <div>
   3620   <ul>
   3621     <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
   3622     <p>This subclasses represents all two operand instructions whose operands
   3623     must be the same type, except for the comparison instructions.</p></li>
   3624     <li><tt><a name="CastInst">CastInst</a></tt>
   3625     <p>This subclass is the parent of the 12 casting instructions. It provides
   3626     common operations on cast instructions.</p>
   3627     <li><tt><a name="CmpInst">CmpInst</a></tt>
   3628     <p>This subclass respresents the two comparison instructions, 
   3629     <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
   3630     <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
   3631     <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
   3632     <p>This subclass is the parent of all terminator instructions (those which
   3633     can terminate a block).</p>
   3634   </ul>
   3635   </div>
   3636 
   3637 <!-- _______________________________________________________________________ -->
   3638 <h4>
   3639   <a name="m_Instruction">
   3640     Important Public Members of the <tt>Instruction</tt> class
   3641   </a>
   3642 </h4>
   3643 
   3644 <div>
   3645 
   3646 <ul>
   3647   <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
   3648     <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
   3649 this  <tt>Instruction</tt> is embedded into.</p></li>
   3650   <li><tt>bool mayWriteToMemory()</tt>
   3651     <p>Returns true if the instruction writes to memory, i.e. it is a
   3652       <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
   3653   <li><tt>unsigned getOpcode()</tt>
   3654     <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
   3655   <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
   3656     <p>Returns another instance of the specified instruction, identical
   3657 in all ways to the original except that the instruction has no parent
   3658 (ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
   3659 and it has no name</p></li>
   3660 </ul>
   3661 
   3662 </div>
   3663 
   3664 </div>
   3665 
   3666 <!-- ======================================================================= -->
   3667 <h3>
   3668   <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
   3669 </h3>
   3670 
   3671 <div>
   3672 
   3673 <p>Constant represents a base class for different types of constants. It
   3674 is subclassed by ConstantInt, ConstantArray, etc. for representing 
   3675 the various types of Constants.  <a href="#GlobalValue">GlobalValue</a> is also
   3676 a subclass, which represents the address of a global variable or function.
   3677 </p>
   3678 
   3679 <!-- _______________________________________________________________________ -->
   3680 <h4>Important Subclasses of Constant</h4>
   3681 <div>
   3682 <ul>
   3683   <li>ConstantInt : This subclass of Constant represents an integer constant of
   3684   any width.
   3685     <ul>
   3686       <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
   3687       value of this constant, an APInt value.</li>
   3688       <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
   3689       value to an int64_t via sign extension. If the value (not the bit width)
   3690       of the APInt is too large to fit in an int64_t, an assertion will result.
   3691       For this reason, use of this method is discouraged.</li>
   3692       <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
   3693       value to a uint64_t via zero extension. IF the value (not the bit width)
   3694       of the APInt is too large to fit in a uint64_t, an assertion will result.
   3695       For this reason, use of this method is discouraged.</li>
   3696       <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
   3697       ConstantInt object that represents the value provided by <tt>Val</tt>.
   3698       The type is implied as the IntegerType that corresponds to the bit width
   3699       of <tt>Val</tt>.</li>
   3700       <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>: 
   3701       Returns the ConstantInt object that represents the value provided by 
   3702       <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
   3703     </ul>
   3704   </li>
   3705   <li>ConstantFP : This class represents a floating point constant.
   3706     <ul>
   3707       <li><tt>double getValue() const</tt>: Returns the underlying value of 
   3708       this constant. </li>
   3709     </ul>
   3710   </li>
   3711   <li>ConstantArray : This represents a constant array.
   3712     <ul>
   3713       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
   3714       a vector of component constants that makeup this array. </li>
   3715     </ul>
   3716   </li>
   3717   <li>ConstantStruct : This represents a constant struct.
   3718     <ul>
   3719       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
   3720       a vector of component constants that makeup this array. </li>
   3721     </ul>
   3722   </li>
   3723   <li>GlobalValue : This represents either a global variable or a function. In 
   3724   either case, the value is a constant fixed address (after linking). 
   3725   </li>
   3726 </ul>
   3727 </div>
   3728 
   3729 </div>
   3730 
   3731 <!-- ======================================================================= -->
   3732 <h3>
   3733   <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
   3734 </h3>
   3735 
   3736 <div>
   3737 
   3738 <p><tt>#include "<a
   3739 href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
   3740 doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
   3741 Class</a><br>
   3742 Superclasses: <a href="#Constant"><tt>Constant</tt></a>, 
   3743 <a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
   3744 
   3745 <p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
   3746 href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
   3747 visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
   3748 Because they are visible at global scope, they are also subject to linking with
   3749 other globals defined in different translation units.  To control the linking
   3750 process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
   3751 <tt>GlobalValue</tt>s know whether they have internal or external linkage, as
   3752 defined by the <tt>LinkageTypes</tt> enumeration.</p>
   3753 
   3754 <p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
   3755 <tt>static</tt> in C), it is not visible to code outside the current translation
   3756 unit, and does not participate in linking.  If it has external linkage, it is
   3757 visible to external code, and does participate in linking.  In addition to
   3758 linkage information, <tt>GlobalValue</tt>s keep track of which <a
   3759 href="#Module"><tt>Module</tt></a> they are currently part of.</p>
   3760 
   3761 <p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
   3762 by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
   3763 global is always a pointer to its contents. It is important to remember this
   3764 when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
   3765 be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
   3766 subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
   3767 i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
   3768 the address of the first element of this array and the value of the
   3769 <tt>GlobalVariable</tt> are the same, they have different types. The
   3770 <tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
   3771 is <tt>i32.</tt> Because of this, accessing a global value requires you to
   3772 dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
   3773 can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
   3774 Language Reference Manual</a>.</p>
   3775 
   3776 <!-- _______________________________________________________________________ -->
   3777 <h4>
   3778   <a name="m_GlobalValue">
   3779     Important Public Members of the <tt>GlobalValue</tt> class
   3780   </a>
   3781 </h4>
   3782 
   3783 <div>
   3784 
   3785 <ul>
   3786   <li><tt>bool hasInternalLinkage() const</tt><br>
   3787     <tt>bool hasExternalLinkage() const</tt><br>
   3788     <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
   3789     <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
   3790     <p> </p>
   3791   </li>
   3792   <li><tt><a href="#Module">Module</a> *getParent()</tt>
   3793     <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
   3794 GlobalValue is currently embedded into.</p></li>
   3795 </ul>
   3796 
   3797 </div>
   3798 
   3799 </div>
   3800 
   3801 <!-- ======================================================================= -->
   3802 <h3>
   3803   <a name="Function">The <tt>Function</tt> class</a>
   3804 </h3>
   3805 
   3806 <div>
   3807 
   3808 <p><tt>#include "<a
   3809 href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
   3810 info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
   3811 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
   3812 <a href="#Constant"><tt>Constant</tt></a>, 
   3813 <a href="#User"><tt>User</tt></a>, 
   3814 <a href="#Value"><tt>Value</tt></a></p>
   3815 
   3816 <p>The <tt>Function</tt> class represents a single procedure in LLVM.  It is
   3817 actually one of the more complex classes in the LLVM hierarchy because it must
   3818 keep track of a large amount of data.  The <tt>Function</tt> class keeps track
   3819 of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal 
   3820 <a href="#Argument"><tt>Argument</tt></a>s, and a 
   3821 <a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
   3822 
   3823 <p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
   3824 commonly used part of <tt>Function</tt> objects.  The list imposes an implicit
   3825 ordering of the blocks in the function, which indicate how the code will be
   3826 laid out by the backend.  Additionally, the first <a
   3827 href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
   3828 <tt>Function</tt>.  It is not legal in LLVM to explicitly branch to this initial
   3829 block.  There are no implicit exit nodes, and in fact there may be multiple exit
   3830 nodes from a single <tt>Function</tt>.  If the <a
   3831 href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
   3832 the <tt>Function</tt> is actually a function declaration: the actual body of the
   3833 function hasn't been linked in yet.</p>
   3834 
   3835 <p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
   3836 <tt>Function</tt> class also keeps track of the list of formal <a
   3837 href="#Argument"><tt>Argument</tt></a>s that the function receives.  This
   3838 container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
   3839 nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
   3840 the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
   3841 
   3842 <p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
   3843 LLVM feature that is only used when you have to look up a value by name.  Aside
   3844 from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
   3845 internally to make sure that there are not conflicts between the names of <a
   3846 href="#Instruction"><tt>Instruction</tt></a>s, <a
   3847 href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
   3848 href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
   3849 
   3850 <p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
   3851 and therefore also a <a href="#Constant">Constant</a>. The value of the function
   3852 is its address (after linking) which is guaranteed to be constant.</p>
   3853 
   3854 <!-- _______________________________________________________________________ -->
   3855 <h4>
   3856   <a name="m_Function">
   3857     Important Public Members of the <tt>Function</tt> class
   3858   </a>
   3859 </h4>
   3860 
   3861 <div>
   3862 
   3863 <ul>
   3864   <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
   3865   *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
   3866 
   3867     <p>Constructor used when you need to create new <tt>Function</tt>s to add
   3868     the program.  The constructor must specify the type of the function to
   3869     create and what type of linkage the function should have. The <a 
   3870     href="#FunctionType"><tt>FunctionType</tt></a> argument
   3871     specifies the formal arguments and return value for the function. The same
   3872     <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
   3873     create multiple functions. The <tt>Parent</tt> argument specifies the Module
   3874     in which the function is defined. If this argument is provided, the function
   3875     will automatically be inserted into that module's list of
   3876     functions.</p></li>
   3877 
   3878   <li><tt>bool isDeclaration()</tt>
   3879 
   3880     <p>Return whether or not the <tt>Function</tt> has a body defined.  If the
   3881     function is "external", it does not have a body, and thus must be resolved
   3882     by linking with a function defined in a different translation unit.</p></li>
   3883 
   3884   <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
   3885     <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
   3886 
   3887     <tt>begin()</tt>, <tt>end()</tt>
   3888     <tt>size()</tt>, <tt>empty()</tt>
   3889 
   3890     <p>These are forwarding methods that make it easy to access the contents of
   3891     a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
   3892     list.</p></li>
   3893 
   3894   <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
   3895 
   3896     <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.  This
   3897     is necessary to use when you need to update the list or perform a complex
   3898     action that doesn't have a forwarding method.</p></li>
   3899 
   3900   <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
   3901 iterator<br>
   3902     <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
   3903 
   3904     <tt>arg_begin()</tt>, <tt>arg_end()</tt>
   3905     <tt>arg_size()</tt>, <tt>arg_empty()</tt>
   3906 
   3907     <p>These are forwarding methods that make it easy to access the contents of
   3908     a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
   3909     list.</p></li>
   3910 
   3911   <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
   3912 
   3913     <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s.  This is
   3914     necessary to use when you need to update the list or perform a complex
   3915     action that doesn't have a forwarding method.</p></li>
   3916 
   3917   <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
   3918 
   3919     <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
   3920     function.  Because the entry block for the function is always the first
   3921     block, this returns the first block of the <tt>Function</tt>.</p></li>
   3922 
   3923   <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
   3924     <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
   3925 
   3926     <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
   3927     <tt>Function</tt> and returns the return type of the function, or the <a
   3928     href="#FunctionType"><tt>FunctionType</tt></a> of the actual
   3929     function.</p></li>
   3930 
   3931   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
   3932 
   3933     <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
   3934     for this <tt>Function</tt>.</p></li>
   3935 </ul>
   3936 
   3937 </div>
   3938 
   3939 </div>
   3940 
   3941 <!-- ======================================================================= -->
   3942 <h3>
   3943   <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
   3944 </h3>
   3945 
   3946 <div>
   3947 
   3948 <p><tt>#include "<a
   3949 href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
   3950 <br>
   3951 doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
   3952  Class</a><br>
   3953 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
   3954 <a href="#Constant"><tt>Constant</tt></a>,
   3955 <a href="#User"><tt>User</tt></a>,
   3956 <a href="#Value"><tt>Value</tt></a></p>
   3957 
   3958 <p>Global variables are represented with the (surprise surprise)
   3959 <tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
   3960 subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
   3961 always referenced by their address (global values must live in memory, so their
   3962 "name" refers to their constant address). See 
   3963 <a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this.  Global 
   3964 variables may have an initial value (which must be a 
   3965 <a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, 
   3966 they may be marked as "constant" themselves (indicating that their contents 
   3967 never change at runtime).</p>
   3968 
   3969 <!-- _______________________________________________________________________ -->
   3970 <h4>
   3971   <a name="m_GlobalVariable">
   3972     Important Public Members of the <tt>GlobalVariable</tt> class
   3973   </a>
   3974 </h4>
   3975 
   3976 <div>
   3977 
   3978 <ul>
   3979   <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
   3980   isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
   3981   *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
   3982 
   3983     <p>Create a new global variable of the specified type. If
   3984     <tt>isConstant</tt> is true then the global variable will be marked as
   3985     unchanging for the program. The Linkage parameter specifies the type of
   3986     linkage (internal, external, weak, linkonce, appending) for the variable.
   3987     If the linkage is InternalLinkage, WeakAnyLinkage, WeakODRLinkage,
   3988     LinkOnceAnyLinkage or LinkOnceODRLinkage,&nbsp; then the resultant
   3989     global variable will have internal linkage.  AppendingLinkage concatenates
   3990     together all instances (in different translation units) of the variable
   3991     into a single variable but is only applicable to arrays.  &nbsp;See
   3992     the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
   3993     further details on linkage types. Optionally an initializer, a name, and the
   3994     module to put the variable into may be specified for the global variable as
   3995     well.</p></li>
   3996 
   3997   <li><tt>bool isConstant() const</tt>
   3998 
   3999     <p>Returns true if this is a global variable that is known not to
   4000     be modified at runtime.</p></li>
   4001 
   4002   <li><tt>bool hasInitializer()</tt>
   4003 
   4004     <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
   4005 
   4006   <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
   4007 
   4008     <p>Returns the initial value for a <tt>GlobalVariable</tt>.  It is not legal
   4009     to call this method if there is no initializer.</p></li>
   4010 </ul>
   4011 
   4012 </div>
   4013 
   4014 </div>
   4015 
   4016 <!-- ======================================================================= -->
   4017 <h3>
   4018   <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
   4019 </h3>
   4020 
   4021 <div>
   4022 
   4023 <p><tt>#include "<a
   4024 href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
   4025 doxygen info: <a href="/doxygen/classllvm_1_1BasicBlock.html">BasicBlock
   4026 Class</a><br>
   4027 Superclass: <a href="#Value"><tt>Value</tt></a></p>
   4028 
   4029 <p>This class represents a single entry single exit section of the code,
   4030 commonly known as a basic block by the compiler community.  The
   4031 <tt>BasicBlock</tt> class maintains a list of <a
   4032 href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
   4033 Matching the language definition, the last element of this list of instructions
   4034 is always a terminator instruction (a subclass of the <a
   4035 href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
   4036 
   4037 <p>In addition to tracking the list of instructions that make up the block, the
   4038 <tt>BasicBlock</tt> class also keeps track of the <a
   4039 href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
   4040 
   4041 <p>Note that <tt>BasicBlock</tt>s themselves are <a
   4042 href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
   4043 like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
   4044 <tt>label</tt>.</p>
   4045 
   4046 <!-- _______________________________________________________________________ -->
   4047 <h4>
   4048   <a name="m_BasicBlock">
   4049     Important Public Members of the <tt>BasicBlock</tt> class
   4050   </a>
   4051 </h4>
   4052 
   4053 <div>
   4054 <ul>
   4055 
   4056 <li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
   4057  href="#Function">Function</a> *Parent = 0)</tt>
   4058 
   4059 <p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
   4060 insertion into a function.  The constructor optionally takes a name for the new
   4061 block, and a <a href="#Function"><tt>Function</tt></a> to insert it into.  If
   4062 the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
   4063 automatically inserted at the end of the specified <a
   4064 href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
   4065 manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
   4066 
   4067 <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
   4068 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
   4069 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
   4070 <tt>size()</tt>, <tt>empty()</tt>
   4071 STL-style functions for accessing the instruction list.
   4072 
   4073 <p>These methods and typedefs are forwarding functions that have the same
   4074 semantics as the standard library methods of the same names.  These methods
   4075 expose the underlying instruction list of a basic block in a way that is easy to
   4076 manipulate.  To get the full complement of container operations (including
   4077 operations to update the list), you must use the <tt>getInstList()</tt>
   4078 method.</p></li>
   4079 
   4080 <li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
   4081 
   4082 <p>This method is used to get access to the underlying container that actually
   4083 holds the Instructions.  This method must be used when there isn't a forwarding
   4084 function in the <tt>BasicBlock</tt> class for the operation that you would like
   4085 to perform.  Because there are no forwarding functions for "updating"
   4086 operations, you need to use this if you want to update the contents of a
   4087 <tt>BasicBlock</tt>.</p></li>
   4088 
   4089 <li><tt><a href="#Function">Function</a> *getParent()</tt>
   4090 
   4091 <p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
   4092 embedded into, or a null pointer if it is homeless.</p></li>
   4093 
   4094 <li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
   4095 
   4096 <p> Returns a pointer to the terminator instruction that appears at the end of
   4097 the <tt>BasicBlock</tt>.  If there is no terminator instruction, or if the last
   4098 instruction in the block is not a terminator, then a null pointer is
   4099 returned.</p></li>
   4100 
   4101 </ul>
   4102 
   4103 </div>
   4104 
   4105 </div>
   4106 
   4107 <!-- ======================================================================= -->
   4108 <h3>
   4109   <a name="Argument">The <tt>Argument</tt> class</a>
   4110 </h3>
   4111 
   4112 <div>
   4113 
   4114 <p>This subclass of Value defines the interface for incoming formal
   4115 arguments to a function. A Function maintains a list of its formal
   4116 arguments. An argument has a pointer to the parent Function.</p>
   4117 
   4118 </div>
   4119 
   4120 </div>
   4121 
   4122 <!-- *********************************************************************** -->
   4123 <hr>
   4124 <address>
   4125   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   4126   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   4127   <a href="http://validator.w3.org/check/referer"><img
   4128   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Strict"></a>
   4129 
   4130   <a href="mailto:dhurjati (a] cs.uiuc.edu">Dinakar Dhurjati</a> and
   4131   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   4132   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   4133   Last modified: $Date$
   4134 </address>
   4135 
   4136 </body>
   4137 </html>
   4138