Home | History | Annotate | Download | only in tutorial
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 
      4 <html>
      5 <head>
      6   <title>Kaleidoscope: Implementing code generation to LLVM IR</title>
      7   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      8   <meta name="author" content="Chris Lattner">
      9   <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
     10 </head>
     11 
     12 <body>
     13 
     14 <h1>Kaleidoscope: Code generation to LLVM IR</h1>
     15 
     16 <ul>
     17 <li><a href="index.html">Up to Tutorial Index</a></li>
     18 <li>Chapter 3
     19   <ol>
     20     <li><a href="#intro">Chapter 3 Introduction</a></li>
     21     <li><a href="#basics">Code Generation Setup</a></li>
     22     <li><a href="#exprs">Expression Code Generation</a></li>
     23     <li><a href="#funcs">Function Code Generation</a></li>
     24     <li><a href="#driver">Driver Changes and Closing Thoughts</a></li>
     25     <li><a href="#code">Full Code Listing</a></li>
     26   </ol>
     27 </li>
     28 <li><a href="LangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer 
     29 Support</li>
     30 </ul>
     31 
     32 <div class="doc_author">
     33   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a></p>
     34 </div>
     35 
     36 <!-- *********************************************************************** -->
     37 <h2><a name="intro">Chapter 3 Introduction</a></h2>
     38 <!-- *********************************************************************** -->
     39 
     40 <div>
     41 
     42 <p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language
     43 with LLVM</a>" tutorial.  This chapter shows you how to transform the <a 
     44 href="LangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into LLVM IR.
     45 This will teach you a little bit about how LLVM does things, as well as
     46 demonstrate how easy it is to use.  It's much more work to build a lexer and
     47 parser than it is to generate LLVM IR code. :)
     48 </p>
     49 
     50 <p><b>Please note</b>: the code in this chapter and later require LLVM 2.2 or
     51 later.  LLVM 2.1 and before will not work with it.  Also note that you need
     52 to use a version of this tutorial that matches your LLVM release: If you are
     53 using an official LLVM release, use the version of the documentation included
     54 with your release or on the <a href="http://llvm.org/releases/">llvm.org 
     55 releases page</a>.</p>
     56 
     57 </div>
     58 
     59 <!-- *********************************************************************** -->
     60 <h2><a name="basics">Code Generation Setup</a></h2>
     61 <!-- *********************************************************************** -->
     62 
     63 <div>
     64 
     65 <p>
     66 In order to generate LLVM IR, we want some simple setup to get started.  First
     67 we define virtual code generation (codegen) methods in each AST class:</p>
     68 
     69 <div class="doc_code">
     70 <pre>
     71 /// ExprAST - Base class for all expression nodes.
     72 class ExprAST {
     73 public:
     74   virtual ~ExprAST() {}
     75   <b>virtual Value *Codegen() = 0;</b>
     76 };
     77 
     78 /// NumberExprAST - Expression class for numeric literals like "1.0".
     79 class NumberExprAST : public ExprAST {
     80   double Val;
     81 public:
     82   NumberExprAST(double val) : Val(val) {}
     83   <b>virtual Value *Codegen();</b>
     84 };
     85 ...
     86 </pre>
     87 </div>
     88 
     89 <p>The Codegen() method says to emit IR for that AST node along with all the things it
     90 depends on, and they all return an LLVM Value object. 
     91 "Value" is the class used to represent a "<a 
     92 href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
     93 Assignment (SSA)</a> register" or "SSA value" in LLVM.  The most distinct aspect
     94 of SSA values is that their value is computed as the related instruction
     95 executes, and it does not get a new value until (and if) the instruction
     96 re-executes.  In other words, there is no way to "change" an SSA value.  For
     97 more information, please read up on <a 
     98 href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
     99 Assignment</a> - the concepts are really quite natural once you grok them.</p>
    100 
    101 <p>Note that instead of adding virtual methods to the ExprAST class hierarchy,
    102 it could also make sense to use a <a
    103 href="http://en.wikipedia.org/wiki/Visitor_pattern">visitor pattern</a> or some
    104 other way to model this.  Again, this tutorial won't dwell on good software
    105 engineering practices: for our purposes, adding a virtual method is
    106 simplest.</p>
    107 
    108 <p>The
    109 second thing we want is an "Error" method like we used for the parser, which will
    110 be used to report errors found during code generation (for example, use of an
    111 undeclared parameter):</p>
    112 
    113 <div class="doc_code">
    114 <pre>
    115 Value *ErrorV(const char *Str) { Error(Str); return 0; }
    116 
    117 static Module *TheModule;
    118 static IRBuilder&lt;&gt; Builder(getGlobalContext());
    119 static std::map&lt;std::string, Value*&gt; NamedValues;
    120 </pre>
    121 </div>
    122 
    123 <p>The static variables will be used during code generation.  <tt>TheModule</tt>
    124 is the LLVM construct that contains all of the functions and global variables in
    125 a chunk of code.  In many ways, it is the top-level structure that the LLVM IR
    126 uses to contain code.</p>
    127 
    128 <p>The <tt>Builder</tt> object is a helper object that makes it easy to generate
    129 LLVM instructions.  Instances of the <a 
    130 href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a> 
    131 class template keep track of the current place to insert instructions and has
    132 methods to create new instructions.</p>
    133 
    134 <p>The <tt>NamedValues</tt> map keeps track of which values are defined in the
    135 current scope and what their LLVM representation is.  (In other words, it is a
    136 symbol table for the code).  In this form of Kaleidoscope, the only things that
    137 can be referenced are function parameters.  As such, function parameters will
    138 be in this map when generating code for their function body.</p>
    139 
    140 <p>
    141 With these basics in place, we can start talking about how to generate code for
    142 each expression.  Note that this assumes that the <tt>Builder</tt> has been set
    143 up to generate code <em>into</em> something.  For now, we'll assume that this
    144 has already been done, and we'll just use it to emit code.
    145 </p>
    146 
    147 </div>
    148 
    149 <!-- *********************************************************************** -->
    150 <h2><a name="exprs">Expression Code Generation</a></h2>
    151 <!-- *********************************************************************** -->
    152 
    153 <div>
    154 
    155 <p>Generating LLVM code for expression nodes is very straightforward: less
    156 than 45 lines of commented code for all four of our expression nodes.  First
    157 we'll do numeric literals:</p>
    158 
    159 <div class="doc_code">
    160 <pre>
    161 Value *NumberExprAST::Codegen() {
    162   return ConstantFP::get(getGlobalContext(), APFloat(Val));
    163 }
    164 </pre>
    165 </div>
    166 
    167 <p>In the LLVM IR, numeric constants are represented with the
    168 <tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt>
    169 internally (<tt>APFloat</tt> has the capability of holding floating point
    170 constants of <em>A</em>rbitrary <em>P</em>recision).  This code basically just
    171 creates and returns a <tt>ConstantFP</tt>.  Note that in the LLVM IR
    172 that constants are all uniqued together and shared.  For this reason, the API
    173 uses the "foo::get(...)" idiom instead of "new foo(..)" or "foo::Create(..)".</p>
    174 
    175 <div class="doc_code">
    176 <pre>
    177 Value *VariableExprAST::Codegen() {
    178   // Look this variable up in the function.
    179   Value *V = NamedValues[Name];
    180   return V ? V : ErrorV("Unknown variable name");
    181 }
    182 </pre>
    183 </div>
    184 
    185 <p>References to variables are also quite simple using LLVM.  In the simple version
    186 of Kaleidoscope, we assume that the variable has already been emitted somewhere
    187 and its value is available.  In practice, the only values that can be in the
    188 <tt>NamedValues</tt> map are function arguments.  This
    189 code simply checks to see that the specified name is in the map (if not, an 
    190 unknown variable is being referenced) and returns the value for it.  In future
    191 chapters, we'll add support for <a href="LangImpl5.html#for">loop induction 
    192 variables</a> in the symbol table, and for <a 
    193 href="LangImpl7.html#localvars">local variables</a>.</p>
    194 
    195 <div class="doc_code">
    196 <pre>
    197 Value *BinaryExprAST::Codegen() {
    198   Value *L = LHS-&gt;Codegen();
    199   Value *R = RHS-&gt;Codegen();
    200   if (L == 0 || R == 0) return 0;
    201   
    202   switch (Op) {
    203   case '+': return Builder.CreateFAdd(L, R, "addtmp");
    204   case '-': return Builder.CreateFSub(L, R, "subtmp");
    205   case '*': return Builder.CreateFMul(L, R, "multmp");
    206   case '&lt;':
    207     L = Builder.CreateFCmpULT(L, R, "cmptmp");
    208     // Convert bool 0/1 to double 0.0 or 1.0
    209     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
    210                                 "booltmp");
    211   default: return ErrorV("invalid binary operator");
    212   }
    213 }
    214 </pre>
    215 </div>
    216 
    217 <p>Binary operators start to get more interesting.  The basic idea here is that
    218 we recursively emit code for the left-hand side of the expression, then the 
    219 right-hand side, then we compute the result of the binary expression.  In this
    220 code, we do a simple switch on the opcode to create the right LLVM instruction.
    221 </p>
    222 
    223 <p>In the example above, the LLVM builder class is starting to show its value.  
    224 IRBuilder knows where to insert the newly created instruction, all you have to
    225 do is specify what instruction to create (e.g. with <tt>CreateFAdd</tt>), which
    226 operands to use (<tt>L</tt> and <tt>R</tt> here) and optionally provide a name
    227 for the generated instruction.</p>
    228 
    229 <p>One nice thing about LLVM is that the name is just a hint.  For instance, if
    230 the code above emits multiple "addtmp" variables, LLVM will automatically
    231 provide each one with an increasing, unique numeric suffix.  Local value names
    232 for instructions are purely optional, but it makes it much easier to read the
    233 IR dumps.</p>
    234 
    235 <p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by
    236 strict rules: for example, the Left and Right operators of
    237 an <a href="../LangRef.html#i_add">add instruction</a> must have the same
    238 type, and the result type of the add must match the operand types.  Because
    239 all values in Kaleidoscope are doubles, this makes for very simple code for add,
    240 sub and mul.</p>
    241 
    242 <p>On the other hand, LLVM specifies that the <a 
    243 href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value
    244 (a one bit integer).  The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value.  In order to get these semantics, we combine the fcmp instruction with
    245 a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>.  This instruction
    246 converts its input integer into a floating point value by treating the input
    247 as an unsigned value.  In contrast, if we used the <a 
    248 href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '&lt;'
    249 operator would return 0.0 and -1.0, depending on the input value.</p>
    250 
    251 <div class="doc_code">
    252 <pre>
    253 Value *CallExprAST::Codegen() {
    254   // Look up the name in the global module table.
    255   Function *CalleeF = TheModule-&gt;getFunction(Callee);
    256   if (CalleeF == 0)
    257     return ErrorV("Unknown function referenced");
    258   
    259   // If argument mismatch error.
    260   if (CalleeF-&gt;arg_size() != Args.size())
    261     return ErrorV("Incorrect # arguments passed");
    262 
    263   std::vector&lt;Value*&gt; ArgsV;
    264   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
    265     ArgsV.push_back(Args[i]-&gt;Codegen());
    266     if (ArgsV.back() == 0) return 0;
    267   }
    268   
    269   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
    270 }
    271 </pre>
    272 </div>
    273 
    274 <p>Code generation for function calls is quite straightforward with LLVM.  The
    275 code above initially does a function name lookup in the LLVM Module's symbol
    276 table.  Recall that the LLVM Module is the container that holds all of the
    277 functions we are JIT'ing.  By giving each function the same name as what the
    278 user specifies, we can use the LLVM symbol table to resolve function names for
    279 us.</p>
    280 
    281 <p>Once we have the function to call, we recursively codegen each argument that
    282 is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call
    283 instruction</a>.  Note that LLVM uses the native C calling conventions by
    284 default, allowing these calls to also call into standard library functions like
    285 "sin" and "cos", with no additional effort.</p>
    286 
    287 <p>This wraps up our handling of the four basic expressions that we have so far
    288 in Kaleidoscope.  Feel free to go in and add some more.  For example, by 
    289 browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find
    290 several other interesting instructions that are really easy to plug into our
    291 basic framework.</p>
    292 
    293 </div>
    294 
    295 <!-- *********************************************************************** -->
    296 <h2><a name="funcs">Function Code Generation</a></h2>
    297 <!-- *********************************************************************** -->
    298 
    299 <div>
    300 
    301 <p>Code generation for prototypes and functions must handle a number of
    302 details, which make their code less beautiful than expression code
    303 generation, but allows us to  illustrate some important points.  First, lets
    304 talk about code generation for prototypes: they are used both for function 
    305 bodies and external function declarations.  The code starts with:</p>
    306 
    307 <div class="doc_code">
    308 <pre>
    309 Function *PrototypeAST::Codegen() {
    310   // Make the function type:  double(double,double) etc.
    311   std::vector&lt;Type*&gt; Doubles(Args.size(),
    312                              Type::getDoubleTy(getGlobalContext()));
    313   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
    314                                        Doubles, false);
    315 
    316   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
    317 </pre>
    318 </div>
    319 
    320 <p>This code packs a lot of power into a few lines.  Note first that this 
    321 function returns a "Function*" instead of a "Value*".  Because a "prototype"
    322 really talks about the external interface for a function (not the value computed
    323 by an expression), it makes sense for it to return the LLVM Function it
    324 corresponds to when codegen'd.</p>
    325 
    326 <p>The call to <tt>FunctionType::get</tt> creates
    327 the <tt>FunctionType</tt> that should be used for a given Prototype.  Since all
    328 function arguments in Kaleidoscope are of type double, the first line creates
    329 a vector of "N" LLVM double types.  It then uses the <tt>Functiontype::get</tt>
    330 method to create a function type that takes "N" doubles as arguments, returns
    331 one double as a result, and that is not vararg (the false parameter indicates
    332 this).  Note that Types in LLVM are uniqued just like Constants are, so you
    333 don't "new" a type, you "get" it.</p>
    334 
    335 <p>The final line above actually creates the function that the prototype will
    336 correspond to.  This indicates the type, linkage and name to use, as well as which
    337 module to insert into.  "<a href="../LangRef.html#linkage">external linkage</a>"
    338 means that the function may be defined outside the current module and/or that it
    339 is callable by functions outside the module.  The Name passed in is the name the
    340 user specified: since "<tt>TheModule</tt>" is specified, this name is registered
    341 in "<tt>TheModule</tt>"s symbol table, which is used by the function call code
    342 above.</p>
    343 
    344 <div class="doc_code">
    345 <pre>
    346   // If F conflicted, there was already something named 'Name'.  If it has a
    347   // body, don't allow redefinition or reextern.
    348   if (F-&gt;getName() != Name) {
    349     // Delete the one we just made and get the existing one.
    350     F-&gt;eraseFromParent();
    351     F = TheModule-&gt;getFunction(Name);
    352 </pre>
    353 </div>
    354 
    355 <p>The Module symbol table works just like the Function symbol table when it
    356 comes to name conflicts: if a new function is created with a name that was previously
    357 added to the symbol table, the new function will get implicitly renamed when added to the
    358 Module.  The code above exploits this fact to determine if there was a previous
    359 definition of this function.</p>
    360 
    361 <p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases:
    362 first, we want to allow 'extern'ing a function more than once, as long as the
    363 prototypes for the externs match (since all arguments have the same type, we
    364 just have to check that the number of arguments match).  Second, we want to
    365 allow 'extern'ing a function and then defining a body for it.  This is useful
    366 when defining mutually recursive functions.</p>
    367 
    368 <p>In order to implement this, the code above first checks to see if there is
    369 a collision on the name of the function.  If so, it deletes the function we just
    370 created (by calling <tt>eraseFromParent</tt>) and then calling 
    371 <tt>getFunction</tt> to get the existing function with the specified name.  Note
    372 that many APIs in LLVM have "erase" forms and "remove" forms.  The "remove" form
    373 unlinks the object from its parent (e.g. a Function from a Module) and returns
    374 it.  The "erase" form unlinks the object and then deletes it.</p>
    375    
    376 <div class="doc_code">
    377 <pre>
    378     // If F already has a body, reject this.
    379     if (!F-&gt;empty()) {
    380       ErrorF("redefinition of function");
    381       return 0;
    382     }
    383     
    384     // If F took a different number of args, reject.
    385     if (F-&gt;arg_size() != Args.size()) {
    386       ErrorF("redefinition of function with different # args");
    387       return 0;
    388     }
    389   }
    390 </pre>
    391 </div>
    392 
    393 <p>In order to verify the logic above, we first check to see if the pre-existing
    394 function is "empty".  In this case, empty means that it has no basic blocks in
    395 it, which means it has no body.  If it has no body, it is a forward 
    396 declaration.  Since we don't allow anything after a full definition of the
    397 function, the code rejects this case.  If the previous reference to a function
    398 was an 'extern', we simply verify that the number of arguments for that
    399 definition and this one match up.  If not, we emit an error.</p>
    400 
    401 <div class="doc_code">
    402 <pre>
    403   // Set names for all arguments.
    404   unsigned Idx = 0;
    405   for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
    406        ++AI, ++Idx) {
    407     AI-&gt;setName(Args[Idx]);
    408     
    409     // Add arguments to variable symbol table.
    410     NamedValues[Args[Idx]] = AI;
    411   }
    412   return F;
    413 }
    414 </pre>
    415 </div>
    416 
    417 <p>The last bit of code for prototypes loops over all of the arguments in the
    418 function, setting the name of the LLVM Argument objects to match, and registering
    419 the arguments in the <tt>NamedValues</tt> map for future use by the
    420 <tt>VariableExprAST</tt> AST node.  Once this is set up, it returns the Function
    421 object to the caller.  Note that we don't check for conflicting 
    422 argument names here (e.g. "extern foo(a b a)").  Doing so would be very
    423 straight-forward with the mechanics we have already used above.</p>
    424 
    425 <div class="doc_code">
    426 <pre>
    427 Function *FunctionAST::Codegen() {
    428   NamedValues.clear();
    429   
    430   Function *TheFunction = Proto-&gt;Codegen();
    431   if (TheFunction == 0)
    432     return 0;
    433 </pre>
    434 </div>
    435 
    436 <p>Code generation for function definitions starts out simply enough: we just
    437 codegen the prototype (Proto) and verify that it is ok.  We then clear out the
    438 <tt>NamedValues</tt> map to make sure that there isn't anything in it from the
    439 last function we compiled.  Code generation of the prototype ensures that there
    440 is an LLVM Function object that is ready to go for us.</p>
    441 
    442 <div class="doc_code">
    443 <pre>
    444   // Create a new basic block to start insertion into.
    445   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
    446   Builder.SetInsertPoint(BB);
    447   
    448   if (Value *RetVal = Body-&gt;Codegen()) {
    449 </pre>
    450 </div>
    451 
    452 <p>Now we get to the point where the <tt>Builder</tt> is set up.  The first
    453 line creates a new <a href="http://en.wikipedia.org/wiki/Basic_block">basic
    454 block</a> (named "entry"), which is inserted into <tt>TheFunction</tt>.  The
    455 second line then tells the builder that new instructions should be inserted into
    456 the end of the new basic block.  Basic blocks in LLVM are an important part
    457 of functions that define the <a 
    458 href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>.
    459 Since we don't have any control flow, our functions will only contain one 
    460 block at this point.  We'll fix this in <a href="LangImpl5.html">Chapter 5</a> :).</p>
    461 
    462 <div class="doc_code">
    463 <pre>
    464   if (Value *RetVal = Body-&gt;Codegen()) {
    465     // Finish off the function.
    466     Builder.CreateRet(RetVal);
    467 
    468     // Validate the generated code, checking for consistency.
    469     verifyFunction(*TheFunction);
    470 
    471     return TheFunction;
    472   }
    473 </pre>
    474 </div>
    475 
    476 <p>Once the insertion point is set up, we call the <tt>CodeGen()</tt> method for
    477 the root expression of the function.  If no error happens, this emits code to
    478 compute the expression into the entry block and returns the value that was
    479 computed.  Assuming no error, we then create an LLVM <a 
    480 href="../LangRef.html#i_ret">ret instruction</a>, which completes the function.
    481 Once the function is built, we call <tt>verifyFunction</tt>, which
    482 is provided by LLVM.  This function does a variety of consistency checks on the
    483 generated code, to determine if our compiler is doing everything right.  Using
    484 this is important: it can catch a lot of bugs.  Once the function is finished
    485 and validated, we return it.</p>
    486   
    487 <div class="doc_code">
    488 <pre>
    489   // Error reading body, remove function.
    490   TheFunction-&gt;eraseFromParent();
    491   return 0;
    492 }
    493 </pre>
    494 </div>
    495 
    496 <p>The only piece left here is handling of the error case.  For simplicity, we
    497 handle this by merely deleting the function we produced with the 
    498 <tt>eraseFromParent</tt> method.  This allows the user to redefine a function
    499 that they incorrectly typed in before: if we didn't delete it, it would live in
    500 the symbol table, with a body, preventing future redefinition.</p>
    501 
    502 <p>This code does have a bug, though.  Since the <tt>PrototypeAST::Codegen</tt>
    503 can return a previously defined forward declaration, our code can actually delete
    504 a forward declaration.  There are a number of ways to fix this bug, see what you
    505 can come up with!  Here is a testcase:</p>
    506 
    507 <div class="doc_code">
    508 <pre>
    509 extern foo(a b);     # ok, defines foo.
    510 def foo(a b) c;      # error, 'c' is invalid.
    511 def bar() foo(1, 2); # error, unknown function "foo"
    512 </pre>
    513 </div>
    514 
    515 </div>
    516 
    517 <!-- *********************************************************************** -->
    518 <h2><a name="driver">Driver Changes and Closing Thoughts</a></h2>
    519 <!-- *********************************************************************** -->
    520 
    521 <div>
    522 
    523 <p>
    524 For now, code generation to LLVM doesn't really get us much, except that we can
    525 look at the pretty IR calls.  The sample code inserts calls to Codegen into the
    526 "<tt>HandleDefinition</tt>", "<tt>HandleExtern</tt>" etc functions, and then
    527 dumps out the LLVM IR.  This gives a nice way to look at the LLVM IR for simple
    528 functions.  For example:
    529 </p>
    530 
    531 <div class="doc_code">
    532 <pre>
    533 ready> <b>4+5</b>;
    534 Read top-level expression:
    535 define double @0() {
    536 entry:
    537   ret double 9.000000e+00
    538 }
    539 </pre>
    540 </div>
    541 
    542 <p>Note how the parser turns the top-level expression into anonymous functions
    543 for us.  This will be handy when we add <a href="LangImpl4.html#jit">JIT 
    544 support</a> in the next chapter.  Also note that the code is very literally
    545 transcribed, no optimizations are being performed except simple constant
    546 folding done by IRBuilder.  We will 
    547 <a href="LangImpl4.html#trivialconstfold">add optimizations</a> explicitly in
    548 the next chapter.</p>
    549 
    550 <div class="doc_code">
    551 <pre>
    552 ready&gt; <b>def foo(a b) a*a + 2*a*b + b*b;</b>
    553 Read function definition:
    554 define double @foo(double %a, double %b) {
    555 entry:
    556   %multmp = fmul double %a, %a
    557   %multmp1 = fmul double 2.000000e+00, %a
    558   %multmp2 = fmul double %multmp1, %b
    559   %addtmp = fadd double %multmp, %multmp2
    560   %multmp3 = fmul double %b, %b
    561   %addtmp4 = fadd double %addtmp, %multmp3
    562   ret double %addtmp4
    563 }
    564 </pre>
    565 </div>
    566 
    567 <p>This shows some simple arithmetic. Notice the striking similarity to the
    568 LLVM builder calls that we use to create the instructions.</p>
    569 
    570 <div class="doc_code">
    571 <pre>
    572 ready&gt; <b>def bar(a) foo(a, 4.0) + bar(31337);</b>
    573 Read function definition:
    574 define double @bar(double %a) {
    575 entry:
    576   %calltmp = call double @foo(double %a, double 4.000000e+00)
    577   %calltmp1 = call double @bar(double 3.133700e+04)
    578   %addtmp = fadd double %calltmp, %calltmp1
    579   ret double %addtmp
    580 }
    581 </pre>
    582 </div>
    583 
    584 <p>This shows some function calls.  Note that this function will take a long
    585 time to execute if you call it.  In the future we'll add conditional control 
    586 flow to actually make recursion useful :).</p>
    587 
    588 <div class="doc_code">
    589 <pre>
    590 ready&gt; <b>extern cos(x);</b>
    591 Read extern: 
    592 declare double @cos(double)
    593 
    594 ready&gt; <b>cos(1.234);</b>
    595 Read top-level expression:
    596 define double @1() {
    597 entry:
    598   %calltmp = call double @cos(double 1.234000e+00)
    599   ret double %calltmp
    600 }
    601 </pre>
    602 </div>
    603 
    604 <p>This shows an extern for the libm "cos" function, and a call to it.</p>
    605 
    606 
    607 <div class="doc_code">
    608 <pre>
    609 ready&gt; <b>^D</b>
    610 ; ModuleID = 'my cool jit'
    611 
    612 define double @0() {
    613 entry:
    614   %addtmp = fadd double 4.000000e+00, 5.000000e+00
    615   ret double %addtmp
    616 }
    617 
    618 define double @foo(double %a, double %b) {
    619 entry:
    620   %multmp = fmul double %a, %a
    621   %multmp1 = fmul double 2.000000e+00, %a
    622   %multmp2 = fmul double %multmp1, %b
    623   %addtmp = fadd double %multmp, %multmp2
    624   %multmp3 = fmul double %b, %b
    625   %addtmp4 = fadd double %addtmp, %multmp3
    626   ret double %addtmp4
    627 }
    628 
    629 define double @bar(double %a) {
    630 entry:
    631   %calltmp = call double @foo(double %a, double 4.000000e+00)
    632   %calltmp1 = call double @bar(double 3.133700e+04)
    633   %addtmp = fadd double %calltmp, %calltmp1
    634   ret double %addtmp
    635 }
    636 
    637 declare double @cos(double)
    638 
    639 define double @1() {
    640 entry:
    641   %calltmp = call double @cos(double 1.234000e+00)
    642   ret double %calltmp
    643 }
    644 </pre>
    645 </div>
    646 
    647 <p>When you quit the current demo, it dumps out the IR for the entire module
    648 generated.  Here you can see the big picture with all the functions referencing
    649 each other.</p>
    650 
    651 <p>This wraps up the third chapter of the Kaleidoscope tutorial.  Up next, we'll
    652 describe how to <a href="LangImpl4.html">add JIT codegen and optimizer
    653 support</a> to this so we can actually start running code!</p>
    654 
    655 </div>
    656 
    657 
    658 <!-- *********************************************************************** -->
    659 <h2><a name="code">Full Code Listing</a></h2>
    660 <!-- *********************************************************************** -->
    661 
    662 <div>
    663 
    664 <p>
    665 Here is the complete code listing for our running example, enhanced with the
    666 LLVM code generator.    Because this uses the LLVM libraries, we need to link
    667 them in.  To do this, we use the <a 
    668 href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform
    669 our makefile/command line about which options to use:</p>
    670 
    671 <div class="doc_code">
    672 <pre>
    673 # Compile
    674 clang++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy
    675 # Run
    676 ./toy
    677 </pre>
    678 </div>
    679 
    680 <p>Here is the code:</p>
    681 
    682 <div class="doc_code">
    683 <pre>
    684 // To build this:
    685 // See example below.
    686 
    687 #include "llvm/DerivedTypes.h"
    688 #include "llvm/IRBuilder.h"
    689 #include "llvm/LLVMContext.h"
    690 #include "llvm/Module.h"
    691 #include "llvm/Analysis/Verifier.h"
    692 #include &lt;cstdio&gt;
    693 #include &lt;string&gt;
    694 #include &lt;map&gt;
    695 #include &lt;vector&gt;
    696 using namespace llvm;
    697 
    698 //===----------------------------------------------------------------------===//
    699 // Lexer
    700 //===----------------------------------------------------------------------===//
    701 
    702 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
    703 // of these for known things.
    704 enum Token {
    705   tok_eof = -1,
    706 
    707   // commands
    708   tok_def = -2, tok_extern = -3,
    709 
    710   // primary
    711   tok_identifier = -4, tok_number = -5
    712 };
    713 
    714 static std::string IdentifierStr;  // Filled in if tok_identifier
    715 static double NumVal;              // Filled in if tok_number
    716 
    717 /// gettok - Return the next token from standard input.
    718 static int gettok() {
    719   static int LastChar = ' ';
    720 
    721   // Skip any whitespace.
    722   while (isspace(LastChar))
    723     LastChar = getchar();
    724 
    725   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
    726     IdentifierStr = LastChar;
    727     while (isalnum((LastChar = getchar())))
    728       IdentifierStr += LastChar;
    729 
    730     if (IdentifierStr == "def") return tok_def;
    731     if (IdentifierStr == "extern") return tok_extern;
    732     return tok_identifier;
    733   }
    734 
    735   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
    736     std::string NumStr;
    737     do {
    738       NumStr += LastChar;
    739       LastChar = getchar();
    740     } while (isdigit(LastChar) || LastChar == '.');
    741 
    742     NumVal = strtod(NumStr.c_str(), 0);
    743     return tok_number;
    744   }
    745 
    746   if (LastChar == '#') {
    747     // Comment until end of line.
    748     do LastChar = getchar();
    749     while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
    750     
    751     if (LastChar != EOF)
    752       return gettok();
    753   }
    754   
    755   // Check for end of file.  Don't eat the EOF.
    756   if (LastChar == EOF)
    757     return tok_eof;
    758 
    759   // Otherwise, just return the character as its ascii value.
    760   int ThisChar = LastChar;
    761   LastChar = getchar();
    762   return ThisChar;
    763 }
    764 
    765 //===----------------------------------------------------------------------===//
    766 // Abstract Syntax Tree (aka Parse Tree)
    767 //===----------------------------------------------------------------------===//
    768 
    769 /// ExprAST - Base class for all expression nodes.
    770 class ExprAST {
    771 public:
    772   virtual ~ExprAST() {}
    773   virtual Value *Codegen() = 0;
    774 };
    775 
    776 /// NumberExprAST - Expression class for numeric literals like "1.0".
    777 class NumberExprAST : public ExprAST {
    778   double Val;
    779 public:
    780   NumberExprAST(double val) : Val(val) {}
    781   virtual Value *Codegen();
    782 };
    783 
    784 /// VariableExprAST - Expression class for referencing a variable, like "a".
    785 class VariableExprAST : public ExprAST {
    786   std::string Name;
    787 public:
    788   VariableExprAST(const std::string &amp;name) : Name(name) {}
    789   virtual Value *Codegen();
    790 };
    791 
    792 /// BinaryExprAST - Expression class for a binary operator.
    793 class BinaryExprAST : public ExprAST {
    794   char Op;
    795   ExprAST *LHS, *RHS;
    796 public:
    797   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
    798     : Op(op), LHS(lhs), RHS(rhs) {}
    799   virtual Value *Codegen();
    800 };
    801 
    802 /// CallExprAST - Expression class for function calls.
    803 class CallExprAST : public ExprAST {
    804   std::string Callee;
    805   std::vector&lt;ExprAST*&gt; Args;
    806 public:
    807   CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
    808     : Callee(callee), Args(args) {}
    809   virtual Value *Codegen();
    810 };
    811 
    812 /// PrototypeAST - This class represents the "prototype" for a function,
    813 /// which captures its name, and its argument names (thus implicitly the number
    814 /// of arguments the function takes).
    815 class PrototypeAST {
    816   std::string Name;
    817   std::vector&lt;std::string&gt; Args;
    818 public:
    819   PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
    820     : Name(name), Args(args) {}
    821   
    822   Function *Codegen();
    823 };
    824 
    825 /// FunctionAST - This class represents a function definition itself.
    826 class FunctionAST {
    827   PrototypeAST *Proto;
    828   ExprAST *Body;
    829 public:
    830   FunctionAST(PrototypeAST *proto, ExprAST *body)
    831     : Proto(proto), Body(body) {}
    832   
    833   Function *Codegen();
    834 };
    835 
    836 //===----------------------------------------------------------------------===//
    837 // Parser
    838 //===----------------------------------------------------------------------===//
    839 
    840 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
    841 /// token the parser is looking at.  getNextToken reads another token from the
    842 /// lexer and updates CurTok with its results.
    843 static int CurTok;
    844 static int getNextToken() {
    845   return CurTok = gettok();
    846 }
    847 
    848 /// BinopPrecedence - This holds the precedence for each binary operator that is
    849 /// defined.
    850 static std::map&lt;char, int&gt; BinopPrecedence;
    851 
    852 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
    853 static int GetTokPrecedence() {
    854   if (!isascii(CurTok))
    855     return -1;
    856   
    857   // Make sure it's a declared binop.
    858   int TokPrec = BinopPrecedence[CurTok];
    859   if (TokPrec &lt;= 0) return -1;
    860   return TokPrec;
    861 }
    862 
    863 /// Error* - These are little helper functions for error handling.
    864 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
    865 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
    866 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
    867 
    868 static ExprAST *ParseExpression();
    869 
    870 /// identifierexpr
    871 ///   ::= identifier
    872 ///   ::= identifier '(' expression* ')'
    873 static ExprAST *ParseIdentifierExpr() {
    874   std::string IdName = IdentifierStr;
    875   
    876   getNextToken();  // eat identifier.
    877   
    878   if (CurTok != '(') // Simple variable ref.
    879     return new VariableExprAST(IdName);
    880   
    881   // Call.
    882   getNextToken();  // eat (
    883   std::vector&lt;ExprAST*&gt; Args;
    884   if (CurTok != ')') {
    885     while (1) {
    886       ExprAST *Arg = ParseExpression();
    887       if (!Arg) return 0;
    888       Args.push_back(Arg);
    889 
    890       if (CurTok == ')') break;
    891 
    892       if (CurTok != ',')
    893         return Error("Expected ')' or ',' in argument list");
    894       getNextToken();
    895     }
    896   }
    897 
    898   // Eat the ')'.
    899   getNextToken();
    900   
    901   return new CallExprAST(IdName, Args);
    902 }
    903 
    904 /// numberexpr ::= number
    905 static ExprAST *ParseNumberExpr() {
    906   ExprAST *Result = new NumberExprAST(NumVal);
    907   getNextToken(); // consume the number
    908   return Result;
    909 }
    910 
    911 /// parenexpr ::= '(' expression ')'
    912 static ExprAST *ParseParenExpr() {
    913   getNextToken();  // eat (.
    914   ExprAST *V = ParseExpression();
    915   if (!V) return 0;
    916   
    917   if (CurTok != ')')
    918     return Error("expected ')'");
    919   getNextToken();  // eat ).
    920   return V;
    921 }
    922 
    923 /// primary
    924 ///   ::= identifierexpr
    925 ///   ::= numberexpr
    926 ///   ::= parenexpr
    927 static ExprAST *ParsePrimary() {
    928   switch (CurTok) {
    929   default: return Error("unknown token when expecting an expression");
    930   case tok_identifier: return ParseIdentifierExpr();
    931   case tok_number:     return ParseNumberExpr();
    932   case '(':            return ParseParenExpr();
    933   }
    934 }
    935 
    936 /// binoprhs
    937 ///   ::= ('+' primary)*
    938 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
    939   // If this is a binop, find its precedence.
    940   while (1) {
    941     int TokPrec = GetTokPrecedence();
    942     
    943     // If this is a binop that binds at least as tightly as the current binop,
    944     // consume it, otherwise we are done.
    945     if (TokPrec &lt; ExprPrec)
    946       return LHS;
    947     
    948     // Okay, we know this is a binop.
    949     int BinOp = CurTok;
    950     getNextToken();  // eat binop
    951     
    952     // Parse the primary expression after the binary operator.
    953     ExprAST *RHS = ParsePrimary();
    954     if (!RHS) return 0;
    955     
    956     // If BinOp binds less tightly with RHS than the operator after RHS, let
    957     // the pending operator take RHS as its LHS.
    958     int NextPrec = GetTokPrecedence();
    959     if (TokPrec &lt; NextPrec) {
    960       RHS = ParseBinOpRHS(TokPrec+1, RHS);
    961       if (RHS == 0) return 0;
    962     }
    963     
    964     // Merge LHS/RHS.
    965     LHS = new BinaryExprAST(BinOp, LHS, RHS);
    966   }
    967 }
    968 
    969 /// expression
    970 ///   ::= primary binoprhs
    971 ///
    972 static ExprAST *ParseExpression() {
    973   ExprAST *LHS = ParsePrimary();
    974   if (!LHS) return 0;
    975   
    976   return ParseBinOpRHS(0, LHS);
    977 }
    978 
    979 /// prototype
    980 ///   ::= id '(' id* ')'
    981 static PrototypeAST *ParsePrototype() {
    982   if (CurTok != tok_identifier)
    983     return ErrorP("Expected function name in prototype");
    984 
    985   std::string FnName = IdentifierStr;
    986   getNextToken();
    987   
    988   if (CurTok != '(')
    989     return ErrorP("Expected '(' in prototype");
    990   
    991   std::vector&lt;std::string&gt; ArgNames;
    992   while (getNextToken() == tok_identifier)
    993     ArgNames.push_back(IdentifierStr);
    994   if (CurTok != ')')
    995     return ErrorP("Expected ')' in prototype");
    996   
    997   // success.
    998   getNextToken();  // eat ')'.
    999   
   1000   return new PrototypeAST(FnName, ArgNames);
   1001 }
   1002 
   1003 /// definition ::= 'def' prototype expression
   1004 static FunctionAST *ParseDefinition() {
   1005   getNextToken();  // eat def.
   1006   PrototypeAST *Proto = ParsePrototype();
   1007   if (Proto == 0) return 0;
   1008 
   1009   if (ExprAST *E = ParseExpression())
   1010     return new FunctionAST(Proto, E);
   1011   return 0;
   1012 }
   1013 
   1014 /// toplevelexpr ::= expression
   1015 static FunctionAST *ParseTopLevelExpr() {
   1016   if (ExprAST *E = ParseExpression()) {
   1017     // Make an anonymous proto.
   1018     PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
   1019     return new FunctionAST(Proto, E);
   1020   }
   1021   return 0;
   1022 }
   1023 
   1024 /// external ::= 'extern' prototype
   1025 static PrototypeAST *ParseExtern() {
   1026   getNextToken();  // eat extern.
   1027   return ParsePrototype();
   1028 }
   1029 
   1030 //===----------------------------------------------------------------------===//
   1031 // Code Generation
   1032 //===----------------------------------------------------------------------===//
   1033 
   1034 static Module *TheModule;
   1035 static IRBuilder&lt;&gt; Builder(getGlobalContext());
   1036 static std::map&lt;std::string, Value*&gt; NamedValues;
   1037 
   1038 Value *ErrorV(const char *Str) { Error(Str); return 0; }
   1039 
   1040 Value *NumberExprAST::Codegen() {
   1041   return ConstantFP::get(getGlobalContext(), APFloat(Val));
   1042 }
   1043 
   1044 Value *VariableExprAST::Codegen() {
   1045   // Look this variable up in the function.
   1046   Value *V = NamedValues[Name];
   1047   return V ? V : ErrorV("Unknown variable name");
   1048 }
   1049 
   1050 Value *BinaryExprAST::Codegen() {
   1051   Value *L = LHS-&gt;Codegen();
   1052   Value *R = RHS-&gt;Codegen();
   1053   if (L == 0 || R == 0) return 0;
   1054   
   1055   switch (Op) {
   1056   case '+': return Builder.CreateFAdd(L, R, "addtmp");
   1057   case '-': return Builder.CreateFSub(L, R, "subtmp");
   1058   case '*': return Builder.CreateFMul(L, R, "multmp");
   1059   case '&lt;':
   1060     L = Builder.CreateFCmpULT(L, R, "cmptmp");
   1061     // Convert bool 0/1 to double 0.0 or 1.0
   1062     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
   1063                                 "booltmp");
   1064   default: return ErrorV("invalid binary operator");
   1065   }
   1066 }
   1067 
   1068 Value *CallExprAST::Codegen() {
   1069   // Look up the name in the global module table.
   1070   Function *CalleeF = TheModule-&gt;getFunction(Callee);
   1071   if (CalleeF == 0)
   1072     return ErrorV("Unknown function referenced");
   1073   
   1074   // If argument mismatch error.
   1075   if (CalleeF-&gt;arg_size() != Args.size())
   1076     return ErrorV("Incorrect # arguments passed");
   1077 
   1078   std::vector&lt;Value*&gt; ArgsV;
   1079   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
   1080     ArgsV.push_back(Args[i]-&gt;Codegen());
   1081     if (ArgsV.back() == 0) return 0;
   1082   }
   1083   
   1084   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
   1085 }
   1086 
   1087 Function *PrototypeAST::Codegen() {
   1088   // Make the function type:  double(double,double) etc.
   1089   std::vector&lt;Type*&gt; Doubles(Args.size(),
   1090                              Type::getDoubleTy(getGlobalContext()));
   1091   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
   1092                                        Doubles, false);
   1093   
   1094   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
   1095   
   1096   // If F conflicted, there was already something named 'Name'.  If it has a
   1097   // body, don't allow redefinition or reextern.
   1098   if (F-&gt;getName() != Name) {
   1099     // Delete the one we just made and get the existing one.
   1100     F-&gt;eraseFromParent();
   1101     F = TheModule-&gt;getFunction(Name);
   1102     
   1103     // If F already has a body, reject this.
   1104     if (!F-&gt;empty()) {
   1105       ErrorF("redefinition of function");
   1106       return 0;
   1107     }
   1108     
   1109     // If F took a different number of args, reject.
   1110     if (F-&gt;arg_size() != Args.size()) {
   1111       ErrorF("redefinition of function with different # args");
   1112       return 0;
   1113     }
   1114   }
   1115   
   1116   // Set names for all arguments.
   1117   unsigned Idx = 0;
   1118   for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
   1119        ++AI, ++Idx) {
   1120     AI-&gt;setName(Args[Idx]);
   1121     
   1122     // Add arguments to variable symbol table.
   1123     NamedValues[Args[Idx]] = AI;
   1124   }
   1125   
   1126   return F;
   1127 }
   1128 
   1129 Function *FunctionAST::Codegen() {
   1130   NamedValues.clear();
   1131   
   1132   Function *TheFunction = Proto-&gt;Codegen();
   1133   if (TheFunction == 0)
   1134     return 0;
   1135   
   1136   // Create a new basic block to start insertion into.
   1137   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
   1138   Builder.SetInsertPoint(BB);
   1139   
   1140   if (Value *RetVal = Body-&gt;Codegen()) {
   1141     // Finish off the function.
   1142     Builder.CreateRet(RetVal);
   1143 
   1144     // Validate the generated code, checking for consistency.
   1145     verifyFunction(*TheFunction);
   1146 
   1147     return TheFunction;
   1148   }
   1149   
   1150   // Error reading body, remove function.
   1151   TheFunction-&gt;eraseFromParent();
   1152   return 0;
   1153 }
   1154 
   1155 //===----------------------------------------------------------------------===//
   1156 // Top-Level parsing and JIT Driver
   1157 //===----------------------------------------------------------------------===//
   1158 
   1159 static void HandleDefinition() {
   1160   if (FunctionAST *F = ParseDefinition()) {
   1161     if (Function *LF = F-&gt;Codegen()) {
   1162       fprintf(stderr, "Read function definition:");
   1163       LF-&gt;dump();
   1164     }
   1165   } else {
   1166     // Skip token for error recovery.
   1167     getNextToken();
   1168   }
   1169 }
   1170 
   1171 static void HandleExtern() {
   1172   if (PrototypeAST *P = ParseExtern()) {
   1173     if (Function *F = P-&gt;Codegen()) {
   1174       fprintf(stderr, "Read extern: ");
   1175       F-&gt;dump();
   1176     }
   1177   } else {
   1178     // Skip token for error recovery.
   1179     getNextToken();
   1180   }
   1181 }
   1182 
   1183 static void HandleTopLevelExpression() {
   1184   // Evaluate a top-level expression into an anonymous function.
   1185   if (FunctionAST *F = ParseTopLevelExpr()) {
   1186     if (Function *LF = F-&gt;Codegen()) {
   1187       fprintf(stderr, "Read top-level expression:");
   1188       LF-&gt;dump();
   1189     }
   1190   } else {
   1191     // Skip token for error recovery.
   1192     getNextToken();
   1193   }
   1194 }
   1195 
   1196 /// top ::= definition | external | expression | ';'
   1197 static void MainLoop() {
   1198   while (1) {
   1199     fprintf(stderr, "ready&gt; ");
   1200     switch (CurTok) {
   1201     case tok_eof:    return;
   1202     case ';':        getNextToken(); break;  // ignore top-level semicolons.
   1203     case tok_def:    HandleDefinition(); break;
   1204     case tok_extern: HandleExtern(); break;
   1205     default:         HandleTopLevelExpression(); break;
   1206     }
   1207   }
   1208 }
   1209 
   1210 //===----------------------------------------------------------------------===//
   1211 // "Library" functions that can be "extern'd" from user code.
   1212 //===----------------------------------------------------------------------===//
   1213 
   1214 /// putchard - putchar that takes a double and returns 0.
   1215 extern "C" 
   1216 double putchard(double X) {
   1217   putchar((char)X);
   1218   return 0;
   1219 }
   1220 
   1221 //===----------------------------------------------------------------------===//
   1222 // Main driver code.
   1223 //===----------------------------------------------------------------------===//
   1224 
   1225 int main() {
   1226   LLVMContext &amp;Context = getGlobalContext();
   1227 
   1228   // Install standard binary operators.
   1229   // 1 is lowest precedence.
   1230   BinopPrecedence['&lt;'] = 10;
   1231   BinopPrecedence['+'] = 20;
   1232   BinopPrecedence['-'] = 20;
   1233   BinopPrecedence['*'] = 40;  // highest.
   1234 
   1235   // Prime the first token.
   1236   fprintf(stderr, "ready&gt; ");
   1237   getNextToken();
   1238 
   1239   // Make the module, which holds all the code.
   1240   TheModule = new Module("my cool jit", Context);
   1241 
   1242   // Run the main "interpreter loop" now.
   1243   MainLoop();
   1244 
   1245   // Print out all of the generated code.
   1246   TheModule-&gt;dump();
   1247 
   1248   return 0;
   1249 }
   1250 </pre>
   1251 </div>
   1252 <a href="LangImpl4.html">Next: Adding JIT and Optimizer Support</a>
   1253 </div>
   1254 
   1255 <!-- *********************************************************************** -->
   1256 <hr>
   1257 <address>
   1258   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   1259   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
   1260   <a href="http://validator.w3.org/check/referer"><img
   1261   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
   1262 
   1263   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   1264   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   1265   Last modified: $Date$
   1266 </address>
   1267 </body>
   1268 </html>
   1269