Home | History | Annotate | Download | only in tutorial
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 
      4 <html>
      5 <head>
      6   <title>Kaleidoscope: Implementing a Parser and AST</title>
      7   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      8   <meta name="author" content="Chris Lattner">
      9   <meta name="author" content="Erick Tryzelaar">
     10   <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
     11 </head>
     12 
     13 <body>
     14 
     15 <h1>Kaleidoscope: Implementing a Parser and AST</h1>
     16 
     17 <ul>
     18 <li><a href="index.html">Up to Tutorial Index</a></li>
     19 <li>Chapter 2
     20   <ol>
     21     <li><a href="#intro">Chapter 2 Introduction</a></li>
     22     <li><a href="#ast">The Abstract Syntax Tree (AST)</a></li>
     23     <li><a href="#parserbasics">Parser Basics</a></li>
     24     <li><a href="#parserprimexprs">Basic Expression Parsing</a></li>
     25     <li><a href="#parserbinops">Binary Expression Parsing</a></li>
     26     <li><a href="#parsertop">Parsing the Rest</a></li>
     27     <li><a href="#driver">The Driver</a></li>
     28     <li><a href="#conclusions">Conclusions</a></li>
     29     <li><a href="#code">Full Code Listing</a></li>
     30   </ol>
     31 </li>
     32 <li><a href="OCamlLangImpl3.html">Chapter 3</a>: Code generation to LLVM IR</li>
     33 </ul>
     34 
     35 <div class="doc_author">
     36 	<p>
     37 		Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a>
     38 		and <a href="mailto:idadesub (a] users.sourceforge.net">Erick Tryzelaar</a>
     39 	</p>
     40 </div>
     41 
     42 <!-- *********************************************************************** -->
     43 <h2><a name="intro">Chapter 2 Introduction</a></h2>
     44 <!-- *********************************************************************** -->
     45 
     46 <div>
     47 
     48 <p>Welcome to Chapter 2 of the "<a href="index.html">Implementing a language
     49 with LLVM in Objective Caml</a>" tutorial.  This chapter shows you how to use
     50 the lexer, built in <a href="OCamlLangImpl1.html">Chapter 1</a>, to build a
     51 full <a href="http://en.wikipedia.org/wiki/Parsing">parser</a> for our
     52 Kaleidoscope language.  Once we have a parser, we'll define and build an <a
     53 href="http://en.wikipedia.org/wiki/Abstract_syntax_tree">Abstract Syntax
     54 Tree</a> (AST).</p>
     55 
     56 <p>The parser we will build uses a combination of <a
     57 href="http://en.wikipedia.org/wiki/Recursive_descent_parser">Recursive Descent
     58 Parsing</a> and <a href=
     59 "http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence
     60 Parsing</a> to parse the Kaleidoscope language (the latter for
     61 binary expressions and the former for everything else).  Before we get to
     62 parsing though, lets talk about the output of the parser: the Abstract Syntax
     63 Tree.</p>
     64 
     65 </div>
     66 
     67 <!-- *********************************************************************** -->
     68 <h2><a name="ast">The Abstract Syntax Tree (AST)</a></h2>
     69 <!-- *********************************************************************** -->
     70 
     71 <div>
     72 
     73 <p>The AST for a program captures its behavior in such a way that it is easy for
     74 later stages of the compiler (e.g. code generation) to interpret.  We basically
     75 want one object for each construct in the language, and the AST should closely
     76 model the language.  In Kaleidoscope, we have expressions, a prototype, and a
     77 function object.  We'll start with expressions first:</p>
     78 
     79 <div class="doc_code">
     80 <pre>
     81 (* expr - Base type for all expression nodes. *)
     82 type expr =
     83   (* variant for numeric literals like "1.0". *)
     84   | Number of float
     85 </pre>
     86 </div>
     87 
     88 <p>The code above shows the definition of the base ExprAST class and one
     89 subclass which we use for numeric literals.  The important thing to note about
     90 this code is that the Number variant captures the numeric value of the
     91 literal as an instance variable. This allows later phases of the compiler to
     92 know what the stored numeric value is.</p>
     93 
     94 <p>Right now we only create the AST,  so there are no useful functions on
     95 them.  It would be very easy to add a function to pretty print the code,
     96 for example.  Here are the other expression AST node definitions that we'll use
     97 in the basic form of the Kaleidoscope language:
     98 </p>
     99 
    100 <div class="doc_code">
    101 <pre>
    102   (* variant for referencing a variable, like "a". *)
    103   | Variable of string
    104 
    105   (* variant for a binary operator. *)
    106   | Binary of char * expr * expr
    107 
    108   (* variant for function calls. *)
    109   | Call of string * expr array
    110 </pre>
    111 </div>
    112 
    113 <p>This is all (intentionally) rather straight-forward: variables capture the
    114 variable name, binary operators capture their opcode (e.g. '+'), and calls
    115 capture a function name as well as a list of any argument expressions.  One thing
    116 that is nice about our AST is that it captures the language features without
    117 talking about the syntax of the language.  Note that there is no discussion about
    118 precedence of binary operators, lexical structure, etc.</p>
    119 
    120 <p>For our basic language, these are all of the expression nodes we'll define.
    121 Because it doesn't have conditional control flow, it isn't Turing-complete;
    122 we'll fix that in a later installment.  The two things we need next are a way
    123 to talk about the interface to a function, and a way to talk about functions
    124 themselves:</p>
    125 
    126 <div class="doc_code">
    127 <pre>
    128 (* proto - This type represents the "prototype" for a function, which captures
    129  * its name, and its argument names (thus implicitly the number of arguments the
    130  * function takes). *)
    131 type proto = Prototype of string * string array
    132 
    133 (* func - This type represents a function definition itself. *)
    134 type func = Function of proto * expr
    135 </pre>
    136 </div>
    137 
    138 <p>In Kaleidoscope, functions are typed with just a count of their arguments.
    139 Since all values are double precision floating point, the type of each argument
    140 doesn't need to be stored anywhere.  In a more aggressive and realistic
    141 language, the "expr" variants would probably have a type field.</p>
    142 
    143 <p>With this scaffolding, we can now talk about parsing expressions and function
    144 bodies in Kaleidoscope.</p>
    145 
    146 </div>
    147 
    148 <!-- *********************************************************************** -->
    149 <h2><a name="parserbasics">Parser Basics</a></h2>
    150 <!-- *********************************************************************** -->
    151 
    152 <div>
    153 
    154 <p>Now that we have an AST to build, we need to define the parser code to build
    155 it.  The idea here is that we want to parse something like "x+y" (which is
    156 returned as three tokens by the lexer) into an AST that could be generated with
    157 calls like this:</p>
    158 
    159 <div class="doc_code">
    160 <pre>
    161   let x = Variable "x" in
    162   let y = Variable "y" in
    163   let result = Binary ('+', x, y) in
    164   ...
    165 </pre>
    166 </div>
    167 
    168 <p>
    169 The error handling routines make use of the builtin <tt>Stream.Failure</tt> and
    170 <tt>Stream.Error</tt>s.  <tt>Stream.Failure</tt> is raised when the parser is
    171 unable to find any matching token in the first position of a pattern.
    172 <tt>Stream.Error</tt> is raised when the first token matches, but the rest do
    173 not.  The error recovery in our parser will not be the best and is not
    174 particular user-friendly, but it will be enough for our tutorial.  These
    175 exceptions make it easier to handle errors in routines that have various return
    176 types.</p>
    177 
    178 <p>With these basic types and exceptions, we can implement the first
    179 piece of our grammar: numeric literals.</p>
    180 
    181 </div>
    182 
    183 <!-- *********************************************************************** -->
    184 <h2><a name="parserprimexprs">Basic Expression Parsing</a></h2>
    185 <!-- *********************************************************************** -->
    186 
    187 <div>
    188 
    189 <p>We start with numeric literals, because they are the simplest to process.
    190 For each production in our grammar, we'll define a function which parses that
    191 production.  We call this class of expressions "primary" expressions, for
    192 reasons that will become more clear <a href="OCamlLangImpl6.html#unary">
    193 later in the tutorial</a>.  In order to parse an arbitrary primary expression,
    194 we need to determine what sort of expression it is.  For numeric literals, we
    195 have:</p>
    196 
    197 <div class="doc_code">
    198 <pre>
    199 (* primary
    200  *   ::= identifier
    201  *   ::= numberexpr
    202  *   ::= parenexpr *)
    203 parse_primary = parser
    204   (* numberexpr ::= number *)
    205   | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
    206 </pre>
    207 </div>
    208 
    209 <p>This routine is very simple: it expects to be called when the current token
    210 is a <tt>Token.Number</tt> token.  It takes the current number value, creates
    211 a <tt>Ast.Number</tt> node, advances the lexer to the next token, and finally
    212 returns.</p>
    213 
    214 <p>There are some interesting aspects to this.  The most important one is that
    215 this routine eats all of the tokens that correspond to the production and
    216 returns the lexer buffer with the next token (which is not part of the grammar
    217 production) ready to go.  This is a fairly standard way to go for recursive
    218 descent parsers.  For a better example, the parenthesis operator is defined like
    219 this:</p>
    220 
    221 <div class="doc_code">
    222 <pre>
    223   (* parenexpr ::= '(' expression ')' *)
    224   | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
    225 </pre>
    226 </div>
    227 
    228 <p>This function illustrates a number of interesting things about the
    229 parser:</p>
    230 
    231 <p>
    232 1) It shows how we use the <tt>Stream.Error</tt> exception.  When called, this
    233 function expects that the current token is a '(' token, but after parsing the
    234 subexpression, it is possible that there is no ')' waiting.  For example, if
    235 the user types in "(4 x" instead of "(4)", the parser should emit an error.
    236 Because errors can occur, the parser needs a way to indicate that they
    237 happened. In our parser, we use the camlp4 shortcut syntax <tt>token ?? "parse
    238 error"</tt>, where if the token before the <tt>??</tt> does not match, then
    239 <tt>Stream.Error "parse error"</tt> will be raised.</p>
    240 
    241 <p>2) Another interesting aspect of this function is that it uses recursion by
    242 calling <tt>Parser.parse_primary</tt> (we will soon see that
    243 <tt>Parser.parse_primary</tt> can call <tt>Parser.parse_primary</tt>).  This is
    244 powerful because it allows us to handle recursive grammars, and keeps each
    245 production very simple.  Note that parentheses do not cause construction of AST
    246 nodes themselves.  While we could do it this way, the most important role of
    247 parentheses are to guide the parser and provide grouping.  Once the parser
    248 constructs the AST, parentheses are not needed.</p>
    249 
    250 <p>The next simple production is for handling variable references and function
    251 calls:</p>
    252 
    253 <div class="doc_code">
    254 <pre>
    255   (* identifierexpr
    256    *   ::= identifier
    257    *   ::= identifier '(' argumentexpr ')' *)
    258   | [&lt; 'Token.Ident id; stream &gt;] -&gt;
    259       let rec parse_args accumulator = parser
    260         | [&lt; e=parse_expr; stream &gt;] -&gt;
    261             begin parser
    262               | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
    263               | [&lt; &gt;] -&gt; e :: accumulator
    264             end stream
    265         | [&lt; &gt;] -&gt; accumulator
    266       in
    267       let rec parse_ident id = parser
    268         (* Call. *)
    269         | [&lt; 'Token.Kwd '(';
    270              args=parse_args [];
    271              'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
    272             Ast.Call (id, Array.of_list (List.rev args))
    273 
    274         (* Simple variable ref. *)
    275         | [&lt; &gt;] -&gt; Ast.Variable id
    276       in
    277       parse_ident id stream
    278 </pre>
    279 </div>
    280 
    281 <p>This routine follows the same style as the other routines.  (It expects to be
    282 called if the current token is a <tt>Token.Ident</tt> token).  It also has
    283 recursion and error handling.  One interesting aspect of this is that it uses
    284 <em>look-ahead</em> to determine if the current identifier is a stand alone
    285 variable reference or if it is a function call expression.  It handles this by
    286 checking to see if the token after the identifier is a '(' token, constructing
    287 either a <tt>Ast.Variable</tt> or <tt>Ast.Call</tt> node as appropriate.
    288 </p>
    289 
    290 <p>We finish up by raising an exception if we received a token we didn't
    291 expect:</p>
    292 
    293 <div class="doc_code">
    294 <pre>
    295   | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
    296 </pre>
    297 </div>
    298 
    299 <p>Now that basic expressions are handled, we need to handle binary expressions.
    300 They are a bit more complex.</p>
    301 
    302 </div>
    303 
    304 <!-- *********************************************************************** -->
    305 <h2><a name="parserbinops">Binary Expression Parsing</a></h2>
    306 <!-- *********************************************************************** -->
    307 
    308 <div>
    309 
    310 <p>Binary expressions are significantly harder to parse because they are often
    311 ambiguous.  For example, when given the string "x+y*z", the parser can choose
    312 to parse it as either "(x+y)*z" or "x+(y*z)".  With common definitions from
    313 mathematics, we expect the later parse, because "*" (multiplication) has
    314 higher <em>precedence</em> than "+" (addition).</p>
    315 
    316 <p>There are many ways to handle this, but an elegant and efficient way is to
    317 use <a href=
    318 "http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence
    319 Parsing</a>.  This parsing technique uses the precedence of binary operators to
    320 guide recursion.  To start with, we need a table of precedences:</p>
    321 
    322 <div class="doc_code">
    323 <pre>
    324 (* binop_precedence - This holds the precedence for each binary operator that is
    325  * defined *)
    326 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
    327 
    328 (* precedence - Get the precedence of the pending binary operator token. *)
    329 let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
    330 
    331 ...
    332 
    333 let main () =
    334   (* Install standard binary operators.
    335    * 1 is the lowest precedence. *)
    336   Hashtbl.add Parser.binop_precedence '&lt;' 10;
    337   Hashtbl.add Parser.binop_precedence '+' 20;
    338   Hashtbl.add Parser.binop_precedence '-' 20;
    339   Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
    340   ...
    341 </pre>
    342 </div>
    343 
    344 <p>For the basic form of Kaleidoscope, we will only support 4 binary operators
    345 (this can obviously be extended by you, our brave and intrepid reader).  The
    346 <tt>Parser.precedence</tt> function returns the precedence for the current
    347 token, or -1 if the token is not a binary operator.  Having a <tt>Hashtbl.t</tt>
    348 makes it easy to add new operators and makes it clear that the algorithm doesn't
    349 depend on the specific operators involved, but it would be easy enough to
    350 eliminate the <tt>Hashtbl.t</tt> and do the comparisons in the
    351 <tt>Parser.precedence</tt> function.  (Or just use a fixed-size array).</p>
    352 
    353 <p>With the helper above defined, we can now start parsing binary expressions.
    354 The basic idea of operator precedence parsing is to break down an expression
    355 with potentially ambiguous binary operators into pieces.  Consider ,for example,
    356 the expression "a+b+(c+d)*e*f+g".  Operator precedence parsing considers this
    357 as a stream of primary expressions separated by binary operators.  As such,
    358 it will first parse the leading primary expression "a", then it will see the
    359 pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g].  Note that because parentheses
    360 are primary expressions, the binary expression parser doesn't need to worry
    361 about nested subexpressions like (c+d) at all.
    362 </p>
    363 
    364 <p>
    365 To start, an expression is a primary expression potentially followed by a
    366 sequence of [binop,primaryexpr] pairs:</p>
    367 
    368 <div class="doc_code">
    369 <pre>
    370 (* expression
    371  *   ::= primary binoprhs *)
    372 and parse_expr = parser
    373   | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
    374 </pre>
    375 </div>
    376 
    377 <p><tt>Parser.parse_bin_rhs</tt> is the function that parses the sequence of
    378 pairs for us.  It takes a precedence and a pointer to an expression for the part
    379 that has been parsed so far.   Note that "x" is a perfectly valid expression: As
    380 such, "binoprhs" is allowed to be empty, in which case it returns the expression
    381 that is passed into it. In our example above, the code passes the expression for
    382 "a" into <tt>Parser.parse_bin_rhs</tt> and the current token is "+".</p>
    383 
    384 <p>The precedence value passed into <tt>Parser.parse_bin_rhs</tt> indicates the
    385 <em>minimal operator precedence</em> that the function is allowed to eat.  For
    386 example, if the current pair stream is [+, x] and <tt>Parser.parse_bin_rhs</tt>
    387 is passed in a precedence of 40, it will not consume any tokens (because the
    388 precedence of '+' is only 20).  With this in mind, <tt>Parser.parse_bin_rhs</tt>
    389 starts with:</p>
    390 
    391 <div class="doc_code">
    392 <pre>
    393 (* binoprhs
    394  *   ::= ('+' primary)* *)
    395 and parse_bin_rhs expr_prec lhs stream =
    396   match Stream.peek stream with
    397   (* If this is a binop, find its precedence. *)
    398   | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
    399       let token_prec = precedence c in
    400 
    401       (* If this is a binop that binds at least as tightly as the current binop,
    402        * consume it, otherwise we are done. *)
    403       if token_prec &lt; expr_prec then lhs else begin
    404 </pre>
    405 </div>
    406 
    407 <p>This code gets the precedence of the current token and checks to see if if is
    408 too low.  Because we defined invalid tokens to have a precedence of -1, this
    409 check implicitly knows that the pair-stream ends when the token stream runs out
    410 of binary operators.  If this check succeeds, we know that the token is a binary
    411 operator and that it will be included in this expression:</p>
    412 
    413 <div class="doc_code">
    414 <pre>
    415         (* Eat the binop. *)
    416         Stream.junk stream;
    417 
    418         (* Okay, we know this is a binop. *)
    419         let rhs =
    420           match Stream.peek stream with
    421           | Some (Token.Kwd c2) -&gt;
    422 </pre>
    423 </div>
    424 
    425 <p>As such, this code eats (and remembers) the binary operator and then parses
    426 the primary expression that follows.  This builds up the whole pair, the first of
    427 which is [+, b] for the running example.</p>
    428 
    429 <p>Now that we parsed the left-hand side of an expression and one pair of the
    430 RHS sequence, we have to decide which way the expression associates.  In
    431 particular, we could have "(a+b) binop unparsed"  or "a + (b binop unparsed)".
    432 To determine this, we look ahead at "binop" to determine its precedence and
    433 compare it to BinOp's precedence (which is '+' in this case):</p>
    434 
    435 <div class="doc_code">
    436 <pre>
    437               (* If BinOp binds less tightly with rhs than the operator after
    438                * rhs, let the pending operator take rhs as its lhs. *)
    439               let next_prec = precedence c2 in
    440               if token_prec &lt; next_prec
    441 </pre>
    442 </div>
    443 
    444 <p>If the precedence of the binop to the right of "RHS" is lower or equal to the
    445 precedence of our current operator, then we know that the parentheses associate
    446 as "(a+b) binop ...".  In our example, the current operator is "+" and the next
    447 operator is "+", we know that they have the same precedence.  In this case we'll
    448 create the AST node for "a+b", and then continue parsing:</p>
    449 
    450 <div class="doc_code">
    451 <pre>
    452           ... if body omitted ...
    453         in
    454 
    455         (* Merge lhs/rhs. *)
    456         let lhs = Ast.Binary (c, lhs, rhs) in
    457         parse_bin_rhs expr_prec lhs stream
    458       end
    459 </pre>
    460 </div>
    461 
    462 <p>In our example above, this will turn "a+b+" into "(a+b)" and execute the next
    463 iteration of the loop, with "+" as the current token.  The code above will eat,
    464 remember, and parse "(c+d)" as the primary expression, which makes the
    465 current pair equal to [+, (c+d)].  It will then evaluate the 'if' conditional above with
    466 "*" as the binop to the right of the primary.  In this case, the precedence of "*" is
    467 higher than the precedence of "+" so the if condition will be entered.</p>
    468 
    469 <p>The critical question left here is "how can the if condition parse the right
    470 hand side in full"?  In particular, to build the AST correctly for our example,
    471 it needs to get all of "(c+d)*e*f" as the RHS expression variable.  The code to
    472 do this is surprisingly simple (code from the above two blocks duplicated for
    473 context):</p>
    474 
    475 <div class="doc_code">
    476 <pre>
    477           match Stream.peek stream with
    478           | Some (Token.Kwd c2) -&gt;
    479               (* If BinOp binds less tightly with rhs than the operator after
    480                * rhs, let the pending operator take rhs as its lhs. *)
    481               if token_prec &lt; precedence c2
    482               then <b>parse_bin_rhs (token_prec + 1) rhs stream</b>
    483               else rhs
    484           | _ -&gt; rhs
    485         in
    486 
    487         (* Merge lhs/rhs. *)
    488         let lhs = Ast.Binary (c, lhs, rhs) in
    489         parse_bin_rhs expr_prec lhs stream
    490       end
    491 </pre>
    492 </div>
    493 
    494 <p>At this point, we know that the binary operator to the RHS of our primary
    495 has higher precedence than the binop we are currently parsing.  As such, we know
    496 that any sequence of pairs whose operators are all higher precedence than "+"
    497 should be parsed together and returned as "RHS".  To do this, we recursively
    498 invoke the <tt>Parser.parse_bin_rhs</tt> function specifying "token_prec+1" as
    499 the minimum precedence required for it to continue.  In our example above, this
    500 will cause it to return the AST node for "(c+d)*e*f" as RHS, which is then set
    501 as the RHS of the '+' expression.</p>
    502 
    503 <p>Finally, on the next iteration of the while loop, the "+g" piece is parsed
    504 and added to the AST.  With this little bit of code (14 non-trivial lines), we
    505 correctly handle fully general binary expression parsing in a very elegant way.
    506 This was a whirlwind tour of this code, and it is somewhat subtle.  I recommend
    507 running through it with a few tough examples to see how it works.
    508 </p>
    509 
    510 <p>This wraps up handling of expressions.  At this point, we can point the
    511 parser at an arbitrary token stream and build an expression from it, stopping
    512 at the first token that is not part of the expression.  Next up we need to
    513 handle function definitions, etc.</p>
    514 
    515 </div>
    516 
    517 <!-- *********************************************************************** -->
    518 <h2><a name="parsertop">Parsing the Rest</a></h2>
    519 <!-- *********************************************************************** -->
    520 
    521 <div>
    522 
    523 <p>
    524 The next thing missing is handling of function prototypes.  In Kaleidoscope,
    525 these are used both for 'extern' function declarations as well as function body
    526 definitions.  The code to do this is straight-forward and not very interesting
    527 (once you've survived expressions):
    528 </p>
    529 
    530 <div class="doc_code">
    531 <pre>
    532 (* prototype
    533  *   ::= id '(' id* ')' *)
    534 let parse_prototype =
    535   let rec parse_args accumulator = parser
    536     | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
    537     | [&lt; &gt;] -&gt; accumulator
    538   in
    539 
    540   parser
    541   | [&lt; 'Token.Ident id;
    542        'Token.Kwd '(' ?? "expected '(' in prototype";
    543        args=parse_args [];
    544        'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
    545       (* success. *)
    546       Ast.Prototype (id, Array.of_list (List.rev args))
    547 
    548   | [&lt; &gt;] -&gt;
    549       raise (Stream.Error "expected function name in prototype")
    550 </pre>
    551 </div>
    552 
    553 <p>Given this, a function definition is very simple, just a prototype plus
    554 an expression to implement the body:</p>
    555 
    556 <div class="doc_code">
    557 <pre>
    558 (* definition ::= 'def' prototype expression *)
    559 let parse_definition = parser
    560   | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
    561       Ast.Function (p, e)
    562 </pre>
    563 </div>
    564 
    565 <p>In addition, we support 'extern' to declare functions like 'sin' and 'cos' as
    566 well as to support forward declaration of user functions.  These 'extern's are just
    567 prototypes with no body:</p>
    568 
    569 <div class="doc_code">
    570 <pre>
    571 (*  external ::= 'extern' prototype *)
    572 let parse_extern = parser
    573   | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
    574 </pre>
    575 </div>
    576 
    577 <p>Finally, we'll also let the user type in arbitrary top-level expressions and
    578 evaluate them on the fly.  We will handle this by defining anonymous nullary
    579 (zero argument) functions for them:</p>
    580 
    581 <div class="doc_code">
    582 <pre>
    583 (* toplevelexpr ::= expression *)
    584 let parse_toplevel = parser
    585   | [&lt; e=parse_expr &gt;] -&gt;
    586       (* Make an anonymous proto. *)
    587       Ast.Function (Ast.Prototype ("", [||]), e)
    588 </pre>
    589 </div>
    590 
    591 <p>Now that we have all the pieces, let's build a little driver that will let us
    592 actually <em>execute</em> this code we've built!</p>
    593 
    594 </div>
    595 
    596 <!-- *********************************************************************** -->
    597 <h2><a name="driver">The Driver</a></h2>
    598 <!-- *********************************************************************** -->
    599 
    600 <div>
    601 
    602 <p>The driver for this simply invokes all of the parsing pieces with a top-level
    603 dispatch loop.  There isn't much interesting here, so I'll just include the
    604 top-level loop.  See <a href="#code">below</a> for full code in the "Top-Level
    605 Parsing" section.</p>
    606 
    607 <div class="doc_code">
    608 <pre>
    609 (* top ::= definition | external | expression | ';' *)
    610 let rec main_loop stream =
    611   match Stream.peek stream with
    612   | None -&gt; ()
    613 
    614   (* ignore top-level semicolons. *)
    615   | Some (Token.Kwd ';') -&gt;
    616       Stream.junk stream;
    617       main_loop stream
    618 
    619   | Some token -&gt;
    620       begin
    621         try match token with
    622         | Token.Def -&gt;
    623             ignore(Parser.parse_definition stream);
    624             print_endline "parsed a function definition.";
    625         | Token.Extern -&gt;
    626             ignore(Parser.parse_extern stream);
    627             print_endline "parsed an extern.";
    628         | _ -&gt;
    629             (* Evaluate a top-level expression into an anonymous function. *)
    630             ignore(Parser.parse_toplevel stream);
    631             print_endline "parsed a top-level expr";
    632         with Stream.Error s -&gt;
    633           (* Skip token for error recovery. *)
    634           Stream.junk stream;
    635           print_endline s;
    636       end;
    637       print_string "ready&gt; "; flush stdout;
    638       main_loop stream
    639 </pre>
    640 </div>
    641 
    642 <p>The most interesting part of this is that we ignore top-level semicolons.
    643 Why is this, you ask?  The basic reason is that if you type "4 + 5" at the
    644 command line, the parser doesn't know whether that is the end of what you will type
    645 or not.  For example, on the next line you could type "def foo..." in which case
    646 4+5 is the end of a top-level expression.  Alternatively you could type "* 6",
    647 which would continue the expression.  Having top-level semicolons allows you to
    648 type "4+5;", and the parser will know you are done.</p>
    649 
    650 </div>
    651 
    652 <!-- *********************************************************************** -->
    653 <h2><a name="conclusions">Conclusions</a></h2>
    654 <!-- *********************************************************************** -->
    655 
    656 <div>
    657 
    658 <p>With just under 300 lines of commented code (240 lines of non-comment,
    659 non-blank code), we fully defined our minimal language, including a lexer,
    660 parser, and AST builder.  With this done, the executable will validate
    661 Kaleidoscope code and tell us if it is grammatically invalid.  For
    662 example, here is a sample interaction:</p>
    663 
    664 <div class="doc_code">
    665 <pre>
    666 $ <b>./toy.byte</b>
    667 ready&gt; <b>def foo(x y) x+foo(y, 4.0);</b>
    668 Parsed a function definition.
    669 ready&gt; <b>def foo(x y) x+y y;</b>
    670 Parsed a function definition.
    671 Parsed a top-level expr
    672 ready&gt; <b>def foo(x y) x+y );</b>
    673 Parsed a function definition.
    674 Error: unknown token when expecting an expression
    675 ready&gt; <b>extern sin(a);</b>
    676 ready&gt; Parsed an extern
    677 ready&gt; <b>^D</b>
    678 $
    679 </pre>
    680 </div>
    681 
    682 <p>There is a lot of room for extension here.  You can define new AST nodes,
    683 extend the language in many ways, etc.  In the <a href="OCamlLangImpl3.html">
    684 next installment</a>, we will describe how to generate LLVM Intermediate
    685 Representation (IR) from the AST.</p>
    686 
    687 </div>
    688 
    689 <!-- *********************************************************************** -->
    690 <h2><a name="code">Full Code Listing</a></h2>
    691 <!-- *********************************************************************** -->
    692 
    693 <div>
    694 
    695 <p>
    696 Here is the complete code listing for this and the previous chapter.
    697 Note that it is fully self-contained: you don't need LLVM or any external
    698 libraries at all for this.  (Besides the ocaml standard libraries, of
    699 course.)  To build this, just compile with:</p>
    700 
    701 <div class="doc_code">
    702 <pre>
    703 # Compile
    704 ocamlbuild toy.byte
    705 # Run
    706 ./toy.byte
    707 </pre>
    708 </div>
    709 
    710 <p>Here is the code:</p>
    711 
    712 <dl>
    713 <dt>_tags:</dt>
    714 <dd class="doc_code">
    715 <pre>
    716 &lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
    717 </pre>
    718 </dd>
    719 
    720 <dt>token.ml:</dt>
    721 <dd class="doc_code">
    722 <pre>
    723 (*===----------------------------------------------------------------------===
    724  * Lexer Tokens
    725  *===----------------------------------------------------------------------===*)
    726 
    727 (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
    728  * these others for known things. *)
    729 type token =
    730   (* commands *)
    731   | Def | Extern
    732 
    733   (* primary *)
    734   | Ident of string | Number of float
    735 
    736   (* unknown *)
    737   | Kwd of char
    738 </pre>
    739 </dd>
    740 
    741 <dt>lexer.ml:</dt>
    742 <dd class="doc_code">
    743 <pre>
    744 (*===----------------------------------------------------------------------===
    745  * Lexer
    746  *===----------------------------------------------------------------------===*)
    747 
    748 let rec lex = parser
    749   (* Skip any whitespace. *)
    750   | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
    751 
    752   (* identifier: [a-zA-Z][a-zA-Z0-9] *)
    753   | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
    754       let buffer = Buffer.create 1 in
    755       Buffer.add_char buffer c;
    756       lex_ident buffer stream
    757 
    758   (* number: [0-9.]+ *)
    759   | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
    760       let buffer = Buffer.create 1 in
    761       Buffer.add_char buffer c;
    762       lex_number buffer stream
    763 
    764   (* Comment until end of line. *)
    765   | [&lt; ' ('#'); stream &gt;] -&gt;
    766       lex_comment stream
    767 
    768   (* Otherwise, just return the character as its ascii value. *)
    769   | [&lt; 'c; stream &gt;] -&gt;
    770       [&lt; 'Token.Kwd c; lex stream &gt;]
    771 
    772   (* end of stream. *)
    773   | [&lt; &gt;] -&gt; [&lt; &gt;]
    774 
    775 and lex_number buffer = parser
    776   | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
    777       Buffer.add_char buffer c;
    778       lex_number buffer stream
    779   | [&lt; stream=lex &gt;] -&gt;
    780       [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
    781 
    782 and lex_ident buffer = parser
    783   | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
    784       Buffer.add_char buffer c;
    785       lex_ident buffer stream
    786   | [&lt; stream=lex &gt;] -&gt;
    787       match Buffer.contents buffer with
    788       | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
    789       | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
    790       | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
    791 
    792 and lex_comment = parser
    793   | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
    794   | [&lt; 'c; e=lex_comment &gt;] -&gt; e
    795   | [&lt; &gt;] -&gt; [&lt; &gt;]
    796 </pre>
    797 </dd>
    798 
    799 <dt>ast.ml:</dt>
    800 <dd class="doc_code">
    801 <pre>
    802 (*===----------------------------------------------------------------------===
    803  * Abstract Syntax Tree (aka Parse Tree)
    804  *===----------------------------------------------------------------------===*)
    805 
    806 (* expr - Base type for all expression nodes. *)
    807 type expr =
    808   (* variant for numeric literals like "1.0". *)
    809   | Number of float
    810 
    811   (* variant for referencing a variable, like "a". *)
    812   | Variable of string
    813 
    814   (* variant for a binary operator. *)
    815   | Binary of char * expr * expr
    816 
    817   (* variant for function calls. *)
    818   | Call of string * expr array
    819 
    820 (* proto - This type represents the "prototype" for a function, which captures
    821  * its name, and its argument names (thus implicitly the number of arguments the
    822  * function takes). *)
    823 type proto = Prototype of string * string array
    824 
    825 (* func - This type represents a function definition itself. *)
    826 type func = Function of proto * expr
    827 </pre>
    828 </dd>
    829 
    830 <dt>parser.ml:</dt>
    831 <dd class="doc_code">
    832 <pre>
    833 (*===---------------------------------------------------------------------===
    834  * Parser
    835  *===---------------------------------------------------------------------===*)
    836 
    837 (* binop_precedence - This holds the precedence for each binary operator that is
    838  * defined *)
    839 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
    840 
    841 (* precedence - Get the precedence of the pending binary operator token. *)
    842 let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
    843 
    844 (* primary
    845  *   ::= identifier
    846  *   ::= numberexpr
    847  *   ::= parenexpr *)
    848 let rec parse_primary = parser
    849   (* numberexpr ::= number *)
    850   | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
    851 
    852   (* parenexpr ::= '(' expression ')' *)
    853   | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
    854 
    855   (* identifierexpr
    856    *   ::= identifier
    857    *   ::= identifier '(' argumentexpr ')' *)
    858   | [&lt; 'Token.Ident id; stream &gt;] -&gt;
    859       let rec parse_args accumulator = parser
    860         | [&lt; e=parse_expr; stream &gt;] -&gt;
    861             begin parser
    862               | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
    863               | [&lt; &gt;] -&gt; e :: accumulator
    864             end stream
    865         | [&lt; &gt;] -&gt; accumulator
    866       in
    867       let rec parse_ident id = parser
    868         (* Call. *)
    869         | [&lt; 'Token.Kwd '(';
    870              args=parse_args [];
    871              'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
    872             Ast.Call (id, Array.of_list (List.rev args))
    873 
    874         (* Simple variable ref. *)
    875         | [&lt; &gt;] -&gt; Ast.Variable id
    876       in
    877       parse_ident id stream
    878 
    879   | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
    880 
    881 (* binoprhs
    882  *   ::= ('+' primary)* *)
    883 and parse_bin_rhs expr_prec lhs stream =
    884   match Stream.peek stream with
    885   (* If this is a binop, find its precedence. *)
    886   | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
    887       let token_prec = precedence c in
    888 
    889       (* If this is a binop that binds at least as tightly as the current binop,
    890        * consume it, otherwise we are done. *)
    891       if token_prec &lt; expr_prec then lhs else begin
    892         (* Eat the binop. *)
    893         Stream.junk stream;
    894 
    895         (* Parse the primary expression after the binary operator. *)
    896         let rhs = parse_primary stream in
    897 
    898         (* Okay, we know this is a binop. *)
    899         let rhs =
    900           match Stream.peek stream with
    901           | Some (Token.Kwd c2) -&gt;
    902               (* If BinOp binds less tightly with rhs than the operator after
    903                * rhs, let the pending operator take rhs as its lhs. *)
    904               let next_prec = precedence c2 in
    905               if token_prec &lt; next_prec
    906               then parse_bin_rhs (token_prec + 1) rhs stream
    907               else rhs
    908           | _ -&gt; rhs
    909         in
    910 
    911         (* Merge lhs/rhs. *)
    912         let lhs = Ast.Binary (c, lhs, rhs) in
    913         parse_bin_rhs expr_prec lhs stream
    914       end
    915   | _ -&gt; lhs
    916 
    917 (* expression
    918  *   ::= primary binoprhs *)
    919 and parse_expr = parser
    920   | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
    921 
    922 (* prototype
    923  *   ::= id '(' id* ')' *)
    924 let parse_prototype =
    925   let rec parse_args accumulator = parser
    926     | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
    927     | [&lt; &gt;] -&gt; accumulator
    928   in
    929 
    930   parser
    931   | [&lt; 'Token.Ident id;
    932        'Token.Kwd '(' ?? "expected '(' in prototype";
    933        args=parse_args [];
    934        'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
    935       (* success. *)
    936       Ast.Prototype (id, Array.of_list (List.rev args))
    937 
    938   | [&lt; &gt;] -&gt;
    939       raise (Stream.Error "expected function name in prototype")
    940 
    941 (* definition ::= 'def' prototype expression *)
    942 let parse_definition = parser
    943   | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
    944       Ast.Function (p, e)
    945 
    946 (* toplevelexpr ::= expression *)
    947 let parse_toplevel = parser
    948   | [&lt; e=parse_expr &gt;] -&gt;
    949       (* Make an anonymous proto. *)
    950       Ast.Function (Ast.Prototype ("", [||]), e)
    951 
    952 (*  external ::= 'extern' prototype *)
    953 let parse_extern = parser
    954   | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
    955 </pre>
    956 </dd>
    957 
    958 <dt>toplevel.ml:</dt>
    959 <dd class="doc_code">
    960 <pre>
    961 (*===----------------------------------------------------------------------===
    962  * Top-Level parsing and JIT Driver
    963  *===----------------------------------------------------------------------===*)
    964 
    965 (* top ::= definition | external | expression | ';' *)
    966 let rec main_loop stream =
    967   match Stream.peek stream with
    968   | None -&gt; ()
    969 
    970   (* ignore top-level semicolons. *)
    971   | Some (Token.Kwd ';') -&gt;
    972       Stream.junk stream;
    973       main_loop stream
    974 
    975   | Some token -&gt;
    976       begin
    977         try match token with
    978         | Token.Def -&gt;
    979             ignore(Parser.parse_definition stream);
    980             print_endline "parsed a function definition.";
    981         | Token.Extern -&gt;
    982             ignore(Parser.parse_extern stream);
    983             print_endline "parsed an extern.";
    984         | _ -&gt;
    985             (* Evaluate a top-level expression into an anonymous function. *)
    986             ignore(Parser.parse_toplevel stream);
    987             print_endline "parsed a top-level expr";
    988         with Stream.Error s -&gt;
    989           (* Skip token for error recovery. *)
    990           Stream.junk stream;
    991           print_endline s;
    992       end;
    993       print_string "ready&gt; "; flush stdout;
    994       main_loop stream
    995 </pre>
    996 </dd>
    997 
    998 <dt>toy.ml:</dt>
    999 <dd class="doc_code">
   1000 <pre>
   1001 (*===----------------------------------------------------------------------===
   1002  * Main driver code.
   1003  *===----------------------------------------------------------------------===*)
   1004 
   1005 let main () =
   1006   (* Install standard binary operators.
   1007    * 1 is the lowest precedence. *)
   1008   Hashtbl.add Parser.binop_precedence '&lt;' 10;
   1009   Hashtbl.add Parser.binop_precedence '+' 20;
   1010   Hashtbl.add Parser.binop_precedence '-' 20;
   1011   Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
   1012 
   1013   (* Prime the first token. *)
   1014   print_string "ready&gt; "; flush stdout;
   1015   let stream = Lexer.lex (Stream.of_channel stdin) in
   1016 
   1017   (* Run the main "interpreter loop" now. *)
   1018   Toplevel.main_loop stream;
   1019 ;;
   1020 
   1021 main ()
   1022 </pre>
   1023 </dd>
   1024 </dl>
   1025 
   1026 <a href="OCamlLangImpl3.html">Next: Implementing Code Generation to LLVM IR</a>
   1027 </div>
   1028 
   1029 <!-- *********************************************************************** -->
   1030 <hr>
   1031 <address>
   1032   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   1033   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
   1034   <a href="http://validator.w3.org/check/referer"><img
   1035   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
   1036 
   1037   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a>
   1038   <a href="mailto:erickt (a] users.sourceforge.net">Erick Tryzelaar</a><br>
   1039   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   1040   Last modified: $Date$
   1041 </address>
   1042 </body>
   1043 </html>
   1044