Home | History | Annotate | Download | only in tutorial
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 
      4 <html>
      5 <head>
      6   <title>Kaleidoscope: Implementing code generation to LLVM IR</title>
      7   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      8   <meta name="author" content="Chris Lattner">
      9   <meta name="author" content="Erick Tryzelaar">
     10   <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
     11 </head>
     12 
     13 <body>
     14 
     15 <h1>Kaleidoscope: Code generation to LLVM IR</h1>
     16 
     17 <ul>
     18 <li><a href="index.html">Up to Tutorial Index</a></li>
     19 <li>Chapter 3
     20   <ol>
     21     <li><a href="#intro">Chapter 3 Introduction</a></li>
     22     <li><a href="#basics">Code Generation Setup</a></li>
     23     <li><a href="#exprs">Expression Code Generation</a></li>
     24     <li><a href="#funcs">Function Code Generation</a></li>
     25     <li><a href="#driver">Driver Changes and Closing Thoughts</a></li>
     26     <li><a href="#code">Full Code Listing</a></li>
     27   </ol>
     28 </li>
     29 <li><a href="OCamlLangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer
     30 Support</li>
     31 </ul>
     32 
     33 <div class="doc_author">
     34 	<p>
     35 		Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a>
     36 		and <a href="mailto:idadesub (a] users.sourceforge.net">Erick Tryzelaar</a>
     37 	</p>
     38 </div>
     39 
     40 <!-- *********************************************************************** -->
     41 <h2><a name="intro">Chapter 3 Introduction</a></h2>
     42 <!-- *********************************************************************** -->
     43 
     44 <div>
     45 
     46 <p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language
     47 with LLVM</a>" tutorial.  This chapter shows you how to transform the <a
     48 href="OCamlLangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into
     49 LLVM IR.  This will teach you a little bit about how LLVM does things, as well
     50 as demonstrate how easy it is to use.  It's much more work to build a lexer and
     51 parser than it is to generate LLVM IR code. :)
     52 </p>
     53 
     54 <p><b>Please note</b>: the code in this chapter and later require LLVM 2.3 or
     55 LLVM SVN to work.  LLVM 2.2 and before will not work with it.</p>
     56 
     57 </div>
     58 
     59 <!-- *********************************************************************** -->
     60 <h2><a name="basics">Code Generation Setup</a></h2>
     61 <!-- *********************************************************************** -->
     62 
     63 <div>
     64 
     65 <p>
     66 In order to generate LLVM IR, we want some simple setup to get started.  First
     67 we define virtual code generation (codegen) methods in each AST class:</p>
     68 
     69 <div class="doc_code">
     70 <pre>
     71 let rec codegen_expr = function
     72   | Ast.Number n -&gt; ...
     73   | Ast.Variable name -&gt; ...
     74 </pre>
     75 </div>
     76 
     77 <p>The <tt>Codegen.codegen_expr</tt> function says to emit IR for that AST node
     78 along with all the things it depends on, and they all return an LLVM Value
     79 object.  "Value" is the class used to represent a "<a
     80 href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
     81 Assignment (SSA)</a> register" or "SSA value" in LLVM.  The most distinct aspect
     82 of SSA values is that their value is computed as the related instruction
     83 executes, and it does not get a new value until (and if) the instruction
     84 re-executes.  In other words, there is no way to "change" an SSA value.  For
     85 more information, please read up on <a
     86 href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
     87 Assignment</a> - the concepts are really quite natural once you grok them.</p>
     88 
     89 <p>The
     90 second thing we want is an "Error" exception like we used for the parser, which
     91 will be used to report errors found during code generation (for example, use of
     92 an undeclared parameter):</p>
     93 
     94 <div class="doc_code">
     95 <pre>
     96 exception Error of string
     97 
     98 let context = global_context ()
     99 let the_module = create_module context "my cool jit"
    100 let builder = builder context
    101 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
    102 let double_type = double_type context
    103 </pre>
    104 </div>
    105 
    106 <p>The static variables will be used during code generation.
    107 <tt>Codgen.the_module</tt> is the LLVM construct that contains all of the
    108 functions and global variables in a chunk of code.  In many ways, it is the
    109 top-level structure that the LLVM IR uses to contain code.</p>
    110 
    111 <p>The <tt>Codegen.builder</tt> object is a helper object that makes it easy to
    112 generate LLVM instructions.  Instances of the <a
    113 href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a>
    114 class keep track of the current place to insert instructions and has methods to
    115 create new instructions.</p>
    116 
    117 <p>The <tt>Codegen.named_values</tt> map keeps track of which values are defined
    118 in the current scope and what their LLVM representation is.  (In other words, it
    119 is a symbol table for the code).  In this form of Kaleidoscope, the only things
    120 that can be referenced are function parameters.  As such, function parameters
    121 will be in this map when generating code for their function body.</p>
    122 
    123 <p>
    124 With these basics in place, we can start talking about how to generate code for
    125 each expression.  Note that this assumes that the <tt>Codgen.builder</tt> has
    126 been set up to generate code <em>into</em> something.  For now, we'll assume
    127 that this has already been done, and we'll just use it to emit code.</p>
    128 
    129 </div>
    130 
    131 <!-- *********************************************************************** -->
    132 <h2><a name="exprs">Expression Code Generation</a></h2>
    133 <!-- *********************************************************************** -->
    134 
    135 <div>
    136 
    137 <p>Generating LLVM code for expression nodes is very straightforward: less
    138 than 30 lines of commented code for all four of our expression nodes.  First
    139 we'll do numeric literals:</p>
    140 
    141 <div class="doc_code">
    142 <pre>
    143   | Ast.Number n -&gt; const_float double_type n
    144 </pre>
    145 </div>
    146 
    147 <p>In the LLVM IR, numeric constants are represented with the
    148 <tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt>
    149 internally (<tt>APFloat</tt> has the capability of holding floating point
    150 constants of <em>A</em>rbitrary <em>P</em>recision).  This code basically just
    151 creates and returns a <tt>ConstantFP</tt>.  Note that in the LLVM IR
    152 that constants are all uniqued together and shared.  For this reason, the API
    153 uses "the foo::get(..)" idiom instead of "new foo(..)" or "foo::Create(..)".</p>
    154 
    155 <div class="doc_code">
    156 <pre>
    157   | Ast.Variable name -&gt;
    158       (try Hashtbl.find named_values name with
    159         | Not_found -&gt; raise (Error "unknown variable name"))
    160 </pre>
    161 </div>
    162 
    163 <p>References to variables are also quite simple using LLVM.  In the simple
    164 version of Kaleidoscope, we assume that the variable has already been emitted
    165 somewhere and its value is available.  In practice, the only values that can be
    166 in the <tt>Codegen.named_values</tt> map are function arguments.  This code
    167 simply checks to see that the specified name is in the map (if not, an unknown
    168 variable is being referenced) and returns the value for it.  In future chapters,
    169 we'll add support for <a href="LangImpl5.html#for">loop induction variables</a>
    170 in the symbol table, and for <a href="LangImpl7.html#localvars">local
    171 variables</a>.</p>
    172 
    173 <div class="doc_code">
    174 <pre>
    175   | Ast.Binary (op, lhs, rhs) -&gt;
    176       let lhs_val = codegen_expr lhs in
    177       let rhs_val = codegen_expr rhs in
    178       begin
    179         match op with
    180         | '+' -&gt; build_fadd lhs_val rhs_val "addtmp" builder
    181         | '-' -&gt; build_fsub lhs_val rhs_val "subtmp" builder
    182         | '*' -&gt; build_fmul lhs_val rhs_val "multmp" builder
    183         | '&lt;' -&gt;
    184             (* Convert bool 0/1 to double 0.0 or 1.0 *)
    185             let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
    186             build_uitofp i double_type "booltmp" builder
    187         | _ -&gt; raise (Error "invalid binary operator")
    188       end
    189 </pre>
    190 </div>
    191 
    192 <p>Binary operators start to get more interesting.  The basic idea here is that
    193 we recursively emit code for the left-hand side of the expression, then the
    194 right-hand side, then we compute the result of the binary expression.  In this
    195 code, we do a simple switch on the opcode to create the right LLVM instruction.
    196 </p>
    197 
    198 <p>In the example above, the LLVM builder class is starting to show its value.
    199 IRBuilder knows where to insert the newly created instruction, all you have to
    200 do is specify what instruction to create (e.g. with <tt>Llvm.create_add</tt>),
    201 which operands to use (<tt>lhs</tt> and <tt>rhs</tt> here) and optionally
    202 provide a name for the generated instruction.</p>
    203 
    204 <p>One nice thing about LLVM is that the name is just a hint.  For instance, if
    205 the code above emits multiple "addtmp" variables, LLVM will automatically
    206 provide each one with an increasing, unique numeric suffix.  Local value names
    207 for instructions are purely optional, but it makes it much easier to read the
    208 IR dumps.</p>
    209 
    210 <p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by
    211 strict rules: for example, the Left and Right operators of
    212 an <a href="../LangRef.html#i_add">add instruction</a> must have the same
    213 type, and the result type of the add must match the operand types.  Because
    214 all values in Kaleidoscope are doubles, this makes for very simple code for add,
    215 sub and mul.</p>
    216 
    217 <p>On the other hand, LLVM specifies that the <a
    218 href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value
    219 (a one bit integer).  The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value.  In order to get these semantics, we combine the fcmp instruction with
    220 a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>.  This instruction
    221 converts its input integer into a floating point value by treating the input
    222 as an unsigned value.  In contrast, if we used the <a
    223 href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '&lt;'
    224 operator would return 0.0 and -1.0, depending on the input value.</p>
    225 
    226 <div class="doc_code">
    227 <pre>
    228   | Ast.Call (callee, args) -&gt;
    229       (* Look up the name in the module table. *)
    230       let callee =
    231         match lookup_function callee the_module with
    232         | Some callee -&gt; callee
    233         | None -&gt; raise (Error "unknown function referenced")
    234       in
    235       let params = params callee in
    236 
    237       (* If argument mismatch error. *)
    238       if Array.length params == Array.length args then () else
    239         raise (Error "incorrect # arguments passed");
    240       let args = Array.map codegen_expr args in
    241       build_call callee args "calltmp" builder
    242 </pre>
    243 </div>
    244 
    245 <p>Code generation for function calls is quite straightforward with LLVM.  The
    246 code above initially does a function name lookup in the LLVM Module's symbol
    247 table.  Recall that the LLVM Module is the container that holds all of the
    248 functions we are JIT'ing.  By giving each function the same name as what the
    249 user specifies, we can use the LLVM symbol table to resolve function names for
    250 us.</p>
    251 
    252 <p>Once we have the function to call, we recursively codegen each argument that
    253 is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call
    254 instruction</a>.  Note that LLVM uses the native C calling conventions by
    255 default, allowing these calls to also call into standard library functions like
    256 "sin" and "cos", with no additional effort.</p>
    257 
    258 <p>This wraps up our handling of the four basic expressions that we have so far
    259 in Kaleidoscope.  Feel free to go in and add some more.  For example, by
    260 browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find
    261 several other interesting instructions that are really easy to plug into our
    262 basic framework.</p>
    263 
    264 </div>
    265 
    266 <!-- *********************************************************************** -->
    267 <h2><a name="funcs">Function Code Generation</a></h2>
    268 <!-- *********************************************************************** -->
    269 
    270 <div>
    271 
    272 <p>Code generation for prototypes and functions must handle a number of
    273 details, which make their code less beautiful than expression code
    274 generation, but allows us to illustrate some important points.  First, lets
    275 talk about code generation for prototypes: they are used both for function
    276 bodies and external function declarations.  The code starts with:</p>
    277 
    278 <div class="doc_code">
    279 <pre>
    280 let codegen_proto = function
    281   | Ast.Prototype (name, args) -&gt;
    282       (* Make the function type: double(double,double) etc. *)
    283       let doubles = Array.make (Array.length args) double_type in
    284       let ft = function_type double_type doubles in
    285       let f =
    286         match lookup_function name the_module with
    287 </pre>
    288 </div>
    289 
    290 <p>This code packs a lot of power into a few lines.  Note first that this
    291 function returns a "Function*" instead of a "Value*" (although at the moment
    292 they both are modeled by <tt>llvalue</tt> in ocaml).  Because a "prototype"
    293 really talks about the external interface for a function (not the value computed
    294 by an expression), it makes sense for it to return the LLVM Function it
    295 corresponds to when codegen'd.</p>
    296 
    297 <p>The call to <tt>Llvm.function_type</tt> creates the <tt>Llvm.llvalue</tt>
    298 that should be used for a given Prototype.  Since all function arguments in
    299 Kaleidoscope are of type double, the first line creates a vector of "N" LLVM
    300 double types.  It then uses the <tt>Llvm.function_type</tt> method to create a
    301 function type that takes "N" doubles as arguments, returns one double as a
    302 result, and that is not vararg (that uses the function
    303 <tt>Llvm.var_arg_function_type</tt>).  Note that Types in LLVM are uniqued just
    304 like <tt>Constant</tt>s are, so you don't "new" a type, you "get" it.</p>
    305 
    306 <p>The final line above checks if the function has already been defined in
    307 <tt>Codegen.the_module</tt>. If not, we will create it.</p>
    308 
    309 <div class="doc_code">
    310 <pre>
    311         | None -&gt; declare_function name ft the_module
    312 </pre>
    313 </div>
    314 
    315 <p>This indicates the type and name to use, as well as which module to insert
    316 into.  By default we assume a function has
    317 <tt>Llvm.Linkage.ExternalLinkage</tt>.  "<a href="LangRef.html#linkage">external
    318 linkage</a>" means that the function may be defined outside the current module
    319 and/or that it is callable by functions outside the module.  The "<tt>name</tt>"
    320 passed in is the name the user specified: this name is registered in
    321 "<tt>Codegen.the_module</tt>"s symbol table, which is used by the function call
    322 code above.</p>
    323 
    324 <p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases:
    325 first, we want to allow 'extern'ing a function more than once, as long as the
    326 prototypes for the externs match (since all arguments have the same type, we
    327 just have to check that the number of arguments match).  Second, we want to
    328 allow 'extern'ing a function and then defining a body for it.  This is useful
    329 when defining mutually recursive functions.</p>
    330 
    331 <div class="doc_code">
    332 <pre>
    333         (* If 'f' conflicted, there was already something named 'name'. If it
    334          * has a body, don't allow redefinition or reextern. *)
    335         | Some f -&gt;
    336             (* If 'f' already has a body, reject this. *)
    337             if Array.length (basic_blocks f) == 0 then () else
    338               raise (Error "redefinition of function");
    339 
    340             (* If 'f' took a different number of arguments, reject. *)
    341             if Array.length (params f) == Array.length args then () else
    342               raise (Error "redefinition of function with different # args");
    343             f
    344       in
    345 </pre>
    346 </div>
    347 
    348 <p>In order to verify the logic above, we first check to see if the pre-existing
    349 function is "empty".  In this case, empty means that it has no basic blocks in
    350 it, which means it has no body.  If it has no body, it is a forward
    351 declaration.  Since we don't allow anything after a full definition of the
    352 function, the code rejects this case.  If the previous reference to a function
    353 was an 'extern', we simply verify that the number of arguments for that
    354 definition and this one match up.  If not, we emit an error.</p>
    355 
    356 <div class="doc_code">
    357 <pre>
    358       (* Set names for all arguments. *)
    359       Array.iteri (fun i a -&gt;
    360         let n = args.(i) in
    361         set_value_name n a;
    362         Hashtbl.add named_values n a;
    363       ) (params f);
    364       f
    365 </pre>
    366 </div>
    367 
    368 <p>The last bit of code for prototypes loops over all of the arguments in the
    369 function, setting the name of the LLVM Argument objects to match, and registering
    370 the arguments in the <tt>Codegen.named_values</tt> map for future use by the
    371 <tt>Ast.Variable</tt> variant.  Once this is set up, it returns the Function
    372 object to the caller.  Note that we don't check for conflicting
    373 argument names here (e.g. "extern foo(a b a)").  Doing so would be very
    374 straight-forward with the mechanics we have already used above.</p>
    375 
    376 <div class="doc_code">
    377 <pre>
    378 let codegen_func = function
    379   | Ast.Function (proto, body) -&gt;
    380       Hashtbl.clear named_values;
    381       let the_function = codegen_proto proto in
    382 </pre>
    383 </div>
    384 
    385 <p>Code generation for function definitions starts out simply enough: we just
    386 codegen the prototype (Proto) and verify that it is ok.  We then clear out the
    387 <tt>Codegen.named_values</tt> map to make sure that there isn't anything in it
    388 from the last function we compiled.  Code generation of the prototype ensures
    389 that there is an LLVM Function object that is ready to go for us.</p>
    390 
    391 <div class="doc_code">
    392 <pre>
    393       (* Create a new basic block to start insertion into. *)
    394       let bb = append_block context "entry" the_function in
    395       position_at_end bb builder;
    396 
    397       try
    398         let ret_val = codegen_expr body in
    399 </pre>
    400 </div>
    401 
    402 <p>Now we get to the point where the <tt>Codegen.builder</tt> is set up.  The
    403 first line creates a new
    404 <a href="http://en.wikipedia.org/wiki/Basic_block">basic block</a> (named
    405 "entry"), which is inserted into <tt>the_function</tt>.  The second line then
    406 tells the builder that new instructions should be inserted into the end of the
    407 new basic block.  Basic blocks in LLVM are an important part of functions that
    408 define the <a
    409 href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>.
    410 Since we don't have any control flow, our functions will only contain one
    411 block at this point.  We'll fix this in <a href="OCamlLangImpl5.html">Chapter
    412 5</a> :).</p>
    413 
    414 <div class="doc_code">
    415 <pre>
    416         let ret_val = codegen_expr body in
    417 
    418         (* Finish off the function. *)
    419         let _ = build_ret ret_val builder in
    420 
    421         (* Validate the generated code, checking for consistency. *)
    422         Llvm_analysis.assert_valid_function the_function;
    423 
    424         the_function
    425 </pre>
    426 </div>
    427 
    428 <p>Once the insertion point is set up, we call the <tt>Codegen.codegen_func</tt>
    429 method for the root expression of the function.  If no error happens, this emits
    430 code to compute the expression into the entry block and returns the value that
    431 was computed.  Assuming no error, we then create an LLVM <a
    432 href="../LangRef.html#i_ret">ret instruction</a>, which completes the function.
    433 Once the function is built, we call
    434 <tt>Llvm_analysis.assert_valid_function</tt>, which is provided by LLVM.  This
    435 function does a variety of consistency checks on the generated code, to
    436 determine if our compiler is doing everything right.  Using this is important:
    437 it can catch a lot of bugs.  Once the function is finished and validated, we
    438 return it.</p>
    439 
    440 <div class="doc_code">
    441 <pre>
    442       with e -&gt;
    443         delete_function the_function;
    444         raise e
    445 </pre>
    446 </div>
    447 
    448 <p>The only piece left here is handling of the error case.  For simplicity, we
    449 handle this by merely deleting the function we produced with the
    450 <tt>Llvm.delete_function</tt> method.  This allows the user to redefine a
    451 function that they incorrectly typed in before: if we didn't delete it, it
    452 would live in the symbol table, with a body, preventing future redefinition.</p>
    453 
    454 <p>This code does have a bug, though.  Since the <tt>Codegen.codegen_proto</tt>
    455 can return a previously defined forward declaration, our code can actually delete
    456 a forward declaration.  There are a number of ways to fix this bug, see what you
    457 can come up with!  Here is a testcase:</p>
    458 
    459 <div class="doc_code">
    460 <pre>
    461 extern foo(a b);     # ok, defines foo.
    462 def foo(a b) c;      # error, 'c' is invalid.
    463 def bar() foo(1, 2); # error, unknown function "foo"
    464 </pre>
    465 </div>
    466 
    467 </div>
    468 
    469 <!-- *********************************************************************** -->
    470 <h2><a name="driver">Driver Changes and Closing Thoughts</a></h2>
    471 <!-- *********************************************************************** -->
    472 
    473 <div>
    474 
    475 <p>
    476 For now, code generation to LLVM doesn't really get us much, except that we can
    477 look at the pretty IR calls.  The sample code inserts calls to Codegen into the
    478 "<tt>Toplevel.main_loop</tt>", and then dumps out the LLVM IR.  This gives a
    479 nice way to look at the LLVM IR for simple functions.  For example:
    480 </p>
    481 
    482 <div class="doc_code">
    483 <pre>
    484 ready&gt; <b>4+5</b>;
    485 Read top-level expression:
    486 define double @""() {
    487 entry:
    488         %addtmp = fadd double 4.000000e+00, 5.000000e+00
    489         ret double %addtmp
    490 }
    491 </pre>
    492 </div>
    493 
    494 <p>Note how the parser turns the top-level expression into anonymous functions
    495 for us.  This will be handy when we add <a href="OCamlLangImpl4.html#jit">JIT
    496 support</a> in the next chapter.  Also note that the code is very literally
    497 transcribed, no optimizations are being performed.  We will
    498 <a href="OCamlLangImpl4.html#trivialconstfold">add optimizations</a> explicitly
    499 in the next chapter.</p>
    500 
    501 <div class="doc_code">
    502 <pre>
    503 ready&gt; <b>def foo(a b) a*a + 2*a*b + b*b;</b>
    504 Read function definition:
    505 define double @foo(double %a, double %b) {
    506 entry:
    507         %multmp = fmul double %a, %a
    508         %multmp1 = fmul double 2.000000e+00, %a
    509         %multmp2 = fmul double %multmp1, %b
    510         %addtmp = fadd double %multmp, %multmp2
    511         %multmp3 = fmul double %b, %b
    512         %addtmp4 = fadd double %addtmp, %multmp3
    513         ret double %addtmp4
    514 }
    515 </pre>
    516 </div>
    517 
    518 <p>This shows some simple arithmetic. Notice the striking similarity to the
    519 LLVM builder calls that we use to create the instructions.</p>
    520 
    521 <div class="doc_code">
    522 <pre>
    523 ready&gt; <b>def bar(a) foo(a, 4.0) + bar(31337);</b>
    524 Read function definition:
    525 define double @bar(double %a) {
    526 entry:
    527         %calltmp = call double @foo(double %a, double 4.000000e+00)
    528         %calltmp1 = call double @bar(double 3.133700e+04)
    529         %addtmp = fadd double %calltmp, %calltmp1
    530         ret double %addtmp
    531 }
    532 </pre>
    533 </div>
    534 
    535 <p>This shows some function calls.  Note that this function will take a long
    536 time to execute if you call it.  In the future we'll add conditional control
    537 flow to actually make recursion useful :).</p>
    538 
    539 <div class="doc_code">
    540 <pre>
    541 ready&gt; <b>extern cos(x);</b>
    542 Read extern:
    543 declare double @cos(double)
    544 
    545 ready&gt; <b>cos(1.234);</b>
    546 Read top-level expression:
    547 define double @""() {
    548 entry:
    549         %calltmp = call double @cos(double 1.234000e+00)
    550         ret double %calltmp
    551 }
    552 </pre>
    553 </div>
    554 
    555 <p>This shows an extern for the libm "cos" function, and a call to it.</p>
    556 
    557 
    558 <div class="doc_code">
    559 <pre>
    560 ready&gt; <b>^D</b>
    561 ; ModuleID = 'my cool jit'
    562 
    563 define double @""() {
    564 entry:
    565         %addtmp = fadd double 4.000000e+00, 5.000000e+00
    566         ret double %addtmp
    567 }
    568 
    569 define double @foo(double %a, double %b) {
    570 entry:
    571         %multmp = fmul double %a, %a
    572         %multmp1 = fmul double 2.000000e+00, %a
    573         %multmp2 = fmul double %multmp1, %b
    574         %addtmp = fadd double %multmp, %multmp2
    575         %multmp3 = fmul double %b, %b
    576         %addtmp4 = fadd double %addtmp, %multmp3
    577         ret double %addtmp4
    578 }
    579 
    580 define double @bar(double %a) {
    581 entry:
    582         %calltmp = call double @foo(double %a, double 4.000000e+00)
    583         %calltmp1 = call double @bar(double 3.133700e+04)
    584         %addtmp = fadd double %calltmp, %calltmp1
    585         ret double %addtmp
    586 }
    587 
    588 declare double @cos(double)
    589 
    590 define double @""() {
    591 entry:
    592         %calltmp = call double @cos(double 1.234000e+00)
    593         ret double %calltmp
    594 }
    595 </pre>
    596 </div>
    597 
    598 <p>When you quit the current demo, it dumps out the IR for the entire module
    599 generated.  Here you can see the big picture with all the functions referencing
    600 each other.</p>
    601 
    602 <p>This wraps up the third chapter of the Kaleidoscope tutorial.  Up next, we'll
    603 describe how to <a href="OCamlLangImpl4.html">add JIT codegen and optimizer
    604 support</a> to this so we can actually start running code!</p>
    605 
    606 </div>
    607 
    608 
    609 <!-- *********************************************************************** -->
    610 <h2><a name="code">Full Code Listing</a></h2>
    611 <!-- *********************************************************************** -->
    612 
    613 <div>
    614 
    615 <p>
    616 Here is the complete code listing for our running example, enhanced with the
    617 LLVM code generator.    Because this uses the LLVM libraries, we need to link
    618 them in.  To do this, we use the <a
    619 href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform
    620 our makefile/command line about which options to use:</p>
    621 
    622 <div class="doc_code">
    623 <pre>
    624 # Compile
    625 ocamlbuild toy.byte
    626 # Run
    627 ./toy.byte
    628 </pre>
    629 </div>
    630 
    631 <p>Here is the code:</p>
    632 
    633 <dl>
    634 <dt>_tags:</dt>
    635 <dd class="doc_code">
    636 <pre>
    637 &lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
    638 &lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
    639 </pre>
    640 </dd>
    641 
    642 <dt>myocamlbuild.ml:</dt>
    643 <dd class="doc_code">
    644 <pre>
    645 open Ocamlbuild_plugin;;
    646 
    647 ocaml_lib ~extern:true "llvm";;
    648 ocaml_lib ~extern:true "llvm_analysis";;
    649 
    650 flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
    651 </pre>
    652 </dd>
    653 
    654 <dt>token.ml:</dt>
    655 <dd class="doc_code">
    656 <pre>
    657 (*===----------------------------------------------------------------------===
    658  * Lexer Tokens
    659  *===----------------------------------------------------------------------===*)
    660 
    661 (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
    662  * these others for known things. *)
    663 type token =
    664   (* commands *)
    665   | Def | Extern
    666 
    667   (* primary *)
    668   | Ident of string | Number of float
    669 
    670   (* unknown *)
    671   | Kwd of char
    672 </pre>
    673 </dd>
    674 
    675 <dt>lexer.ml:</dt>
    676 <dd class="doc_code">
    677 <pre>
    678 (*===----------------------------------------------------------------------===
    679  * Lexer
    680  *===----------------------------------------------------------------------===*)
    681 
    682 let rec lex = parser
    683   (* Skip any whitespace. *)
    684   | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
    685 
    686   (* identifier: [a-zA-Z][a-zA-Z0-9] *)
    687   | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
    688       let buffer = Buffer.create 1 in
    689       Buffer.add_char buffer c;
    690       lex_ident buffer stream
    691 
    692   (* number: [0-9.]+ *)
    693   | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
    694       let buffer = Buffer.create 1 in
    695       Buffer.add_char buffer c;
    696       lex_number buffer stream
    697 
    698   (* Comment until end of line. *)
    699   | [&lt; ' ('#'); stream &gt;] -&gt;
    700       lex_comment stream
    701 
    702   (* Otherwise, just return the character as its ascii value. *)
    703   | [&lt; 'c; stream &gt;] -&gt;
    704       [&lt; 'Token.Kwd c; lex stream &gt;]
    705 
    706   (* end of stream. *)
    707   | [&lt; &gt;] -&gt; [&lt; &gt;]
    708 
    709 and lex_number buffer = parser
    710   | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
    711       Buffer.add_char buffer c;
    712       lex_number buffer stream
    713   | [&lt; stream=lex &gt;] -&gt;
    714       [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
    715 
    716 and lex_ident buffer = parser
    717   | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
    718       Buffer.add_char buffer c;
    719       lex_ident buffer stream
    720   | [&lt; stream=lex &gt;] -&gt;
    721       match Buffer.contents buffer with
    722       | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
    723       | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
    724       | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
    725 
    726 and lex_comment = parser
    727   | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
    728   | [&lt; 'c; e=lex_comment &gt;] -&gt; e
    729   | [&lt; &gt;] -&gt; [&lt; &gt;]
    730 </pre>
    731 </dd>
    732 
    733 <dt>ast.ml:</dt>
    734 <dd class="doc_code">
    735 <pre>
    736 (*===----------------------------------------------------------------------===
    737  * Abstract Syntax Tree (aka Parse Tree)
    738  *===----------------------------------------------------------------------===*)
    739 
    740 (* expr - Base type for all expression nodes. *)
    741 type expr =
    742   (* variant for numeric literals like "1.0". *)
    743   | Number of float
    744 
    745   (* variant for referencing a variable, like "a". *)
    746   | Variable of string
    747 
    748   (* variant for a binary operator. *)
    749   | Binary of char * expr * expr
    750 
    751   (* variant for function calls. *)
    752   | Call of string * expr array
    753 
    754 (* proto - This type represents the "prototype" for a function, which captures
    755  * its name, and its argument names (thus implicitly the number of arguments the
    756  * function takes). *)
    757 type proto = Prototype of string * string array
    758 
    759 (* func - This type represents a function definition itself. *)
    760 type func = Function of proto * expr
    761 </pre>
    762 </dd>
    763 
    764 <dt>parser.ml:</dt>
    765 <dd class="doc_code">
    766 <pre>
    767 (*===---------------------------------------------------------------------===
    768  * Parser
    769  *===---------------------------------------------------------------------===*)
    770 
    771 (* binop_precedence - This holds the precedence for each binary operator that is
    772  * defined *)
    773 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
    774 
    775 (* precedence - Get the precedence of the pending binary operator token. *)
    776 let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
    777 
    778 (* primary
    779  *   ::= identifier
    780  *   ::= numberexpr
    781  *   ::= parenexpr *)
    782 let rec parse_primary = parser
    783   (* numberexpr ::= number *)
    784   | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
    785 
    786   (* parenexpr ::= '(' expression ')' *)
    787   | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
    788 
    789   (* identifierexpr
    790    *   ::= identifier
    791    *   ::= identifier '(' argumentexpr ')' *)
    792   | [&lt; 'Token.Ident id; stream &gt;] -&gt;
    793       let rec parse_args accumulator = parser
    794         | [&lt; e=parse_expr; stream &gt;] -&gt;
    795             begin parser
    796               | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
    797               | [&lt; &gt;] -&gt; e :: accumulator
    798             end stream
    799         | [&lt; &gt;] -&gt; accumulator
    800       in
    801       let rec parse_ident id = parser
    802         (* Call. *)
    803         | [&lt; 'Token.Kwd '(';
    804              args=parse_args [];
    805              'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
    806             Ast.Call (id, Array.of_list (List.rev args))
    807 
    808         (* Simple variable ref. *)
    809         | [&lt; &gt;] -&gt; Ast.Variable id
    810       in
    811       parse_ident id stream
    812 
    813   | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
    814 
    815 (* binoprhs
    816  *   ::= ('+' primary)* *)
    817 and parse_bin_rhs expr_prec lhs stream =
    818   match Stream.peek stream with
    819   (* If this is a binop, find its precedence. *)
    820   | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
    821       let token_prec = precedence c in
    822 
    823       (* If this is a binop that binds at least as tightly as the current binop,
    824        * consume it, otherwise we are done. *)
    825       if token_prec &lt; expr_prec then lhs else begin
    826         (* Eat the binop. *)
    827         Stream.junk stream;
    828 
    829         (* Parse the primary expression after the binary operator. *)
    830         let rhs = parse_primary stream in
    831 
    832         (* Okay, we know this is a binop. *)
    833         let rhs =
    834           match Stream.peek stream with
    835           | Some (Token.Kwd c2) -&gt;
    836               (* If BinOp binds less tightly with rhs than the operator after
    837                * rhs, let the pending operator take rhs as its lhs. *)
    838               let next_prec = precedence c2 in
    839               if token_prec &lt; next_prec
    840               then parse_bin_rhs (token_prec + 1) rhs stream
    841               else rhs
    842           | _ -&gt; rhs
    843         in
    844 
    845         (* Merge lhs/rhs. *)
    846         let lhs = Ast.Binary (c, lhs, rhs) in
    847         parse_bin_rhs expr_prec lhs stream
    848       end
    849   | _ -&gt; lhs
    850 
    851 (* expression
    852  *   ::= primary binoprhs *)
    853 and parse_expr = parser
    854   | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
    855 
    856 (* prototype
    857  *   ::= id '(' id* ')' *)
    858 let parse_prototype =
    859   let rec parse_args accumulator = parser
    860     | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
    861     | [&lt; &gt;] -&gt; accumulator
    862   in
    863 
    864   parser
    865   | [&lt; 'Token.Ident id;
    866        'Token.Kwd '(' ?? "expected '(' in prototype";
    867        args=parse_args [];
    868        'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
    869       (* success. *)
    870       Ast.Prototype (id, Array.of_list (List.rev args))
    871 
    872   | [&lt; &gt;] -&gt;
    873       raise (Stream.Error "expected function name in prototype")
    874 
    875 (* definition ::= 'def' prototype expression *)
    876 let parse_definition = parser
    877   | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
    878       Ast.Function (p, e)
    879 
    880 (* toplevelexpr ::= expression *)
    881 let parse_toplevel = parser
    882   | [&lt; e=parse_expr &gt;] -&gt;
    883       (* Make an anonymous proto. *)
    884       Ast.Function (Ast.Prototype ("", [||]), e)
    885 
    886 (*  external ::= 'extern' prototype *)
    887 let parse_extern = parser
    888   | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
    889 </pre>
    890 </dd>
    891 
    892 <dt>codegen.ml:</dt>
    893 <dd class="doc_code">
    894 <pre>
    895 (*===----------------------------------------------------------------------===
    896  * Code Generation
    897  *===----------------------------------------------------------------------===*)
    898 
    899 open Llvm
    900 
    901 exception Error of string
    902 
    903 let context = global_context ()
    904 let the_module = create_module context "my cool jit"
    905 let builder = builder context
    906 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
    907 let double_type = double_type context
    908 
    909 let rec codegen_expr = function
    910   | Ast.Number n -&gt; const_float double_type n
    911   | Ast.Variable name -&gt;
    912       (try Hashtbl.find named_values name with
    913         | Not_found -&gt; raise (Error "unknown variable name"))
    914   | Ast.Binary (op, lhs, rhs) -&gt;
    915       let lhs_val = codegen_expr lhs in
    916       let rhs_val = codegen_expr rhs in
    917       begin
    918         match op with
    919         | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
    920         | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
    921         | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
    922         | '&lt;' -&gt;
    923             (* Convert bool 0/1 to double 0.0 or 1.0 *)
    924             let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
    925             build_uitofp i double_type "booltmp" builder
    926         | _ -&gt; raise (Error "invalid binary operator")
    927       end
    928   | Ast.Call (callee, args) -&gt;
    929       (* Look up the name in the module table. *)
    930       let callee =
    931         match lookup_function callee the_module with
    932         | Some callee -&gt; callee
    933         | None -&gt; raise (Error "unknown function referenced")
    934       in
    935       let params = params callee in
    936 
    937       (* If argument mismatch error. *)
    938       if Array.length params == Array.length args then () else
    939         raise (Error "incorrect # arguments passed");
    940       let args = Array.map codegen_expr args in
    941       build_call callee args "calltmp" builder
    942 
    943 let codegen_proto = function
    944   | Ast.Prototype (name, args) -&gt;
    945       (* Make the function type: double(double,double) etc. *)
    946       let doubles = Array.make (Array.length args) double_type in
    947       let ft = function_type double_type doubles in
    948       let f =
    949         match lookup_function name the_module with
    950         | None -&gt; declare_function name ft the_module
    951 
    952         (* If 'f' conflicted, there was already something named 'name'. If it
    953          * has a body, don't allow redefinition or reextern. *)
    954         | Some f -&gt;
    955             (* If 'f' already has a body, reject this. *)
    956             if block_begin f &lt;&gt; At_end f then
    957               raise (Error "redefinition of function");
    958 
    959             (* If 'f' took a different number of arguments, reject. *)
    960             if element_type (type_of f) &lt;&gt; ft then
    961               raise (Error "redefinition of function with different # args");
    962             f
    963       in
    964 
    965       (* Set names for all arguments. *)
    966       Array.iteri (fun i a -&gt;
    967         let n = args.(i) in
    968         set_value_name n a;
    969         Hashtbl.add named_values n a;
    970       ) (params f);
    971       f
    972 
    973 let codegen_func = function
    974   | Ast.Function (proto, body) -&gt;
    975       Hashtbl.clear named_values;
    976       let the_function = codegen_proto proto in
    977 
    978       (* Create a new basic block to start insertion into. *)
    979       let bb = append_block context "entry" the_function in
    980       position_at_end bb builder;
    981 
    982       try
    983         let ret_val = codegen_expr body in
    984 
    985         (* Finish off the function. *)
    986         let _ = build_ret ret_val builder in
    987 
    988         (* Validate the generated code, checking for consistency. *)
    989         Llvm_analysis.assert_valid_function the_function;
    990 
    991         the_function
    992       with e -&gt;
    993         delete_function the_function;
    994         raise e
    995 </pre>
    996 </dd>
    997 
    998 <dt>toplevel.ml:</dt>
    999 <dd class="doc_code">
   1000 <pre>
   1001 (*===----------------------------------------------------------------------===
   1002  * Top-Level parsing and JIT Driver
   1003  *===----------------------------------------------------------------------===*)
   1004 
   1005 open Llvm
   1006 
   1007 (* top ::= definition | external | expression | ';' *)
   1008 let rec main_loop stream =
   1009   match Stream.peek stream with
   1010   | None -&gt; ()
   1011 
   1012   (* ignore top-level semicolons. *)
   1013   | Some (Token.Kwd ';') -&gt;
   1014       Stream.junk stream;
   1015       main_loop stream
   1016 
   1017   | Some token -&gt;
   1018       begin
   1019         try match token with
   1020         | Token.Def -&gt;
   1021             let e = Parser.parse_definition stream in
   1022             print_endline "parsed a function definition.";
   1023             dump_value (Codegen.codegen_func e);
   1024         | Token.Extern -&gt;
   1025             let e = Parser.parse_extern stream in
   1026             print_endline "parsed an extern.";
   1027             dump_value (Codegen.codegen_proto e);
   1028         | _ -&gt;
   1029             (* Evaluate a top-level expression into an anonymous function. *)
   1030             let e = Parser.parse_toplevel stream in
   1031             print_endline "parsed a top-level expr";
   1032             dump_value (Codegen.codegen_func e);
   1033         with Stream.Error s | Codegen.Error s -&gt;
   1034           (* Skip token for error recovery. *)
   1035           Stream.junk stream;
   1036           print_endline s;
   1037       end;
   1038       print_string "ready&gt; "; flush stdout;
   1039       main_loop stream
   1040 </pre>
   1041 </dd>
   1042 
   1043 <dt>toy.ml:</dt>
   1044 <dd class="doc_code">
   1045 <pre>
   1046 (*===----------------------------------------------------------------------===
   1047  * Main driver code.
   1048  *===----------------------------------------------------------------------===*)
   1049 
   1050 open Llvm
   1051 
   1052 let main () =
   1053   (* Install standard binary operators.
   1054    * 1 is the lowest precedence. *)
   1055   Hashtbl.add Parser.binop_precedence '&lt;' 10;
   1056   Hashtbl.add Parser.binop_precedence '+' 20;
   1057   Hashtbl.add Parser.binop_precedence '-' 20;
   1058   Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
   1059 
   1060   (* Prime the first token. *)
   1061   print_string "ready&gt; "; flush stdout;
   1062   let stream = Lexer.lex (Stream.of_channel stdin) in
   1063 
   1064   (* Run the main "interpreter loop" now. *)
   1065   Toplevel.main_loop stream;
   1066 
   1067   (* Print out all the generated code. *)
   1068   dump_module Codegen.the_module
   1069 ;;
   1070 
   1071 main ()
   1072 </pre>
   1073 </dd>
   1074 </dl>
   1075 
   1076 <a href="OCamlLangImpl4.html">Next: Adding JIT and Optimizer Support</a>
   1077 </div>
   1078 
   1079 <!-- *********************************************************************** -->
   1080 <hr>
   1081 <address>
   1082   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   1083   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
   1084   <a href="http://validator.w3.org/check/referer"><img
   1085   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
   1086 
   1087   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   1088   <a href="mailto:idadesub (a] users.sourceforge.net">Erick Tryzelaar</a><br>
   1089   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   1090   Last modified: $Date$
   1091 </address>
   1092 </body>
   1093 </html>
   1094