1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 4 <html> 5 <head> 6 <title>Kaleidoscope: Adding JIT and Optimizer Support</title> 7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> 8 <meta name="author" content="Chris Lattner"> 9 <meta name="author" content="Erick Tryzelaar"> 10 <link rel="stylesheet" href="../_static/llvm.css" type="text/css"> 11 </head> 12 13 <body> 14 15 <h1>Kaleidoscope: Adding JIT and Optimizer Support</h1> 16 17 <ul> 18 <li><a href="index.html">Up to Tutorial Index</a></li> 19 <li>Chapter 4 20 <ol> 21 <li><a href="#intro">Chapter 4 Introduction</a></li> 22 <li><a href="#trivialconstfold">Trivial Constant Folding</a></li> 23 <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li> 24 <li><a href="#jit">Adding a JIT Compiler</a></li> 25 <li><a href="#code">Full Code Listing</a></li> 26 </ol> 27 </li> 28 <li><a href="OCamlLangImpl5.html">Chapter 5</a>: Extending the Language: Control 29 Flow</li> 30 </ul> 31 32 <div class="doc_author"> 33 <p> 34 Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a> 35 and <a href="mailto:idadesub (a] users.sourceforge.net">Erick Tryzelaar</a> 36 </p> 37 </div> 38 39 <!-- *********************************************************************** --> 40 <h2><a name="intro">Chapter 4 Introduction</a></h2> 41 <!-- *********************************************************************** --> 42 43 <div> 44 45 <p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language 46 with LLVM</a>" tutorial. Chapters 1-3 described the implementation of a simple 47 language and added support for generating LLVM IR. This chapter describes 48 two new techniques: adding optimizer support to your language, and adding JIT 49 compiler support. These additions will demonstrate how to get nice, efficient code 50 for the Kaleidoscope language.</p> 51 52 </div> 53 54 <!-- *********************************************************************** --> 55 <h2><a name="trivialconstfold">Trivial Constant Folding</a></h2> 56 <!-- *********************************************************************** --> 57 58 <div> 59 60 <p><b>Note:</b> the default <tt>IRBuilder</tt> now always includes the constant 61 folding optimisations below.<p> 62 63 <p> 64 Our demonstration for Chapter 3 is elegant and easy to extend. Unfortunately, 65 it does not produce wonderful code. For example, when compiling simple code, 66 we don't get obvious optimizations:</p> 67 68 <div class="doc_code"> 69 <pre> 70 ready> <b>def test(x) 1+2+x;</b> 71 Read function definition: 72 define double @test(double %x) { 73 entry: 74 %addtmp = fadd double 1.000000e+00, 2.000000e+00 75 %addtmp1 = fadd double %addtmp, %x 76 ret double %addtmp1 77 } 78 </pre> 79 </div> 80 81 <p>This code is a very, very literal transcription of the AST built by parsing 82 the input. As such, this transcription lacks optimizations like constant folding 83 (we'd like to get "<tt>add x, 3.0</tt>" in the example above) as well as other 84 more important optimizations. Constant folding, in particular, is a very common 85 and very important optimization: so much so that many language implementors 86 implement constant folding support in their AST representation.</p> 87 88 <p>With LLVM, you don't need this support in the AST. Since all calls to build 89 LLVM IR go through the LLVM builder, it would be nice if the builder itself 90 checked to see if there was a constant folding opportunity when you call it. 91 If so, it could just do the constant fold and return the constant instead of 92 creating an instruction. This is exactly what the <tt>LLVMFoldingBuilder</tt> 93 class does. 94 95 <p>All we did was switch from <tt>LLVMBuilder</tt> to 96 <tt>LLVMFoldingBuilder</tt>. Though we change no other code, we now have all of our 97 instructions implicitly constant folded without us having to do anything 98 about it. For example, the input above now compiles to:</p> 99 100 <div class="doc_code"> 101 <pre> 102 ready> <b>def test(x) 1+2+x;</b> 103 Read function definition: 104 define double @test(double %x) { 105 entry: 106 %addtmp = fadd double 3.000000e+00, %x 107 ret double %addtmp 108 } 109 </pre> 110 </div> 111 112 <p>Well, that was easy :). In practice, we recommend always using 113 <tt>LLVMFoldingBuilder</tt> when generating code like this. It has no 114 "syntactic overhead" for its use (you don't have to uglify your compiler with 115 constant checks everywhere) and it can dramatically reduce the amount of 116 LLVM IR that is generated in some cases (particular for languages with a macro 117 preprocessor or that use a lot of constants).</p> 118 119 <p>On the other hand, the <tt>LLVMFoldingBuilder</tt> is limited by the fact 120 that it does all of its analysis inline with the code as it is built. If you 121 take a slightly more complex example:</p> 122 123 <div class="doc_code"> 124 <pre> 125 ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> 126 ready> Read function definition: 127 define double @test(double %x) { 128 entry: 129 %addtmp = fadd double 3.000000e+00, %x 130 %addtmp1 = fadd double %x, 3.000000e+00 131 %multmp = fmul double %addtmp, %addtmp1 132 ret double %multmp 133 } 134 </pre> 135 </div> 136 137 <p>In this case, the LHS and RHS of the multiplication are the same value. We'd 138 really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead 139 of computing "<tt>x*3</tt>" twice.</p> 140 141 <p>Unfortunately, no amount of local analysis will be able to detect and correct 142 this. This requires two transformations: reassociation of expressions (to 143 make the add's lexically identical) and Common Subexpression Elimination (CSE) 144 to delete the redundant add instruction. Fortunately, LLVM provides a broad 145 range of optimizations that you can use, in the form of "passes".</p> 146 147 </div> 148 149 <!-- *********************************************************************** --> 150 <h2><a name="optimizerpasses">LLVM Optimization Passes</a></h2> 151 <!-- *********************************************************************** --> 152 153 <div> 154 155 <p>LLVM provides many optimization passes, which do many different sorts of 156 things and have different tradeoffs. Unlike other systems, LLVM doesn't hold 157 to the mistaken notion that one set of optimizations is right for all languages 158 and for all situations. LLVM allows a compiler implementor to make complete 159 decisions about what optimizations to use, in which order, and in what 160 situation.</p> 161 162 <p>As a concrete example, LLVM supports both "whole module" passes, which look 163 across as large of body of code as they can (often a whole file, but if run 164 at link time, this can be a substantial portion of the whole program). It also 165 supports and includes "per-function" passes which just operate on a single 166 function at a time, without looking at other functions. For more information 167 on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How 168 to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM 169 Passes</a>.</p> 170 171 <p>For Kaleidoscope, we are currently generating functions on the fly, one at 172 a time, as the user types them in. We aren't shooting for the ultimate 173 optimization experience in this setting, but we also want to catch the easy and 174 quick stuff where possible. As such, we will choose to run a few per-function 175 optimizations as the user types the function in. If we wanted to make a "static 176 Kaleidoscope compiler", we would use exactly the code we have now, except that 177 we would defer running the optimizer until the entire file has been parsed.</p> 178 179 <p>In order to get per-function optimizations going, we need to set up a 180 <a href="../WritingAnLLVMPass.html#passmanager">Llvm.PassManager</a> to hold and 181 organize the LLVM optimizations that we want to run. Once we have that, we can 182 add a set of optimizations to run. The code looks like this:</p> 183 184 <div class="doc_code"> 185 <pre> 186 (* Create the JIT. *) 187 let the_execution_engine = ExecutionEngine.create Codegen.the_module in 188 let the_fpm = PassManager.create_function Codegen.the_module in 189 190 (* Set up the optimizer pipeline. Start with registering info about how the 191 * target lays out data structures. *) 192 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm; 193 194 (* Do simple "peephole" optimizations and bit-twiddling optzn. *) 195 add_instruction_combining the_fpm; 196 197 (* reassociate expressions. *) 198 add_reassociation the_fpm; 199 200 (* Eliminate Common SubExpressions. *) 201 add_gvn the_fpm; 202 203 (* Simplify the control flow graph (deleting unreachable blocks, etc). *) 204 add_cfg_simplification the_fpm; 205 206 ignore (PassManager.initialize the_fpm); 207 208 (* Run the main "interpreter loop" now. *) 209 Toplevel.main_loop the_fpm the_execution_engine stream; 210 </pre> 211 </div> 212 213 <p>The meat of the matter here, is the definition of "<tt>the_fpm</tt>". It 214 requires a pointer to the <tt>the_module</tt> to construct itself. Once it is 215 set up, we use a series of "add" calls to add a bunch of LLVM passes. The 216 first pass is basically boilerplate, it adds a pass so that later optimizations 217 know how the data structures in the program are laid out. The 218 "<tt>the_execution_engine</tt>" variable is related to the JIT, which we will 219 get to in the next section.</p> 220 221 <p>In this case, we choose to add 4 optimization passes. The passes we chose 222 here are a pretty standard set of "cleanup" optimizations that are useful for 223 a wide variety of code. I won't delve into what they do but, believe me, 224 they are a good starting place :).</p> 225 226 <p>Once the <tt>Llvm.PassManager.</tt> is set up, we need to make use of it. 227 We do this by running it after our newly created function is constructed (in 228 <tt>Codegen.codegen_func</tt>), but before it is returned to the client:</p> 229 230 <div class="doc_code"> 231 <pre> 232 let codegen_func the_fpm = function 233 ... 234 try 235 let ret_val = codegen_expr body in 236 237 (* Finish off the function. *) 238 let _ = build_ret ret_val builder in 239 240 (* Validate the generated code, checking for consistency. *) 241 Llvm_analysis.assert_valid_function the_function; 242 243 (* Optimize the function. *) 244 let _ = PassManager.run_function the_function the_fpm in 245 246 the_function 247 </pre> 248 </div> 249 250 <p>As you can see, this is pretty straightforward. The <tt>the_fpm</tt> 251 optimizes and updates the LLVM Function* in place, improving (hopefully) its 252 body. With this in place, we can try our test above again:</p> 253 254 <div class="doc_code"> 255 <pre> 256 ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> 257 ready> Read function definition: 258 define double @test(double %x) { 259 entry: 260 %addtmp = fadd double %x, 3.000000e+00 261 %multmp = fmul double %addtmp, %addtmp 262 ret double %multmp 263 } 264 </pre> 265 </div> 266 267 <p>As expected, we now get our nicely optimized code, saving a floating point 268 add instruction from every execution of this function.</p> 269 270 <p>LLVM provides a wide variety of optimizations that can be used in certain 271 circumstances. Some <a href="../Passes.html">documentation about the various 272 passes</a> is available, but it isn't very complete. Another good source of 273 ideas can come from looking at the passes that <tt>Clang</tt> runs to get 274 started. The "<tt>opt</tt>" tool allows you to experiment with passes from the 275 command line, so you can see if they do anything.</p> 276 277 <p>Now that we have reasonable code coming out of our front-end, lets talk about 278 executing it!</p> 279 280 </div> 281 282 <!-- *********************************************************************** --> 283 <h2><a name="jit">Adding a JIT Compiler</a></h2> 284 <!-- *********************************************************************** --> 285 286 <div> 287 288 <p>Code that is available in LLVM IR can have a wide variety of tools 289 applied to it. For example, you can run optimizations on it (as we did above), 290 you can dump it out in textual or binary forms, you can compile the code to an 291 assembly file (.s) for some target, or you can JIT compile it. The nice thing 292 about the LLVM IR representation is that it is the "common currency" between 293 many different parts of the compiler. 294 </p> 295 296 <p>In this section, we'll add JIT compiler support to our interpreter. The 297 basic idea that we want for Kaleidoscope is to have the user enter function 298 bodies as they do now, but immediately evaluate the top-level expressions they 299 type in. For example, if they type in "1 + 2;", we should evaluate and print 300 out 3. If they define a function, they should be able to call it from the 301 command line.</p> 302 303 <p>In order to do this, we first declare and initialize the JIT. This is done 304 by adding a global variable and a call in <tt>main</tt>:</p> 305 306 <div class="doc_code"> 307 <pre> 308 ... 309 let main () = 310 ... 311 <b>(* Create the JIT. *) 312 let the_execution_engine = ExecutionEngine.create Codegen.the_module in</b> 313 ... 314 </pre> 315 </div> 316 317 <p>This creates an abstract "Execution Engine" which can be either a JIT 318 compiler or the LLVM interpreter. LLVM will automatically pick a JIT compiler 319 for you if one is available for your platform, otherwise it will fall back to 320 the interpreter.</p> 321 322 <p>Once the <tt>Llvm_executionengine.ExecutionEngine.t</tt> is created, the JIT 323 is ready to be used. There are a variety of APIs that are useful, but the 324 simplest one is the "<tt>Llvm_executionengine.ExecutionEngine.run_function</tt>" 325 function. This method JIT compiles the specified LLVM Function and returns a 326 function pointer to the generated machine code. In our case, this means that we 327 can change the code that parses a top-level expression to look like this:</p> 328 329 <div class="doc_code"> 330 <pre> 331 (* Evaluate a top-level expression into an anonymous function. *) 332 let e = Parser.parse_toplevel stream in 333 print_endline "parsed a top-level expr"; 334 let the_function = Codegen.codegen_func the_fpm e in 335 dump_value the_function; 336 337 (* JIT the function, returning a function pointer. *) 338 let result = ExecutionEngine.run_function the_function [||] 339 the_execution_engine in 340 341 print_string "Evaluated to "; 342 print_float (GenericValue.as_float Codegen.double_type result); 343 print_newline (); 344 </pre> 345 </div> 346 347 <p>Recall that we compile top-level expressions into a self-contained LLVM 348 function that takes no arguments and returns the computed double. Because the 349 LLVM JIT compiler matches the native platform ABI, this means that you can just 350 cast the result pointer to a function pointer of that type and call it directly. 351 This means, there is no difference between JIT compiled code and native machine 352 code that is statically linked into your application.</p> 353 354 <p>With just these two changes, lets see how Kaleidoscope works now!</p> 355 356 <div class="doc_code"> 357 <pre> 358 ready> <b>4+5;</b> 359 define double @""() { 360 entry: 361 ret double 9.000000e+00 362 } 363 364 <em>Evaluated to 9.000000</em> 365 </pre> 366 </div> 367 368 <p>Well this looks like it is basically working. The dump of the function 369 shows the "no argument function that always returns double" that we synthesize 370 for each top level expression that is typed in. This demonstrates very basic 371 functionality, but can we do more?</p> 372 373 <div class="doc_code"> 374 <pre> 375 ready> <b>def testfunc(x y) x + y*2; </b> 376 Read function definition: 377 define double @testfunc(double %x, double %y) { 378 entry: 379 %multmp = fmul double %y, 2.000000e+00 380 %addtmp = fadd double %multmp, %x 381 ret double %addtmp 382 } 383 384 ready> <b>testfunc(4, 10);</b> 385 define double @""() { 386 entry: 387 %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01) 388 ret double %calltmp 389 } 390 391 <em>Evaluated to 24.000000</em> 392 </pre> 393 </div> 394 395 <p>This illustrates that we can now call user code, but there is something a bit 396 subtle going on here. Note that we only invoke the JIT on the anonymous 397 functions that <em>call testfunc</em>, but we never invoked it 398 on <em>testfunc</em> itself. What actually happened here is that the JIT 399 scanned for all non-JIT'd functions transitively called from the anonymous 400 function and compiled all of them before returning 401 from <tt>run_function</tt>.</p> 402 403 <p>The JIT provides a number of other more advanced interfaces for things like 404 freeing allocated machine code, rejit'ing functions to update them, etc. 405 However, even with this simple code, we get some surprisingly powerful 406 capabilities - check this out (I removed the dump of the anonymous functions, 407 you should get the idea by now :) :</p> 408 409 <div class="doc_code"> 410 <pre> 411 ready> <b>extern sin(x);</b> 412 Read extern: 413 declare double @sin(double) 414 415 ready> <b>extern cos(x);</b> 416 Read extern: 417 declare double @cos(double) 418 419 ready> <b>sin(1.0);</b> 420 <em>Evaluated to 0.841471</em> 421 422 ready> <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b> 423 Read function definition: 424 define double @foo(double %x) { 425 entry: 426 %calltmp = call double @sin(double %x) 427 %multmp = fmul double %calltmp, %calltmp 428 %calltmp2 = call double @cos(double %x) 429 %multmp4 = fmul double %calltmp2, %calltmp2 430 %addtmp = fadd double %multmp, %multmp4 431 ret double %addtmp 432 } 433 434 ready> <b>foo(4.0);</b> 435 <em>Evaluated to 1.000000</em> 436 </pre> 437 </div> 438 439 <p>Whoa, how does the JIT know about sin and cos? The answer is surprisingly 440 simple: in this example, the JIT started execution of a function and got to a 441 function call. It realized that the function was not yet JIT compiled and 442 invoked the standard set of routines to resolve the function. In this case, 443 there is no body defined for the function, so the JIT ended up calling 444 "<tt>dlsym("sin")</tt>" on the Kaleidoscope process itself. Since 445 "<tt>sin</tt>" is defined within the JIT's address space, it simply patches up 446 calls in the module to call the libm version of <tt>sin</tt> directly.</p> 447 448 <p>The LLVM JIT provides a number of interfaces (look in the 449 <tt>llvm_executionengine.mli</tt> file) for controlling how unknown functions 450 get resolved. It allows you to establish explicit mappings between IR objects 451 and addresses (useful for LLVM global variables that you want to map to static 452 tables, for example), allows you to dynamically decide on the fly based on the 453 function name, and even allows you to have the JIT compile functions lazily the 454 first time they're called.</p> 455 456 <p>One interesting application of this is that we can now extend the language 457 by writing arbitrary C code to implement operations. For example, if we add: 458 </p> 459 460 <div class="doc_code"> 461 <pre> 462 /* putchard - putchar that takes a double and returns 0. */ 463 extern "C" 464 double putchard(double X) { 465 putchar((char)X); 466 return 0; 467 } 468 </pre> 469 </div> 470 471 <p>Now we can produce simple output to the console by using things like: 472 "<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on 473 the console (120 is the ASCII code for 'x'). Similar code could be used to 474 implement file I/O, console input, and many other capabilities in 475 Kaleidoscope.</p> 476 477 <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At 478 this point, we can compile a non-Turing-complete programming language, optimize 479 and JIT compile it in a user-driven way. Next up we'll look into <a 480 href="OCamlLangImpl5.html">extending the language with control flow 481 constructs</a>, tackling some interesting LLVM IR issues along the way.</p> 482 483 </div> 484 485 <!-- *********************************************************************** --> 486 <h2><a name="code">Full Code Listing</a></h2> 487 <!-- *********************************************************************** --> 488 489 <div> 490 491 <p> 492 Here is the complete code listing for our running example, enhanced with the 493 LLVM JIT and optimizer. To build this example, use: 494 </p> 495 496 <div class="doc_code"> 497 <pre> 498 # Compile 499 ocamlbuild toy.byte 500 # Run 501 ./toy.byte 502 </pre> 503 </div> 504 505 <p>Here is the code:</p> 506 507 <dl> 508 <dt>_tags:</dt> 509 <dd class="doc_code"> 510 <pre> 511 <{lexer,parser}.ml>: use_camlp4, pp(camlp4of) 512 <*.{byte,native}>: g++, use_llvm, use_llvm_analysis 513 <*.{byte,native}>: use_llvm_executionengine, use_llvm_target 514 <*.{byte,native}>: use_llvm_scalar_opts, use_bindings 515 </pre> 516 </dd> 517 518 <dt>myocamlbuild.ml:</dt> 519 <dd class="doc_code"> 520 <pre> 521 open Ocamlbuild_plugin;; 522 523 ocaml_lib ~extern:true "llvm";; 524 ocaml_lib ~extern:true "llvm_analysis";; 525 ocaml_lib ~extern:true "llvm_executionengine";; 526 ocaml_lib ~extern:true "llvm_target";; 527 ocaml_lib ~extern:true "llvm_scalar_opts";; 528 529 flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);; 530 dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];; 531 </pre> 532 </dd> 533 534 <dt>token.ml:</dt> 535 <dd class="doc_code"> 536 <pre> 537 (*===----------------------------------------------------------------------=== 538 * Lexer Tokens 539 *===----------------------------------------------------------------------===*) 540 541 (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of 542 * these others for known things. *) 543 type token = 544 (* commands *) 545 | Def | Extern 546 547 (* primary *) 548 | Ident of string | Number of float 549 550 (* unknown *) 551 | Kwd of char 552 </pre> 553 </dd> 554 555 <dt>lexer.ml:</dt> 556 <dd class="doc_code"> 557 <pre> 558 (*===----------------------------------------------------------------------=== 559 * Lexer 560 *===----------------------------------------------------------------------===*) 561 562 let rec lex = parser 563 (* Skip any whitespace. *) 564 | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream 565 566 (* identifier: [a-zA-Z][a-zA-Z0-9] *) 567 | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> 568 let buffer = Buffer.create 1 in 569 Buffer.add_char buffer c; 570 lex_ident buffer stream 571 572 (* number: [0-9.]+ *) 573 | [< ' ('0' .. '9' as c); stream >] -> 574 let buffer = Buffer.create 1 in 575 Buffer.add_char buffer c; 576 lex_number buffer stream 577 578 (* Comment until end of line. *) 579 | [< ' ('#'); stream >] -> 580 lex_comment stream 581 582 (* Otherwise, just return the character as its ascii value. *) 583 | [< 'c; stream >] -> 584 [< 'Token.Kwd c; lex stream >] 585 586 (* end of stream. *) 587 | [< >] -> [< >] 588 589 and lex_number buffer = parser 590 | [< ' ('0' .. '9' | '.' as c); stream >] -> 591 Buffer.add_char buffer c; 592 lex_number buffer stream 593 | [< stream=lex >] -> 594 [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] 595 596 and lex_ident buffer = parser 597 | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> 598 Buffer.add_char buffer c; 599 lex_ident buffer stream 600 | [< stream=lex >] -> 601 match Buffer.contents buffer with 602 | "def" -> [< 'Token.Def; stream >] 603 | "extern" -> [< 'Token.Extern; stream >] 604 | id -> [< 'Token.Ident id; stream >] 605 606 and lex_comment = parser 607 | [< ' ('\n'); stream=lex >] -> stream 608 | [< 'c; e=lex_comment >] -> e 609 | [< >] -> [< >] 610 </pre> 611 </dd> 612 613 <dt>ast.ml:</dt> 614 <dd class="doc_code"> 615 <pre> 616 (*===----------------------------------------------------------------------=== 617 * Abstract Syntax Tree (aka Parse Tree) 618 *===----------------------------------------------------------------------===*) 619 620 (* expr - Base type for all expression nodes. *) 621 type expr = 622 (* variant for numeric literals like "1.0". *) 623 | Number of float 624 625 (* variant for referencing a variable, like "a". *) 626 | Variable of string 627 628 (* variant for a binary operator. *) 629 | Binary of char * expr * expr 630 631 (* variant for function calls. *) 632 | Call of string * expr array 633 634 (* proto - This type represents the "prototype" for a function, which captures 635 * its name, and its argument names (thus implicitly the number of arguments the 636 * function takes). *) 637 type proto = Prototype of string * string array 638 639 (* func - This type represents a function definition itself. *) 640 type func = Function of proto * expr 641 </pre> 642 </dd> 643 644 <dt>parser.ml:</dt> 645 <dd class="doc_code"> 646 <pre> 647 (*===---------------------------------------------------------------------=== 648 * Parser 649 *===---------------------------------------------------------------------===*) 650 651 (* binop_precedence - This holds the precedence for each binary operator that is 652 * defined *) 653 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 654 655 (* precedence - Get the precedence of the pending binary operator token. *) 656 let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 657 658 (* primary 659 * ::= identifier 660 * ::= numberexpr 661 * ::= parenexpr *) 662 let rec parse_primary = parser 663 (* numberexpr ::= number *) 664 | [< 'Token.Number n >] -> Ast.Number n 665 666 (* parenexpr ::= '(' expression ')' *) 667 | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e 668 669 (* identifierexpr 670 * ::= identifier 671 * ::= identifier '(' argumentexpr ')' *) 672 | [< 'Token.Ident id; stream >] -> 673 let rec parse_args accumulator = parser 674 | [< e=parse_expr; stream >] -> 675 begin parser 676 | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e 677 | [< >] -> e :: accumulator 678 end stream 679 | [< >] -> accumulator 680 in 681 let rec parse_ident id = parser 682 (* Call. *) 683 | [< 'Token.Kwd '('; 684 args=parse_args []; 685 'Token.Kwd ')' ?? "expected ')'">] -> 686 Ast.Call (id, Array.of_list (List.rev args)) 687 688 (* Simple variable ref. *) 689 | [< >] -> Ast.Variable id 690 in 691 parse_ident id stream 692 693 | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") 694 695 (* binoprhs 696 * ::= ('+' primary)* *) 697 and parse_bin_rhs expr_prec lhs stream = 698 match Stream.peek stream with 699 (* If this is a binop, find its precedence. *) 700 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> 701 let token_prec = precedence c in 702 703 (* If this is a binop that binds at least as tightly as the current binop, 704 * consume it, otherwise we are done. *) 705 if token_prec < expr_prec then lhs else begin 706 (* Eat the binop. *) 707 Stream.junk stream; 708 709 (* Parse the primary expression after the binary operator. *) 710 let rhs = parse_primary stream in 711 712 (* Okay, we know this is a binop. *) 713 let rhs = 714 match Stream.peek stream with 715 | Some (Token.Kwd c2) -> 716 (* If BinOp binds less tightly with rhs than the operator after 717 * rhs, let the pending operator take rhs as its lhs. *) 718 let next_prec = precedence c2 in 719 if token_prec < next_prec 720 then parse_bin_rhs (token_prec + 1) rhs stream 721 else rhs 722 | _ -> rhs 723 in 724 725 (* Merge lhs/rhs. *) 726 let lhs = Ast.Binary (c, lhs, rhs) in 727 parse_bin_rhs expr_prec lhs stream 728 end 729 | _ -> lhs 730 731 (* expression 732 * ::= primary binoprhs *) 733 and parse_expr = parser 734 | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream 735 736 (* prototype 737 * ::= id '(' id* ')' *) 738 let parse_prototype = 739 let rec parse_args accumulator = parser 740 | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e 741 | [< >] -> accumulator 742 in 743 744 parser 745 | [< 'Token.Ident id; 746 'Token.Kwd '(' ?? "expected '(' in prototype"; 747 args=parse_args []; 748 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> 749 (* success. *) 750 Ast.Prototype (id, Array.of_list (List.rev args)) 751 752 | [< >] -> 753 raise (Stream.Error "expected function name in prototype") 754 755 (* definition ::= 'def' prototype expression *) 756 let parse_definition = parser 757 | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> 758 Ast.Function (p, e) 759 760 (* toplevelexpr ::= expression *) 761 let parse_toplevel = parser 762 | [< e=parse_expr >] -> 763 (* Make an anonymous proto. *) 764 Ast.Function (Ast.Prototype ("", [||]), e) 765 766 (* external ::= 'extern' prototype *) 767 let parse_extern = parser 768 | [< 'Token.Extern; e=parse_prototype >] -> e 769 </pre> 770 </dd> 771 772 <dt>codegen.ml:</dt> 773 <dd class="doc_code"> 774 <pre> 775 (*===----------------------------------------------------------------------=== 776 * Code Generation 777 *===----------------------------------------------------------------------===*) 778 779 open Llvm 780 781 exception Error of string 782 783 let context = global_context () 784 let the_module = create_module context "my cool jit" 785 let builder = builder context 786 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 787 let double_type = double_type context 788 789 let rec codegen_expr = function 790 | Ast.Number n -> const_float double_type n 791 | Ast.Variable name -> 792 (try Hashtbl.find named_values name with 793 | Not_found -> raise (Error "unknown variable name")) 794 | Ast.Binary (op, lhs, rhs) -> 795 let lhs_val = codegen_expr lhs in 796 let rhs_val = codegen_expr rhs in 797 begin 798 match op with 799 | '+' -> build_add lhs_val rhs_val "addtmp" builder 800 | '-' -> build_sub lhs_val rhs_val "subtmp" builder 801 | '*' -> build_mul lhs_val rhs_val "multmp" builder 802 | '<' -> 803 (* Convert bool 0/1 to double 0.0 or 1.0 *) 804 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in 805 build_uitofp i double_type "booltmp" builder 806 | _ -> raise (Error "invalid binary operator") 807 end 808 | Ast.Call (callee, args) -> 809 (* Look up the name in the module table. *) 810 let callee = 811 match lookup_function callee the_module with 812 | Some callee -> callee 813 | None -> raise (Error "unknown function referenced") 814 in 815 let params = params callee in 816 817 (* If argument mismatch error. *) 818 if Array.length params == Array.length args then () else 819 raise (Error "incorrect # arguments passed"); 820 let args = Array.map codegen_expr args in 821 build_call callee args "calltmp" builder 822 823 let codegen_proto = function 824 | Ast.Prototype (name, args) -> 825 (* Make the function type: double(double,double) etc. *) 826 let doubles = Array.make (Array.length args) double_type in 827 let ft = function_type double_type doubles in 828 let f = 829 match lookup_function name the_module with 830 | None -> declare_function name ft the_module 831 832 (* If 'f' conflicted, there was already something named 'name'. If it 833 * has a body, don't allow redefinition or reextern. *) 834 | Some f -> 835 (* If 'f' already has a body, reject this. *) 836 if block_begin f <> At_end f then 837 raise (Error "redefinition of function"); 838 839 (* If 'f' took a different number of arguments, reject. *) 840 if element_type (type_of f) <> ft then 841 raise (Error "redefinition of function with different # args"); 842 f 843 in 844 845 (* Set names for all arguments. *) 846 Array.iteri (fun i a -> 847 let n = args.(i) in 848 set_value_name n a; 849 Hashtbl.add named_values n a; 850 ) (params f); 851 f 852 853 let codegen_func the_fpm = function 854 | Ast.Function (proto, body) -> 855 Hashtbl.clear named_values; 856 let the_function = codegen_proto proto in 857 858 (* Create a new basic block to start insertion into. *) 859 let bb = append_block context "entry" the_function in 860 position_at_end bb builder; 861 862 try 863 let ret_val = codegen_expr body in 864 865 (* Finish off the function. *) 866 let _ = build_ret ret_val builder in 867 868 (* Validate the generated code, checking for consistency. *) 869 Llvm_analysis.assert_valid_function the_function; 870 871 (* Optimize the function. *) 872 let _ = PassManager.run_function the_function the_fpm in 873 874 the_function 875 with e -> 876 delete_function the_function; 877 raise e 878 </pre> 879 </dd> 880 881 <dt>toplevel.ml:</dt> 882 <dd class="doc_code"> 883 <pre> 884 (*===----------------------------------------------------------------------=== 885 * Top-Level parsing and JIT Driver 886 *===----------------------------------------------------------------------===*) 887 888 open Llvm 889 open Llvm_executionengine 890 891 (* top ::= definition | external | expression | ';' *) 892 let rec main_loop the_fpm the_execution_engine stream = 893 match Stream.peek stream with 894 | None -> () 895 896 (* ignore top-level semicolons. *) 897 | Some (Token.Kwd ';') -> 898 Stream.junk stream; 899 main_loop the_fpm the_execution_engine stream 900 901 | Some token -> 902 begin 903 try match token with 904 | Token.Def -> 905 let e = Parser.parse_definition stream in 906 print_endline "parsed a function definition."; 907 dump_value (Codegen.codegen_func the_fpm e); 908 | Token.Extern -> 909 let e = Parser.parse_extern stream in 910 print_endline "parsed an extern."; 911 dump_value (Codegen.codegen_proto e); 912 | _ -> 913 (* Evaluate a top-level expression into an anonymous function. *) 914 let e = Parser.parse_toplevel stream in 915 print_endline "parsed a top-level expr"; 916 let the_function = Codegen.codegen_func the_fpm e in 917 dump_value the_function; 918 919 (* JIT the function, returning a function pointer. *) 920 let result = ExecutionEngine.run_function the_function [||] 921 the_execution_engine in 922 923 print_string "Evaluated to "; 924 print_float (GenericValue.as_float Codegen.double_type result); 925 print_newline (); 926 with Stream.Error s | Codegen.Error s -> 927 (* Skip token for error recovery. *) 928 Stream.junk stream; 929 print_endline s; 930 end; 931 print_string "ready> "; flush stdout; 932 main_loop the_fpm the_execution_engine stream 933 </pre> 934 </dd> 935 936 <dt>toy.ml:</dt> 937 <dd class="doc_code"> 938 <pre> 939 (*===----------------------------------------------------------------------=== 940 * Main driver code. 941 *===----------------------------------------------------------------------===*) 942 943 open Llvm 944 open Llvm_executionengine 945 open Llvm_target 946 open Llvm_scalar_opts 947 948 let main () = 949 ignore (initialize_native_target ()); 950 951 (* Install standard binary operators. 952 * 1 is the lowest precedence. *) 953 Hashtbl.add Parser.binop_precedence '<' 10; 954 Hashtbl.add Parser.binop_precedence '+' 20; 955 Hashtbl.add Parser.binop_precedence '-' 20; 956 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *) 957 958 (* Prime the first token. *) 959 print_string "ready> "; flush stdout; 960 let stream = Lexer.lex (Stream.of_channel stdin) in 961 962 (* Create the JIT. *) 963 let the_execution_engine = ExecutionEngine.create Codegen.the_module in 964 let the_fpm = PassManager.create_function Codegen.the_module in 965 966 (* Set up the optimizer pipeline. Start with registering info about how the 967 * target lays out data structures. *) 968 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm; 969 970 (* Do simple "peephole" optimizations and bit-twiddling optzn. *) 971 add_instruction_combination the_fpm; 972 973 (* reassociate expressions. *) 974 add_reassociation the_fpm; 975 976 (* Eliminate Common SubExpressions. *) 977 add_gvn the_fpm; 978 979 (* Simplify the control flow graph (deleting unreachable blocks, etc). *) 980 add_cfg_simplification the_fpm; 981 982 ignore (PassManager.initialize the_fpm); 983 984 (* Run the main "interpreter loop" now. *) 985 Toplevel.main_loop the_fpm the_execution_engine stream; 986 987 (* Print out all the generated code. *) 988 dump_module Codegen.the_module 989 ;; 990 991 main () 992 </pre> 993 </dd> 994 995 <dt>bindings.c</dt> 996 <dd class="doc_code"> 997 <pre> 998 #include <stdio.h> 999 1000 /* putchard - putchar that takes a double and returns 0. */ 1001 extern double putchard(double X) { 1002 putchar((char)X); 1003 return 0; 1004 } 1005 </pre> 1006 </dd> 1007 </dl> 1008 1009 <a href="OCamlLangImpl5.html">Next: Extending the language: control flow</a> 1010 </div> 1011 1012 <!-- *********************************************************************** --> 1013 <hr> 1014 <address> 1015 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img 1016 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> 1017 <a href="http://validator.w3.org/check/referer"><img 1018 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> 1019 1020 <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br> 1021 <a href="mailto:idadesub (a] users.sourceforge.net">Erick Tryzelaar</a><br> 1022 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br> 1023 Last modified: $Date$ 1024 </address> 1025 </body> 1026 </html> 1027