Home | History | Annotate | Download | only in Analysis
      1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements inline cost analysis.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "inline-cost"
     15 #include "llvm/Analysis/InlineCost.h"
     16 #include "llvm/Analysis/ConstantFolding.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 #include "llvm/Support/CallSite.h"
     19 #include "llvm/Support/Debug.h"
     20 #include "llvm/Support/InstVisitor.h"
     21 #include "llvm/Support/GetElementPtrTypeIterator.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 #include "llvm/CallingConv.h"
     24 #include "llvm/IntrinsicInst.h"
     25 #include "llvm/Operator.h"
     26 #include "llvm/GlobalAlias.h"
     27 #include "llvm/Target/TargetData.h"
     28 #include "llvm/ADT/STLExtras.h"
     29 #include "llvm/ADT/SetVector.h"
     30 #include "llvm/ADT/SmallVector.h"
     31 #include "llvm/ADT/SmallPtrSet.h"
     32 #include "llvm/ADT/Statistic.h"
     33 
     34 using namespace llvm;
     35 
     36 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
     37 
     38 namespace {
     39 
     40 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
     41   typedef InstVisitor<CallAnalyzer, bool> Base;
     42   friend class InstVisitor<CallAnalyzer, bool>;
     43 
     44   // TargetData if available, or null.
     45   const TargetData *const TD;
     46 
     47   // The called function.
     48   Function &F;
     49 
     50   int Threshold;
     51   int Cost;
     52   const bool AlwaysInline;
     53 
     54   bool IsRecursive;
     55   bool ExposesReturnsTwice;
     56   bool HasDynamicAlloca;
     57   unsigned NumInstructions, NumVectorInstructions;
     58   int FiftyPercentVectorBonus, TenPercentVectorBonus;
     59   int VectorBonus;
     60 
     61   // While we walk the potentially-inlined instructions, we build up and
     62   // maintain a mapping of simplified values specific to this callsite. The
     63   // idea is to propagate any special information we have about arguments to
     64   // this call through the inlinable section of the function, and account for
     65   // likely simplifications post-inlining. The most important aspect we track
     66   // is CFG altering simplifications -- when we prove a basic block dead, that
     67   // can cause dramatic shifts in the cost of inlining a function.
     68   DenseMap<Value *, Constant *> SimplifiedValues;
     69 
     70   // Keep track of the values which map back (through function arguments) to
     71   // allocas on the caller stack which could be simplified through SROA.
     72   DenseMap<Value *, Value *> SROAArgValues;
     73 
     74   // The mapping of caller Alloca values to their accumulated cost savings. If
     75   // we have to disable SROA for one of the allocas, this tells us how much
     76   // cost must be added.
     77   DenseMap<Value *, int> SROAArgCosts;
     78 
     79   // Keep track of values which map to a pointer base and constant offset.
     80   DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs;
     81 
     82   // Custom simplification helper routines.
     83   bool isAllocaDerivedArg(Value *V);
     84   bool lookupSROAArgAndCost(Value *V, Value *&Arg,
     85                             DenseMap<Value *, int>::iterator &CostIt);
     86   void disableSROA(DenseMap<Value *, int>::iterator CostIt);
     87   void disableSROA(Value *V);
     88   void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
     89                           int InstructionCost);
     90   bool handleSROACandidate(bool IsSROAValid,
     91                            DenseMap<Value *, int>::iterator CostIt,
     92                            int InstructionCost);
     93   bool isGEPOffsetConstant(GetElementPtrInst &GEP);
     94   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
     95   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
     96 
     97   // Custom analysis routines.
     98   bool analyzeBlock(BasicBlock *BB);
     99 
    100   // Disable several entry points to the visitor so we don't accidentally use
    101   // them by declaring but not defining them here.
    102   void visit(Module *);     void visit(Module &);
    103   void visit(Function *);   void visit(Function &);
    104   void visit(BasicBlock *); void visit(BasicBlock &);
    105 
    106   // Provide base case for our instruction visit.
    107   bool visitInstruction(Instruction &I);
    108 
    109   // Our visit overrides.
    110   bool visitAlloca(AllocaInst &I);
    111   bool visitPHI(PHINode &I);
    112   bool visitGetElementPtr(GetElementPtrInst &I);
    113   bool visitBitCast(BitCastInst &I);
    114   bool visitPtrToInt(PtrToIntInst &I);
    115   bool visitIntToPtr(IntToPtrInst &I);
    116   bool visitCastInst(CastInst &I);
    117   bool visitUnaryInstruction(UnaryInstruction &I);
    118   bool visitICmp(ICmpInst &I);
    119   bool visitSub(BinaryOperator &I);
    120   bool visitBinaryOperator(BinaryOperator &I);
    121   bool visitLoad(LoadInst &I);
    122   bool visitStore(StoreInst &I);
    123   bool visitCallSite(CallSite CS);
    124 
    125 public:
    126   CallAnalyzer(const TargetData *TD, Function &Callee, int Threshold)
    127     : TD(TD), F(Callee), Threshold(Threshold), Cost(0),
    128       AlwaysInline(F.hasFnAttr(Attribute::AlwaysInline)),
    129       IsRecursive(false), ExposesReturnsTwice(false), HasDynamicAlloca(false),
    130       NumInstructions(0), NumVectorInstructions(0),
    131       FiftyPercentVectorBonus(0), TenPercentVectorBonus(0), VectorBonus(0),
    132       NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0),
    133       NumConstantPtrCmps(0), NumConstantPtrDiffs(0),
    134       NumInstructionsSimplified(0), SROACostSavings(0), SROACostSavingsLost(0) {
    135   }
    136 
    137   bool analyzeCall(CallSite CS);
    138 
    139   int getThreshold() { return Threshold; }
    140   int getCost() { return Cost; }
    141 
    142   // Keep a bunch of stats about the cost savings found so we can print them
    143   // out when debugging.
    144   unsigned NumConstantArgs;
    145   unsigned NumConstantOffsetPtrArgs;
    146   unsigned NumAllocaArgs;
    147   unsigned NumConstantPtrCmps;
    148   unsigned NumConstantPtrDiffs;
    149   unsigned NumInstructionsSimplified;
    150   unsigned SROACostSavings;
    151   unsigned SROACostSavingsLost;
    152 
    153   void dump();
    154 };
    155 
    156 } // namespace
    157 
    158 /// \brief Test whether the given value is an Alloca-derived function argument.
    159 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
    160   return SROAArgValues.count(V);
    161 }
    162 
    163 /// \brief Lookup the SROA-candidate argument and cost iterator which V maps to.
    164 /// Returns false if V does not map to a SROA-candidate.
    165 bool CallAnalyzer::lookupSROAArgAndCost(
    166     Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
    167   if (SROAArgValues.empty() || SROAArgCosts.empty())
    168     return false;
    169 
    170   DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
    171   if (ArgIt == SROAArgValues.end())
    172     return false;
    173 
    174   Arg = ArgIt->second;
    175   CostIt = SROAArgCosts.find(Arg);
    176   return CostIt != SROAArgCosts.end();
    177 }
    178 
    179 /// \brief Disable SROA for the candidate marked by this cost iterator.
    180 ///
    181 /// This marks the candidate as no longer viable for SROA, and adds the cost
    182 /// savings associated with it back into the inline cost measurement.
    183 void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
    184   // If we're no longer able to perform SROA we need to undo its cost savings
    185   // and prevent subsequent analysis.
    186   Cost += CostIt->second;
    187   SROACostSavings -= CostIt->second;
    188   SROACostSavingsLost += CostIt->second;
    189   SROAArgCosts.erase(CostIt);
    190 }
    191 
    192 /// \brief If 'V' maps to a SROA candidate, disable SROA for it.
    193 void CallAnalyzer::disableSROA(Value *V) {
    194   Value *SROAArg;
    195   DenseMap<Value *, int>::iterator CostIt;
    196   if (lookupSROAArgAndCost(V, SROAArg, CostIt))
    197     disableSROA(CostIt);
    198 }
    199 
    200 /// \brief Accumulate the given cost for a particular SROA candidate.
    201 void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
    202                                       int InstructionCost) {
    203   CostIt->second += InstructionCost;
    204   SROACostSavings += InstructionCost;
    205 }
    206 
    207 /// \brief Helper for the common pattern of handling a SROA candidate.
    208 /// Either accumulates the cost savings if the SROA remains valid, or disables
    209 /// SROA for the candidate.
    210 bool CallAnalyzer::handleSROACandidate(bool IsSROAValid,
    211                                        DenseMap<Value *, int>::iterator CostIt,
    212                                        int InstructionCost) {
    213   if (IsSROAValid) {
    214     accumulateSROACost(CostIt, InstructionCost);
    215     return true;
    216   }
    217 
    218   disableSROA(CostIt);
    219   return false;
    220 }
    221 
    222 /// \brief Check whether a GEP's indices are all constant.
    223 ///
    224 /// Respects any simplified values known during the analysis of this callsite.
    225 bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
    226   for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
    227     if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
    228       return false;
    229 
    230   return true;
    231 }
    232 
    233 /// \brief Accumulate a constant GEP offset into an APInt if possible.
    234 ///
    235 /// Returns false if unable to compute the offset for any reason. Respects any
    236 /// simplified values known during the analysis of this callsite.
    237 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
    238   if (!TD)
    239     return false;
    240 
    241   unsigned IntPtrWidth = TD->getPointerSizeInBits();
    242   assert(IntPtrWidth == Offset.getBitWidth());
    243 
    244   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
    245        GTI != GTE; ++GTI) {
    246     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
    247     if (!OpC)
    248       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
    249         OpC = dyn_cast<ConstantInt>(SimpleOp);
    250     if (!OpC)
    251       return false;
    252     if (OpC->isZero()) continue;
    253 
    254     // Handle a struct index, which adds its field offset to the pointer.
    255     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    256       unsigned ElementIdx = OpC->getZExtValue();
    257       const StructLayout *SL = TD->getStructLayout(STy);
    258       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
    259       continue;
    260     }
    261 
    262     APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType()));
    263     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
    264   }
    265   return true;
    266 }
    267 
    268 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
    269   // FIXME: Check whether inlining will turn a dynamic alloca into a static
    270   // alloca, and handle that case.
    271 
    272   // We will happily inline static alloca instructions or dynamic alloca
    273   // instructions in always-inline situations.
    274   if (AlwaysInline || I.isStaticAlloca())
    275     return Base::visitAlloca(I);
    276 
    277   // FIXME: This is overly conservative. Dynamic allocas are inefficient for
    278   // a variety of reasons, and so we would like to not inline them into
    279   // functions which don't currently have a dynamic alloca. This simply
    280   // disables inlining altogether in the presence of a dynamic alloca.
    281   HasDynamicAlloca = true;
    282   return false;
    283 }
    284 
    285 bool CallAnalyzer::visitPHI(PHINode &I) {
    286   // FIXME: We should potentially be tracking values through phi nodes,
    287   // especially when they collapse to a single value due to deleted CFG edges
    288   // during inlining.
    289 
    290   // FIXME: We need to propagate SROA *disabling* through phi nodes, even
    291   // though we don't want to propagate it's bonuses. The idea is to disable
    292   // SROA if it *might* be used in an inappropriate manner.
    293 
    294   // Phi nodes are always zero-cost.
    295   return true;
    296 }
    297 
    298 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
    299   Value *SROAArg;
    300   DenseMap<Value *, int>::iterator CostIt;
    301   bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(),
    302                                             SROAArg, CostIt);
    303 
    304   // Try to fold GEPs of constant-offset call site argument pointers. This
    305   // requires target data and inbounds GEPs.
    306   if (TD && I.isInBounds()) {
    307     // Check if we have a base + offset for the pointer.
    308     Value *Ptr = I.getPointerOperand();
    309     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
    310     if (BaseAndOffset.first) {
    311       // Check if the offset of this GEP is constant, and if so accumulate it
    312       // into Offset.
    313       if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) {
    314         // Non-constant GEPs aren't folded, and disable SROA.
    315         if (SROACandidate)
    316           disableSROA(CostIt);
    317         return false;
    318       }
    319 
    320       // Add the result as a new mapping to Base + Offset.
    321       ConstantOffsetPtrs[&I] = BaseAndOffset;
    322 
    323       // Also handle SROA candidates here, we already know that the GEP is
    324       // all-constant indexed.
    325       if (SROACandidate)
    326         SROAArgValues[&I] = SROAArg;
    327 
    328       return true;
    329     }
    330   }
    331 
    332   if (isGEPOffsetConstant(I)) {
    333     if (SROACandidate)
    334       SROAArgValues[&I] = SROAArg;
    335 
    336     // Constant GEPs are modeled as free.
    337     return true;
    338   }
    339 
    340   // Variable GEPs will require math and will disable SROA.
    341   if (SROACandidate)
    342     disableSROA(CostIt);
    343   return false;
    344 }
    345 
    346 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
    347   // Propagate constants through bitcasts.
    348   if (Constant *COp = dyn_cast<Constant>(I.getOperand(0)))
    349     if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
    350       SimplifiedValues[&I] = C;
    351       return true;
    352     }
    353 
    354   // Track base/offsets through casts
    355   std::pair<Value *, APInt> BaseAndOffset
    356     = ConstantOffsetPtrs.lookup(I.getOperand(0));
    357   // Casts don't change the offset, just wrap it up.
    358   if (BaseAndOffset.first)
    359     ConstantOffsetPtrs[&I] = BaseAndOffset;
    360 
    361   // Also look for SROA candidates here.
    362   Value *SROAArg;
    363   DenseMap<Value *, int>::iterator CostIt;
    364   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
    365     SROAArgValues[&I] = SROAArg;
    366 
    367   // Bitcasts are always zero cost.
    368   return true;
    369 }
    370 
    371 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
    372   // Propagate constants through ptrtoint.
    373   if (Constant *COp = dyn_cast<Constant>(I.getOperand(0)))
    374     if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
    375       SimplifiedValues[&I] = C;
    376       return true;
    377     }
    378 
    379   // Track base/offset pairs when converted to a plain integer provided the
    380   // integer is large enough to represent the pointer.
    381   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
    382   if (TD && IntegerSize >= TD->getPointerSizeInBits()) {
    383     std::pair<Value *, APInt> BaseAndOffset
    384       = ConstantOffsetPtrs.lookup(I.getOperand(0));
    385     if (BaseAndOffset.first)
    386       ConstantOffsetPtrs[&I] = BaseAndOffset;
    387   }
    388 
    389   // This is really weird. Technically, ptrtoint will disable SROA. However,
    390   // unless that ptrtoint is *used* somewhere in the live basic blocks after
    391   // inlining, it will be nuked, and SROA should proceed. All of the uses which
    392   // would block SROA would also block SROA if applied directly to a pointer,
    393   // and so we can just add the integer in here. The only places where SROA is
    394   // preserved either cannot fire on an integer, or won't in-and-of themselves
    395   // disable SROA (ext) w/o some later use that we would see and disable.
    396   Value *SROAArg;
    397   DenseMap<Value *, int>::iterator CostIt;
    398   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
    399     SROAArgValues[&I] = SROAArg;
    400 
    401   return isInstructionFree(&I, TD);
    402 }
    403 
    404 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
    405   // Propagate constants through ptrtoint.
    406   if (Constant *COp = dyn_cast<Constant>(I.getOperand(0)))
    407     if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
    408       SimplifiedValues[&I] = C;
    409       return true;
    410     }
    411 
    412   // Track base/offset pairs when round-tripped through a pointer without
    413   // modifications provided the integer is not too large.
    414   Value *Op = I.getOperand(0);
    415   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
    416   if (TD && IntegerSize <= TD->getPointerSizeInBits()) {
    417     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
    418     if (BaseAndOffset.first)
    419       ConstantOffsetPtrs[&I] = BaseAndOffset;
    420   }
    421 
    422   // "Propagate" SROA here in the same manner as we do for ptrtoint above.
    423   Value *SROAArg;
    424   DenseMap<Value *, int>::iterator CostIt;
    425   if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
    426     SROAArgValues[&I] = SROAArg;
    427 
    428   return isInstructionFree(&I, TD);
    429 }
    430 
    431 bool CallAnalyzer::visitCastInst(CastInst &I) {
    432   // Propagate constants through ptrtoint.
    433   if (Constant *COp = dyn_cast<Constant>(I.getOperand(0)))
    434     if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
    435       SimplifiedValues[&I] = C;
    436       return true;
    437     }
    438 
    439   // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
    440   disableSROA(I.getOperand(0));
    441 
    442   return isInstructionFree(&I, TD);
    443 }
    444 
    445 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
    446   Value *Operand = I.getOperand(0);
    447   Constant *Ops[1] = { dyn_cast<Constant>(Operand) };
    448   if (Ops[0] || (Ops[0] = SimplifiedValues.lookup(Operand)))
    449     if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
    450                                                Ops, TD)) {
    451       SimplifiedValues[&I] = C;
    452       return true;
    453     }
    454 
    455   // Disable any SROA on the argument to arbitrary unary operators.
    456   disableSROA(Operand);
    457 
    458   return false;
    459 }
    460 
    461 bool CallAnalyzer::visitICmp(ICmpInst &I) {
    462   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    463   // First try to handle simplified comparisons.
    464   if (!isa<Constant>(LHS))
    465     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
    466       LHS = SimpleLHS;
    467   if (!isa<Constant>(RHS))
    468     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
    469       RHS = SimpleRHS;
    470   if (Constant *CLHS = dyn_cast<Constant>(LHS))
    471     if (Constant *CRHS = dyn_cast<Constant>(RHS))
    472       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
    473         SimplifiedValues[&I] = C;
    474         return true;
    475       }
    476 
    477   // Otherwise look for a comparison between constant offset pointers with
    478   // a common base.
    479   Value *LHSBase, *RHSBase;
    480   APInt LHSOffset, RHSOffset;
    481   llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
    482   if (LHSBase) {
    483     llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    484     if (RHSBase && LHSBase == RHSBase) {
    485       // We have common bases, fold the icmp to a constant based on the
    486       // offsets.
    487       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
    488       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
    489       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
    490         SimplifiedValues[&I] = C;
    491         ++NumConstantPtrCmps;
    492         return true;
    493       }
    494     }
    495   }
    496 
    497   // If the comparison is an equality comparison with null, we can simplify it
    498   // for any alloca-derived argument.
    499   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)))
    500     if (isAllocaDerivedArg(I.getOperand(0))) {
    501       // We can actually predict the result of comparisons between an
    502       // alloca-derived value and null. Note that this fires regardless of
    503       // SROA firing.
    504       bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
    505       SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
    506                                         : ConstantInt::getFalse(I.getType());
    507       return true;
    508     }
    509 
    510   // Finally check for SROA candidates in comparisons.
    511   Value *SROAArg;
    512   DenseMap<Value *, int>::iterator CostIt;
    513   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
    514     if (isa<ConstantPointerNull>(I.getOperand(1))) {
    515       accumulateSROACost(CostIt, InlineConstants::InstrCost);
    516       return true;
    517     }
    518 
    519     disableSROA(CostIt);
    520   }
    521 
    522   return false;
    523 }
    524 
    525 bool CallAnalyzer::visitSub(BinaryOperator &I) {
    526   // Try to handle a special case: we can fold computing the difference of two
    527   // constant-related pointers.
    528   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    529   Value *LHSBase, *RHSBase;
    530   APInt LHSOffset, RHSOffset;
    531   llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
    532   if (LHSBase) {
    533     llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    534     if (RHSBase && LHSBase == RHSBase) {
    535       // We have common bases, fold the subtract to a constant based on the
    536       // offsets.
    537       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
    538       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
    539       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
    540         SimplifiedValues[&I] = C;
    541         ++NumConstantPtrDiffs;
    542         return true;
    543       }
    544     }
    545   }
    546 
    547   // Otherwise, fall back to the generic logic for simplifying and handling
    548   // instructions.
    549   return Base::visitSub(I);
    550 }
    551 
    552 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
    553   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    554   if (!isa<Constant>(LHS))
    555     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
    556       LHS = SimpleLHS;
    557   if (!isa<Constant>(RHS))
    558     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
    559       RHS = SimpleRHS;
    560   Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD);
    561   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
    562     SimplifiedValues[&I] = C;
    563     return true;
    564   }
    565 
    566   // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
    567   disableSROA(LHS);
    568   disableSROA(RHS);
    569 
    570   return false;
    571 }
    572 
    573 bool CallAnalyzer::visitLoad(LoadInst &I) {
    574   Value *SROAArg;
    575   DenseMap<Value *, int>::iterator CostIt;
    576   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
    577     if (I.isSimple()) {
    578       accumulateSROACost(CostIt, InlineConstants::InstrCost);
    579       return true;
    580     }
    581 
    582     disableSROA(CostIt);
    583   }
    584 
    585   return false;
    586 }
    587 
    588 bool CallAnalyzer::visitStore(StoreInst &I) {
    589   Value *SROAArg;
    590   DenseMap<Value *, int>::iterator CostIt;
    591   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
    592     if (I.isSimple()) {
    593       accumulateSROACost(CostIt, InlineConstants::InstrCost);
    594       return true;
    595     }
    596 
    597     disableSROA(CostIt);
    598   }
    599 
    600   return false;
    601 }
    602 
    603 bool CallAnalyzer::visitCallSite(CallSite CS) {
    604   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->canReturnTwice() &&
    605       !F.hasFnAttr(Attribute::ReturnsTwice)) {
    606     // This aborts the entire analysis.
    607     ExposesReturnsTwice = true;
    608     return false;
    609   }
    610 
    611   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
    612     switch (II->getIntrinsicID()) {
    613     default:
    614       return Base::visitCallSite(CS);
    615 
    616     case Intrinsic::memset:
    617     case Intrinsic::memcpy:
    618     case Intrinsic::memmove:
    619       // SROA can usually chew through these intrinsics, but they aren't free.
    620       return false;
    621     }
    622   }
    623 
    624   if (Function *F = CS.getCalledFunction()) {
    625     if (F == CS.getInstruction()->getParent()->getParent()) {
    626       // This flag will fully abort the analysis, so don't bother with anything
    627       // else.
    628       IsRecursive = true;
    629       return false;
    630     }
    631 
    632     if (!callIsSmall(CS)) {
    633       // We account for the average 1 instruction per call argument setup
    634       // here.
    635       Cost += CS.arg_size() * InlineConstants::InstrCost;
    636 
    637       // Everything other than inline ASM will also have a significant cost
    638       // merely from making the call.
    639       if (!isa<InlineAsm>(CS.getCalledValue()))
    640         Cost += InlineConstants::CallPenalty;
    641     }
    642 
    643     return Base::visitCallSite(CS);
    644   }
    645 
    646   // Otherwise we're in a very special case -- an indirect function call. See
    647   // if we can be particularly clever about this.
    648   Value *Callee = CS.getCalledValue();
    649 
    650   // First, pay the price of the argument setup. We account for the average
    651   // 1 instruction per call argument setup here.
    652   Cost += CS.arg_size() * InlineConstants::InstrCost;
    653 
    654   // Next, check if this happens to be an indirect function call to a known
    655   // function in this inline context. If not, we've done all we can.
    656   Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
    657   if (!F)
    658     return Base::visitCallSite(CS);
    659 
    660   // If we have a constant that we are calling as a function, we can peer
    661   // through it and see the function target. This happens not infrequently
    662   // during devirtualization and so we want to give it a hefty bonus for
    663   // inlining, but cap that bonus in the event that inlining wouldn't pan
    664   // out. Pretend to inline the function, with a custom threshold.
    665   CallAnalyzer CA(TD, *F, InlineConstants::IndirectCallThreshold);
    666   if (CA.analyzeCall(CS)) {
    667     // We were able to inline the indirect call! Subtract the cost from the
    668     // bonus we want to apply, but don't go below zero.
    669     Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost());
    670   }
    671 
    672   return Base::visitCallSite(CS);
    673 }
    674 
    675 bool CallAnalyzer::visitInstruction(Instruction &I) {
    676   // Some instructions are free. All of the free intrinsics can also be
    677   // handled by SROA, etc.
    678   if (isInstructionFree(&I, TD))
    679     return true;
    680 
    681   // We found something we don't understand or can't handle. Mark any SROA-able
    682   // values in the operand list as no longer viable.
    683   for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
    684     disableSROA(*OI);
    685 
    686   return false;
    687 }
    688 
    689 
    690 /// \brief Analyze a basic block for its contribution to the inline cost.
    691 ///
    692 /// This method walks the analyzer over every instruction in the given basic
    693 /// block and accounts for their cost during inlining at this callsite. It
    694 /// aborts early if the threshold has been exceeded or an impossible to inline
    695 /// construct has been detected. It returns false if inlining is no longer
    696 /// viable, and true if inlining remains viable.
    697 bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
    698   for (BasicBlock::iterator I = BB->begin(), E = llvm::prior(BB->end());
    699        I != E; ++I) {
    700     ++NumInstructions;
    701     if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
    702       ++NumVectorInstructions;
    703 
    704     // If the instruction simplified to a constant, there is no cost to this
    705     // instruction. Visit the instructions using our InstVisitor to account for
    706     // all of the per-instruction logic. The visit tree returns true if we
    707     // consumed the instruction in any way, and false if the instruction's base
    708     // cost should count against inlining.
    709     if (Base::visit(I))
    710       ++NumInstructionsSimplified;
    711     else
    712       Cost += InlineConstants::InstrCost;
    713 
    714     // If the visit this instruction detected an uninlinable pattern, abort.
    715     if (IsRecursive || ExposesReturnsTwice || HasDynamicAlloca)
    716       return false;
    717 
    718     if (NumVectorInstructions > NumInstructions/2)
    719       VectorBonus = FiftyPercentVectorBonus;
    720     else if (NumVectorInstructions > NumInstructions/10)
    721       VectorBonus = TenPercentVectorBonus;
    722     else
    723       VectorBonus = 0;
    724 
    725     // Check if we've past the threshold so we don't spin in huge basic
    726     // blocks that will never inline.
    727     if (!AlwaysInline && Cost > (Threshold + VectorBonus))
    728       return false;
    729   }
    730 
    731   return true;
    732 }
    733 
    734 /// \brief Compute the base pointer and cumulative constant offsets for V.
    735 ///
    736 /// This strips all constant offsets off of V, leaving it the base pointer, and
    737 /// accumulates the total constant offset applied in the returned constant. It
    738 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
    739 /// no constant offsets applied.
    740 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
    741   if (!TD || !V->getType()->isPointerTy())
    742     return 0;
    743 
    744   unsigned IntPtrWidth = TD->getPointerSizeInBits();
    745   APInt Offset = APInt::getNullValue(IntPtrWidth);
    746 
    747   // Even though we don't look through PHI nodes, we could be called on an
    748   // instruction in an unreachable block, which may be on a cycle.
    749   SmallPtrSet<Value *, 4> Visited;
    750   Visited.insert(V);
    751   do {
    752     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    753       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
    754         return 0;
    755       V = GEP->getPointerOperand();
    756     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
    757       V = cast<Operator>(V)->getOperand(0);
    758     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    759       if (GA->mayBeOverridden())
    760         break;
    761       V = GA->getAliasee();
    762     } else {
    763       break;
    764     }
    765     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
    766   } while (Visited.insert(V));
    767 
    768   Type *IntPtrTy = TD->getIntPtrType(V->getContext());
    769   return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
    770 }
    771 
    772 /// \brief Analyze a call site for potential inlining.
    773 ///
    774 /// Returns true if inlining this call is viable, and false if it is not
    775 /// viable. It computes the cost and adjusts the threshold based on numerous
    776 /// factors and heuristics. If this method returns false but the computed cost
    777 /// is below the computed threshold, then inlining was forcibly disabled by
    778 /// some artifact of the rountine.
    779 bool CallAnalyzer::analyzeCall(CallSite CS) {
    780   ++NumCallsAnalyzed;
    781 
    782   // Track whether the post-inlining function would have more than one basic
    783   // block. A single basic block is often intended for inlining. Balloon the
    784   // threshold by 50% until we pass the single-BB phase.
    785   bool SingleBB = true;
    786   int SingleBBBonus = Threshold / 2;
    787   Threshold += SingleBBBonus;
    788 
    789   // Unless we are always-inlining, perform some tweaks to the cost and
    790   // threshold based on the direct callsite information.
    791   if (!AlwaysInline) {
    792     // We want to more aggressively inline vector-dense kernels, so up the
    793     // threshold, and we'll lower it if the % of vector instructions gets too
    794     // low.
    795     assert(NumInstructions == 0);
    796     assert(NumVectorInstructions == 0);
    797     FiftyPercentVectorBonus = Threshold;
    798     TenPercentVectorBonus = Threshold / 2;
    799 
    800     // Give out bonuses per argument, as the instructions setting them up will
    801     // be gone after inlining.
    802     for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
    803       if (TD && CS.isByValArgument(I)) {
    804         // We approximate the number of loads and stores needed by dividing the
    805         // size of the byval type by the target's pointer size.
    806         PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
    807         unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType());
    808         unsigned PointerSize = TD->getPointerSizeInBits();
    809         // Ceiling division.
    810         unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
    811 
    812         // If it generates more than 8 stores it is likely to be expanded as an
    813         // inline memcpy so we take that as an upper bound. Otherwise we assume
    814         // one load and one store per word copied.
    815         // FIXME: The maxStoresPerMemcpy setting from the target should be used
    816         // here instead of a magic number of 8, but it's not available via
    817         // TargetData.
    818         NumStores = std::min(NumStores, 8U);
    819 
    820         Cost -= 2 * NumStores * InlineConstants::InstrCost;
    821       } else {
    822         // For non-byval arguments subtract off one instruction per call
    823         // argument.
    824         Cost -= InlineConstants::InstrCost;
    825       }
    826     }
    827 
    828     // If there is only one call of the function, and it has internal linkage,
    829     // the cost of inlining it drops dramatically.
    830     if (F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction())
    831       Cost += InlineConstants::LastCallToStaticBonus;
    832 
    833     // If the instruction after the call, or if the normal destination of the
    834     // invoke is an unreachable instruction, the function is noreturn.  As such,
    835     // there is little point in inlining this unless there is literally zero cost.
    836     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
    837       if (isa<UnreachableInst>(II->getNormalDest()->begin()))
    838         Threshold = 1;
    839     } else if (isa<UnreachableInst>(++BasicBlock::iterator(CS.getInstruction())))
    840       Threshold = 1;
    841 
    842     // If this function uses the coldcc calling convention, prefer not to inline
    843     // it.
    844     if (F.getCallingConv() == CallingConv::Cold)
    845       Cost += InlineConstants::ColdccPenalty;
    846 
    847     // Check if we're done. This can happen due to bonuses and penalties.
    848     if (Cost > Threshold)
    849       return false;
    850   }
    851 
    852   if (F.empty())
    853     return true;
    854 
    855   // Track whether we've seen a return instruction. The first return
    856   // instruction is free, as at least one will usually disappear in inlining.
    857   bool HasReturn = false;
    858 
    859   // Populate our simplified values by mapping from function arguments to call
    860   // arguments with known important simplifications.
    861   CallSite::arg_iterator CAI = CS.arg_begin();
    862   for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
    863        FAI != FAE; ++FAI, ++CAI) {
    864     assert(CAI != CS.arg_end());
    865     if (Constant *C = dyn_cast<Constant>(CAI))
    866       SimplifiedValues[FAI] = C;
    867 
    868     Value *PtrArg = *CAI;
    869     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
    870       ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue());
    871 
    872       // We can SROA any pointer arguments derived from alloca instructions.
    873       if (isa<AllocaInst>(PtrArg)) {
    874         SROAArgValues[FAI] = PtrArg;
    875         SROAArgCosts[PtrArg] = 0;
    876       }
    877     }
    878   }
    879   NumConstantArgs = SimplifiedValues.size();
    880   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
    881   NumAllocaArgs = SROAArgValues.size();
    882 
    883   // The worklist of live basic blocks in the callee *after* inlining. We avoid
    884   // adding basic blocks of the callee which can be proven to be dead for this
    885   // particular call site in order to get more accurate cost estimates. This
    886   // requires a somewhat heavyweight iteration pattern: we need to walk the
    887   // basic blocks in a breadth-first order as we insert live successors. To
    888   // accomplish this, prioritizing for small iterations because we exit after
    889   // crossing our threshold, we use a small-size optimized SetVector.
    890   typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
    891                                   SmallPtrSet<BasicBlock *, 16> > BBSetVector;
    892   BBSetVector BBWorklist;
    893   BBWorklist.insert(&F.getEntryBlock());
    894   // Note that we *must not* cache the size, this loop grows the worklist.
    895   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
    896     // Bail out the moment we cross the threshold. This means we'll under-count
    897     // the cost, but only when undercounting doesn't matter.
    898     if (!AlwaysInline && Cost > (Threshold + VectorBonus))
    899       break;
    900 
    901     BasicBlock *BB = BBWorklist[Idx];
    902     if (BB->empty())
    903       continue;
    904 
    905     // Handle the terminator cost here where we can track returns and other
    906     // function-wide constructs.
    907     TerminatorInst *TI = BB->getTerminator();
    908 
    909     // We never want to inline functions that contain an indirectbr.  This is
    910     // incorrect because all the blockaddress's (in static global initializers
    911     // for example) would be referring to the original function, and this indirect
    912     // jump would jump from the inlined copy of the function into the original
    913     // function which is extremely undefined behavior.
    914     // FIXME: This logic isn't really right; we can safely inline functions
    915     // with indirectbr's as long as no other function or global references the
    916     // blockaddress of a block within the current function.  And as a QOI issue,
    917     // if someone is using a blockaddress without an indirectbr, and that
    918     // reference somehow ends up in another function or global, we probably
    919     // don't want to inline this function.
    920     if (isa<IndirectBrInst>(TI))
    921       return false;
    922 
    923     if (!HasReturn && isa<ReturnInst>(TI))
    924       HasReturn = true;
    925     else
    926       Cost += InlineConstants::InstrCost;
    927 
    928     // Analyze the cost of this block. If we blow through the threshold, this
    929     // returns false, and we can bail on out.
    930     if (!analyzeBlock(BB)) {
    931       if (IsRecursive || ExposesReturnsTwice || HasDynamicAlloca)
    932         return false;
    933       break;
    934     }
    935 
    936     // Add in the live successors by first checking whether we have terminator
    937     // that may be simplified based on the values simplified by this call.
    938     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    939       if (BI->isConditional()) {
    940         Value *Cond = BI->getCondition();
    941         if (ConstantInt *SimpleCond
    942               = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
    943           BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0));
    944           continue;
    945         }
    946       }
    947     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    948       Value *Cond = SI->getCondition();
    949       if (ConstantInt *SimpleCond
    950             = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
    951         BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor());
    952         continue;
    953       }
    954     }
    955 
    956     // If we're unable to select a particular successor, just count all of
    957     // them.
    958     for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; ++TIdx)
    959       BBWorklist.insert(TI->getSuccessor(TIdx));
    960 
    961     // If we had any successors at this point, than post-inlining is likely to
    962     // have them as well. Note that we assume any basic blocks which existed
    963     // due to branches or switches which folded above will also fold after
    964     // inlining.
    965     if (SingleBB && TI->getNumSuccessors() > 1) {
    966       // Take off the bonus we applied to the threshold.
    967       Threshold -= SingleBBBonus;
    968       SingleBB = false;
    969     }
    970   }
    971 
    972   Threshold += VectorBonus;
    973 
    974   return AlwaysInline || Cost < Threshold;
    975 }
    976 
    977 #ifndef NDEBUG
    978 /// \brief Dump stats about this call's analysis.
    979 void CallAnalyzer::dump() {
    980 #define DEBUG_PRINT_STAT(x) llvm::dbgs() << "      " #x ": " << x << "\n"
    981   DEBUG_PRINT_STAT(NumConstantArgs);
    982   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
    983   DEBUG_PRINT_STAT(NumAllocaArgs);
    984   DEBUG_PRINT_STAT(NumConstantPtrCmps);
    985   DEBUG_PRINT_STAT(NumConstantPtrDiffs);
    986   DEBUG_PRINT_STAT(NumInstructionsSimplified);
    987   DEBUG_PRINT_STAT(SROACostSavings);
    988   DEBUG_PRINT_STAT(SROACostSavingsLost);
    989 #undef DEBUG_PRINT_STAT
    990 }
    991 #endif
    992 
    993 InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, int Threshold) {
    994   return getInlineCost(CS, CS.getCalledFunction(), Threshold);
    995 }
    996 
    997 InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, Function *Callee,
    998                                              int Threshold) {
    999   // Don't inline functions which can be redefined at link-time to mean
   1000   // something else.  Don't inline functions marked noinline or call sites
   1001   // marked noinline.
   1002   if (!Callee || Callee->mayBeOverridden() ||
   1003       Callee->hasFnAttr(Attribute::NoInline) || CS.isNoInline())
   1004     return llvm::InlineCost::getNever();
   1005 
   1006   DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName() << "...\n");
   1007 
   1008   CallAnalyzer CA(TD, *Callee, Threshold);
   1009   bool ShouldInline = CA.analyzeCall(CS);
   1010 
   1011   DEBUG(CA.dump());
   1012 
   1013   // Check if there was a reason to force inlining or no inlining.
   1014   if (!ShouldInline && CA.getCost() < CA.getThreshold())
   1015     return InlineCost::getNever();
   1016   if (ShouldInline && CA.getCost() >= CA.getThreshold())
   1017     return InlineCost::getAlways();
   1018 
   1019   return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
   1020 }
   1021