1 //===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements lowering for the llvm.gc* intrinsics for targets that do 11 // not natively support them (which includes the C backend). Note that the code 12 // generated is not quite as efficient as algorithms which generate stack maps 13 // to identify roots. 14 // 15 // This pass implements the code transformation described in this paper: 16 // "Accurate Garbage Collection in an Uncooperative Environment" 17 // Fergus Henderson, ISMM, 2002 18 // 19 // In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with 20 // ShadowStackGC. 21 // 22 // In order to support this particular transformation, all stack roots are 23 // coallocated in the stack. This allows a fully target-independent stack map 24 // while introducing only minor runtime overhead. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #define DEBUG_TYPE "shadowstackgc" 29 #include "llvm/IRBuilder.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/Module.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/CodeGen/GCStrategy.h" 34 #include "llvm/CodeGen/GCs.h" 35 #include "llvm/Support/CallSite.h" 36 37 using namespace llvm; 38 39 namespace { 40 41 class ShadowStackGC : public GCStrategy { 42 /// RootChain - This is the global linked-list that contains the chain of GC 43 /// roots. 44 GlobalVariable *Head; 45 46 /// StackEntryTy - Abstract type of a link in the shadow stack. 47 /// 48 StructType *StackEntryTy; 49 StructType *FrameMapTy; 50 51 /// Roots - GC roots in the current function. Each is a pair of the 52 /// intrinsic call and its corresponding alloca. 53 std::vector<std::pair<CallInst*,AllocaInst*> > Roots; 54 55 public: 56 ShadowStackGC(); 57 58 bool initializeCustomLowering(Module &M); 59 bool performCustomLowering(Function &F); 60 61 private: 62 bool IsNullValue(Value *V); 63 Constant *GetFrameMap(Function &F); 64 Type* GetConcreteStackEntryType(Function &F); 65 void CollectRoots(Function &F); 66 static GetElementPtrInst *CreateGEP(LLVMContext &Context, 67 IRBuilder<> &B, Value *BasePtr, 68 int Idx1, const char *Name); 69 static GetElementPtrInst *CreateGEP(LLVMContext &Context, 70 IRBuilder<> &B, Value *BasePtr, 71 int Idx1, int Idx2, const char *Name); 72 }; 73 74 } 75 76 static GCRegistry::Add<ShadowStackGC> 77 X("shadow-stack", "Very portable GC for uncooperative code generators"); 78 79 namespace { 80 /// EscapeEnumerator - This is a little algorithm to find all escape points 81 /// from a function so that "finally"-style code can be inserted. In addition 82 /// to finding the existing return and unwind instructions, it also (if 83 /// necessary) transforms any call instructions into invokes and sends them to 84 /// a landing pad. 85 /// 86 /// It's wrapped up in a state machine using the same transform C# uses for 87 /// 'yield return' enumerators, This transform allows it to be non-allocating. 88 class EscapeEnumerator { 89 Function &F; 90 const char *CleanupBBName; 91 92 // State. 93 int State; 94 Function::iterator StateBB, StateE; 95 IRBuilder<> Builder; 96 97 public: 98 EscapeEnumerator(Function &F, const char *N = "cleanup") 99 : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {} 100 101 IRBuilder<> *Next() { 102 switch (State) { 103 default: 104 return 0; 105 106 case 0: 107 StateBB = F.begin(); 108 StateE = F.end(); 109 State = 1; 110 111 case 1: 112 // Find all 'return', 'resume', and 'unwind' instructions. 113 while (StateBB != StateE) { 114 BasicBlock *CurBB = StateBB++; 115 116 // Branches and invokes do not escape, only unwind, resume, and return 117 // do. 118 TerminatorInst *TI = CurBB->getTerminator(); 119 if (!isa<ReturnInst>(TI) && !isa<ResumeInst>(TI)) 120 continue; 121 122 Builder.SetInsertPoint(TI->getParent(), TI); 123 return &Builder; 124 } 125 126 State = 2; 127 128 // Find all 'call' instructions. 129 SmallVector<Instruction*,16> Calls; 130 for (Function::iterator BB = F.begin(), 131 E = F.end(); BB != E; ++BB) 132 for (BasicBlock::iterator II = BB->begin(), 133 EE = BB->end(); II != EE; ++II) 134 if (CallInst *CI = dyn_cast<CallInst>(II)) 135 if (!CI->getCalledFunction() || 136 !CI->getCalledFunction()->getIntrinsicID()) 137 Calls.push_back(CI); 138 139 if (Calls.empty()) 140 return 0; 141 142 // Create a cleanup block. 143 LLVMContext &C = F.getContext(); 144 BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F); 145 Type *ExnTy = StructType::get(Type::getInt8PtrTy(C), 146 Type::getInt32Ty(C), NULL); 147 Constant *PersFn = 148 F.getParent()-> 149 getOrInsertFunction("__gcc_personality_v0", 150 FunctionType::get(Type::getInt32Ty(C), true)); 151 LandingPadInst *LPad = LandingPadInst::Create(ExnTy, PersFn, 1, 152 "cleanup.lpad", 153 CleanupBB); 154 LPad->setCleanup(true); 155 ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB); 156 157 // Transform the 'call' instructions into 'invoke's branching to the 158 // cleanup block. Go in reverse order to make prettier BB names. 159 SmallVector<Value*,16> Args; 160 for (unsigned I = Calls.size(); I != 0; ) { 161 CallInst *CI = cast<CallInst>(Calls[--I]); 162 163 // Split the basic block containing the function call. 164 BasicBlock *CallBB = CI->getParent(); 165 BasicBlock *NewBB = 166 CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont"); 167 168 // Remove the unconditional branch inserted at the end of CallBB. 169 CallBB->getInstList().pop_back(); 170 NewBB->getInstList().remove(CI); 171 172 // Create a new invoke instruction. 173 Args.clear(); 174 CallSite CS(CI); 175 Args.append(CS.arg_begin(), CS.arg_end()); 176 177 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), 178 NewBB, CleanupBB, 179 Args, CI->getName(), CallBB); 180 II->setCallingConv(CI->getCallingConv()); 181 II->setAttributes(CI->getAttributes()); 182 CI->replaceAllUsesWith(II); 183 delete CI; 184 } 185 186 Builder.SetInsertPoint(RI->getParent(), RI); 187 return &Builder; 188 } 189 } 190 }; 191 } 192 193 // ----------------------------------------------------------------------------- 194 195 void llvm::linkShadowStackGC() { } 196 197 ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) { 198 InitRoots = true; 199 CustomRoots = true; 200 } 201 202 Constant *ShadowStackGC::GetFrameMap(Function &F) { 203 // doInitialization creates the abstract type of this value. 204 Type *VoidPtr = Type::getInt8PtrTy(F.getContext()); 205 206 // Truncate the ShadowStackDescriptor if some metadata is null. 207 unsigned NumMeta = 0; 208 SmallVector<Constant*, 16> Metadata; 209 for (unsigned I = 0; I != Roots.size(); ++I) { 210 Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1)); 211 if (!C->isNullValue()) 212 NumMeta = I + 1; 213 Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr)); 214 } 215 Metadata.resize(NumMeta); 216 217 Type *Int32Ty = Type::getInt32Ty(F.getContext()); 218 219 Constant *BaseElts[] = { 220 ConstantInt::get(Int32Ty, Roots.size(), false), 221 ConstantInt::get(Int32Ty, NumMeta, false), 222 }; 223 224 Constant *DescriptorElts[] = { 225 ConstantStruct::get(FrameMapTy, BaseElts), 226 ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata) 227 }; 228 229 Type *EltTys[] = { DescriptorElts[0]->getType(),DescriptorElts[1]->getType()}; 230 StructType *STy = StructType::create(EltTys, "gc_map."+utostr(NumMeta)); 231 232 Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts); 233 234 // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems 235 // that, short of multithreaded LLVM, it should be safe; all that is 236 // necessary is that a simple Module::iterator loop not be invalidated. 237 // Appending to the GlobalVariable list is safe in that sense. 238 // 239 // All of the output passes emit globals last. The ExecutionEngine 240 // explicitly supports adding globals to the module after 241 // initialization. 242 // 243 // Still, if it isn't deemed acceptable, then this transformation needs 244 // to be a ModulePass (which means it cannot be in the 'llc' pipeline 245 // (which uses a FunctionPassManager (which segfaults (not asserts) if 246 // provided a ModulePass))). 247 Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true, 248 GlobalVariable::InternalLinkage, 249 FrameMap, "__gc_" + F.getName()); 250 251 Constant *GEPIndices[2] = { 252 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), 253 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) 254 }; 255 return ConstantExpr::getGetElementPtr(GV, GEPIndices); 256 } 257 258 Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) { 259 // doInitialization creates the generic version of this type. 260 std::vector<Type*> EltTys; 261 EltTys.push_back(StackEntryTy); 262 for (size_t I = 0; I != Roots.size(); I++) 263 EltTys.push_back(Roots[I].second->getAllocatedType()); 264 265 return StructType::create(EltTys, "gc_stackentry."+F.getName().str()); 266 } 267 268 /// doInitialization - If this module uses the GC intrinsics, find them now. If 269 /// not, exit fast. 270 bool ShadowStackGC::initializeCustomLowering(Module &M) { 271 // struct FrameMap { 272 // int32_t NumRoots; // Number of roots in stack frame. 273 // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots. 274 // void *Meta[]; // May be absent for roots without metadata. 275 // }; 276 std::vector<Type*> EltTys; 277 // 32 bits is ok up to a 32GB stack frame. :) 278 EltTys.push_back(Type::getInt32Ty(M.getContext())); 279 // Specifies length of variable length array. 280 EltTys.push_back(Type::getInt32Ty(M.getContext())); 281 FrameMapTy = StructType::create(EltTys, "gc_map"); 282 PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy); 283 284 // struct StackEntry { 285 // ShadowStackEntry *Next; // Caller's stack entry. 286 // FrameMap *Map; // Pointer to constant FrameMap. 287 // void *Roots[]; // Stack roots (in-place array, so we pretend). 288 // }; 289 290 StackEntryTy = StructType::create(M.getContext(), "gc_stackentry"); 291 292 EltTys.clear(); 293 EltTys.push_back(PointerType::getUnqual(StackEntryTy)); 294 EltTys.push_back(FrameMapPtrTy); 295 StackEntryTy->setBody(EltTys); 296 PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy); 297 298 // Get the root chain if it already exists. 299 Head = M.getGlobalVariable("llvm_gc_root_chain"); 300 if (!Head) { 301 // If the root chain does not exist, insert a new one with linkonce 302 // linkage! 303 Head = new GlobalVariable(M, StackEntryPtrTy, false, 304 GlobalValue::LinkOnceAnyLinkage, 305 Constant::getNullValue(StackEntryPtrTy), 306 "llvm_gc_root_chain"); 307 } else if (Head->hasExternalLinkage() && Head->isDeclaration()) { 308 Head->setInitializer(Constant::getNullValue(StackEntryPtrTy)); 309 Head->setLinkage(GlobalValue::LinkOnceAnyLinkage); 310 } 311 312 return true; 313 } 314 315 bool ShadowStackGC::IsNullValue(Value *V) { 316 if (Constant *C = dyn_cast<Constant>(V)) 317 return C->isNullValue(); 318 return false; 319 } 320 321 void ShadowStackGC::CollectRoots(Function &F) { 322 // FIXME: Account for original alignment. Could fragment the root array. 323 // Approach 1: Null initialize empty slots at runtime. Yuck. 324 // Approach 2: Emit a map of the array instead of just a count. 325 326 assert(Roots.empty() && "Not cleaned up?"); 327 328 SmallVector<std::pair<CallInst*, AllocaInst*>, 16> MetaRoots; 329 330 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 331 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) 332 if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++)) 333 if (Function *F = CI->getCalledFunction()) 334 if (F->getIntrinsicID() == Intrinsic::gcroot) { 335 std::pair<CallInst*, AllocaInst*> Pair = std::make_pair( 336 CI, cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts())); 337 if (IsNullValue(CI->getArgOperand(1))) 338 Roots.push_back(Pair); 339 else 340 MetaRoots.push_back(Pair); 341 } 342 343 // Number roots with metadata (usually empty) at the beginning, so that the 344 // FrameMap::Meta array can be elided. 345 Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end()); 346 } 347 348 GetElementPtrInst * 349 ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr, 350 int Idx, int Idx2, const char *Name) { 351 Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0), 352 ConstantInt::get(Type::getInt32Ty(Context), Idx), 353 ConstantInt::get(Type::getInt32Ty(Context), Idx2) }; 354 Value* Val = B.CreateGEP(BasePtr, Indices, Name); 355 356 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); 357 358 return dyn_cast<GetElementPtrInst>(Val); 359 } 360 361 GetElementPtrInst * 362 ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr, 363 int Idx, const char *Name) { 364 Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0), 365 ConstantInt::get(Type::getInt32Ty(Context), Idx) }; 366 Value *Val = B.CreateGEP(BasePtr, Indices, Name); 367 368 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); 369 370 return dyn_cast<GetElementPtrInst>(Val); 371 } 372 373 /// runOnFunction - Insert code to maintain the shadow stack. 374 bool ShadowStackGC::performCustomLowering(Function &F) { 375 LLVMContext &Context = F.getContext(); 376 377 // Find calls to llvm.gcroot. 378 CollectRoots(F); 379 380 // If there are no roots in this function, then there is no need to add a 381 // stack map entry for it. 382 if (Roots.empty()) 383 return false; 384 385 // Build the constant map and figure the type of the shadow stack entry. 386 Value *FrameMap = GetFrameMap(F); 387 Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F); 388 389 // Build the shadow stack entry at the very start of the function. 390 BasicBlock::iterator IP = F.getEntryBlock().begin(); 391 IRBuilder<> AtEntry(IP->getParent(), IP); 392 393 Instruction *StackEntry = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0, 394 "gc_frame"); 395 396 while (isa<AllocaInst>(IP)) ++IP; 397 AtEntry.SetInsertPoint(IP->getParent(), IP); 398 399 // Initialize the map pointer and load the current head of the shadow stack. 400 Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead"); 401 Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, StackEntry, 402 0,1,"gc_frame.map"); 403 AtEntry.CreateStore(FrameMap, EntryMapPtr); 404 405 // After all the allocas... 406 for (unsigned I = 0, E = Roots.size(); I != E; ++I) { 407 // For each root, find the corresponding slot in the aggregate... 408 Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root"); 409 410 // And use it in lieu of the alloca. 411 AllocaInst *OriginalAlloca = Roots[I].second; 412 SlotPtr->takeName(OriginalAlloca); 413 OriginalAlloca->replaceAllUsesWith(SlotPtr); 414 } 415 416 // Move past the original stores inserted by GCStrategy::InitRoots. This isn't 417 // really necessary (the collector would never see the intermediate state at 418 // runtime), but it's nicer not to push the half-initialized entry onto the 419 // shadow stack. 420 while (isa<StoreInst>(IP)) ++IP; 421 AtEntry.SetInsertPoint(IP->getParent(), IP); 422 423 // Push the entry onto the shadow stack. 424 Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, 425 StackEntry,0,0,"gc_frame.next"); 426 Instruction *NewHeadVal = CreateGEP(Context, AtEntry, 427 StackEntry, 0, "gc_newhead"); 428 AtEntry.CreateStore(CurrentHead, EntryNextPtr); 429 AtEntry.CreateStore(NewHeadVal, Head); 430 431 // For each instruction that escapes... 432 EscapeEnumerator EE(F, "gc_cleanup"); 433 while (IRBuilder<> *AtExit = EE.Next()) { 434 // Pop the entry from the shadow stack. Don't reuse CurrentHead from 435 // AtEntry, since that would make the value live for the entire function. 436 Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, StackEntry, 0, 0, 437 "gc_frame.next"); 438 Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead"); 439 AtExit->CreateStore(SavedHead, Head); 440 } 441 442 // Delete the original allocas (which are no longer used) and the intrinsic 443 // calls (which are no longer valid). Doing this last avoids invalidating 444 // iterators. 445 for (unsigned I = 0, E = Roots.size(); I != E; ++I) { 446 Roots[I].first->eraseFromParent(); 447 Roots[I].second->eraseFromParent(); 448 } 449 450 Roots.clear(); 451 return true; 452 } 453