Home | History | Annotate | Download | only in CodeGen
      1 //===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the spill code placement analysis.
     11 //
     12 // Each edge bundle corresponds to a node in a Hopfield network. Constraints on
     13 // basic blocks are weighted by the block frequency and added to become the node
     14 // bias.
     15 //
     16 // Transparent basic blocks have the variable live through, but don't care if it
     17 // is spilled or in a register. These blocks become connections in the Hopfield
     18 // network, again weighted by block frequency.
     19 //
     20 // The Hopfield network minimizes (possibly locally) its energy function:
     21 //
     22 //   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
     23 //
     24 // The energy function represents the expected spill code execution frequency,
     25 // or the cost of spilling. This is a Lyapunov function which never increases
     26 // when a node is updated. It is guaranteed to converge to a local minimum.
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #define DEBUG_TYPE "spillplacement"
     31 #include "SpillPlacement.h"
     32 #include "llvm/CodeGen/EdgeBundles.h"
     33 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     34 #include "llvm/CodeGen/MachineBasicBlock.h"
     35 #include "llvm/CodeGen/MachineFunction.h"
     36 #include "llvm/CodeGen/MachineLoopInfo.h"
     37 #include "llvm/CodeGen/Passes.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/Format.h"
     40 
     41 using namespace llvm;
     42 
     43 char SpillPlacement::ID = 0;
     44 INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
     45                       "Spill Code Placement Analysis", true, true)
     46 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
     47 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
     48 INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
     49                     "Spill Code Placement Analysis", true, true)
     50 
     51 char &llvm::SpillPlacementID = SpillPlacement::ID;
     52 
     53 void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
     54   AU.setPreservesAll();
     55   AU.addRequiredTransitive<EdgeBundles>();
     56   AU.addRequiredTransitive<MachineLoopInfo>();
     57   MachineFunctionPass::getAnalysisUsage(AU);
     58 }
     59 
     60 /// Node - Each edge bundle corresponds to a Hopfield node.
     61 ///
     62 /// The node contains precomputed frequency data that only depends on the CFG,
     63 /// but Bias and Links are computed each time placeSpills is called.
     64 ///
     65 /// The node Value is positive when the variable should be in a register. The
     66 /// value can change when linked nodes change, but convergence is very fast
     67 /// because all weights are positive.
     68 ///
     69 struct SpillPlacement::Node {
     70   /// Scale - Inverse block frequency feeding into[0] or out of[1] the bundle.
     71   /// Ideally, these two numbers should be identical, but inaccuracies in the
     72   /// block frequency estimates means that we need to normalize ingoing and
     73   /// outgoing frequencies separately so they are commensurate.
     74   float Scale[2];
     75 
     76   /// Bias - Normalized contributions from non-transparent blocks.
     77   /// A bundle connected to a MustSpill block has a huge negative bias,
     78   /// otherwise it is a number in the range [-2;2].
     79   float Bias;
     80 
     81   /// Value - Output value of this node computed from the Bias and links.
     82   /// This is always in the range [-1;1]. A positive number means the variable
     83   /// should go in a register through this bundle.
     84   float Value;
     85 
     86   typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector;
     87 
     88   /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
     89   /// bundles. The weights are all positive and add up to at most 2, weights
     90   /// from ingoing and outgoing nodes separately add up to a most 1. The weight
     91   /// sum can be less than 2 when the variable is not live into / out of some
     92   /// connected basic blocks.
     93   LinkVector Links;
     94 
     95   /// preferReg - Return true when this node prefers to be in a register.
     96   bool preferReg() const {
     97     // Undecided nodes (Value==0) go on the stack.
     98     return Value > 0;
     99   }
    100 
    101   /// mustSpill - Return True if this node is so biased that it must spill.
    102   bool mustSpill() const {
    103     // Actually, we must spill if Bias < sum(weights).
    104     // It may be worth it to compute the weight sum here?
    105     return Bias < -2.0f;
    106   }
    107 
    108   /// Node - Create a blank Node.
    109   Node() {
    110     Scale[0] = Scale[1] = 0;
    111   }
    112 
    113   /// clear - Reset per-query data, but preserve frequencies that only depend on
    114   // the CFG.
    115   void clear() {
    116     Bias = Value = 0;
    117     Links.clear();
    118   }
    119 
    120   /// addLink - Add a link to bundle b with weight w.
    121   /// out=0 for an ingoing link, and 1 for an outgoing link.
    122   void addLink(unsigned b, float w, bool out) {
    123     // Normalize w relative to all connected blocks from that direction.
    124     w *= Scale[out];
    125 
    126     // There can be multiple links to the same bundle, add them up.
    127     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
    128       if (I->second == b) {
    129         I->first += w;
    130         return;
    131       }
    132     // This must be the first link to b.
    133     Links.push_back(std::make_pair(w, b));
    134   }
    135 
    136   /// addBias - Bias this node from an ingoing[0] or outgoing[1] link.
    137   /// Return the change to the total number of positive biases.
    138   void addBias(float w, bool out) {
    139     // Normalize w relative to all connected blocks from that direction.
    140     w *= Scale[out];
    141     Bias += w;
    142   }
    143 
    144   /// update - Recompute Value from Bias and Links. Return true when node
    145   /// preference changes.
    146   bool update(const Node nodes[]) {
    147     // Compute the weighted sum of inputs.
    148     float Sum = Bias;
    149     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
    150       Sum += I->first * nodes[I->second].Value;
    151 
    152     // The weighted sum is going to be in the range [-2;2]. Ideally, we should
    153     // simply set Value = sign(Sum), but we will add a dead zone around 0 for
    154     // two reasons:
    155     //  1. It avoids arbitrary bias when all links are 0 as is possible during
    156     //     initial iterations.
    157     //  2. It helps tame rounding errors when the links nominally sum to 0.
    158     const float Thres = 1e-4f;
    159     bool Before = preferReg();
    160     if (Sum < -Thres)
    161       Value = -1;
    162     else if (Sum > Thres)
    163       Value = 1;
    164     else
    165       Value = 0;
    166     return Before != preferReg();
    167   }
    168 };
    169 
    170 bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
    171   MF = &mf;
    172   bundles = &getAnalysis<EdgeBundles>();
    173   loops = &getAnalysis<MachineLoopInfo>();
    174 
    175   assert(!nodes && "Leaking node array");
    176   nodes = new Node[bundles->getNumBundles()];
    177 
    178   // Compute total ingoing and outgoing block frequencies for all bundles.
    179   BlockFrequency.resize(mf.getNumBlockIDs());
    180   for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
    181     float Freq = LiveIntervals::getSpillWeight(true, false,
    182                                                loops->getLoopDepth(I));
    183     unsigned Num = I->getNumber();
    184     BlockFrequency[Num] = Freq;
    185     nodes[bundles->getBundle(Num, 1)].Scale[0] += Freq;
    186     nodes[bundles->getBundle(Num, 0)].Scale[1] += Freq;
    187   }
    188 
    189   // Scales are reciprocal frequencies.
    190   for (unsigned i = 0, e = bundles->getNumBundles(); i != e; ++i)
    191     for (unsigned d = 0; d != 2; ++d)
    192       if (nodes[i].Scale[d] > 0)
    193         nodes[i].Scale[d] = 1 / nodes[i].Scale[d];
    194 
    195   // We never change the function.
    196   return false;
    197 }
    198 
    199 void SpillPlacement::releaseMemory() {
    200   delete[] nodes;
    201   nodes = 0;
    202 }
    203 
    204 /// activate - mark node n as active if it wasn't already.
    205 void SpillPlacement::activate(unsigned n) {
    206   if (ActiveNodes->test(n))
    207     return;
    208   ActiveNodes->set(n);
    209   nodes[n].clear();
    210 
    211   // Very large bundles usually come from big switches, indirect branches,
    212   // landing pads, or loops with many 'continue' statements. It is difficult to
    213   // allocate registers when so many different blocks are involved.
    214   //
    215   // Give a small negative bias to large bundles such that 1/32 of the
    216   // connected blocks need to be interested before we consider expanding the
    217   // region through the bundle. This helps compile time by limiting the number
    218   // of blocks visited and the number of links in the Hopfield network.
    219   if (bundles->getBlocks(n).size() > 100)
    220     nodes[n].Bias = -0.0625f;
    221 }
    222 
    223 
    224 /// addConstraints - Compute node biases and weights from a set of constraints.
    225 /// Set a bit in NodeMask for each active node.
    226 void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
    227   for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
    228        E = LiveBlocks.end(); I != E; ++I) {
    229     float Freq = getBlockFrequency(I->Number);
    230     const float Bias[] = {
    231       0,           // DontCare,
    232       1,           // PrefReg,
    233       -1,          // PrefSpill
    234       0,           // PrefBoth
    235       -HUGE_VALF   // MustSpill
    236     };
    237 
    238     // Live-in to block?
    239     if (I->Entry != DontCare) {
    240       unsigned ib = bundles->getBundle(I->Number, 0);
    241       activate(ib);
    242       nodes[ib].addBias(Freq * Bias[I->Entry], 1);
    243     }
    244 
    245     // Live-out from block?
    246     if (I->Exit != DontCare) {
    247       unsigned ob = bundles->getBundle(I->Number, 1);
    248       activate(ob);
    249       nodes[ob].addBias(Freq * Bias[I->Exit], 0);
    250     }
    251   }
    252 }
    253 
    254 /// addPrefSpill - Same as addConstraints(PrefSpill)
    255 void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
    256   for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
    257        I != E; ++I) {
    258     float Freq = getBlockFrequency(*I);
    259     if (Strong)
    260       Freq += Freq;
    261     unsigned ib = bundles->getBundle(*I, 0);
    262     unsigned ob = bundles->getBundle(*I, 1);
    263     activate(ib);
    264     activate(ob);
    265     nodes[ib].addBias(-Freq, 1);
    266     nodes[ob].addBias(-Freq, 0);
    267   }
    268 }
    269 
    270 void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
    271   for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
    272        ++I) {
    273     unsigned Number = *I;
    274     unsigned ib = bundles->getBundle(Number, 0);
    275     unsigned ob = bundles->getBundle(Number, 1);
    276 
    277     // Ignore self-loops.
    278     if (ib == ob)
    279       continue;
    280     activate(ib);
    281     activate(ob);
    282     if (nodes[ib].Links.empty() && !nodes[ib].mustSpill())
    283       Linked.push_back(ib);
    284     if (nodes[ob].Links.empty() && !nodes[ob].mustSpill())
    285       Linked.push_back(ob);
    286     float Freq = getBlockFrequency(Number);
    287     nodes[ib].addLink(ob, Freq, 1);
    288     nodes[ob].addLink(ib, Freq, 0);
    289   }
    290 }
    291 
    292 bool SpillPlacement::scanActiveBundles() {
    293   Linked.clear();
    294   RecentPositive.clear();
    295   for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
    296     nodes[n].update(nodes);
    297     // A node that must spill, or a node without any links is not going to
    298     // change its value ever again, so exclude it from iterations.
    299     if (nodes[n].mustSpill())
    300       continue;
    301     if (!nodes[n].Links.empty())
    302       Linked.push_back(n);
    303     if (nodes[n].preferReg())
    304       RecentPositive.push_back(n);
    305   }
    306   return !RecentPositive.empty();
    307 }
    308 
    309 /// iterate - Repeatedly update the Hopfield nodes until stability or the
    310 /// maximum number of iterations is reached.
    311 /// @param Linked - Numbers of linked nodes that need updating.
    312 void SpillPlacement::iterate() {
    313   // First update the recently positive nodes. They have likely received new
    314   // negative bias that will turn them off.
    315   while (!RecentPositive.empty())
    316     nodes[RecentPositive.pop_back_val()].update(nodes);
    317 
    318   if (Linked.empty())
    319     return;
    320 
    321   // Run up to 10 iterations. The edge bundle numbering is closely related to
    322   // basic block numbering, so there is a strong tendency towards chains of
    323   // linked nodes with sequential numbers. By scanning the linked nodes
    324   // backwards and forwards, we make it very likely that a single node can
    325   // affect the entire network in a single iteration. That means very fast
    326   // convergence, usually in a single iteration.
    327   for (unsigned iteration = 0; iteration != 10; ++iteration) {
    328     // Scan backwards, skipping the last node which was just updated.
    329     bool Changed = false;
    330     for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
    331            llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) {
    332       unsigned n = *I;
    333       if (nodes[n].update(nodes)) {
    334         Changed = true;
    335         if (nodes[n].preferReg())
    336           RecentPositive.push_back(n);
    337       }
    338     }
    339     if (!Changed || !RecentPositive.empty())
    340       return;
    341 
    342     // Scan forwards, skipping the first node which was just updated.
    343     Changed = false;
    344     for (SmallVectorImpl<unsigned>::const_iterator I =
    345            llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
    346       unsigned n = *I;
    347       if (nodes[n].update(nodes)) {
    348         Changed = true;
    349         if (nodes[n].preferReg())
    350           RecentPositive.push_back(n);
    351       }
    352     }
    353     if (!Changed || !RecentPositive.empty())
    354       return;
    355   }
    356 }
    357 
    358 void SpillPlacement::prepare(BitVector &RegBundles) {
    359   Linked.clear();
    360   RecentPositive.clear();
    361   // Reuse RegBundles as our ActiveNodes vector.
    362   ActiveNodes = &RegBundles;
    363   ActiveNodes->clear();
    364   ActiveNodes->resize(bundles->getNumBundles());
    365 }
    366 
    367 bool
    368 SpillPlacement::finish() {
    369   assert(ActiveNodes && "Call prepare() first");
    370 
    371   // Write preferences back to ActiveNodes.
    372   bool Perfect = true;
    373   for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n))
    374     if (!nodes[n].preferReg()) {
    375       ActiveNodes->reset(n);
    376       Perfect = false;
    377     }
    378   ActiveNodes = 0;
    379   return Perfect;
    380 }
    381