1 Target Independent Opportunities:
2
3 //===---------------------------------------------------------------------===//
4
5 We should recognized various "overflow detection" idioms and translate them into
6 llvm.uadd.with.overflow and similar intrinsics. Here is a multiply idiom:
7
8 unsigned int mul(unsigned int a,unsigned int b) {
9 if ((unsigned long long)a*b>0xffffffff)
10 exit(0);
11 return a*b;
12 }
13
14 The legalization code for mul-with-overflow needs to be made more robust before
15 this can be implemented though.
16
17 //===---------------------------------------------------------------------===//
18
19 Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
20 precision don't matter (ffastmath). Misc/mandel will like this. :) This isn't
21 safe in general, even on darwin. See the libm implementation of hypot for
22 examples (which special case when x/y are exactly zero to get signed zeros etc
23 right).
24
25 //===---------------------------------------------------------------------===//
26
27 On targets with expensive 64-bit multiply, we could LSR this:
28
29 for (i = ...; ++i) {
30 x = 1ULL << i;
31
32 into:
33 long long tmp = 1;
34 for (i = ...; ++i, tmp+=tmp)
35 x = tmp;
36
37 This would be a win on ppc32, but not x86 or ppc64.
38
39 //===---------------------------------------------------------------------===//
40
41 Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
42
43 //===---------------------------------------------------------------------===//
44
45 Reassociate should turn things like:
46
47 int factorial(int X) {
48 return X*X*X*X*X*X*X*X;
49 }
50
51 into llvm.powi calls, allowing the code generator to produce balanced
52 multiplication trees.
53
54 First, the intrinsic needs to be extended to support integers, and second the
55 code generator needs to be enhanced to lower these to multiplication trees.
56
57 //===---------------------------------------------------------------------===//
58
59 Interesting? testcase for add/shift/mul reassoc:
60
61 int bar(int x, int y) {
62 return x*x*x+y+x*x*x*x*x*y*y*y*y;
63 }
64 int foo(int z, int n) {
65 return bar(z, n) + bar(2*z, 2*n);
66 }
67
68 This is blocked on not handling X*X*X -> powi(X, 3) (see note above). The issue
69 is that we end up getting t = 2*X s = t*t and don't turn this into 4*X*X,
70 which is the same number of multiplies and is canonical, because the 2*X has
71 multiple uses. Here's a simple example:
72
73 define i32 @test15(i32 %X1) {
74 %B = mul i32 %X1, 47 ; X1*47
75 %C = mul i32 %B, %B
76 ret i32 %C
77 }
78
79
80 //===---------------------------------------------------------------------===//
81
82 Reassociate should handle the example in GCC PR16157:
83
84 extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4;
85 void f () { /* this can be optimized to four additions... */
86 b4 = a4 + a3 + a2 + a1 + a0;
87 b3 = a3 + a2 + a1 + a0;
88 b2 = a2 + a1 + a0;
89 b1 = a1 + a0;
90 }
91
92 This requires reassociating to forms of expressions that are already available,
93 something that reassoc doesn't think about yet.
94
95
96 //===---------------------------------------------------------------------===//
97
98 This function: (derived from GCC PR19988)
99 double foo(double x, double y) {
100 return ((x + 0.1234 * y) * (x + -0.1234 * y));
101 }
102
103 compiles to:
104 _foo:
105 movapd %xmm1, %xmm2
106 mulsd LCPI1_1(%rip), %xmm1
107 mulsd LCPI1_0(%rip), %xmm2
108 addsd %xmm0, %xmm1
109 addsd %xmm0, %xmm2
110 movapd %xmm1, %xmm0
111 mulsd %xmm2, %xmm0
112 ret
113
114 Reassociate should be able to turn it into:
115
116 double foo(double x, double y) {
117 return ((x + 0.1234 * y) * (x - 0.1234 * y));
118 }
119
120 Which allows the multiply by constant to be CSE'd, producing:
121
122 _foo:
123 mulsd LCPI1_0(%rip), %xmm1
124 movapd %xmm1, %xmm2
125 addsd %xmm0, %xmm2
126 subsd %xmm1, %xmm0
127 mulsd %xmm2, %xmm0
128 ret
129
130 This doesn't need -ffast-math support at all. This is particularly bad because
131 the llvm-gcc frontend is canonicalizing the later into the former, but clang
132 doesn't have this problem.
133
134 //===---------------------------------------------------------------------===//
135
136 These two functions should generate the same code on big-endian systems:
137
138 int g(int *j,int *l) { return memcmp(j,l,4); }
139 int h(int *j, int *l) { return *j - *l; }
140
141 this could be done in SelectionDAGISel.cpp, along with other special cases,
142 for 1,2,4,8 bytes.
143
144 //===---------------------------------------------------------------------===//
145
146 It would be nice to revert this patch:
147 http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
148
149 And teach the dag combiner enough to simplify the code expanded before
150 legalize. It seems plausible that this knowledge would let it simplify other
151 stuff too.
152
153 //===---------------------------------------------------------------------===//
154
155 For vector types, TargetData.cpp::getTypeInfo() returns alignment that is equal
156 to the type size. It works but can be overly conservative as the alignment of
157 specific vector types are target dependent.
158
159 //===---------------------------------------------------------------------===//
160
161 We should produce an unaligned load from code like this:
162
163 v4sf example(float *P) {
164 return (v4sf){P[0], P[1], P[2], P[3] };
165 }
166
167 //===---------------------------------------------------------------------===//
168
169 Add support for conditional increments, and other related patterns. Instead
170 of:
171
172 movl 136(%esp), %eax
173 cmpl $0, %eax
174 je LBB16_2 #cond_next
175 LBB16_1: #cond_true
176 incl _foo
177 LBB16_2: #cond_next
178
179 emit:
180 movl _foo, %eax
181 cmpl $1, %edi
182 sbbl $-1, %eax
183 movl %eax, _foo
184
185 //===---------------------------------------------------------------------===//
186
187 Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
188
189 Expand these to calls of sin/cos and stores:
190 double sincos(double x, double *sin, double *cos);
191 float sincosf(float x, float *sin, float *cos);
192 long double sincosl(long double x, long double *sin, long double *cos);
193
194 Doing so could allow SROA of the destination pointers. See also:
195 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
196
197 This is now easily doable with MRVs. We could even make an intrinsic for this
198 if anyone cared enough about sincos.
199
200 //===---------------------------------------------------------------------===//
201
202 quantum_sigma_x in 462.libquantum contains the following loop:
203
204 for(i=0; i<reg->size; i++)
205 {
206 /* Flip the target bit of each basis state */
207 reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
208 }
209
210 Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just
211 so cool to turn it into something like:
212
213 long long Res = ((MAX_UNSIGNED) 1 << target);
214 if (target < 32) {
215 for(i=0; i<reg->size; i++)
216 reg->node[i].state ^= Res & 0xFFFFFFFFULL;
217 } else {
218 for(i=0; i<reg->size; i++)
219 reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
220 }
221
222 ... which would only do one 32-bit XOR per loop iteration instead of two.
223
224 It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
225 this requires TBAA.
226
227 //===---------------------------------------------------------------------===//
228
229 This isn't recognized as bswap by instcombine (yes, it really is bswap):
230
231 unsigned long reverse(unsigned v) {
232 unsigned t;
233 t = v ^ ((v << 16) | (v >> 16));
234 t &= ~0xff0000;
235 v = (v << 24) | (v >> 8);
236 return v ^ (t >> 8);
237 }
238
239 //===---------------------------------------------------------------------===//
240
241 [LOOP DELETION]
242
243 We don't delete this output free loop, because trip count analysis doesn't
244 realize that it is finite (if it were infinite, it would be undefined). Not
245 having this blocks Loop Idiom from matching strlen and friends.
246
247 void foo(char *C) {
248 int x = 0;
249 while (*C)
250 ++x,++C;
251 }
252
253 //===---------------------------------------------------------------------===//
254
255 [LOOP RECOGNITION]
256
257 These idioms should be recognized as popcount (see PR1488):
258
259 unsigned countbits_slow(unsigned v) {
260 unsigned c;
261 for (c = 0; v; v >>= 1)
262 c += v & 1;
263 return c;
264 }
265 unsigned countbits_fast(unsigned v){
266 unsigned c;
267 for (c = 0; v; c++)
268 v &= v - 1; // clear the least significant bit set
269 return c;
270 }
271
272 BITBOARD = unsigned long long
273 int PopCnt(register BITBOARD a) {
274 register int c=0;
275 while(a) {
276 c++;
277 a &= a - 1;
278 }
279 return c;
280 }
281 unsigned int popcount(unsigned int input) {
282 unsigned int count = 0;
283 for (unsigned int i = 0; i < 4 * 8; i++)
284 count += (input >> i) & i;
285 return count;
286 }
287
288 This should be recognized as CLZ: rdar://8459039
289
290 unsigned clz_a(unsigned a) {
291 int i;
292 for (i=0;i<32;i++)
293 if (a & (1<<(31-i)))
294 return i;
295 return 32;
296 }
297
298 This sort of thing should be added to the loop idiom pass.
299
300 //===---------------------------------------------------------------------===//
301
302 These should turn into single 16-bit (unaligned?) loads on little/big endian
303 processors.
304
305 unsigned short read_16_le(const unsigned char *adr) {
306 return adr[0] | (adr[1] << 8);
307 }
308 unsigned short read_16_be(const unsigned char *adr) {
309 return (adr[0] << 8) | adr[1];
310 }
311
312 //===---------------------------------------------------------------------===//
313
314 -instcombine should handle this transform:
315 icmp pred (sdiv X / C1 ), C2
316 when X, C1, and C2 are unsigned. Similarly for udiv and signed operands.
317
318 Currently InstCombine avoids this transform but will do it when the signs of
319 the operands and the sign of the divide match. See the FIXME in
320 InstructionCombining.cpp in the visitSetCondInst method after the switch case
321 for Instruction::UDiv (around line 4447) for more details.
322
323 The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
324 this construct.
325
326 //===---------------------------------------------------------------------===//
327
328 [LOOP OPTIMIZATION]
329
330 SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization
331 opportunities in its double_array_divs_variable function: it needs loop
332 interchange, memory promotion (which LICM already does), vectorization and
333 variable trip count loop unrolling (since it has a constant trip count). ICC
334 apparently produces this very nice code with -ffast-math:
335
336 ..B1.70: # Preds ..B1.70 ..B1.69
337 mulpd %xmm0, %xmm1 #108.2
338 mulpd %xmm0, %xmm1 #108.2
339 mulpd %xmm0, %xmm1 #108.2
340 mulpd %xmm0, %xmm1 #108.2
341 addl $8, %edx #
342 cmpl $131072, %edx #108.2
343 jb ..B1.70 # Prob 99% #108.2
344
345 It would be better to count down to zero, but this is a lot better than what we
346 do.
347
348 //===---------------------------------------------------------------------===//
349
350 Consider:
351
352 typedef unsigned U32;
353 typedef unsigned long long U64;
354 int test (U32 *inst, U64 *regs) {
355 U64 effective_addr2;
356 U32 temp = *inst;
357 int r1 = (temp >> 20) & 0xf;
358 int b2 = (temp >> 16) & 0xf;
359 effective_addr2 = temp & 0xfff;
360 if (b2) effective_addr2 += regs[b2];
361 b2 = (temp >> 12) & 0xf;
362 if (b2) effective_addr2 += regs[b2];
363 effective_addr2 &= regs[4];
364 if ((effective_addr2 & 3) == 0)
365 return 1;
366 return 0;
367 }
368
369 Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems,
370 we don't eliminate the computation of the top half of effective_addr2 because
371 we don't have whole-function selection dags. On x86, this means we use one
372 extra register for the function when effective_addr2 is declared as U64 than
373 when it is declared U32.
374
375 PHI Slicing could be extended to do this.
376
377 //===---------------------------------------------------------------------===//
378
379 Tail call elim should be more aggressive, checking to see if the call is
380 followed by an uncond branch to an exit block.
381
382 ; This testcase is due to tail-duplication not wanting to copy the return
383 ; instruction into the terminating blocks because there was other code
384 ; optimized out of the function after the taildup happened.
385 ; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
386
387 define i32 @t4(i32 %a) {
388 entry:
389 %tmp.1 = and i32 %a, 1 ; <i32> [#uses=1]
390 %tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1]
391 br i1 %tmp.2, label %then.0, label %else.0
392
393 then.0: ; preds = %entry
394 %tmp.5 = add i32 %a, -1 ; <i32> [#uses=1]
395 %tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1]
396 br label %return
397
398 else.0: ; preds = %entry
399 %tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1]
400 br i1 %tmp.7, label %then.1, label %return
401
402 then.1: ; preds = %else.0
403 %tmp.11 = add i32 %a, -2 ; <i32> [#uses=1]
404 %tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1]
405 br label %return
406
407 return: ; preds = %then.1, %else.0, %then.0
408 %result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
409 [ %tmp.9, %then.1 ]
410 ret i32 %result.0
411 }
412
413 //===---------------------------------------------------------------------===//
414
415 Tail recursion elimination should handle:
416
417 int pow2m1(int n) {
418 if (n == 0)
419 return 0;
420 return 2 * pow2m1 (n - 1) + 1;
421 }
422
423 Also, multiplies can be turned into SHL's, so they should be handled as if
424 they were associative. "return foo() << 1" can be tail recursion eliminated.
425
426 //===---------------------------------------------------------------------===//
427
428 Argument promotion should promote arguments for recursive functions, like
429 this:
430
431 ; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
432
433 define internal i32 @foo(i32* %x) {
434 entry:
435 %tmp = load i32* %x ; <i32> [#uses=0]
436 %tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
437 ret i32 %tmp.foo
438 }
439
440 define i32 @bar(i32* %x) {
441 entry:
442 %tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
443 ret i32 %tmp3
444 }
445
446 //===---------------------------------------------------------------------===//
447
448 We should investigate an instruction sinking pass. Consider this silly
449 example in pic mode:
450
451 #include <assert.h>
452 void foo(int x) {
453 assert(x);
454 //...
455 }
456
457 we compile this to:
458 _foo:
459 subl $28, %esp
460 call "L1$pb"
461 "L1$pb":
462 popl %eax
463 cmpl $0, 32(%esp)
464 je LBB1_2 # cond_true
465 LBB1_1: # return
466 # ...
467 addl $28, %esp
468 ret
469 LBB1_2: # cond_true
470 ...
471
472 The PIC base computation (call+popl) is only used on one path through the
473 code, but is currently always computed in the entry block. It would be
474 better to sink the picbase computation down into the block for the
475 assertion, as it is the only one that uses it. This happens for a lot of
476 code with early outs.
477
478 Another example is loads of arguments, which are usually emitted into the
479 entry block on targets like x86. If not used in all paths through a
480 function, they should be sunk into the ones that do.
481
482 In this case, whole-function-isel would also handle this.
483
484 //===---------------------------------------------------------------------===//
485
486 Investigate lowering of sparse switch statements into perfect hash tables:
487 http://burtleburtle.net/bob/hash/perfect.html
488
489 //===---------------------------------------------------------------------===//
490
491 We should turn things like "load+fabs+store" and "load+fneg+store" into the
492 corresponding integer operations. On a yonah, this loop:
493
494 double a[256];
495 void foo() {
496 int i, b;
497 for (b = 0; b < 10000000; b++)
498 for (i = 0; i < 256; i++)
499 a[i] = -a[i];
500 }
501
502 is twice as slow as this loop:
503
504 long long a[256];
505 void foo() {
506 int i, b;
507 for (b = 0; b < 10000000; b++)
508 for (i = 0; i < 256; i++)
509 a[i] ^= (1ULL << 63);
510 }
511
512 and I suspect other processors are similar. On X86 in particular this is a
513 big win because doing this with integers allows the use of read/modify/write
514 instructions.
515
516 //===---------------------------------------------------------------------===//
517
518 DAG Combiner should try to combine small loads into larger loads when
519 profitable. For example, we compile this C++ example:
520
521 struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
522 extern THotKey m_HotKey;
523 THotKey GetHotKey () { return m_HotKey; }
524
525 into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer):
526
527 __Z9GetHotKeyv: ## @_Z9GetHotKeyv
528 movq _m_HotKey@GOTPCREL(%rip), %rax
529 movzwl (%rax), %ecx
530 movzbl 2(%rax), %edx
531 shlq $16, %rdx
532 orq %rcx, %rdx
533 movzbl 3(%rax), %ecx
534 shlq $24, %rcx
535 orq %rdx, %rcx
536 movzbl 4(%rax), %eax
537 shlq $32, %rax
538 orq %rcx, %rax
539 ret
540
541 //===---------------------------------------------------------------------===//
542
543 We should add an FRINT node to the DAG to model targets that have legal
544 implementations of ceil/floor/rint.
545
546 //===---------------------------------------------------------------------===//
547
548 Consider:
549
550 int test() {
551 long long input[8] = {1,0,1,0,1,0,1,0};
552 foo(input);
553 }
554
555 Clang compiles this into:
556
557 call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false)
558 %0 = getelementptr [8 x i64]* %input, i64 0, i64 0
559 store i64 1, i64* %0, align 16
560 %1 = getelementptr [8 x i64]* %input, i64 0, i64 2
561 store i64 1, i64* %1, align 16
562 %2 = getelementptr [8 x i64]* %input, i64 0, i64 4
563 store i64 1, i64* %2, align 16
564 %3 = getelementptr [8 x i64]* %input, i64 0, i64 6
565 store i64 1, i64* %3, align 16
566
567 Which gets codegen'd into:
568
569 pxor %xmm0, %xmm0
570 movaps %xmm0, -16(%rbp)
571 movaps %xmm0, -32(%rbp)
572 movaps %xmm0, -48(%rbp)
573 movaps %xmm0, -64(%rbp)
574 movq $1, -64(%rbp)
575 movq $1, -48(%rbp)
576 movq $1, -32(%rbp)
577 movq $1, -16(%rbp)
578
579 It would be better to have 4 movq's of 0 instead of the movaps's.
580
581 //===---------------------------------------------------------------------===//
582
583 http://llvm.org/PR717:
584
585 The following code should compile into "ret int undef". Instead, LLVM
586 produces "ret int 0":
587
588 int f() {
589 int x = 4;
590 int y;
591 if (x == 3) y = 0;
592 return y;
593 }
594
595 //===---------------------------------------------------------------------===//
596
597 The loop unroller should partially unroll loops (instead of peeling them)
598 when code growth isn't too bad and when an unroll count allows simplification
599 of some code within the loop. One trivial example is:
600
601 #include <stdio.h>
602 int main() {
603 int nRet = 17;
604 int nLoop;
605 for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
606 if ( nLoop & 1 )
607 nRet += 2;
608 else
609 nRet -= 1;
610 }
611 return nRet;
612 }
613
614 Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
615 reduction in code size. The resultant code would then also be suitable for
616 exit value computation.
617
618 //===---------------------------------------------------------------------===//
619
620 We miss a bunch of rotate opportunities on various targets, including ppc, x86,
621 etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate
622 matching code in dag combine doesn't look through truncates aggressively
623 enough. Here are some testcases reduces from GCC PR17886:
624
625 unsigned long long f5(unsigned long long x, unsigned long long y) {
626 return (x << 8) | ((y >> 48) & 0xffull);
627 }
628 unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
629 switch(z) {
630 case 1:
631 return (x << 8) | ((y >> 48) & 0xffull);
632 case 2:
633 return (x << 16) | ((y >> 40) & 0xffffull);
634 case 3:
635 return (x << 24) | ((y >> 32) & 0xffffffull);
636 case 4:
637 return (x << 32) | ((y >> 24) & 0xffffffffull);
638 default:
639 return (x << 40) | ((y >> 16) & 0xffffffffffull);
640 }
641 }
642
643 //===---------------------------------------------------------------------===//
644
645 This (and similar related idioms):
646
647 unsigned int foo(unsigned char i) {
648 return i | (i<<8) | (i<<16) | (i<<24);
649 }
650
651 compiles into:
652
653 define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone {
654 entry:
655 %conv = zext i8 %i to i32
656 %shl = shl i32 %conv, 8
657 %shl5 = shl i32 %conv, 16
658 %shl9 = shl i32 %conv, 24
659 %or = or i32 %shl9, %conv
660 %or6 = or i32 %or, %shl5
661 %or10 = or i32 %or6, %shl
662 ret i32 %or10
663 }
664
665 it would be better as:
666
667 unsigned int bar(unsigned char i) {
668 unsigned int j=i | (i << 8);
669 return j | (j<<16);
670 }
671
672 aka:
673
674 define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone {
675 entry:
676 %conv = zext i8 %i to i32
677 %shl = shl i32 %conv, 8
678 %or = or i32 %shl, %conv
679 %shl5 = shl i32 %or, 16
680 %or6 = or i32 %shl5, %or
681 ret i32 %or6
682 }
683
684 or even i*0x01010101, depending on the speed of the multiplier. The best way to
685 handle this is to canonicalize it to a multiply in IR and have codegen handle
686 lowering multiplies to shifts on cpus where shifts are faster.
687
688 //===---------------------------------------------------------------------===//
689
690 We do a number of simplifications in simplify libcalls to strength reduce
691 standard library functions, but we don't currently merge them together. For
692 example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only
693 be done safely if "b" isn't modified between the strlen and memcpy of course.
694
695 //===---------------------------------------------------------------------===//
696
697 We compile this program: (from GCC PR11680)
698 http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
699
700 Into code that runs the same speed in fast/slow modes, but both modes run 2x
701 slower than when compile with GCC (either 4.0 or 4.2):
702
703 $ llvm-g++ perf.cpp -O3 -fno-exceptions
704 $ time ./a.out fast
705 1.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w
706
707 $ g++ perf.cpp -O3 -fno-exceptions
708 $ time ./a.out fast
709 0.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w
710
711 It looks like we are making the same inlining decisions, so this may be raw
712 codegen badness or something else (haven't investigated).
713
714 //===---------------------------------------------------------------------===//
715
716 Divisibility by constant can be simplified (according to GCC PR12849) from
717 being a mulhi to being a mul lo (cheaper). Testcase:
718
719 void bar(unsigned n) {
720 if (n % 3 == 0)
721 true();
722 }
723
724 This is equivalent to the following, where 2863311531 is the multiplicative
725 inverse of 3, and 1431655766 is ((2^32)-1)/3+1:
726 void bar(unsigned n) {
727 if (n * 2863311531U < 1431655766U)
728 true();
729 }
730
731 The same transformation can work with an even modulo with the addition of a
732 rotate: rotate the result of the multiply to the right by the number of bits
733 which need to be zero for the condition to be true, and shrink the compare RHS
734 by the same amount. Unless the target supports rotates, though, that
735 transformation probably isn't worthwhile.
736
737 The transformation can also easily be made to work with non-zero equality
738 comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0".
739
740 //===---------------------------------------------------------------------===//
741
742 Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
743 bunch of other stuff from this example (see PR1604):
744
745 #include <cstdio>
746 struct test {
747 int val;
748 virtual ~test() {}
749 };
750
751 int main() {
752 test t;
753 std::scanf("%d", &t.val);
754 std::printf("%d\n", t.val);
755 }
756
757 //===---------------------------------------------------------------------===//
758
759 These functions perform the same computation, but produce different assembly.
760
761 define i8 @select(i8 %x) readnone nounwind {
762 %A = icmp ult i8 %x, 250
763 %B = select i1 %A, i8 0, i8 1
764 ret i8 %B
765 }
766
767 define i8 @addshr(i8 %x) readnone nounwind {
768 %A = zext i8 %x to i9
769 %B = add i9 %A, 6 ;; 256 - 250 == 6
770 %C = lshr i9 %B, 8
771 %D = trunc i9 %C to i8
772 ret i8 %D
773 }
774
775 //===---------------------------------------------------------------------===//
776
777 From gcc bug 24696:
778 int
779 f (unsigned long a, unsigned long b, unsigned long c)
780 {
781 return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
782 }
783 int
784 f (unsigned long a, unsigned long b, unsigned long c)
785 {
786 return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
787 }
788 Both should combine to ((a|b) & (c-1)) != 0. Currently not optimized with
789 "clang -emit-llvm-bc | opt -std-compile-opts".
790
791 //===---------------------------------------------------------------------===//
792
793 From GCC Bug 20192:
794 #define PMD_MASK (~((1UL << 23) - 1))
795 void clear_pmd_range(unsigned long start, unsigned long end)
796 {
797 if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
798 f();
799 }
800 The expression should optimize to something like
801 "!((start|end)&~PMD_MASK). Currently not optimized with "clang
802 -emit-llvm-bc | opt -std-compile-opts".
803
804 //===---------------------------------------------------------------------===//
805
806 unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
807 i;}
808 unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
809 These should combine to the same thing. Currently, the first function
810 produces better code on X86.
811
812 //===---------------------------------------------------------------------===//
813
814 From GCC Bug 15784:
815 #define abs(x) x>0?x:-x
816 int f(int x, int y)
817 {
818 return (abs(x)) >= 0;
819 }
820 This should optimize to x == INT_MIN. (With -fwrapv.) Currently not
821 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
822
823 //===---------------------------------------------------------------------===//
824
825 From GCC Bug 14753:
826 void
827 rotate_cst (unsigned int a)
828 {
829 a = (a << 10) | (a >> 22);
830 if (a == 123)
831 bar ();
832 }
833 void
834 minus_cst (unsigned int a)
835 {
836 unsigned int tem;
837
838 tem = 20 - a;
839 if (tem == 5)
840 bar ();
841 }
842 void
843 mask_gt (unsigned int a)
844 {
845 /* This is equivalent to a > 15. */
846 if ((a & ~7) > 8)
847 bar ();
848 }
849 void
850 rshift_gt (unsigned int a)
851 {
852 /* This is equivalent to a > 23. */
853 if ((a >> 2) > 5)
854 bar ();
855 }
856
857 All should simplify to a single comparison. All of these are
858 currently not optimized with "clang -emit-llvm-bc | opt
859 -std-compile-opts".
860
861 //===---------------------------------------------------------------------===//
862
863 From GCC Bug 32605:
864 int c(int* x) {return (char*)x+2 == (char*)x;}
865 Should combine to 0. Currently not optimized with "clang
866 -emit-llvm-bc | opt -std-compile-opts" (although llc can optimize it).
867
868 //===---------------------------------------------------------------------===//
869
870 int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
871 Should be combined to "((b >> 1) | b) & 1". Currently not optimized
872 with "clang -emit-llvm-bc | opt -std-compile-opts".
873
874 //===---------------------------------------------------------------------===//
875
876 unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
877 Should combine to "x | (y & 3)". Currently not optimized with "clang
878 -emit-llvm-bc | opt -std-compile-opts".
879
880 //===---------------------------------------------------------------------===//
881
882 int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
883 Should fold to "(~a & c) | (a & b)". Currently not optimized with
884 "clang -emit-llvm-bc | opt -std-compile-opts".
885
886 //===---------------------------------------------------------------------===//
887
888 int a(int a,int b) {return (~(a|b))|a;}
889 Should fold to "a|~b". Currently not optimized with "clang
890 -emit-llvm-bc | opt -std-compile-opts".
891
892 //===---------------------------------------------------------------------===//
893
894 int a(int a, int b) {return (a&&b) || (a&&!b);}
895 Should fold to "a". Currently not optimized with "clang -emit-llvm-bc
896 | opt -std-compile-opts".
897
898 //===---------------------------------------------------------------------===//
899
900 int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
901 Should fold to "a ? b : c", or at least something sane. Currently not
902 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
903
904 //===---------------------------------------------------------------------===//
905
906 int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
907 Should fold to a && (b || c). Currently not optimized with "clang
908 -emit-llvm-bc | opt -std-compile-opts".
909
910 //===---------------------------------------------------------------------===//
911
912 int a(int x) {return x | ((x & 8) ^ 8);}
913 Should combine to x | 8. Currently not optimized with "clang
914 -emit-llvm-bc | opt -std-compile-opts".
915
916 //===---------------------------------------------------------------------===//
917
918 int a(int x) {return x ^ ((x & 8) ^ 8);}
919 Should also combine to x | 8. Currently not optimized with "clang
920 -emit-llvm-bc | opt -std-compile-opts".
921
922 //===---------------------------------------------------------------------===//
923
924 int a(int x) {return ((x | -9) ^ 8) & x;}
925 Should combine to x & -9. Currently not optimized with "clang
926 -emit-llvm-bc | opt -std-compile-opts".
927
928 //===---------------------------------------------------------------------===//
929
930 unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
931 Should combine to "a * 0x88888888 >> 31". Currently not optimized
932 with "clang -emit-llvm-bc | opt -std-compile-opts".
933
934 //===---------------------------------------------------------------------===//
935
936 unsigned a(char* x) {if ((*x & 32) == 0) return b();}
937 There's an unnecessary zext in the generated code with "clang
938 -emit-llvm-bc | opt -std-compile-opts".
939
940 //===---------------------------------------------------------------------===//
941
942 unsigned a(unsigned long long x) {return 40 * (x >> 1);}
943 Should combine to "20 * (((unsigned)x) & -2)". Currently not
944 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
945
946 //===---------------------------------------------------------------------===//
947
948 int g(int x) { return (x - 10) < 0; }
949 Should combine to "x <= 9" (the sub has nsw). Currently not
950 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
951
952 //===---------------------------------------------------------------------===//
953
954 int g(int x) { return (x + 10) < 0; }
955 Should combine to "x < -10" (the add has nsw). Currently not
956 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
957
958 //===---------------------------------------------------------------------===//
959
960 int f(int i, int j) { return i < j + 1; }
961 int g(int i, int j) { return j > i - 1; }
962 Should combine to "i <= j" (the add/sub has nsw). Currently not
963 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
964
965 //===---------------------------------------------------------------------===//
966
967 unsigned f(unsigned x) { return ((x & 7) + 1) & 15; }
968 The & 15 part should be optimized away, it doesn't change the result. Currently
969 not optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
970
971 //===---------------------------------------------------------------------===//
972
973 This was noticed in the entryblock for grokdeclarator in 403.gcc:
974
975 %tmp = icmp eq i32 %decl_context, 4
976 %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context
977 %tmp1 = icmp eq i32 %decl_context_addr.0, 1
978 %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
979
980 tmp1 should be simplified to something like:
981 (!tmp || decl_context == 1)
982
983 This allows recursive simplifications, tmp1 is used all over the place in
984 the function, e.g. by:
985
986 %tmp23 = icmp eq i32 %decl_context_addr.1, 0 ; <i1> [#uses=1]
987 %tmp24 = xor i1 %tmp1, true ; <i1> [#uses=1]
988 %or.cond8 = and i1 %tmp23, %tmp24 ; <i1> [#uses=1]
989
990 later.
991
992 //===---------------------------------------------------------------------===//
993
994 [STORE SINKING]
995
996 Store sinking: This code:
997
998 void f (int n, int *cond, int *res) {
999 int i;
1000 *res = 0;
1001 for (i = 0; i < n; i++)
1002 if (*cond)
1003 *res ^= 234; /* (*) */
1004 }
1005
1006 On this function GVN hoists the fully redundant value of *res, but nothing
1007 moves the store out. This gives us this code:
1008
1009 bb: ; preds = %bb2, %entry
1010 %.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ]
1011 %i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
1012 %1 = load i32* %cond, align 4
1013 %2 = icmp eq i32 %1, 0
1014 br i1 %2, label %bb2, label %bb1
1015
1016 bb1: ; preds = %bb
1017 %3 = xor i32 %.rle, 234
1018 store i32 %3, i32* %res, align 4
1019 br label %bb2
1020
1021 bb2: ; preds = %bb, %bb1
1022 %.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]
1023 %indvar.next = add i32 %i.05, 1
1024 %exitcond = icmp eq i32 %indvar.next, %n
1025 br i1 %exitcond, label %return, label %bb
1026
1027 DSE should sink partially dead stores to get the store out of the loop.
1028
1029 Here's another partial dead case:
1030 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
1031
1032 //===---------------------------------------------------------------------===//
1033
1034 Scalar PRE hoists the mul in the common block up to the else:
1035
1036 int test (int a, int b, int c, int g) {
1037 int d, e;
1038 if (a)
1039 d = b * c;
1040 else
1041 d = b - c;
1042 e = b * c + g;
1043 return d + e;
1044 }
1045
1046 It would be better to do the mul once to reduce codesize above the if.
1047 This is GCC PR38204.
1048
1049
1050 //===---------------------------------------------------------------------===//
1051 This simple function from 179.art:
1052
1053 int winner, numf2s;
1054 struct { double y; int reset; } *Y;
1055
1056 void find_match() {
1057 int i;
1058 winner = 0;
1059 for (i=0;i<numf2s;i++)
1060 if (Y[i].y > Y[winner].y)
1061 winner =i;
1062 }
1063
1064 Compiles into (with clang TBAA):
1065
1066 for.body: ; preds = %for.inc, %bb.nph
1067 %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ]
1068 %i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ]
1069 %tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0
1070 %tmp5 = load double* %tmp4, align 8, !tbaa !4
1071 %idxprom7 = sext i32 %i.01718 to i64
1072 %tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0
1073 %tmp11 = load double* %tmp10, align 8, !tbaa !4
1074 %cmp12 = fcmp ogt double %tmp5, %tmp11
1075 br i1 %cmp12, label %if.then, label %for.inc
1076
1077 if.then: ; preds = %for.body
1078 %i.017 = trunc i64 %indvar to i32
1079 br label %for.inc
1080
1081 for.inc: ; preds = %for.body, %if.then
1082 %i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ]
1083 %indvar.next = add i64 %indvar, 1
1084 %exitcond = icmp eq i64 %indvar.next, %tmp22
1085 br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
1086
1087
1088 It is good that we hoisted the reloads of numf2's, and Y out of the loop and
1089 sunk the store to winner out.
1090
1091 However, this is awful on several levels: the conditional truncate in the loop
1092 (-indvars at fault? why can't we completely promote the IV to i64?).
1093
1094 Beyond that, we have a partially redundant load in the loop: if "winner" (aka
1095 %i.01718) isn't updated, we reload Y[winner].y the next time through the loop.
1096 Similarly, the addressing that feeds it (including the sext) is redundant. In
1097 the end we get this generated assembly:
1098
1099 LBB0_2: ## %for.body
1100 ## =>This Inner Loop Header: Depth=1
1101 movsd (%rdi), %xmm0
1102 movslq %edx, %r8
1103 shlq $4, %r8
1104 ucomisd (%rcx,%r8), %xmm0
1105 jbe LBB0_4
1106 movl %esi, %edx
1107 LBB0_4: ## %for.inc
1108 addq $16, %rdi
1109 incq %rsi
1110 cmpq %rsi, %rax
1111 jne LBB0_2
1112
1113 All things considered this isn't too bad, but we shouldn't need the movslq or
1114 the shlq instruction, or the load folded into ucomisd every time through the
1115 loop.
1116
1117 On an x86-specific topic, if the loop can't be restructure, the movl should be a
1118 cmov.
1119
1120 //===---------------------------------------------------------------------===//
1121
1122 [STORE SINKING]
1123
1124 GCC PR37810 is an interesting case where we should sink load/store reload
1125 into the if block and outside the loop, so we don't reload/store it on the
1126 non-call path.
1127
1128 for () {
1129 *P += 1;
1130 if ()
1131 call();
1132 else
1133 ...
1134 ->
1135 tmp = *P
1136 for () {
1137 tmp += 1;
1138 if () {
1139 *P = tmp;
1140 call();
1141 tmp = *P;
1142 } else ...
1143 }
1144 *P = tmp;
1145
1146 We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
1147 we don't sink the store. We need partially dead store sinking.
1148
1149 //===---------------------------------------------------------------------===//
1150
1151 [LOAD PRE CRIT EDGE SPLITTING]
1152
1153 GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
1154 leading to excess stack traffic. This could be handled by GVN with some crazy
1155 symbolic phi translation. The code we get looks like (g is on the stack):
1156
1157 bb2: ; preds = %bb1
1158 ..
1159 %9 = getelementptr %struct.f* %g, i32 0, i32 0
1160 store i32 %8, i32* %9, align bel %bb3
1161
1162 bb3: ; preds = %bb1, %bb2, %bb
1163 %c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
1164 %b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
1165 %10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
1166 %11 = load i32* %10, align 4
1167
1168 %11 is partially redundant, an in BB2 it should have the value %8.
1169
1170 GCC PR33344 and PR35287 are similar cases.
1171
1172
1173 //===---------------------------------------------------------------------===//
1174
1175 [LOAD PRE]
1176
1177 There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
1178 GCC testsuite, ones we don't get yet are (checked through loadpre25):
1179
1180 [CRIT EDGE BREAKING]
1181 loadpre3.c predcom-4.c
1182
1183 [PRE OF READONLY CALL]
1184 loadpre5.c
1185
1186 [TURN SELECT INTO BRANCH]
1187 loadpre14.c loadpre15.c
1188
1189 actually a conditional increment: loadpre18.c loadpre19.c
1190
1191 //===---------------------------------------------------------------------===//
1192
1193 [LOAD PRE / STORE SINKING / SPEC HACK]
1194
1195 This is a chunk of code from 456.hmmer:
1196
1197 int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp,
1198 int *tpdm, int xmb, int *bp, int *ms) {
1199 int k, sc;
1200 for (k = 1; k <= M; k++) {
1201 mc[k] = mpp[k-1] + tpmm[k-1];
1202 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;
1203 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
1204 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;
1205 mc[k] += ms[k];
1206 }
1207 }
1208
1209 It is very profitable for this benchmark to turn the conditional stores to mc[k]
1210 into a conditional move (select instr in IR) and allow the final store to do the
1211 store. See GCC PR27313 for more details. Note that this is valid to xform even
1212 with the new C++ memory model, since mc[k] is previously loaded and later
1213 stored.
1214
1215 //===---------------------------------------------------------------------===//
1216
1217 [SCALAR PRE]
1218 There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the
1219 GCC testsuite.
1220
1221 //===---------------------------------------------------------------------===//
1222
1223 There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
1224 GCC testsuite. For example, we get the first example in predcom-1.c, but
1225 miss the second one:
1226
1227 unsigned fib[1000];
1228 unsigned avg[1000];
1229
1230 __attribute__ ((noinline))
1231 void count_averages(int n) {
1232 int i;
1233 for (i = 1; i < n; i++)
1234 avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff;
1235 }
1236
1237 which compiles into two loads instead of one in the loop.
1238
1239 predcom-2.c is the same as predcom-1.c
1240
1241 predcom-3.c is very similar but needs loads feeding each other instead of
1242 store->load.
1243
1244
1245 //===---------------------------------------------------------------------===//
1246
1247 [ALIAS ANALYSIS]
1248
1249 Type based alias analysis:
1250 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
1251
1252 We should do better analysis of posix_memalign. At the least it should
1253 no-capture its pointer argument, at best, we should know that the out-value
1254 result doesn't point to anything (like malloc). One example of this is in
1255 SingleSource/Benchmarks/Misc/dt.c
1256
1257 //===---------------------------------------------------------------------===//
1258
1259 Interesting missed case because of control flow flattening (should be 2 loads):
1260 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
1261 With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as |
1262 opt -mem2reg -gvn -instcombine | llvm-dis
1263 we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT
1264 VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
1265
1266 //===---------------------------------------------------------------------===//
1267
1268 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
1269 We could eliminate the branch condition here, loading from null is undefined:
1270
1271 struct S { int w, x, y, z; };
1272 struct T { int r; struct S s; };
1273 void bar (struct S, int);
1274 void foo (int a, struct T b)
1275 {
1276 struct S *c = 0;
1277 if (a)
1278 c = &b.s;
1279 bar (*c, a);
1280 }
1281
1282 //===---------------------------------------------------------------------===//
1283
1284 simplifylibcalls should do several optimizations for strspn/strcspn:
1285
1286 strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
1287
1288 size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
1289 int __reject3) {
1290 register size_t __result = 0;
1291 while (__s[__result] != '\0' && __s[__result] != __reject1 &&
1292 __s[__result] != __reject2 && __s[__result] != __reject3)
1293 ++__result;
1294 return __result;
1295 }
1296
1297 This should turn into a switch on the character. See PR3253 for some notes on
1298 codegen.
1299
1300 456.hmmer apparently uses strcspn and strspn a lot. 471.omnetpp uses strspn.
1301
1302 //===---------------------------------------------------------------------===//
1303
1304 simplifylibcalls should turn these snprintf idioms into memcpy (GCC PR47917)
1305
1306 char buf1[6], buf2[6], buf3[4], buf4[4];
1307 int i;
1308
1309 int foo (void) {
1310 int ret = snprintf (buf1, sizeof buf1, "abcde");
1311 ret += snprintf (buf2, sizeof buf2, "abcdef") * 16;
1312 ret += snprintf (buf3, sizeof buf3, "%s", i++ < 6 ? "abc" : "def") * 256;
1313 ret += snprintf (buf4, sizeof buf4, "%s", i++ > 10 ? "abcde" : "defgh")*4096;
1314 return ret;
1315 }
1316
1317 //===---------------------------------------------------------------------===//
1318
1319 "gas" uses this idiom:
1320 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
1321 ..
1322 else if (strchr ("<>", *intel_parser.op_string)
1323
1324 Those should be turned into a switch.
1325
1326 //===---------------------------------------------------------------------===//
1327
1328 252.eon contains this interesting code:
1329
1330 %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
1331 %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
1332 %strlen = call i32 @strlen(i8* %3072) ; uses = 1
1333 %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
1334 call void @llvm.memcpy.i32(i8* %endptr,
1335 i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
1336 %3074 = call i32 @strlen(i8* %endptr) nounwind readonly
1337
1338 This is interesting for a couple reasons. First, in this:
1339
1340 The memcpy+strlen strlen can be replaced with:
1341
1342 %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly
1343
1344 Because the destination was just copied into the specified memory buffer. This,
1345 in turn, can be constant folded to "4".
1346
1347 In other code, it contains:
1348
1349 %endptr6978 = bitcast i8* %endptr69 to i32*
1350 store i32 7107374, i32* %endptr6978, align 1
1351 %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly
1352
1353 Which could also be constant folded. Whatever is producing this should probably
1354 be fixed to leave this as a memcpy from a string.
1355
1356 Further, eon also has an interesting partially redundant strlen call:
1357
1358 bb8: ; preds = %_ZN18eonImageCalculatorC1Ev.exit
1359 %682 = getelementptr i8** %argv, i32 6 ; <i8**> [#uses=2]
1360 %683 = load i8** %682, align 4 ; <i8*> [#uses=4]
1361 %684 = load i8* %683, align 1 ; <i8> [#uses=1]
1362 %685 = icmp eq i8 %684, 0 ; <i1> [#uses=1]
1363 br i1 %685, label %bb10, label %bb9
1364
1365 bb9: ; preds = %bb8
1366 %686 = call i32 @strlen(i8* %683) nounwind readonly
1367 %687 = icmp ugt i32 %686, 254 ; <i1> [#uses=1]
1368 br i1 %687, label %bb10, label %bb11
1369
1370 bb10: ; preds = %bb9, %bb8
1371 %688 = call i32 @strlen(i8* %683) nounwind readonly
1372
1373 This could be eliminated by doing the strlen once in bb8, saving code size and
1374 improving perf on the bb8->9->10 path.
1375
1376 //===---------------------------------------------------------------------===//
1377
1378 I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
1379 which looks like:
1380 %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0
1381
1382
1383 bb62: ; preds = %bb55, %bb53
1384 %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]
1385 %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1386 %172 = add i32 %171, -1 ; <i32> [#uses=1]
1387 %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172
1388
1389 ... no stores ...
1390 br i1 %or.cond, label %bb65, label %bb72
1391
1392 bb65: ; preds = %bb62
1393 store i8 0, i8* %173, align 1
1394 br label %bb72
1395
1396 bb72: ; preds = %bb65, %bb62
1397 %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]
1398 %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1399
1400 Note that on the bb62->bb72 path, that the %177 strlen call is partially
1401 redundant with the %171 call. At worst, we could shove the %177 strlen call
1402 up into the bb65 block moving it out of the bb62->bb72 path. However, note
1403 that bb65 stores to the string, zeroing out the last byte. This means that on
1404 that path the value of %177 is actually just %171-1. A sub is cheaper than a
1405 strlen!
1406
1407 This pattern repeats several times, basically doing:
1408
1409 A = strlen(P);
1410 P[A-1] = 0;
1411 B = strlen(P);
1412 where it is "obvious" that B = A-1.
1413
1414 //===---------------------------------------------------------------------===//
1415
1416 186.crafty has this interesting pattern with the "out.4543" variable:
1417
1418 call void @llvm.memcpy.i32(
1419 i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
1420 i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1)
1421 %101 = call@printf(i8* ... @out.4543, i32 0, i32 0)) nounwind
1422
1423 It is basically doing:
1424
1425 memcpy(globalarray, "string");
1426 printf(..., globalarray);
1427
1428 Anyway, by knowing that printf just reads the memory and forward substituting
1429 the string directly into the printf, this eliminates reads from globalarray.
1430 Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
1431 other similar functions) there are many stores to "out". Once all the printfs
1432 stop using "out", all that is left is the memcpy's into it. This should allow
1433 globalopt to remove the "stored only" global.
1434
1435 //===---------------------------------------------------------------------===//
1436
1437 This code:
1438
1439 define inreg i32 @foo(i8* inreg %p) nounwind {
1440 %tmp0 = load i8* %p
1441 %tmp1 = ashr i8 %tmp0, 5
1442 %tmp2 = sext i8 %tmp1 to i32
1443 ret i32 %tmp2
1444 }
1445
1446 could be dagcombine'd to a sign-extending load with a shift.
1447 For example, on x86 this currently gets this:
1448
1449 movb (%eax), %al
1450 sarb $5, %al
1451 movsbl %al, %eax
1452
1453 while it could get this:
1454
1455 movsbl (%eax), %eax
1456 sarl $5, %eax
1457
1458 //===---------------------------------------------------------------------===//
1459
1460 GCC PR31029:
1461
1462 int test(int x) { return 1-x == x; } // --> return false
1463 int test2(int x) { return 2-x == x; } // --> return x == 1 ?
1464
1465 Always foldable for odd constants, what is the rule for even?
1466
1467 //===---------------------------------------------------------------------===//
1468
1469 PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
1470 for next field in struct (which is at same address).
1471
1472 For example: store of float into { {{}}, float } could be turned into a store to
1473 the float directly.
1474
1475 //===---------------------------------------------------------------------===//
1476
1477 The arg promotion pass should make use of nocapture to make its alias analysis
1478 stuff much more precise.
1479
1480 //===---------------------------------------------------------------------===//
1481
1482 The following functions should be optimized to use a select instead of a
1483 branch (from gcc PR40072):
1484
1485 char char_int(int m) {if(m>7) return 0; return m;}
1486 int int_char(char m) {if(m>7) return 0; return m;}
1487
1488 //===---------------------------------------------------------------------===//
1489
1490 int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; }
1491
1492 Generates this:
1493
1494 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1495 entry:
1496 %0 = and i32 %a, 128 ; <i32> [#uses=1]
1497 %1 = icmp eq i32 %0, 0 ; <i1> [#uses=1]
1498 %2 = or i32 %b, 128 ; <i32> [#uses=1]
1499 %3 = and i32 %b, -129 ; <i32> [#uses=1]
1500 %b_addr.0 = select i1 %1, i32 %3, i32 %2 ; <i32> [#uses=1]
1501 ret i32 %b_addr.0
1502 }
1503
1504 However, it's functionally equivalent to:
1505
1506 b = (b & ~0x80) | (a & 0x80);
1507
1508 Which generates this:
1509
1510 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1511 entry:
1512 %0 = and i32 %b, -129 ; <i32> [#uses=1]
1513 %1 = and i32 %a, 128 ; <i32> [#uses=1]
1514 %2 = or i32 %0, %1 ; <i32> [#uses=1]
1515 ret i32 %2
1516 }
1517
1518 This can be generalized for other forms:
1519
1520 b = (b & ~0x80) | (a & 0x40) << 1;
1521
1522 //===---------------------------------------------------------------------===//
1523
1524 These two functions produce different code. They shouldn't:
1525
1526 #include <stdint.h>
1527
1528 uint8_t p1(uint8_t b, uint8_t a) {
1529 b = (b & ~0xc0) | (a & 0xc0);
1530 return (b);
1531 }
1532
1533 uint8_t p2(uint8_t b, uint8_t a) {
1534 b = (b & ~0x40) | (a & 0x40);
1535 b = (b & ~0x80) | (a & 0x80);
1536 return (b);
1537 }
1538
1539 define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1540 entry:
1541 %0 = and i8 %b, 63 ; <i8> [#uses=1]
1542 %1 = and i8 %a, -64 ; <i8> [#uses=1]
1543 %2 = or i8 %1, %0 ; <i8> [#uses=1]
1544 ret i8 %2
1545 }
1546
1547 define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1548 entry:
1549 %0 = and i8 %b, 63 ; <i8> [#uses=1]
1550 %.masked = and i8 %a, 64 ; <i8> [#uses=1]
1551 %1 = and i8 %a, -128 ; <i8> [#uses=1]
1552 %2 = or i8 %1, %0 ; <i8> [#uses=1]
1553 %3 = or i8 %2, %.masked ; <i8> [#uses=1]
1554 ret i8 %3
1555 }
1556
1557 //===---------------------------------------------------------------------===//
1558
1559 IPSCCP does not currently propagate argument dependent constants through
1560 functions where it does not not all of the callers. This includes functions
1561 with normal external linkage as well as templates, C99 inline functions etc.
1562 Specifically, it does nothing to:
1563
1564 define i32 @test(i32 %x, i32 %y, i32 %z) nounwind {
1565 entry:
1566 %0 = add nsw i32 %y, %z
1567 %1 = mul i32 %0, %x
1568 %2 = mul i32 %y, %z
1569 %3 = add nsw i32 %1, %2
1570 ret i32 %3
1571 }
1572
1573 define i32 @test2() nounwind {
1574 entry:
1575 %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind
1576 ret i32 %0
1577 }
1578
1579 It would be interesting extend IPSCCP to be able to handle simple cases like
1580 this, where all of the arguments to a call are constant. Because IPSCCP runs
1581 before inlining, trivial templates and inline functions are not yet inlined.
1582 The results for a function + set of constant arguments should be memoized in a
1583 map.
1584
1585 //===---------------------------------------------------------------------===//
1586
1587 The libcall constant folding stuff should be moved out of SimplifyLibcalls into
1588 libanalysis' constantfolding logic. This would allow IPSCCP to be able to
1589 handle simple things like this:
1590
1591 static int foo(const char *X) { return strlen(X); }
1592 int bar() { return foo("abcd"); }
1593
1594 //===---------------------------------------------------------------------===//
1595
1596 functionattrs doesn't know much about memcpy/memset. This function should be
1597 marked readnone rather than readonly, since it only twiddles local memory, but
1598 functionattrs doesn't handle memset/memcpy/memmove aggressively:
1599
1600 struct X { int *p; int *q; };
1601 int foo() {
1602 int i = 0, j = 1;
1603 struct X x, y;
1604 int **p;
1605 y.p = &i;
1606 x.q = &j;
1607 p = __builtin_memcpy (&x, &y, sizeof (int *));
1608 return **p;
1609 }
1610
1611 This can be seen at:
1612 $ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -functionattrs -S
1613
1614
1615 //===---------------------------------------------------------------------===//
1616
1617 Missed instcombine transformation:
1618 define i1 @a(i32 %x) nounwind readnone {
1619 entry:
1620 %cmp = icmp eq i32 %x, 30
1621 %sub = add i32 %x, -30
1622 %cmp2 = icmp ugt i32 %sub, 9
1623 %or = or i1 %cmp, %cmp2
1624 ret i1 %or
1625 }
1626 This should be optimized to a single compare. Testcase derived from gcc.
1627
1628 //===---------------------------------------------------------------------===//
1629
1630 Missed instcombine or reassociate transformation:
1631 int a(int a, int b) { return (a==12)&(b>47)&(b<58); }
1632
1633 The sgt and slt should be combined into a single comparison. Testcase derived
1634 from gcc.
1635
1636 //===---------------------------------------------------------------------===//
1637
1638 Missed instcombine transformation:
1639
1640 %382 = srem i32 %tmp14.i, 64 ; [#uses=1]
1641 %383 = zext i32 %382 to i64 ; [#uses=1]
1642 %384 = shl i64 %381, %383 ; [#uses=1]
1643 %385 = icmp slt i32 %tmp14.i, 64 ; [#uses=1]
1644
1645 The srem can be transformed to an and because if %tmp14.i is negative, the
1646 shift is undefined. Testcase derived from 403.gcc.
1647
1648 //===---------------------------------------------------------------------===//
1649
1650 This is a range comparison on a divided result (from 403.gcc):
1651
1652 %1337 = sdiv i32 %1336, 8 ; [#uses=1]
1653 %.off.i208 = add i32 %1336, 7 ; [#uses=1]
1654 %1338 = icmp ult i32 %.off.i208, 15 ; [#uses=1]
1655
1656 We already catch this (removing the sdiv) if there isn't an add, we should
1657 handle the 'add' as well. This is a common idiom with it's builtin_alloca code.
1658 C testcase:
1659
1660 int a(int x) { return (unsigned)(x/16+7) < 15; }
1661
1662 Another similar case involves truncations on 64-bit targets:
1663
1664 %361 = sdiv i64 %.046, 8 ; [#uses=1]
1665 %362 = trunc i64 %361 to i32 ; [#uses=2]
1666 ...
1667 %367 = icmp eq i32 %362, 0 ; [#uses=1]
1668
1669 //===---------------------------------------------------------------------===//
1670
1671 Missed instcombine/dagcombine transformation:
1672 define void @lshift_lt(i8 zeroext %a) nounwind {
1673 entry:
1674 %conv = zext i8 %a to i32
1675 %shl = shl i32 %conv, 3
1676 %cmp = icmp ult i32 %shl, 33
1677 br i1 %cmp, label %if.then, label %if.end
1678
1679 if.then:
1680 tail call void @bar() nounwind
1681 ret void
1682
1683 if.end:
1684 ret void
1685 }
1686 declare void @bar() nounwind
1687
1688 The shift should be eliminated. Testcase derived from gcc.
1689
1690 //===---------------------------------------------------------------------===//
1691
1692 These compile into different code, one gets recognized as a switch and the
1693 other doesn't due to phase ordering issues (PR6212):
1694
1695 int test1(int mainType, int subType) {
1696 if (mainType == 7)
1697 subType = 4;
1698 else if (mainType == 9)
1699 subType = 6;
1700 else if (mainType == 11)
1701 subType = 9;
1702 return subType;
1703 }
1704
1705 int test2(int mainType, int subType) {
1706 if (mainType == 7)
1707 subType = 4;
1708 if (mainType == 9)
1709 subType = 6;
1710 if (mainType == 11)
1711 subType = 9;
1712 return subType;
1713 }
1714
1715 //===---------------------------------------------------------------------===//
1716
1717 The following test case (from PR6576):
1718
1719 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1720 entry:
1721 %cond1 = icmp eq i32 %b, 0 ; <i1> [#uses=1]
1722 br i1 %cond1, label %exit, label %bb.nph
1723 bb.nph: ; preds = %entry
1724 %tmp = mul i32 %b, %a ; <i32> [#uses=1]
1725 ret i32 %tmp
1726 exit: ; preds = %entry
1727 ret i32 0
1728 }
1729
1730 could be reduced to:
1731
1732 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1733 entry:
1734 %tmp = mul i32 %b, %a
1735 ret i32 %tmp
1736 }
1737
1738 //===---------------------------------------------------------------------===//
1739
1740 We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates.
1741 See GCC PR34949
1742
1743 Another interesting case is that something related could be used for variables
1744 that go const after their ctor has finished. In these cases, globalopt (which
1745 can statically run the constructor) could mark the global const (so it gets put
1746 in the readonly section). A testcase would be:
1747
1748 #include <complex>
1749 using namespace std;
1750 const complex<char> should_be_in_rodata (42,-42);
1751 complex<char> should_be_in_data (42,-42);
1752 complex<char> should_be_in_bss;
1753
1754 Where we currently evaluate the ctors but the globals don't become const because
1755 the optimizer doesn't know they "become const" after the ctor is done. See
1756 GCC PR4131 for more examples.
1757
1758 //===---------------------------------------------------------------------===//
1759
1760 In this code:
1761
1762 long foo(long x) {
1763 return x > 1 ? x : 1;
1764 }
1765
1766 LLVM emits a comparison with 1 instead of 0. 0 would be equivalent
1767 and cheaper on most targets.
1768
1769 LLVM prefers comparisons with zero over non-zero in general, but in this
1770 case it choses instead to keep the max operation obvious.
1771
1772 //===---------------------------------------------------------------------===//
1773
1774 define void @a(i32 %x) nounwind {
1775 entry:
1776 switch i32 %x, label %if.end [
1777 i32 0, label %if.then
1778 i32 1, label %if.then
1779 i32 2, label %if.then
1780 i32 3, label %if.then
1781 i32 5, label %if.then
1782 ]
1783 if.then:
1784 tail call void @foo() nounwind
1785 ret void
1786 if.end:
1787 ret void
1788 }
1789 declare void @foo()
1790
1791 Generated code on x86-64 (other platforms give similar results):
1792 a:
1793 cmpl $5, %edi
1794 ja LBB2_2
1795 cmpl $4, %edi
1796 jne LBB2_3
1797 .LBB0_2:
1798 ret
1799 .LBB0_3:
1800 jmp foo # TAILCALL
1801
1802 If we wanted to be really clever, we could simplify the whole thing to
1803 something like the following, which eliminates a branch:
1804 xorl $1, %edi
1805 cmpl $4, %edi
1806 ja .LBB0_2
1807 ret
1808 .LBB0_2:
1809 jmp foo # TAILCALL
1810
1811 //===---------------------------------------------------------------------===//
1812
1813 We compile this:
1814
1815 int foo(int a) { return (a & (~15)) / 16; }
1816
1817 Into:
1818
1819 define i32 @foo(i32 %a) nounwind readnone ssp {
1820 entry:
1821 %and = and i32 %a, -16
1822 %div = sdiv i32 %and, 16
1823 ret i32 %div
1824 }
1825
1826 but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case
1827 should be instcombined into just "a >> 4".
1828
1829 We do get this at the codegen level, so something knows about it, but
1830 instcombine should catch it earlier:
1831
1832 _foo: ## @foo
1833 ## BB#0: ## %entry
1834 movl %edi, %eax
1835 sarl $4, %eax
1836 ret
1837
1838 //===---------------------------------------------------------------------===//
1839
1840 This code (from GCC PR28685):
1841
1842 int test(int a, int b) {
1843 int lt = a < b;
1844 int eq = a == b;
1845 if (lt)
1846 return 1;
1847 return eq;
1848 }
1849
1850 Is compiled to:
1851
1852 define i32 @test(i32 %a, i32 %b) nounwind readnone ssp {
1853 entry:
1854 %cmp = icmp slt i32 %a, %b
1855 br i1 %cmp, label %return, label %if.end
1856
1857 if.end: ; preds = %entry
1858 %cmp5 = icmp eq i32 %a, %b
1859 %conv6 = zext i1 %cmp5 to i32
1860 ret i32 %conv6
1861
1862 return: ; preds = %entry
1863 ret i32 1
1864 }
1865
1866 it could be:
1867
1868 define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp {
1869 entry:
1870 %0 = icmp sle i32 %a, %b
1871 %retval = zext i1 %0 to i32
1872 ret i32 %retval
1873 }
1874
1875 //===---------------------------------------------------------------------===//
1876
1877 This code can be seen in viterbi:
1878
1879 %64 = call noalias i8* @malloc(i64 %62) nounwind
1880 ...
1881 %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind
1882 %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind
1883
1884 llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to
1885 fold to %62. This is a security win (overflows of malloc will get caught)
1886 and also a performance win by exposing more memsets to the optimizer.
1887
1888 This occurs several times in viterbi.
1889
1890 Note that this would change the semantics of @llvm.objectsize which by its
1891 current definition always folds to a constant. We also should make sure that
1892 we remove checking in code like
1893
1894 char *p = malloc(strlen(s)+1);
1895 __strcpy_chk(p, s, __builtin_objectsize(p, 0));
1896
1897 //===---------------------------------------------------------------------===//
1898
1899 This code (from Benchmarks/Dhrystone/dry.c):
1900
1901 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
1902 entry:
1903 %sext = shl i32 %0, 24
1904 %conv = ashr i32 %sext, 24
1905 %sext6 = shl i32 %1, 24
1906 %conv4 = ashr i32 %sext6, 24
1907 %cmp = icmp eq i32 %conv, %conv4
1908 %. = select i1 %cmp, i32 10000, i32 0
1909 ret i32 %.
1910 }
1911
1912 Should be simplified into something like:
1913
1914 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
1915 entry:
1916 %sext = shl i32 %0, 24
1917 %conv = and i32 %sext, 0xFF000000
1918 %sext6 = shl i32 %1, 24
1919 %conv4 = and i32 %sext6, 0xFF000000
1920 %cmp = icmp eq i32 %conv, %conv4
1921 %. = select i1 %cmp, i32 10000, i32 0
1922 ret i32 %.
1923 }
1924
1925 and then to:
1926
1927 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
1928 entry:
1929 %conv = and i32 %0, 0xFF
1930 %conv4 = and i32 %1, 0xFF
1931 %cmp = icmp eq i32 %conv, %conv4
1932 %. = select i1 %cmp, i32 10000, i32 0
1933 ret i32 %.
1934 }
1935 //===---------------------------------------------------------------------===//
1936
1937 clang -O3 currently compiles this code
1938
1939 int g(unsigned int a) {
1940 unsigned int c[100];
1941 c[10] = a;
1942 c[11] = a;
1943 unsigned int b = c[10] + c[11];
1944 if(b > a*2) a = 4;
1945 else a = 8;
1946 return a + 7;
1947 }
1948
1949 into
1950
1951 define i32 @g(i32 a) nounwind readnone {
1952 %add = shl i32 %a, 1
1953 %mul = shl i32 %a, 1
1954 %cmp = icmp ugt i32 %add, %mul
1955 %a.addr.0 = select i1 %cmp, i32 11, i32 15
1956 ret i32 %a.addr.0
1957 }
1958
1959 The icmp should fold to false. This CSE opportunity is only available
1960 after GVN and InstCombine have run.
1961
1962 //===---------------------------------------------------------------------===//
1963
1964 memcpyopt should turn this:
1965
1966 define i8* @test10(i32 %x) {
1967 %alloc = call noalias i8* @malloc(i32 %x) nounwind
1968 call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false)
1969 ret i8* %alloc
1970 }
1971
1972 into a call to calloc. We should make sure that we analyze calloc as
1973 aggressively as malloc though.
1974
1975 //===---------------------------------------------------------------------===//
1976
1977 clang -O3 doesn't optimize this:
1978
1979 void f1(int* begin, int* end) {
1980 std::fill(begin, end, 0);
1981 }
1982
1983 into a memset. This is PR8942.
1984
1985 //===---------------------------------------------------------------------===//
1986
1987 clang -O3 -fno-exceptions currently compiles this code:
1988
1989 void f(int N) {
1990 std::vector<int> v(N);
1991
1992 extern void sink(void*); sink(&v);
1993 }
1994
1995 into
1996
1997 define void @_Z1fi(i32 %N) nounwind {
1998 entry:
1999 %v2 = alloca [3 x i32*], align 8
2000 %v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0
2001 %tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"*
2002 %conv = sext i32 %N to i64
2003 store i32* null, i32** %v2.sub, align 8, !tbaa !0
2004 %tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1
2005 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
2006 %tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2
2007 store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
2008 %cmp.i.i.i.i = icmp eq i32 %N, 0
2009 br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i
2010
2011 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry
2012 store i32* null, i32** %v2.sub, align 8, !tbaa !0
2013 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
2014 %add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv
2015 store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
2016 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
2017
2018 cond.true.i.i.i.i: ; preds = %entry
2019 %cmp.i.i.i.i.i = icmp slt i32 %N, 0
2020 br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i
2021
2022 if.then.i.i.i.i.i: ; preds = %cond.true.i.i.i.i
2023 call void @_ZSt17__throw_bad_allocv() noreturn nounwind
2024 unreachable
2025
2026 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i: ; preds = %cond.true.i.i.i.i
2027 %mul.i.i.i.i.i = shl i64 %conv, 2
2028 %call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind
2029 %0 = bitcast i8* %call3.i.i.i.i.i to i32*
2030 store i32* %0, i32** %v2.sub, align 8, !tbaa !0
2031 store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
2032 %add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv
2033 store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
2034 call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false)
2035 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
2036
2037 This is just the handling the construction of the vector. Most surprising here
2038 is the fact that all three null stores in %entry are dead (because we do no
2039 cross-block DSE).
2040
2041 Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i.
2042 This is a because the client of LazyValueInfo doesn't simplify all instruction
2043 operands, just selected ones.
2044
2045 //===---------------------------------------------------------------------===//
2046
2047 clang -O3 -fno-exceptions currently compiles this code:
2048
2049 void f(char* a, int n) {
2050 __builtin_memset(a, 0, n);
2051 for (int i = 0; i < n; ++i)
2052 a[i] = 0;
2053 }
2054
2055 into:
2056
2057 define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind {
2058 entry:
2059 %conv = sext i32 %n to i64
2060 tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false)
2061 %cmp8 = icmp sgt i32 %n, 0
2062 br i1 %cmp8, label %for.body.lr.ph, label %for.end
2063
2064 for.body.lr.ph: ; preds = %entry
2065 %tmp10 = add i32 %n, -1
2066 %tmp11 = zext i32 %tmp10 to i64
2067 %tmp12 = add i64 %tmp11, 1
2068 call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false)
2069 ret void
2070
2071 for.end: ; preds = %entry
2072 ret void
2073 }
2074
2075 This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold
2076 the two memset's together.
2077
2078 The issue with the addition only occurs in 64-bit mode, and appears to be at
2079 least partially caused by Scalar Evolution not keeping its cache updated: it
2080 returns the "wrong" result immediately after indvars runs, but figures out the
2081 expected result if it is run from scratch on IR resulting from running indvars.
2082
2083 //===---------------------------------------------------------------------===//
2084
2085 clang -O3 -fno-exceptions currently compiles this code:
2086
2087 struct S {
2088 unsigned short m1, m2;
2089 unsigned char m3, m4;
2090 };
2091
2092 void f(int N) {
2093 std::vector<S> v(N);
2094 extern void sink(void*); sink(&v);
2095 }
2096
2097 into poor code for zero-initializing 'v' when N is >0. The problem is that
2098 S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and
2099 4 stores on each iteration. If the struct were 8 bytes, this gets turned into
2100 a memset.
2101
2102 In order to handle this we have to:
2103 A) Teach clang to generate metadata for memsets of structs that have holes in
2104 them.
2105 B) Teach clang to use such a memset for zero init of this struct (since it has
2106 a hole), instead of doing elementwise zeroing.
2107
2108 //===---------------------------------------------------------------------===//
2109
2110 clang -O3 currently compiles this code:
2111
2112 extern const int magic;
2113 double f() { return 0.0 * magic; }
2114
2115 into
2116
2117 @magic = external constant i32
2118
2119 define double @_Z1fv() nounwind readnone {
2120 entry:
2121 %tmp = load i32* @magic, align 4, !tbaa !0
2122 %conv = sitofp i32 %tmp to double
2123 %mul = fmul double %conv, 0.000000e+00
2124 ret double %mul
2125 }
2126
2127 We should be able to fold away this fmul to 0.0. More generally, fmul(x,0.0)
2128 can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and
2129 not an INF. The CannotBeNegativeZero predicate in value tracking should be
2130 extended to support general "fpclassify" operations that can return
2131 yes/no/unknown for each of these predicates.
2132
2133 In this predicate, we know that uitofp is trivially never NaN or -0.0, and
2134 we know that it isn't +/-Inf if the floating point type has enough exponent bits
2135 to represent the largest integer value as < inf.
2136
2137 //===---------------------------------------------------------------------===//
2138
2139 When optimizing a transformation that can change the sign of 0.0 (such as the
2140 0.0*val -> 0.0 transformation above), it might be provable that the sign of the
2141 expression doesn't matter. For example, by the above rules, we can't transform
2142 fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the
2143 expression is defined to be -0.0.
2144
2145 If we look at the uses of the fmul for example, we might be able to prove that
2146 all uses don't care about the sign of zero. For example, if we have:
2147
2148 fadd(fmul(sitofp(x), 0.0), 2.0)
2149
2150 Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can
2151 transform the fmul to 0.0, and then the fadd to 2.0.
2152
2153 //===---------------------------------------------------------------------===//
2154
2155 We should enhance memcpy/memcpy/memset to allow a metadata node on them
2156 indicating that some bytes of the transfer are undefined. This is useful for
2157 frontends like clang when lowering struct copies, when some elements of the
2158 struct are undefined. Consider something like this:
2159
2160 struct x {
2161 char a;
2162 int b[4];
2163 };
2164 void foo(struct x*P);
2165 struct x testfunc() {
2166 struct x V1, V2;
2167 foo(&V1);
2168 V2 = V1;
2169
2170 return V2;
2171 }
2172
2173 We currently compile this to:
2174 $ clang t.c -S -o - -O0 -emit-llvm | opt -scalarrepl -S
2175
2176
2177 %struct.x = type { i8, [4 x i32] }
2178
2179 define void @testfunc(%struct.x* sret %agg.result) nounwind ssp {
2180 entry:
2181 %V1 = alloca %struct.x, align 4
2182 call void @foo(%struct.x* %V1)
2183 %tmp1 = bitcast %struct.x* %V1 to i8*
2184 %0 = bitcast %struct.x* %V1 to i160*
2185 %srcval1 = load i160* %0, align 4
2186 %tmp2 = bitcast %struct.x* %agg.result to i8*
2187 %1 = bitcast %struct.x* %agg.result to i160*
2188 store i160 %srcval1, i160* %1, align 4
2189 ret void
2190 }
2191
2192 This happens because SRoA sees that the temp alloca has is being memcpy'd into
2193 and out of and it has holes and it has to be conservative. If we knew about the
2194 holes, then this could be much much better.
2195
2196 Having information about these holes would also improve memcpy (etc) lowering at
2197 llc time when it gets inlined, because we can use smaller transfers. This also
2198 avoids partial register stalls in some important cases.
2199
2200 //===---------------------------------------------------------------------===//
2201
2202 We don't fold (icmp (add) (add)) unless the two adds only have a single use.
2203 There are a lot of cases that we're refusing to fold in (e.g.) 256.bzip2, for
2204 example:
2205
2206 %indvar.next90 = add i64 %indvar89, 1 ;; Has 2 uses
2207 %tmp96 = add i64 %tmp95, 1 ;; Has 1 use
2208 %exitcond97 = icmp eq i64 %indvar.next90, %tmp96
2209
2210 We don't fold this because we don't want to introduce an overlapped live range
2211 of the ivar. However if we can make this more aggressive without causing
2212 performance issues in two ways:
2213
2214 1. If *either* the LHS or RHS has a single use, we can definitely do the
2215 transformation. In the overlapping liverange case we're trading one register
2216 use for one fewer operation, which is a reasonable trade. Before doing this
2217 we should verify that the llc output actually shrinks for some benchmarks.
2218 2. If both ops have multiple uses, we can still fold it if the operations are
2219 both sinkable to *after* the icmp (e.g. in a subsequent block) which doesn't
2220 increase register pressure.
2221
2222 There are a ton of icmp's we aren't simplifying because of the reg pressure
2223 concern. Care is warranted here though because many of these are induction
2224 variables and other cases that matter a lot to performance, like the above.
2225 Here's a blob of code that you can drop into the bottom of visitICmp to see some
2226 missed cases:
2227
2228 { Value *A, *B, *C, *D;
2229 if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2230 match(Op1, m_Add(m_Value(C), m_Value(D))) &&
2231 (A == C || A == D || B == C || B == D)) {
2232 errs() << "OP0 = " << *Op0 << " U=" << Op0->getNumUses() << "\n";
2233 errs() << "OP1 = " << *Op1 << " U=" << Op1->getNumUses() << "\n";
2234 errs() << "CMP = " << I << "\n\n";
2235 }
2236 }
2237
2238 //===---------------------------------------------------------------------===//
2239
2240 define i1 @test1(i32 %x) nounwind {
2241 %and = and i32 %x, 3
2242 %cmp = icmp ult i32 %and, 2
2243 ret i1 %cmp
2244 }
2245
2246 Can be folded to (x & 2) == 0.
2247
2248 define i1 @test2(i32 %x) nounwind {
2249 %and = and i32 %x, 3
2250 %cmp = icmp ugt i32 %and, 1
2251 ret i1 %cmp
2252 }
2253
2254 Can be folded to (x & 2) != 0.
2255
2256 SimplifyDemandedBits shrinks the "and" constant to 2 but instcombine misses the
2257 icmp transform.
2258
2259 //===---------------------------------------------------------------------===//
2260
2261 This code:
2262
2263 typedef struct {
2264 int f1:1;
2265 int f2:1;
2266 int f3:1;
2267 int f4:29;
2268 } t1;
2269
2270 typedef struct {
2271 int f1:1;
2272 int f2:1;
2273 int f3:30;
2274 } t2;
2275
2276 t1 s1;
2277 t2 s2;
2278
2279 void func1(void)
2280 {
2281 s1.f1 = s2.f1;
2282 s1.f2 = s2.f2;
2283 }
2284
2285 Compiles into this IR (on x86-64 at least):
2286
2287 %struct.t1 = type { i8, [3 x i8] }
2288 @s2 = global %struct.t1 zeroinitializer, align 4
2289 @s1 = global %struct.t1 zeroinitializer, align 4
2290 define void @func1() nounwind ssp noredzone {
2291 entry:
2292 %0 = load i32* bitcast (%struct.t1* @s2 to i32*), align 4
2293 %bf.val.sext5 = and i32 %0, 1
2294 %1 = load i32* bitcast (%struct.t1* @s1 to i32*), align 4
2295 %2 = and i32 %1, -4
2296 %3 = or i32 %2, %bf.val.sext5
2297 %bf.val.sext26 = and i32 %0, 2
2298 %4 = or i32 %3, %bf.val.sext26
2299 store i32 %4, i32* bitcast (%struct.t1* @s1 to i32*), align 4
2300 ret void
2301 }
2302
2303 The two or/and's should be merged into one each.
2304
2305 //===---------------------------------------------------------------------===//
2306
2307 Machine level code hoisting can be useful in some cases. For example, PR9408
2308 is about:
2309
2310 typedef union {
2311 void (*f1)(int);
2312 void (*f2)(long);
2313 } funcs;
2314
2315 void foo(funcs f, int which) {
2316 int a = 5;
2317 if (which) {
2318 f.f1(a);
2319 } else {
2320 f.f2(a);
2321 }
2322 }
2323
2324 which we compile to:
2325
2326 foo: # @foo
2327 # BB#0: # %entry
2328 pushq %rbp
2329 movq %rsp, %rbp
2330 testl %esi, %esi
2331 movq %rdi, %rax
2332 je .LBB0_2
2333 # BB#1: # %if.then
2334 movl $5, %edi
2335 callq *%rax
2336 popq %rbp
2337 ret
2338 .LBB0_2: # %if.else
2339 movl $5, %edi
2340 callq *%rax
2341 popq %rbp
2342 ret
2343
2344 Note that bb1 and bb2 are the same. This doesn't happen at the IR level
2345 because one call is passing an i32 and the other is passing an i64.
2346
2347 //===---------------------------------------------------------------------===//
2348
2349 I see this sort of pattern in 176.gcc in a few places (e.g. the start of
2350 store_bit_field). The rem should be replaced with a multiply and subtract:
2351
2352 %3 = sdiv i32 %A, %B
2353 %4 = srem i32 %A, %B
2354
2355 Similarly for udiv/urem. Note that this shouldn't be done on X86 or ARM,
2356 which can do this in a single operation (instruction or libcall). It is
2357 probably best to do this in the code generator.
2358
2359 //===---------------------------------------------------------------------===//
2360
2361 unsigned foo(unsigned x, unsigned y) { return (x & y) == 0 || x == 0; }
2362 should fold to (x & y) == 0.
2363
2364 //===---------------------------------------------------------------------===//
2365
2366 unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
2367 should fold to x > y.
2368
2369 //===---------------------------------------------------------------------===//
2370