Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineSelect.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitSelect function.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Support/PatternMatch.h"
     16 #include "llvm/Analysis/ConstantFolding.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 using namespace llvm;
     19 using namespace PatternMatch;
     20 
     21 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
     22 /// returning the kind and providing the out parameter results if we
     23 /// successfully match.
     24 static SelectPatternFlavor
     25 MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
     26   SelectInst *SI = dyn_cast<SelectInst>(V);
     27   if (SI == 0) return SPF_UNKNOWN;
     28 
     29   ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
     30   if (ICI == 0) return SPF_UNKNOWN;
     31 
     32   LHS = ICI->getOperand(0);
     33   RHS = ICI->getOperand(1);
     34 
     35   // (icmp X, Y) ? X : Y
     36   if (SI->getTrueValue() == ICI->getOperand(0) &&
     37       SI->getFalseValue() == ICI->getOperand(1)) {
     38     switch (ICI->getPredicate()) {
     39     default: return SPF_UNKNOWN; // Equality.
     40     case ICmpInst::ICMP_UGT:
     41     case ICmpInst::ICMP_UGE: return SPF_UMAX;
     42     case ICmpInst::ICMP_SGT:
     43     case ICmpInst::ICMP_SGE: return SPF_SMAX;
     44     case ICmpInst::ICMP_ULT:
     45     case ICmpInst::ICMP_ULE: return SPF_UMIN;
     46     case ICmpInst::ICMP_SLT:
     47     case ICmpInst::ICMP_SLE: return SPF_SMIN;
     48     }
     49   }
     50 
     51   // (icmp X, Y) ? Y : X
     52   if (SI->getTrueValue() == ICI->getOperand(1) &&
     53       SI->getFalseValue() == ICI->getOperand(0)) {
     54     switch (ICI->getPredicate()) {
     55       default: return SPF_UNKNOWN; // Equality.
     56       case ICmpInst::ICMP_UGT:
     57       case ICmpInst::ICMP_UGE: return SPF_UMIN;
     58       case ICmpInst::ICMP_SGT:
     59       case ICmpInst::ICMP_SGE: return SPF_SMIN;
     60       case ICmpInst::ICMP_ULT:
     61       case ICmpInst::ICMP_ULE: return SPF_UMAX;
     62       case ICmpInst::ICMP_SLT:
     63       case ICmpInst::ICMP_SLE: return SPF_SMAX;
     64     }
     65   }
     66 
     67   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
     68 
     69   return SPF_UNKNOWN;
     70 }
     71 
     72 
     73 /// GetSelectFoldableOperands - We want to turn code that looks like this:
     74 ///   %C = or %A, %B
     75 ///   %D = select %cond, %C, %A
     76 /// into:
     77 ///   %C = select %cond, %B, 0
     78 ///   %D = or %A, %C
     79 ///
     80 /// Assuming that the specified instruction is an operand to the select, return
     81 /// a bitmask indicating which operands of this instruction are foldable if they
     82 /// equal the other incoming value of the select.
     83 ///
     84 static unsigned GetSelectFoldableOperands(Instruction *I) {
     85   switch (I->getOpcode()) {
     86   case Instruction::Add:
     87   case Instruction::Mul:
     88   case Instruction::And:
     89   case Instruction::Or:
     90   case Instruction::Xor:
     91     return 3;              // Can fold through either operand.
     92   case Instruction::Sub:   // Can only fold on the amount subtracted.
     93   case Instruction::Shl:   // Can only fold on the shift amount.
     94   case Instruction::LShr:
     95   case Instruction::AShr:
     96     return 1;
     97   default:
     98     return 0;              // Cannot fold
     99   }
    100 }
    101 
    102 /// GetSelectFoldableConstant - For the same transformation as the previous
    103 /// function, return the identity constant that goes into the select.
    104 static Constant *GetSelectFoldableConstant(Instruction *I) {
    105   switch (I->getOpcode()) {
    106   default: llvm_unreachable("This cannot happen!");
    107   case Instruction::Add:
    108   case Instruction::Sub:
    109   case Instruction::Or:
    110   case Instruction::Xor:
    111   case Instruction::Shl:
    112   case Instruction::LShr:
    113   case Instruction::AShr:
    114     return Constant::getNullValue(I->getType());
    115   case Instruction::And:
    116     return Constant::getAllOnesValue(I->getType());
    117   case Instruction::Mul:
    118     return ConstantInt::get(I->getType(), 1);
    119   }
    120 }
    121 
    122 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
    123 /// have the same opcode and only one use each.  Try to simplify this.
    124 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
    125                                           Instruction *FI) {
    126   if (TI->getNumOperands() == 1) {
    127     // If this is a non-volatile load or a cast from the same type,
    128     // merge.
    129     if (TI->isCast()) {
    130       if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
    131         return 0;
    132       // The select condition may be a vector. We may only change the operand
    133       // type if the vector width remains the same (and matches the condition).
    134       Type *CondTy = SI.getCondition()->getType();
    135       if (CondTy->isVectorTy() && CondTy->getVectorNumElements() !=
    136           FI->getOperand(0)->getType()->getVectorNumElements())
    137         return 0;
    138     } else {
    139       return 0;  // unknown unary op.
    140     }
    141 
    142     // Fold this by inserting a select from the input values.
    143     Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
    144                                          FI->getOperand(0), SI.getName()+".v");
    145     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
    146                             TI->getType());
    147   }
    148 
    149   // Only handle binary operators here.
    150   if (!isa<BinaryOperator>(TI))
    151     return 0;
    152 
    153   // Figure out if the operations have any operands in common.
    154   Value *MatchOp, *OtherOpT, *OtherOpF;
    155   bool MatchIsOpZero;
    156   if (TI->getOperand(0) == FI->getOperand(0)) {
    157     MatchOp  = TI->getOperand(0);
    158     OtherOpT = TI->getOperand(1);
    159     OtherOpF = FI->getOperand(1);
    160     MatchIsOpZero = true;
    161   } else if (TI->getOperand(1) == FI->getOperand(1)) {
    162     MatchOp  = TI->getOperand(1);
    163     OtherOpT = TI->getOperand(0);
    164     OtherOpF = FI->getOperand(0);
    165     MatchIsOpZero = false;
    166   } else if (!TI->isCommutative()) {
    167     return 0;
    168   } else if (TI->getOperand(0) == FI->getOperand(1)) {
    169     MatchOp  = TI->getOperand(0);
    170     OtherOpT = TI->getOperand(1);
    171     OtherOpF = FI->getOperand(0);
    172     MatchIsOpZero = true;
    173   } else if (TI->getOperand(1) == FI->getOperand(0)) {
    174     MatchOp  = TI->getOperand(1);
    175     OtherOpT = TI->getOperand(0);
    176     OtherOpF = FI->getOperand(1);
    177     MatchIsOpZero = true;
    178   } else {
    179     return 0;
    180   }
    181 
    182   // If we reach here, they do have operations in common.
    183   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
    184                                        OtherOpF, SI.getName()+".v");
    185 
    186   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
    187     if (MatchIsOpZero)
    188       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
    189     else
    190       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
    191   }
    192   llvm_unreachable("Shouldn't get here");
    193 }
    194 
    195 static bool isSelect01(Constant *C1, Constant *C2) {
    196   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
    197   if (!C1I)
    198     return false;
    199   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
    200   if (!C2I)
    201     return false;
    202   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
    203     return false;
    204   return C1I->isOne() || C1I->isAllOnesValue() ||
    205          C2I->isOne() || C2I->isAllOnesValue();
    206 }
    207 
    208 /// FoldSelectIntoOp - Try fold the select into one of the operands to
    209 /// facilitate further optimization.
    210 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
    211                                             Value *FalseVal) {
    212   // See the comment above GetSelectFoldableOperands for a description of the
    213   // transformation we are doing here.
    214   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
    215     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
    216         !isa<Constant>(FalseVal)) {
    217       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
    218         unsigned OpToFold = 0;
    219         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
    220           OpToFold = 1;
    221         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
    222           OpToFold = 2;
    223         }
    224 
    225         if (OpToFold) {
    226           Constant *C = GetSelectFoldableConstant(TVI);
    227           Value *OOp = TVI->getOperand(2-OpToFold);
    228           // Avoid creating select between 2 constants unless it's selecting
    229           // between 0, 1 and -1.
    230           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    231             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
    232             NewSel->takeName(TVI);
    233             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
    234             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
    235                                                         FalseVal, NewSel);
    236             if (isa<PossiblyExactOperator>(BO))
    237               BO->setIsExact(TVI_BO->isExact());
    238             if (isa<OverflowingBinaryOperator>(BO)) {
    239               BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
    240               BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
    241             }
    242             return BO;
    243           }
    244         }
    245       }
    246     }
    247   }
    248 
    249   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
    250     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
    251         !isa<Constant>(TrueVal)) {
    252       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
    253         unsigned OpToFold = 0;
    254         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
    255           OpToFold = 1;
    256         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
    257           OpToFold = 2;
    258         }
    259 
    260         if (OpToFold) {
    261           Constant *C = GetSelectFoldableConstant(FVI);
    262           Value *OOp = FVI->getOperand(2-OpToFold);
    263           // Avoid creating select between 2 constants unless it's selecting
    264           // between 0, 1 and -1.
    265           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    266             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
    267             NewSel->takeName(FVI);
    268             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
    269             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
    270                                                         TrueVal, NewSel);
    271             if (isa<PossiblyExactOperator>(BO))
    272               BO->setIsExact(FVI_BO->isExact());
    273             if (isa<OverflowingBinaryOperator>(BO)) {
    274               BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
    275               BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
    276             }
    277             return BO;
    278           }
    279         }
    280       }
    281     }
    282   }
    283 
    284   return 0;
    285 }
    286 
    287 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
    288 /// replaced with RepOp.
    289 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
    290                                      const TargetData *TD,
    291                                      const TargetLibraryInfo *TLI) {
    292   // Trivial replacement.
    293   if (V == Op)
    294     return RepOp;
    295 
    296   Instruction *I = dyn_cast<Instruction>(V);
    297   if (!I)
    298     return 0;
    299 
    300   // If this is a binary operator, try to simplify it with the replaced op.
    301   if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
    302     if (B->getOperand(0) == Op)
    303       return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI);
    304     if (B->getOperand(1) == Op)
    305       return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI);
    306   }
    307 
    308   // Same for CmpInsts.
    309   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    310     if (C->getOperand(0) == Op)
    311       return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
    312                              TLI);
    313     if (C->getOperand(1) == Op)
    314       return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
    315                              TLI);
    316   }
    317 
    318   // TODO: We could hand off more cases to instsimplify here.
    319 
    320   // If all operands are constant after substituting Op for RepOp then we can
    321   // constant fold the instruction.
    322   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
    323     // Build a list of all constant operands.
    324     SmallVector<Constant*, 8> ConstOps;
    325     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    326       if (I->getOperand(i) == Op)
    327         ConstOps.push_back(CRepOp);
    328       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
    329         ConstOps.push_back(COp);
    330       else
    331         break;
    332     }
    333 
    334     // All operands were constants, fold it.
    335     if (ConstOps.size() == I->getNumOperands()) {
    336       if (LoadInst *LI = dyn_cast<LoadInst>(I))
    337         if (!LI->isVolatile())
    338           return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
    339 
    340       return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
    341                                       ConstOps, TD, TLI);
    342     }
    343   }
    344 
    345   return 0;
    346 }
    347 
    348 /// visitSelectInstWithICmp - Visit a SelectInst that has an
    349 /// ICmpInst as its first operand.
    350 ///
    351 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
    352                                                    ICmpInst *ICI) {
    353   bool Changed = false;
    354   ICmpInst::Predicate Pred = ICI->getPredicate();
    355   Value *CmpLHS = ICI->getOperand(0);
    356   Value *CmpRHS = ICI->getOperand(1);
    357   Value *TrueVal = SI.getTrueValue();
    358   Value *FalseVal = SI.getFalseValue();
    359 
    360   // Check cases where the comparison is with a constant that
    361   // can be adjusted to fit the min/max idiom. We may move or edit ICI
    362   // here, so make sure the select is the only user.
    363   if (ICI->hasOneUse())
    364     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
    365       // X < MIN ? T : F  -->  F
    366       if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
    367           && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
    368         return ReplaceInstUsesWith(SI, FalseVal);
    369       // X > MAX ? T : F  -->  F
    370       else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
    371                && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
    372         return ReplaceInstUsesWith(SI, FalseVal);
    373       switch (Pred) {
    374       default: break;
    375       case ICmpInst::ICMP_ULT:
    376       case ICmpInst::ICMP_SLT:
    377       case ICmpInst::ICMP_UGT:
    378       case ICmpInst::ICMP_SGT: {
    379         // These transformations only work for selects over integers.
    380         IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
    381         if (!SelectTy)
    382           break;
    383 
    384         Constant *AdjustedRHS;
    385         if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
    386           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
    387         else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
    388           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
    389 
    390         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
    391         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
    392         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
    393             (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
    394           ; // Nothing to do here. Values match without any sign/zero extension.
    395 
    396         // Types do not match. Instead of calculating this with mixed types
    397         // promote all to the larger type. This enables scalar evolution to
    398         // analyze this expression.
    399         else if (CmpRHS->getType()->getScalarSizeInBits()
    400                  < SelectTy->getBitWidth()) {
    401           Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
    402 
    403           // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
    404           // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
    405           // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
    406           // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
    407           if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
    408                 sextRHS == FalseVal) {
    409             CmpLHS = TrueVal;
    410             AdjustedRHS = sextRHS;
    411           } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
    412                      sextRHS == TrueVal) {
    413             CmpLHS = FalseVal;
    414             AdjustedRHS = sextRHS;
    415           } else if (ICI->isUnsigned()) {
    416             Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
    417             // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
    418             // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
    419             // zext + signed compare cannot be changed:
    420             //    0xff <s 0x00, but 0x00ff >s 0x0000
    421             if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
    422                 zextRHS == FalseVal) {
    423               CmpLHS = TrueVal;
    424               AdjustedRHS = zextRHS;
    425             } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
    426                        zextRHS == TrueVal) {
    427               CmpLHS = FalseVal;
    428               AdjustedRHS = zextRHS;
    429             } else
    430               break;
    431           } else
    432             break;
    433         } else
    434           break;
    435 
    436         Pred = ICmpInst::getSwappedPredicate(Pred);
    437         CmpRHS = AdjustedRHS;
    438         std::swap(FalseVal, TrueVal);
    439         ICI->setPredicate(Pred);
    440         ICI->setOperand(0, CmpLHS);
    441         ICI->setOperand(1, CmpRHS);
    442         SI.setOperand(1, TrueVal);
    443         SI.setOperand(2, FalseVal);
    444 
    445         // Move ICI instruction right before the select instruction. Otherwise
    446         // the sext/zext value may be defined after the ICI instruction uses it.
    447         ICI->moveBefore(&SI);
    448 
    449         Changed = true;
    450         break;
    451       }
    452       }
    453     }
    454 
    455   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
    456   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
    457   // FIXME: Type and constness constraints could be lifted, but we have to
    458   //        watch code size carefully. We should consider xor instead of
    459   //        sub/add when we decide to do that.
    460   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
    461     if (TrueVal->getType() == Ty) {
    462       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
    463         ConstantInt *C1 = NULL, *C2 = NULL;
    464         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
    465           C1 = dyn_cast<ConstantInt>(TrueVal);
    466           C2 = dyn_cast<ConstantInt>(FalseVal);
    467         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
    468           C1 = dyn_cast<ConstantInt>(FalseVal);
    469           C2 = dyn_cast<ConstantInt>(TrueVal);
    470         }
    471         if (C1 && C2) {
    472           // This shift results in either -1 or 0.
    473           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
    474 
    475           // Check if we can express the operation with a single or.
    476           if (C2->isAllOnesValue())
    477             return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
    478 
    479           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
    480           return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
    481         }
    482       }
    483     }
    484   }
    485 
    486   // If we have an equality comparison then we know the value in one of the
    487   // arms of the select. See if substituting this value into the arm and
    488   // simplifying the result yields the same value as the other arm.
    489   if (Pred == ICmpInst::ICMP_EQ) {
    490     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
    491         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
    492       return ReplaceInstUsesWith(SI, FalseVal);
    493     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
    494         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
    495       return ReplaceInstUsesWith(SI, FalseVal);
    496   } else if (Pred == ICmpInst::ICMP_NE) {
    497     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
    498         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
    499       return ReplaceInstUsesWith(SI, TrueVal);
    500     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
    501         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
    502       return ReplaceInstUsesWith(SI, TrueVal);
    503   }
    504 
    505   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
    506 
    507   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
    508     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
    509       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
    510       SI.setOperand(1, CmpRHS);
    511       Changed = true;
    512     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
    513       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
    514       SI.setOperand(2, CmpRHS);
    515       Changed = true;
    516     }
    517   }
    518 
    519   return Changed ? &SI : 0;
    520 }
    521 
    522 
    523 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
    524 /// PHI node (but the two may be in different blocks).  See if the true/false
    525 /// values (V) are live in all of the predecessor blocks of the PHI.  For
    526 /// example, cases like this cannot be mapped:
    527 ///
    528 ///   X = phi [ C1, BB1], [C2, BB2]
    529 ///   Y = add
    530 ///   Z = select X, Y, 0
    531 ///
    532 /// because Y is not live in BB1/BB2.
    533 ///
    534 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
    535                                                    const SelectInst &SI) {
    536   // If the value is a non-instruction value like a constant or argument, it
    537   // can always be mapped.
    538   const Instruction *I = dyn_cast<Instruction>(V);
    539   if (I == 0) return true;
    540 
    541   // If V is a PHI node defined in the same block as the condition PHI, we can
    542   // map the arguments.
    543   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
    544 
    545   if (const PHINode *VP = dyn_cast<PHINode>(I))
    546     if (VP->getParent() == CondPHI->getParent())
    547       return true;
    548 
    549   // Otherwise, if the PHI and select are defined in the same block and if V is
    550   // defined in a different block, then we can transform it.
    551   if (SI.getParent() == CondPHI->getParent() &&
    552       I->getParent() != CondPHI->getParent())
    553     return true;
    554 
    555   // Otherwise we have a 'hard' case and we can't tell without doing more
    556   // detailed dominator based analysis, punt.
    557   return false;
    558 }
    559 
    560 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
    561 ///   SPF2(SPF1(A, B), C)
    562 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
    563                                         SelectPatternFlavor SPF1,
    564                                         Value *A, Value *B,
    565                                         Instruction &Outer,
    566                                         SelectPatternFlavor SPF2, Value *C) {
    567   if (C == A || C == B) {
    568     // MAX(MAX(A, B), B) -> MAX(A, B)
    569     // MIN(MIN(a, b), a) -> MIN(a, b)
    570     if (SPF1 == SPF2)
    571       return ReplaceInstUsesWith(Outer, Inner);
    572 
    573     // MAX(MIN(a, b), a) -> a
    574     // MIN(MAX(a, b), a) -> a
    575     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
    576         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
    577         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
    578         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
    579       return ReplaceInstUsesWith(Outer, C);
    580   }
    581 
    582   // TODO: MIN(MIN(A, 23), 97)
    583   return 0;
    584 }
    585 
    586 
    587 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't
    588 /// both be) and we have an icmp instruction with zero, and we have an 'and'
    589 /// with the non-constant value and a power of two we can turn the select
    590 /// into a shift on the result of the 'and'.
    591 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
    592                                 ConstantInt *FalseVal,
    593                                 InstCombiner::BuilderTy *Builder) {
    594   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
    595   if (!IC || !IC->isEquality())
    596     return 0;
    597 
    598   if (!match(IC->getOperand(1), m_Zero()))
    599     return 0;
    600 
    601   ConstantInt *AndRHS;
    602   Value *LHS = IC->getOperand(0);
    603   if (LHS->getType() != SI.getType() ||
    604       !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
    605     return 0;
    606 
    607   // If both select arms are non-zero see if we have a select of the form
    608   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
    609   // for 'x ? 2^n : 0' and fix the thing up at the end.
    610   ConstantInt *Offset = 0;
    611   if (!TrueVal->isZero() && !FalseVal->isZero()) {
    612     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
    613       Offset = FalseVal;
    614     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
    615       Offset = TrueVal;
    616     else
    617       return 0;
    618 
    619     // Adjust TrueVal and FalseVal to the offset.
    620     TrueVal = ConstantInt::get(Builder->getContext(),
    621                                TrueVal->getValue() - Offset->getValue());
    622     FalseVal = ConstantInt::get(Builder->getContext(),
    623                                 FalseVal->getValue() - Offset->getValue());
    624   }
    625 
    626   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
    627   if (!AndRHS->getValue().isPowerOf2() ||
    628       (!TrueVal->getValue().isPowerOf2() &&
    629        !FalseVal->getValue().isPowerOf2()))
    630     return 0;
    631 
    632   // Determine which shift is needed to transform result of the 'and' into the
    633   // desired result.
    634   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
    635   unsigned ValZeros = ValC->getValue().logBase2();
    636   unsigned AndZeros = AndRHS->getValue().logBase2();
    637 
    638   Value *V = LHS;
    639   if (ValZeros > AndZeros)
    640     V = Builder->CreateShl(V, ValZeros - AndZeros);
    641   else if (ValZeros < AndZeros)
    642     V = Builder->CreateLShr(V, AndZeros - ValZeros);
    643 
    644   // Okay, now we know that everything is set up, we just don't know whether we
    645   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
    646   bool ShouldNotVal = !TrueVal->isZero();
    647   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
    648   if (ShouldNotVal)
    649     V = Builder->CreateXor(V, ValC);
    650 
    651   // Apply an offset if needed.
    652   if (Offset)
    653     V = Builder->CreateAdd(V, Offset);
    654   return V;
    655 }
    656 
    657 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
    658   Value *CondVal = SI.getCondition();
    659   Value *TrueVal = SI.getTrueValue();
    660   Value *FalseVal = SI.getFalseValue();
    661 
    662   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
    663     return ReplaceInstUsesWith(SI, V);
    664 
    665   if (SI.getType()->isIntegerTy(1)) {
    666     if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
    667       if (C->getZExtValue()) {
    668         // Change: A = select B, true, C --> A = or B, C
    669         return BinaryOperator::CreateOr(CondVal, FalseVal);
    670       }
    671       // Change: A = select B, false, C --> A = and !B, C
    672       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    673       return BinaryOperator::CreateAnd(NotCond, FalseVal);
    674     } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
    675       if (C->getZExtValue() == false) {
    676         // Change: A = select B, C, false --> A = and B, C
    677         return BinaryOperator::CreateAnd(CondVal, TrueVal);
    678       }
    679       // Change: A = select B, C, true --> A = or !B, C
    680       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    681       return BinaryOperator::CreateOr(NotCond, TrueVal);
    682     }
    683 
    684     // select a, b, a  -> a&b
    685     // select a, a, b  -> a|b
    686     if (CondVal == TrueVal)
    687       return BinaryOperator::CreateOr(CondVal, FalseVal);
    688     else if (CondVal == FalseVal)
    689       return BinaryOperator::CreateAnd(CondVal, TrueVal);
    690 
    691     // select a, ~a, b -> (~a)&b
    692     // select a, b, ~a -> (~a)|b
    693     if (match(TrueVal, m_Not(m_Specific(CondVal))))
    694       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
    695     else if (match(FalseVal, m_Not(m_Specific(CondVal))))
    696       return BinaryOperator::CreateOr(TrueVal, FalseVal);
    697   }
    698 
    699   // Selecting between two integer constants?
    700   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
    701     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
    702       // select C, 1, 0 -> zext C to int
    703       if (FalseValC->isZero() && TrueValC->getValue() == 1)
    704         return new ZExtInst(CondVal, SI.getType());
    705 
    706       // select C, -1, 0 -> sext C to int
    707       if (FalseValC->isZero() && TrueValC->isAllOnesValue())
    708         return new SExtInst(CondVal, SI.getType());
    709 
    710       // select C, 0, 1 -> zext !C to int
    711       if (TrueValC->isZero() && FalseValC->getValue() == 1) {
    712         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    713         return new ZExtInst(NotCond, SI.getType());
    714       }
    715 
    716       // select C, 0, -1 -> sext !C to int
    717       if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
    718         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    719         return new SExtInst(NotCond, SI.getType());
    720       }
    721 
    722       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
    723         return ReplaceInstUsesWith(SI, V);
    724     }
    725 
    726   // See if we are selecting two values based on a comparison of the two values.
    727   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
    728     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
    729       // Transform (X == Y) ? X : Y  -> Y
    730       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
    731         // This is not safe in general for floating point:
    732         // consider X== -0, Y== +0.
    733         // It becomes safe if either operand is a nonzero constant.
    734         ConstantFP *CFPt, *CFPf;
    735         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    736               !CFPt->getValueAPF().isZero()) ||
    737             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    738              !CFPf->getValueAPF().isZero()))
    739         return ReplaceInstUsesWith(SI, FalseVal);
    740       }
    741       // Transform (X une Y) ? X : Y  -> X
    742       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
    743         // This is not safe in general for floating point:
    744         // consider X== -0, Y== +0.
    745         // It becomes safe if either operand is a nonzero constant.
    746         ConstantFP *CFPt, *CFPf;
    747         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    748               !CFPt->getValueAPF().isZero()) ||
    749             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    750              !CFPf->getValueAPF().isZero()))
    751         return ReplaceInstUsesWith(SI, TrueVal);
    752       }
    753       // NOTE: if we wanted to, this is where to detect MIN/MAX
    754 
    755     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
    756       // Transform (X == Y) ? Y : X  -> X
    757       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
    758         // This is not safe in general for floating point:
    759         // consider X== -0, Y== +0.
    760         // It becomes safe if either operand is a nonzero constant.
    761         ConstantFP *CFPt, *CFPf;
    762         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    763               !CFPt->getValueAPF().isZero()) ||
    764             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    765              !CFPf->getValueAPF().isZero()))
    766           return ReplaceInstUsesWith(SI, FalseVal);
    767       }
    768       // Transform (X une Y) ? Y : X  -> Y
    769       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
    770         // This is not safe in general for floating point:
    771         // consider X== -0, Y== +0.
    772         // It becomes safe if either operand is a nonzero constant.
    773         ConstantFP *CFPt, *CFPf;
    774         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    775               !CFPt->getValueAPF().isZero()) ||
    776             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    777              !CFPf->getValueAPF().isZero()))
    778           return ReplaceInstUsesWith(SI, TrueVal);
    779       }
    780       // NOTE: if we wanted to, this is where to detect MIN/MAX
    781     }
    782     // NOTE: if we wanted to, this is where to detect ABS
    783   }
    784 
    785   // See if we are selecting two values based on a comparison of the two values.
    786   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
    787     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
    788       return Result;
    789 
    790   if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
    791     if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
    792       if (TI->hasOneUse() && FI->hasOneUse()) {
    793         Instruction *AddOp = 0, *SubOp = 0;
    794 
    795         // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
    796         if (TI->getOpcode() == FI->getOpcode())
    797           if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
    798             return IV;
    799 
    800         // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
    801         // even legal for FP.
    802         if ((TI->getOpcode() == Instruction::Sub &&
    803              FI->getOpcode() == Instruction::Add) ||
    804             (TI->getOpcode() == Instruction::FSub &&
    805              FI->getOpcode() == Instruction::FAdd)) {
    806           AddOp = FI; SubOp = TI;
    807         } else if ((FI->getOpcode() == Instruction::Sub &&
    808                     TI->getOpcode() == Instruction::Add) ||
    809                    (FI->getOpcode() == Instruction::FSub &&
    810                     TI->getOpcode() == Instruction::FAdd)) {
    811           AddOp = TI; SubOp = FI;
    812         }
    813 
    814         if (AddOp) {
    815           Value *OtherAddOp = 0;
    816           if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
    817             OtherAddOp = AddOp->getOperand(1);
    818           } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
    819             OtherAddOp = AddOp->getOperand(0);
    820           }
    821 
    822           if (OtherAddOp) {
    823             // So at this point we know we have (Y -> OtherAddOp):
    824             //        select C, (add X, Y), (sub X, Z)
    825             Value *NegVal;  // Compute -Z
    826             if (SI.getType()->isFPOrFPVectorTy()) {
    827               NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
    828             } else {
    829               NegVal = Builder->CreateNeg(SubOp->getOperand(1));
    830             }
    831 
    832             Value *NewTrueOp = OtherAddOp;
    833             Value *NewFalseOp = NegVal;
    834             if (AddOp != TI)
    835               std::swap(NewTrueOp, NewFalseOp);
    836             Value *NewSel =
    837               Builder->CreateSelect(CondVal, NewTrueOp,
    838                                     NewFalseOp, SI.getName() + ".p");
    839 
    840             if (SI.getType()->isFPOrFPVectorTy())
    841               return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
    842             else
    843               return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
    844           }
    845         }
    846       }
    847 
    848   // See if we can fold the select into one of our operands.
    849   if (SI.getType()->isIntegerTy()) {
    850     if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
    851       return FoldI;
    852 
    853     // MAX(MAX(a, b), a) -> MAX(a, b)
    854     // MIN(MIN(a, b), a) -> MIN(a, b)
    855     // MAX(MIN(a, b), a) -> a
    856     // MIN(MAX(a, b), a) -> a
    857     Value *LHS, *RHS, *LHS2, *RHS2;
    858     if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
    859       if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
    860         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
    861                                           SI, SPF, RHS))
    862           return R;
    863       if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
    864         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
    865                                           SI, SPF, LHS))
    866           return R;
    867     }
    868 
    869     // TODO.
    870     // ABS(-X) -> ABS(X)
    871     // ABS(ABS(X)) -> ABS(X)
    872   }
    873 
    874   // See if we can fold the select into a phi node if the condition is a select.
    875   if (isa<PHINode>(SI.getCondition()))
    876     // The true/false values have to be live in the PHI predecessor's blocks.
    877     if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
    878         CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
    879       if (Instruction *NV = FoldOpIntoPhi(SI))
    880         return NV;
    881 
    882   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
    883     if (TrueSI->getCondition() == CondVal) {
    884       if (SI.getTrueValue() == TrueSI->getTrueValue())
    885         return 0;
    886       SI.setOperand(1, TrueSI->getTrueValue());
    887       return &SI;
    888     }
    889   }
    890   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
    891     if (FalseSI->getCondition() == CondVal) {
    892       if (SI.getFalseValue() == FalseSI->getFalseValue())
    893         return 0;
    894       SI.setOperand(2, FalseSI->getFalseValue());
    895       return &SI;
    896     }
    897   }
    898 
    899   if (BinaryOperator::isNot(CondVal)) {
    900     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
    901     SI.setOperand(1, FalseVal);
    902     SI.setOperand(2, TrueVal);
    903     return &SI;
    904   }
    905 
    906   if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) {
    907     unsigned VWidth = VecTy->getNumElements();
    908     APInt UndefElts(VWidth, 0);
    909     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
    910     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
    911       if (V != &SI)
    912         return ReplaceInstUsesWith(SI, V);
    913       return &SI;
    914     }
    915   }
    916 
    917   return 0;
    918 }
    919