Home | History | Annotate | Download | only in Scalar
      1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Jump Threading pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "jump-threading"
     15 #include "llvm/Transforms/Scalar.h"
     16 #include "llvm/IntrinsicInst.h"
     17 #include "llvm/LLVMContext.h"
     18 #include "llvm/Pass.h"
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/Analysis/LazyValueInfo.h"
     22 #include "llvm/Analysis/Loads.h"
     23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     24 #include "llvm/Transforms/Utils/Local.h"
     25 #include "llvm/Transforms/Utils/SSAUpdater.h"
     26 #include "llvm/Target/TargetData.h"
     27 #include "llvm/Target/TargetLibraryInfo.h"
     28 #include "llvm/ADT/DenseMap.h"
     29 #include "llvm/ADT/DenseSet.h"
     30 #include "llvm/ADT/Statistic.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include "llvm/ADT/SmallPtrSet.h"
     33 #include "llvm/ADT/SmallSet.h"
     34 #include "llvm/Support/CommandLine.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ValueHandle.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 using namespace llvm;
     39 
     40 STATISTIC(NumThreads, "Number of jumps threaded");
     41 STATISTIC(NumFolds,   "Number of terminators folded");
     42 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
     43 
     44 static cl::opt<unsigned>
     45 Threshold("jump-threading-threshold",
     46           cl::desc("Max block size to duplicate for jump threading"),
     47           cl::init(6), cl::Hidden);
     48 
     49 namespace {
     50   // These are at global scope so static functions can use them too.
     51   typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
     52   typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
     53 
     54   // This is used to keep track of what kind of constant we're currently hoping
     55   // to find.
     56   enum ConstantPreference {
     57     WantInteger,
     58     WantBlockAddress
     59   };
     60 
     61   /// This pass performs 'jump threading', which looks at blocks that have
     62   /// multiple predecessors and multiple successors.  If one or more of the
     63   /// predecessors of the block can be proven to always jump to one of the
     64   /// successors, we forward the edge from the predecessor to the successor by
     65   /// duplicating the contents of this block.
     66   ///
     67   /// An example of when this can occur is code like this:
     68   ///
     69   ///   if () { ...
     70   ///     X = 4;
     71   ///   }
     72   ///   if (X < 3) {
     73   ///
     74   /// In this case, the unconditional branch at the end of the first if can be
     75   /// revectored to the false side of the second if.
     76   ///
     77   class JumpThreading : public FunctionPass {
     78     TargetData *TD;
     79     TargetLibraryInfo *TLI;
     80     LazyValueInfo *LVI;
     81 #ifdef NDEBUG
     82     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
     83 #else
     84     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
     85 #endif
     86     DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
     87 
     88     // RAII helper for updating the recursion stack.
     89     struct RecursionSetRemover {
     90       DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
     91       std::pair<Value*, BasicBlock*> ThePair;
     92 
     93       RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
     94                           std::pair<Value*, BasicBlock*> P)
     95         : TheSet(S), ThePair(P) { }
     96 
     97       ~RecursionSetRemover() {
     98         TheSet.erase(ThePair);
     99       }
    100     };
    101   public:
    102     static char ID; // Pass identification
    103     JumpThreading() : FunctionPass(ID) {
    104       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
    105     }
    106 
    107     bool runOnFunction(Function &F);
    108 
    109     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    110       AU.addRequired<LazyValueInfo>();
    111       AU.addPreserved<LazyValueInfo>();
    112       AU.addRequired<TargetLibraryInfo>();
    113     }
    114 
    115     void FindLoopHeaders(Function &F);
    116     bool ProcessBlock(BasicBlock *BB);
    117     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
    118                     BasicBlock *SuccBB);
    119     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
    120                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
    121 
    122     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
    123                                          PredValueInfo &Result,
    124                                          ConstantPreference Preference);
    125     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
    126                                 ConstantPreference Preference);
    127 
    128     bool ProcessBranchOnPHI(PHINode *PN);
    129     bool ProcessBranchOnXOR(BinaryOperator *BO);
    130 
    131     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
    132   };
    133 }
    134 
    135 char JumpThreading::ID = 0;
    136 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
    137                 "Jump Threading", false, false)
    138 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
    139 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    140 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
    141                 "Jump Threading", false, false)
    142 
    143 // Public interface to the Jump Threading pass
    144 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
    145 
    146 /// runOnFunction - Top level algorithm.
    147 ///
    148 bool JumpThreading::runOnFunction(Function &F) {
    149   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
    150   TD = getAnalysisIfAvailable<TargetData>();
    151   TLI = &getAnalysis<TargetLibraryInfo>();
    152   LVI = &getAnalysis<LazyValueInfo>();
    153 
    154   FindLoopHeaders(F);
    155 
    156   bool Changed, EverChanged = false;
    157   do {
    158     Changed = false;
    159     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
    160       BasicBlock *BB = I;
    161       // Thread all of the branches we can over this block.
    162       while (ProcessBlock(BB))
    163         Changed = true;
    164 
    165       ++I;
    166 
    167       // If the block is trivially dead, zap it.  This eliminates the successor
    168       // edges which simplifies the CFG.
    169       if (pred_begin(BB) == pred_end(BB) &&
    170           BB != &BB->getParent()->getEntryBlock()) {
    171         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
    172               << "' with terminator: " << *BB->getTerminator() << '\n');
    173         LoopHeaders.erase(BB);
    174         LVI->eraseBlock(BB);
    175         DeleteDeadBlock(BB);
    176         Changed = true;
    177         continue;
    178       }
    179 
    180       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
    181 
    182       // Can't thread an unconditional jump, but if the block is "almost
    183       // empty", we can replace uses of it with uses of the successor and make
    184       // this dead.
    185       if (BI && BI->isUnconditional() &&
    186           BB != &BB->getParent()->getEntryBlock() &&
    187           // If the terminator is the only non-phi instruction, try to nuke it.
    188           BB->getFirstNonPHIOrDbg()->isTerminator()) {
    189         // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
    190         // block, we have to make sure it isn't in the LoopHeaders set.  We
    191         // reinsert afterward if needed.
    192         bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
    193         BasicBlock *Succ = BI->getSuccessor(0);
    194 
    195         // FIXME: It is always conservatively correct to drop the info
    196         // for a block even if it doesn't get erased.  This isn't totally
    197         // awesome, but it allows us to use AssertingVH to prevent nasty
    198         // dangling pointer issues within LazyValueInfo.
    199         LVI->eraseBlock(BB);
    200         if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
    201           Changed = true;
    202           // If we deleted BB and BB was the header of a loop, then the
    203           // successor is now the header of the loop.
    204           BB = Succ;
    205         }
    206 
    207         if (ErasedFromLoopHeaders)
    208           LoopHeaders.insert(BB);
    209       }
    210     }
    211     EverChanged |= Changed;
    212   } while (Changed);
    213 
    214   LoopHeaders.clear();
    215   return EverChanged;
    216 }
    217 
    218 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
    219 /// thread across it.
    220 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
    221   /// Ignore PHI nodes, these will be flattened when duplication happens.
    222   BasicBlock::const_iterator I = BB->getFirstNonPHI();
    223 
    224   // FIXME: THREADING will delete values that are just used to compute the
    225   // branch, so they shouldn't count against the duplication cost.
    226 
    227 
    228   // Sum up the cost of each instruction until we get to the terminator.  Don't
    229   // include the terminator because the copy won't include it.
    230   unsigned Size = 0;
    231   for (; !isa<TerminatorInst>(I); ++I) {
    232     // Debugger intrinsics don't incur code size.
    233     if (isa<DbgInfoIntrinsic>(I)) continue;
    234 
    235     // If this is a pointer->pointer bitcast, it is free.
    236     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
    237       continue;
    238 
    239     // All other instructions count for at least one unit.
    240     ++Size;
    241 
    242     // Calls are more expensive.  If they are non-intrinsic calls, we model them
    243     // as having cost of 4.  If they are a non-vector intrinsic, we model them
    244     // as having cost of 2 total, and if they are a vector intrinsic, we model
    245     // them as having cost 1.
    246     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
    247       if (!isa<IntrinsicInst>(CI))
    248         Size += 3;
    249       else if (!CI->getType()->isVectorTy())
    250         Size += 1;
    251     }
    252   }
    253 
    254   // Threading through a switch statement is particularly profitable.  If this
    255   // block ends in a switch, decrease its cost to make it more likely to happen.
    256   if (isa<SwitchInst>(I))
    257     Size = Size > 6 ? Size-6 : 0;
    258 
    259   // The same holds for indirect branches, but slightly more so.
    260   if (isa<IndirectBrInst>(I))
    261     Size = Size > 8 ? Size-8 : 0;
    262 
    263   return Size;
    264 }
    265 
    266 /// FindLoopHeaders - We do not want jump threading to turn proper loop
    267 /// structures into irreducible loops.  Doing this breaks up the loop nesting
    268 /// hierarchy and pessimizes later transformations.  To prevent this from
    269 /// happening, we first have to find the loop headers.  Here we approximate this
    270 /// by finding targets of backedges in the CFG.
    271 ///
    272 /// Note that there definitely are cases when we want to allow threading of
    273 /// edges across a loop header.  For example, threading a jump from outside the
    274 /// loop (the preheader) to an exit block of the loop is definitely profitable.
    275 /// It is also almost always profitable to thread backedges from within the loop
    276 /// to exit blocks, and is often profitable to thread backedges to other blocks
    277 /// within the loop (forming a nested loop).  This simple analysis is not rich
    278 /// enough to track all of these properties and keep it up-to-date as the CFG
    279 /// mutates, so we don't allow any of these transformations.
    280 ///
    281 void JumpThreading::FindLoopHeaders(Function &F) {
    282   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
    283   FindFunctionBackedges(F, Edges);
    284 
    285   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
    286     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
    287 }
    288 
    289 /// getKnownConstant - Helper method to determine if we can thread over a
    290 /// terminator with the given value as its condition, and if so what value to
    291 /// use for that. What kind of value this is depends on whether we want an
    292 /// integer or a block address, but an undef is always accepted.
    293 /// Returns null if Val is null or not an appropriate constant.
    294 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
    295   if (!Val)
    296     return 0;
    297 
    298   // Undef is "known" enough.
    299   if (UndefValue *U = dyn_cast<UndefValue>(Val))
    300     return U;
    301 
    302   if (Preference == WantBlockAddress)
    303     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
    304 
    305   return dyn_cast<ConstantInt>(Val);
    306 }
    307 
    308 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
    309 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
    310 /// in any of our predecessors.  If so, return the known list of value and pred
    311 /// BB in the result vector.
    312 ///
    313 /// This returns true if there were any known values.
    314 ///
    315 bool JumpThreading::
    316 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
    317                                 ConstantPreference Preference) {
    318   // This method walks up use-def chains recursively.  Because of this, we could
    319   // get into an infinite loop going around loops in the use-def chain.  To
    320   // prevent this, keep track of what (value, block) pairs we've already visited
    321   // and terminate the search if we loop back to them
    322   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
    323     return false;
    324 
    325   // An RAII help to remove this pair from the recursion set once the recursion
    326   // stack pops back out again.
    327   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
    328 
    329   // If V is a constant, then it is known in all predecessors.
    330   if (Constant *KC = getKnownConstant(V, Preference)) {
    331     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    332       Result.push_back(std::make_pair(KC, *PI));
    333 
    334     return true;
    335   }
    336 
    337   // If V is a non-instruction value, or an instruction in a different block,
    338   // then it can't be derived from a PHI.
    339   Instruction *I = dyn_cast<Instruction>(V);
    340   if (I == 0 || I->getParent() != BB) {
    341 
    342     // Okay, if this is a live-in value, see if it has a known value at the end
    343     // of any of our predecessors.
    344     //
    345     // FIXME: This should be an edge property, not a block end property.
    346     /// TODO: Per PR2563, we could infer value range information about a
    347     /// predecessor based on its terminator.
    348     //
    349     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
    350     // "I" is a non-local compare-with-a-constant instruction.  This would be
    351     // able to handle value inequalities better, for example if the compare is
    352     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
    353     // Perhaps getConstantOnEdge should be smart enough to do this?
    354 
    355     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    356       BasicBlock *P = *PI;
    357       // If the value is known by LazyValueInfo to be a constant in a
    358       // predecessor, use that information to try to thread this block.
    359       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
    360       if (Constant *KC = getKnownConstant(PredCst, Preference))
    361         Result.push_back(std::make_pair(KC, P));
    362     }
    363 
    364     return !Result.empty();
    365   }
    366 
    367   /// If I is a PHI node, then we know the incoming values for any constants.
    368   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    369     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    370       Value *InVal = PN->getIncomingValue(i);
    371       if (Constant *KC = getKnownConstant(InVal, Preference)) {
    372         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
    373       } else {
    374         Constant *CI = LVI->getConstantOnEdge(InVal,
    375                                               PN->getIncomingBlock(i), BB);
    376         if (Constant *KC = getKnownConstant(CI, Preference))
    377           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
    378       }
    379     }
    380 
    381     return !Result.empty();
    382   }
    383 
    384   PredValueInfoTy LHSVals, RHSVals;
    385 
    386   // Handle some boolean conditions.
    387   if (I->getType()->getPrimitiveSizeInBits() == 1) {
    388     assert(Preference == WantInteger && "One-bit non-integer type?");
    389     // X | true -> true
    390     // X & false -> false
    391     if (I->getOpcode() == Instruction::Or ||
    392         I->getOpcode() == Instruction::And) {
    393       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
    394                                       WantInteger);
    395       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
    396                                       WantInteger);
    397 
    398       if (LHSVals.empty() && RHSVals.empty())
    399         return false;
    400 
    401       ConstantInt *InterestingVal;
    402       if (I->getOpcode() == Instruction::Or)
    403         InterestingVal = ConstantInt::getTrue(I->getContext());
    404       else
    405         InterestingVal = ConstantInt::getFalse(I->getContext());
    406 
    407       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
    408 
    409       // Scan for the sentinel.  If we find an undef, force it to the
    410       // interesting value: x|undef -> true and x&undef -> false.
    411       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
    412         if (LHSVals[i].first == InterestingVal ||
    413             isa<UndefValue>(LHSVals[i].first)) {
    414           Result.push_back(LHSVals[i]);
    415           Result.back().first = InterestingVal;
    416           LHSKnownBBs.insert(LHSVals[i].second);
    417         }
    418       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
    419         if (RHSVals[i].first == InterestingVal ||
    420             isa<UndefValue>(RHSVals[i].first)) {
    421           // If we already inferred a value for this block on the LHS, don't
    422           // re-add it.
    423           if (!LHSKnownBBs.count(RHSVals[i].second)) {
    424             Result.push_back(RHSVals[i]);
    425             Result.back().first = InterestingVal;
    426           }
    427         }
    428 
    429       return !Result.empty();
    430     }
    431 
    432     // Handle the NOT form of XOR.
    433     if (I->getOpcode() == Instruction::Xor &&
    434         isa<ConstantInt>(I->getOperand(1)) &&
    435         cast<ConstantInt>(I->getOperand(1))->isOne()) {
    436       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
    437                                       WantInteger);
    438       if (Result.empty())
    439         return false;
    440 
    441       // Invert the known values.
    442       for (unsigned i = 0, e = Result.size(); i != e; ++i)
    443         Result[i].first = ConstantExpr::getNot(Result[i].first);
    444 
    445       return true;
    446     }
    447 
    448   // Try to simplify some other binary operator values.
    449   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    450     assert(Preference != WantBlockAddress
    451             && "A binary operator creating a block address?");
    452     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
    453       PredValueInfoTy LHSVals;
    454       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
    455                                       WantInteger);
    456 
    457       // Try to use constant folding to simplify the binary operator.
    458       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
    459         Constant *V = LHSVals[i].first;
    460         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
    461 
    462         if (Constant *KC = getKnownConstant(Folded, WantInteger))
    463           Result.push_back(std::make_pair(KC, LHSVals[i].second));
    464       }
    465     }
    466 
    467     return !Result.empty();
    468   }
    469 
    470   // Handle compare with phi operand, where the PHI is defined in this block.
    471   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
    472     assert(Preference == WantInteger && "Compares only produce integers");
    473     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
    474     if (PN && PN->getParent() == BB) {
    475       // We can do this simplification if any comparisons fold to true or false.
    476       // See if any do.
    477       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    478         BasicBlock *PredBB = PN->getIncomingBlock(i);
    479         Value *LHS = PN->getIncomingValue(i);
    480         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
    481 
    482         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
    483         if (Res == 0) {
    484           if (!isa<Constant>(RHS))
    485             continue;
    486 
    487           LazyValueInfo::Tristate
    488             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
    489                                            cast<Constant>(RHS), PredBB, BB);
    490           if (ResT == LazyValueInfo::Unknown)
    491             continue;
    492           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
    493         }
    494 
    495         if (Constant *KC = getKnownConstant(Res, WantInteger))
    496           Result.push_back(std::make_pair(KC, PredBB));
    497       }
    498 
    499       return !Result.empty();
    500     }
    501 
    502 
    503     // If comparing a live-in value against a constant, see if we know the
    504     // live-in value on any predecessors.
    505     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
    506       if (!isa<Instruction>(Cmp->getOperand(0)) ||
    507           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
    508         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
    509 
    510         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
    511           BasicBlock *P = *PI;
    512           // If the value is known by LazyValueInfo to be a constant in a
    513           // predecessor, use that information to try to thread this block.
    514           LazyValueInfo::Tristate Res =
    515             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
    516                                     RHSCst, P, BB);
    517           if (Res == LazyValueInfo::Unknown)
    518             continue;
    519 
    520           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
    521           Result.push_back(std::make_pair(ResC, P));
    522         }
    523 
    524         return !Result.empty();
    525       }
    526 
    527       // Try to find a constant value for the LHS of a comparison,
    528       // and evaluate it statically if we can.
    529       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
    530         PredValueInfoTy LHSVals;
    531         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
    532                                         WantInteger);
    533 
    534         for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
    535           Constant *V = LHSVals[i].first;
    536           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
    537                                                       V, CmpConst);
    538           if (Constant *KC = getKnownConstant(Folded, WantInteger))
    539             Result.push_back(std::make_pair(KC, LHSVals[i].second));
    540         }
    541 
    542         return !Result.empty();
    543       }
    544     }
    545   }
    546 
    547   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
    548     // Handle select instructions where at least one operand is a known constant
    549     // and we can figure out the condition value for any predecessor block.
    550     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
    551     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
    552     PredValueInfoTy Conds;
    553     if ((TrueVal || FalseVal) &&
    554         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
    555                                         WantInteger)) {
    556       for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
    557         Constant *Cond = Conds[i].first;
    558 
    559         // Figure out what value to use for the condition.
    560         bool KnownCond;
    561         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
    562           // A known boolean.
    563           KnownCond = CI->isOne();
    564         } else {
    565           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
    566           // Either operand will do, so be sure to pick the one that's a known
    567           // constant.
    568           // FIXME: Do this more cleverly if both values are known constants?
    569           KnownCond = (TrueVal != 0);
    570         }
    571 
    572         // See if the select has a known constant value for this predecessor.
    573         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
    574           Result.push_back(std::make_pair(Val, Conds[i].second));
    575       }
    576 
    577       return !Result.empty();
    578     }
    579   }
    580 
    581   // If all else fails, see if LVI can figure out a constant value for us.
    582   Constant *CI = LVI->getConstant(V, BB);
    583   if (Constant *KC = getKnownConstant(CI, Preference)) {
    584     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    585       Result.push_back(std::make_pair(KC, *PI));
    586   }
    587 
    588   return !Result.empty();
    589 }
    590 
    591 
    592 
    593 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
    594 /// in an undefined jump, decide which block is best to revector to.
    595 ///
    596 /// Since we can pick an arbitrary destination, we pick the successor with the
    597 /// fewest predecessors.  This should reduce the in-degree of the others.
    598 ///
    599 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
    600   TerminatorInst *BBTerm = BB->getTerminator();
    601   unsigned MinSucc = 0;
    602   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
    603   // Compute the successor with the minimum number of predecessors.
    604   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
    605   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
    606     TestBB = BBTerm->getSuccessor(i);
    607     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
    608     if (NumPreds < MinNumPreds) {
    609       MinSucc = i;
    610       MinNumPreds = NumPreds;
    611     }
    612   }
    613 
    614   return MinSucc;
    615 }
    616 
    617 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
    618   if (!BB->hasAddressTaken()) return false;
    619 
    620   // If the block has its address taken, it may be a tree of dead constants
    621   // hanging off of it.  These shouldn't keep the block alive.
    622   BlockAddress *BA = BlockAddress::get(BB);
    623   BA->removeDeadConstantUsers();
    624   return !BA->use_empty();
    625 }
    626 
    627 /// ProcessBlock - If there are any predecessors whose control can be threaded
    628 /// through to a successor, transform them now.
    629 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
    630   // If the block is trivially dead, just return and let the caller nuke it.
    631   // This simplifies other transformations.
    632   if (pred_begin(BB) == pred_end(BB) &&
    633       BB != &BB->getParent()->getEntryBlock())
    634     return false;
    635 
    636   // If this block has a single predecessor, and if that pred has a single
    637   // successor, merge the blocks.  This encourages recursive jump threading
    638   // because now the condition in this block can be threaded through
    639   // predecessors of our predecessor block.
    640   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
    641     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
    642         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
    643       // If SinglePred was a loop header, BB becomes one.
    644       if (LoopHeaders.erase(SinglePred))
    645         LoopHeaders.insert(BB);
    646 
    647       // Remember if SinglePred was the entry block of the function.  If so, we
    648       // will need to move BB back to the entry position.
    649       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
    650       LVI->eraseBlock(SinglePred);
    651       MergeBasicBlockIntoOnlyPred(BB);
    652 
    653       if (isEntry && BB != &BB->getParent()->getEntryBlock())
    654         BB->moveBefore(&BB->getParent()->getEntryBlock());
    655       return true;
    656     }
    657   }
    658 
    659   // What kind of constant we're looking for.
    660   ConstantPreference Preference = WantInteger;
    661 
    662   // Look to see if the terminator is a conditional branch, switch or indirect
    663   // branch, if not we can't thread it.
    664   Value *Condition;
    665   Instruction *Terminator = BB->getTerminator();
    666   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
    667     // Can't thread an unconditional jump.
    668     if (BI->isUnconditional()) return false;
    669     Condition = BI->getCondition();
    670   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
    671     Condition = SI->getCondition();
    672   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
    673     // Can't thread indirect branch with no successors.
    674     if (IB->getNumSuccessors() == 0) return false;
    675     Condition = IB->getAddress()->stripPointerCasts();
    676     Preference = WantBlockAddress;
    677   } else {
    678     return false; // Must be an invoke.
    679   }
    680 
    681   // Run constant folding to see if we can reduce the condition to a simple
    682   // constant.
    683   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
    684     Value *SimpleVal = ConstantFoldInstruction(I, TD, TLI);
    685     if (SimpleVal) {
    686       I->replaceAllUsesWith(SimpleVal);
    687       I->eraseFromParent();
    688       Condition = SimpleVal;
    689     }
    690   }
    691 
    692   // If the terminator is branching on an undef, we can pick any of the
    693   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
    694   if (isa<UndefValue>(Condition)) {
    695     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
    696 
    697     // Fold the branch/switch.
    698     TerminatorInst *BBTerm = BB->getTerminator();
    699     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
    700       if (i == BestSucc) continue;
    701       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
    702     }
    703 
    704     DEBUG(dbgs() << "  In block '" << BB->getName()
    705           << "' folding undef terminator: " << *BBTerm << '\n');
    706     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
    707     BBTerm->eraseFromParent();
    708     return true;
    709   }
    710 
    711   // If the terminator of this block is branching on a constant, simplify the
    712   // terminator to an unconditional branch.  This can occur due to threading in
    713   // other blocks.
    714   if (getKnownConstant(Condition, Preference)) {
    715     DEBUG(dbgs() << "  In block '" << BB->getName()
    716           << "' folding terminator: " << *BB->getTerminator() << '\n');
    717     ++NumFolds;
    718     ConstantFoldTerminator(BB, true);
    719     return true;
    720   }
    721 
    722   Instruction *CondInst = dyn_cast<Instruction>(Condition);
    723 
    724   // All the rest of our checks depend on the condition being an instruction.
    725   if (CondInst == 0) {
    726     // FIXME: Unify this with code below.
    727     if (ProcessThreadableEdges(Condition, BB, Preference))
    728       return true;
    729     return false;
    730   }
    731 
    732 
    733   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
    734     // For a comparison where the LHS is outside this block, it's possible
    735     // that we've branched on it before.  Used LVI to see if we can simplify
    736     // the branch based on that.
    737     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
    738     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
    739     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    740     if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
    741         (!isa<Instruction>(CondCmp->getOperand(0)) ||
    742          cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
    743       // For predecessor edge, determine if the comparison is true or false
    744       // on that edge.  If they're all true or all false, we can simplify the
    745       // branch.
    746       // FIXME: We could handle mixed true/false by duplicating code.
    747       LazyValueInfo::Tristate Baseline =
    748         LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
    749                                 CondConst, *PI, BB);
    750       if (Baseline != LazyValueInfo::Unknown) {
    751         // Check that all remaining incoming values match the first one.
    752         while (++PI != PE) {
    753           LazyValueInfo::Tristate Ret =
    754             LVI->getPredicateOnEdge(CondCmp->getPredicate(),
    755                                     CondCmp->getOperand(0), CondConst, *PI, BB);
    756           if (Ret != Baseline) break;
    757         }
    758 
    759         // If we terminated early, then one of the values didn't match.
    760         if (PI == PE) {
    761           unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
    762           unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
    763           CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
    764           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
    765           CondBr->eraseFromParent();
    766           return true;
    767         }
    768       }
    769     }
    770   }
    771 
    772   // Check for some cases that are worth simplifying.  Right now we want to look
    773   // for loads that are used by a switch or by the condition for the branch.  If
    774   // we see one, check to see if it's partially redundant.  If so, insert a PHI
    775   // which can then be used to thread the values.
    776   //
    777   Value *SimplifyValue = CondInst;
    778   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
    779     if (isa<Constant>(CondCmp->getOperand(1)))
    780       SimplifyValue = CondCmp->getOperand(0);
    781 
    782   // TODO: There are other places where load PRE would be profitable, such as
    783   // more complex comparisons.
    784   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
    785     if (SimplifyPartiallyRedundantLoad(LI))
    786       return true;
    787 
    788 
    789   // Handle a variety of cases where we are branching on something derived from
    790   // a PHI node in the current block.  If we can prove that any predecessors
    791   // compute a predictable value based on a PHI node, thread those predecessors.
    792   //
    793   if (ProcessThreadableEdges(CondInst, BB, Preference))
    794     return true;
    795 
    796   // If this is an otherwise-unfoldable branch on a phi node in the current
    797   // block, see if we can simplify.
    798   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
    799     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    800       return ProcessBranchOnPHI(PN);
    801 
    802 
    803   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
    804   if (CondInst->getOpcode() == Instruction::Xor &&
    805       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    806     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
    807 
    808 
    809   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
    810   // "(X == 4)", thread through this block.
    811 
    812   return false;
    813 }
    814 
    815 
    816 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
    817 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
    818 /// important optimization that encourages jump threading, and needs to be run
    819 /// interlaced with other jump threading tasks.
    820 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
    821   // Don't hack volatile/atomic loads.
    822   if (!LI->isSimple()) return false;
    823 
    824   // If the load is defined in a block with exactly one predecessor, it can't be
    825   // partially redundant.
    826   BasicBlock *LoadBB = LI->getParent();
    827   if (LoadBB->getSinglePredecessor())
    828     return false;
    829 
    830   Value *LoadedPtr = LI->getOperand(0);
    831 
    832   // If the loaded operand is defined in the LoadBB, it can't be available.
    833   // TODO: Could do simple PHI translation, that would be fun :)
    834   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
    835     if (PtrOp->getParent() == LoadBB)
    836       return false;
    837 
    838   // Scan a few instructions up from the load, to see if it is obviously live at
    839   // the entry to its block.
    840   BasicBlock::iterator BBIt = LI;
    841 
    842   if (Value *AvailableVal =
    843         FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
    844     // If the value if the load is locally available within the block, just use
    845     // it.  This frequently occurs for reg2mem'd allocas.
    846     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
    847 
    848     // If the returned value is the load itself, replace with an undef. This can
    849     // only happen in dead loops.
    850     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
    851     LI->replaceAllUsesWith(AvailableVal);
    852     LI->eraseFromParent();
    853     return true;
    854   }
    855 
    856   // Otherwise, if we scanned the whole block and got to the top of the block,
    857   // we know the block is locally transparent to the load.  If not, something
    858   // might clobber its value.
    859   if (BBIt != LoadBB->begin())
    860     return false;
    861 
    862   // If all of the loads and stores that feed the value have the same TBAA tag,
    863   // then we can propagate it onto any newly inserted loads.
    864   MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
    865 
    866   SmallPtrSet<BasicBlock*, 8> PredsScanned;
    867   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
    868   AvailablePredsTy AvailablePreds;
    869   BasicBlock *OneUnavailablePred = 0;
    870 
    871   // If we got here, the loaded value is transparent through to the start of the
    872   // block.  Check to see if it is available in any of the predecessor blocks.
    873   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
    874        PI != PE; ++PI) {
    875     BasicBlock *PredBB = *PI;
    876 
    877     // If we already scanned this predecessor, skip it.
    878     if (!PredsScanned.insert(PredBB))
    879       continue;
    880 
    881     // Scan the predecessor to see if the value is available in the pred.
    882     BBIt = PredBB->end();
    883     MDNode *ThisTBAATag = 0;
    884     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
    885                                                     0, &ThisTBAATag);
    886     if (!PredAvailable) {
    887       OneUnavailablePred = PredBB;
    888       continue;
    889     }
    890 
    891     // If tbaa tags disagree or are not present, forget about them.
    892     if (TBAATag != ThisTBAATag) TBAATag = 0;
    893 
    894     // If so, this load is partially redundant.  Remember this info so that we
    895     // can create a PHI node.
    896     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
    897   }
    898 
    899   // If the loaded value isn't available in any predecessor, it isn't partially
    900   // redundant.
    901   if (AvailablePreds.empty()) return false;
    902 
    903   // Okay, the loaded value is available in at least one (and maybe all!)
    904   // predecessors.  If the value is unavailable in more than one unique
    905   // predecessor, we want to insert a merge block for those common predecessors.
    906   // This ensures that we only have to insert one reload, thus not increasing
    907   // code size.
    908   BasicBlock *UnavailablePred = 0;
    909 
    910   // If there is exactly one predecessor where the value is unavailable, the
    911   // already computed 'OneUnavailablePred' block is it.  If it ends in an
    912   // unconditional branch, we know that it isn't a critical edge.
    913   if (PredsScanned.size() == AvailablePreds.size()+1 &&
    914       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
    915     UnavailablePred = OneUnavailablePred;
    916   } else if (PredsScanned.size() != AvailablePreds.size()) {
    917     // Otherwise, we had multiple unavailable predecessors or we had a critical
    918     // edge from the one.
    919     SmallVector<BasicBlock*, 8> PredsToSplit;
    920     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
    921 
    922     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
    923       AvailablePredSet.insert(AvailablePreds[i].first);
    924 
    925     // Add all the unavailable predecessors to the PredsToSplit list.
    926     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
    927          PI != PE; ++PI) {
    928       BasicBlock *P = *PI;
    929       // If the predecessor is an indirect goto, we can't split the edge.
    930       if (isa<IndirectBrInst>(P->getTerminator()))
    931         return false;
    932 
    933       if (!AvailablePredSet.count(P))
    934         PredsToSplit.push_back(P);
    935     }
    936 
    937     // Split them out to their own block.
    938     UnavailablePred =
    939       SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this);
    940   }
    941 
    942   // If the value isn't available in all predecessors, then there will be
    943   // exactly one where it isn't available.  Insert a load on that edge and add
    944   // it to the AvailablePreds list.
    945   if (UnavailablePred) {
    946     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
    947            "Can't handle critical edge here!");
    948     LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
    949                                  LI->getAlignment(),
    950                                  UnavailablePred->getTerminator());
    951     NewVal->setDebugLoc(LI->getDebugLoc());
    952     if (TBAATag)
    953       NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag);
    954 
    955     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
    956   }
    957 
    958   // Now we know that each predecessor of this block has a value in
    959   // AvailablePreds, sort them for efficient access as we're walking the preds.
    960   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
    961 
    962   // Create a PHI node at the start of the block for the PRE'd load value.
    963   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
    964   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
    965                                 LoadBB->begin());
    966   PN->takeName(LI);
    967   PN->setDebugLoc(LI->getDebugLoc());
    968 
    969   // Insert new entries into the PHI for each predecessor.  A single block may
    970   // have multiple entries here.
    971   for (pred_iterator PI = PB; PI != PE; ++PI) {
    972     BasicBlock *P = *PI;
    973     AvailablePredsTy::iterator I =
    974       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
    975                        std::make_pair(P, (Value*)0));
    976 
    977     assert(I != AvailablePreds.end() && I->first == P &&
    978            "Didn't find entry for predecessor!");
    979 
    980     PN->addIncoming(I->second, I->first);
    981   }
    982 
    983   //cerr << "PRE: " << *LI << *PN << "\n";
    984 
    985   LI->replaceAllUsesWith(PN);
    986   LI->eraseFromParent();
    987 
    988   return true;
    989 }
    990 
    991 /// FindMostPopularDest - The specified list contains multiple possible
    992 /// threadable destinations.  Pick the one that occurs the most frequently in
    993 /// the list.
    994 static BasicBlock *
    995 FindMostPopularDest(BasicBlock *BB,
    996                     const SmallVectorImpl<std::pair<BasicBlock*,
    997                                   BasicBlock*> > &PredToDestList) {
    998   assert(!PredToDestList.empty());
    999 
   1000   // Determine popularity.  If there are multiple possible destinations, we
   1001   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
   1002   // blocks with known and real destinations to threading undef.  We'll handle
   1003   // them later if interesting.
   1004   DenseMap<BasicBlock*, unsigned> DestPopularity;
   1005   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
   1006     if (PredToDestList[i].second)
   1007       DestPopularity[PredToDestList[i].second]++;
   1008 
   1009   // Find the most popular dest.
   1010   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
   1011   BasicBlock *MostPopularDest = DPI->first;
   1012   unsigned Popularity = DPI->second;
   1013   SmallVector<BasicBlock*, 4> SamePopularity;
   1014 
   1015   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
   1016     // If the popularity of this entry isn't higher than the popularity we've
   1017     // seen so far, ignore it.
   1018     if (DPI->second < Popularity)
   1019       ; // ignore.
   1020     else if (DPI->second == Popularity) {
   1021       // If it is the same as what we've seen so far, keep track of it.
   1022       SamePopularity.push_back(DPI->first);
   1023     } else {
   1024       // If it is more popular, remember it.
   1025       SamePopularity.clear();
   1026       MostPopularDest = DPI->first;
   1027       Popularity = DPI->second;
   1028     }
   1029   }
   1030 
   1031   // Okay, now we know the most popular destination.  If there is more than one
   1032   // destination, we need to determine one.  This is arbitrary, but we need
   1033   // to make a deterministic decision.  Pick the first one that appears in the
   1034   // successor list.
   1035   if (!SamePopularity.empty()) {
   1036     SamePopularity.push_back(MostPopularDest);
   1037     TerminatorInst *TI = BB->getTerminator();
   1038     for (unsigned i = 0; ; ++i) {
   1039       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
   1040 
   1041       if (std::find(SamePopularity.begin(), SamePopularity.end(),
   1042                     TI->getSuccessor(i)) == SamePopularity.end())
   1043         continue;
   1044 
   1045       MostPopularDest = TI->getSuccessor(i);
   1046       break;
   1047     }
   1048   }
   1049 
   1050   // Okay, we have finally picked the most popular destination.
   1051   return MostPopularDest;
   1052 }
   1053 
   1054 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
   1055                                            ConstantPreference Preference) {
   1056   // If threading this would thread across a loop header, don't even try to
   1057   // thread the edge.
   1058   if (LoopHeaders.count(BB))
   1059     return false;
   1060 
   1061   PredValueInfoTy PredValues;
   1062   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
   1063     return false;
   1064 
   1065   assert(!PredValues.empty() &&
   1066          "ComputeValueKnownInPredecessors returned true with no values");
   1067 
   1068   DEBUG(dbgs() << "IN BB: " << *BB;
   1069         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
   1070           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
   1071             << *PredValues[i].first
   1072             << " for pred '" << PredValues[i].second->getName() << "'.\n";
   1073         });
   1074 
   1075   // Decide what we want to thread through.  Convert our list of known values to
   1076   // a list of known destinations for each pred.  This also discards duplicate
   1077   // predecessors and keeps track of the undefined inputs (which are represented
   1078   // as a null dest in the PredToDestList).
   1079   SmallPtrSet<BasicBlock*, 16> SeenPreds;
   1080   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
   1081 
   1082   BasicBlock *OnlyDest = 0;
   1083   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
   1084 
   1085   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
   1086     BasicBlock *Pred = PredValues[i].second;
   1087     if (!SeenPreds.insert(Pred))
   1088       continue;  // Duplicate predecessor entry.
   1089 
   1090     // If the predecessor ends with an indirect goto, we can't change its
   1091     // destination.
   1092     if (isa<IndirectBrInst>(Pred->getTerminator()))
   1093       continue;
   1094 
   1095     Constant *Val = PredValues[i].first;
   1096 
   1097     BasicBlock *DestBB;
   1098     if (isa<UndefValue>(Val))
   1099       DestBB = 0;
   1100     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
   1101       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
   1102     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   1103       DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
   1104     } else {
   1105       assert(isa<IndirectBrInst>(BB->getTerminator())
   1106               && "Unexpected terminator");
   1107       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
   1108     }
   1109 
   1110     // If we have exactly one destination, remember it for efficiency below.
   1111     if (PredToDestList.empty())
   1112       OnlyDest = DestBB;
   1113     else if (OnlyDest != DestBB)
   1114       OnlyDest = MultipleDestSentinel;
   1115 
   1116     PredToDestList.push_back(std::make_pair(Pred, DestBB));
   1117   }
   1118 
   1119   // If all edges were unthreadable, we fail.
   1120   if (PredToDestList.empty())
   1121     return false;
   1122 
   1123   // Determine which is the most common successor.  If we have many inputs and
   1124   // this block is a switch, we want to start by threading the batch that goes
   1125   // to the most popular destination first.  If we only know about one
   1126   // threadable destination (the common case) we can avoid this.
   1127   BasicBlock *MostPopularDest = OnlyDest;
   1128 
   1129   if (MostPopularDest == MultipleDestSentinel)
   1130     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
   1131 
   1132   // Now that we know what the most popular destination is, factor all
   1133   // predecessors that will jump to it into a single predecessor.
   1134   SmallVector<BasicBlock*, 16> PredsToFactor;
   1135   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
   1136     if (PredToDestList[i].second == MostPopularDest) {
   1137       BasicBlock *Pred = PredToDestList[i].first;
   1138 
   1139       // This predecessor may be a switch or something else that has multiple
   1140       // edges to the block.  Factor each of these edges by listing them
   1141       // according to # occurrences in PredsToFactor.
   1142       TerminatorInst *PredTI = Pred->getTerminator();
   1143       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
   1144         if (PredTI->getSuccessor(i) == BB)
   1145           PredsToFactor.push_back(Pred);
   1146     }
   1147 
   1148   // If the threadable edges are branching on an undefined value, we get to pick
   1149   // the destination that these predecessors should get to.
   1150   if (MostPopularDest == 0)
   1151     MostPopularDest = BB->getTerminator()->
   1152                             getSuccessor(GetBestDestForJumpOnUndef(BB));
   1153 
   1154   // Ok, try to thread it!
   1155   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
   1156 }
   1157 
   1158 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
   1159 /// a PHI node in the current block.  See if there are any simplifications we
   1160 /// can do based on inputs to the phi node.
   1161 ///
   1162 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
   1163   BasicBlock *BB = PN->getParent();
   1164 
   1165   // TODO: We could make use of this to do it once for blocks with common PHI
   1166   // values.
   1167   SmallVector<BasicBlock*, 1> PredBBs;
   1168   PredBBs.resize(1);
   1169 
   1170   // If any of the predecessor blocks end in an unconditional branch, we can
   1171   // *duplicate* the conditional branch into that block in order to further
   1172   // encourage jump threading and to eliminate cases where we have branch on a
   1173   // phi of an icmp (branch on icmp is much better).
   1174   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1175     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1176     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
   1177       if (PredBr->isUnconditional()) {
   1178         PredBBs[0] = PredBB;
   1179         // Try to duplicate BB into PredBB.
   1180         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
   1181           return true;
   1182       }
   1183   }
   1184 
   1185   return false;
   1186 }
   1187 
   1188 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
   1189 /// a xor instruction in the current block.  See if there are any
   1190 /// simplifications we can do based on inputs to the xor.
   1191 ///
   1192 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
   1193   BasicBlock *BB = BO->getParent();
   1194 
   1195   // If either the LHS or RHS of the xor is a constant, don't do this
   1196   // optimization.
   1197   if (isa<ConstantInt>(BO->getOperand(0)) ||
   1198       isa<ConstantInt>(BO->getOperand(1)))
   1199     return false;
   1200 
   1201   // If the first instruction in BB isn't a phi, we won't be able to infer
   1202   // anything special about any particular predecessor.
   1203   if (!isa<PHINode>(BB->front()))
   1204     return false;
   1205 
   1206   // If we have a xor as the branch input to this block, and we know that the
   1207   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
   1208   // the condition into the predecessor and fix that value to true, saving some
   1209   // logical ops on that path and encouraging other paths to simplify.
   1210   //
   1211   // This copies something like this:
   1212   //
   1213   //  BB:
   1214   //    %X = phi i1 [1],  [%X']
   1215   //    %Y = icmp eq i32 %A, %B
   1216   //    %Z = xor i1 %X, %Y
   1217   //    br i1 %Z, ...
   1218   //
   1219   // Into:
   1220   //  BB':
   1221   //    %Y = icmp ne i32 %A, %B
   1222   //    br i1 %Z, ...
   1223 
   1224   PredValueInfoTy XorOpValues;
   1225   bool isLHS = true;
   1226   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
   1227                                        WantInteger)) {
   1228     assert(XorOpValues.empty());
   1229     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
   1230                                          WantInteger))
   1231       return false;
   1232     isLHS = false;
   1233   }
   1234 
   1235   assert(!XorOpValues.empty() &&
   1236          "ComputeValueKnownInPredecessors returned true with no values");
   1237 
   1238   // Scan the information to see which is most popular: true or false.  The
   1239   // predecessors can be of the set true, false, or undef.
   1240   unsigned NumTrue = 0, NumFalse = 0;
   1241   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
   1242     if (isa<UndefValue>(XorOpValues[i].first))
   1243       // Ignore undefs for the count.
   1244       continue;
   1245     if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
   1246       ++NumFalse;
   1247     else
   1248       ++NumTrue;
   1249   }
   1250 
   1251   // Determine which value to split on, true, false, or undef if neither.
   1252   ConstantInt *SplitVal = 0;
   1253   if (NumTrue > NumFalse)
   1254     SplitVal = ConstantInt::getTrue(BB->getContext());
   1255   else if (NumTrue != 0 || NumFalse != 0)
   1256     SplitVal = ConstantInt::getFalse(BB->getContext());
   1257 
   1258   // Collect all of the blocks that this can be folded into so that we can
   1259   // factor this once and clone it once.
   1260   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
   1261   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
   1262     if (XorOpValues[i].first != SplitVal &&
   1263         !isa<UndefValue>(XorOpValues[i].first))
   1264       continue;
   1265 
   1266     BlocksToFoldInto.push_back(XorOpValues[i].second);
   1267   }
   1268 
   1269   // If we inferred a value for all of the predecessors, then duplication won't
   1270   // help us.  However, we can just replace the LHS or RHS with the constant.
   1271   if (BlocksToFoldInto.size() ==
   1272       cast<PHINode>(BB->front()).getNumIncomingValues()) {
   1273     if (SplitVal == 0) {
   1274       // If all preds provide undef, just nuke the xor, because it is undef too.
   1275       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
   1276       BO->eraseFromParent();
   1277     } else if (SplitVal->isZero()) {
   1278       // If all preds provide 0, replace the xor with the other input.
   1279       BO->replaceAllUsesWith(BO->getOperand(isLHS));
   1280       BO->eraseFromParent();
   1281     } else {
   1282       // If all preds provide 1, set the computed value to 1.
   1283       BO->setOperand(!isLHS, SplitVal);
   1284     }
   1285 
   1286     return true;
   1287   }
   1288 
   1289   // Try to duplicate BB into PredBB.
   1290   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
   1291 }
   1292 
   1293 
   1294 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
   1295 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
   1296 /// NewPred using the entries from OldPred (suitably mapped).
   1297 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
   1298                                             BasicBlock *OldPred,
   1299                                             BasicBlock *NewPred,
   1300                                      DenseMap<Instruction*, Value*> &ValueMap) {
   1301   for (BasicBlock::iterator PNI = PHIBB->begin();
   1302        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
   1303     // Ok, we have a PHI node.  Figure out what the incoming value was for the
   1304     // DestBlock.
   1305     Value *IV = PN->getIncomingValueForBlock(OldPred);
   1306 
   1307     // Remap the value if necessary.
   1308     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
   1309       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
   1310       if (I != ValueMap.end())
   1311         IV = I->second;
   1312     }
   1313 
   1314     PN->addIncoming(IV, NewPred);
   1315   }
   1316 }
   1317 
   1318 /// ThreadEdge - We have decided that it is safe and profitable to factor the
   1319 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
   1320 /// across BB.  Transform the IR to reflect this change.
   1321 bool JumpThreading::ThreadEdge(BasicBlock *BB,
   1322                                const SmallVectorImpl<BasicBlock*> &PredBBs,
   1323                                BasicBlock *SuccBB) {
   1324   // If threading to the same block as we come from, we would infinite loop.
   1325   if (SuccBB == BB) {
   1326     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
   1327           << "' - would thread to self!\n");
   1328     return false;
   1329   }
   1330 
   1331   // If threading this would thread across a loop header, don't thread the edge.
   1332   // See the comments above FindLoopHeaders for justifications and caveats.
   1333   if (LoopHeaders.count(BB)) {
   1334     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
   1335           << "' to dest BB '" << SuccBB->getName()
   1336           << "' - it might create an irreducible loop!\n");
   1337     return false;
   1338   }
   1339 
   1340   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
   1341   if (JumpThreadCost > Threshold) {
   1342     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
   1343           << "' - Cost is too high: " << JumpThreadCost << "\n");
   1344     return false;
   1345   }
   1346 
   1347   // And finally, do it!  Start by factoring the predecessors is needed.
   1348   BasicBlock *PredBB;
   1349   if (PredBBs.size() == 1)
   1350     PredBB = PredBBs[0];
   1351   else {
   1352     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
   1353           << " common predecessors.\n");
   1354     PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
   1355   }
   1356 
   1357   // And finally, do it!
   1358   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
   1359         << SuccBB->getName() << "' with cost: " << JumpThreadCost
   1360         << ", across block:\n    "
   1361         << *BB << "\n");
   1362 
   1363   LVI->threadEdge(PredBB, BB, SuccBB);
   1364 
   1365   // We are going to have to map operands from the original BB block to the new
   1366   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
   1367   // account for entry from PredBB.
   1368   DenseMap<Instruction*, Value*> ValueMapping;
   1369 
   1370   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
   1371                                          BB->getName()+".thread",
   1372                                          BB->getParent(), BB);
   1373   NewBB->moveAfter(PredBB);
   1374 
   1375   BasicBlock::iterator BI = BB->begin();
   1376   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
   1377     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
   1378 
   1379   // Clone the non-phi instructions of BB into NewBB, keeping track of the
   1380   // mapping and using it to remap operands in the cloned instructions.
   1381   for (; !isa<TerminatorInst>(BI); ++BI) {
   1382     Instruction *New = BI->clone();
   1383     New->setName(BI->getName());
   1384     NewBB->getInstList().push_back(New);
   1385     ValueMapping[BI] = New;
   1386 
   1387     // Remap operands to patch up intra-block references.
   1388     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
   1389       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
   1390         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
   1391         if (I != ValueMapping.end())
   1392           New->setOperand(i, I->second);
   1393       }
   1394   }
   1395 
   1396   // We didn't copy the terminator from BB over to NewBB, because there is now
   1397   // an unconditional jump to SuccBB.  Insert the unconditional jump.
   1398   BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
   1399   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
   1400 
   1401   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
   1402   // PHI nodes for NewBB now.
   1403   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
   1404 
   1405   // If there were values defined in BB that are used outside the block, then we
   1406   // now have to update all uses of the value to use either the original value,
   1407   // the cloned value, or some PHI derived value.  This can require arbitrary
   1408   // PHI insertion, of which we are prepared to do, clean these up now.
   1409   SSAUpdater SSAUpdate;
   1410   SmallVector<Use*, 16> UsesToRename;
   1411   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
   1412     // Scan all uses of this instruction to see if it is used outside of its
   1413     // block, and if so, record them in UsesToRename.
   1414     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
   1415          ++UI) {
   1416       Instruction *User = cast<Instruction>(*UI);
   1417       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
   1418         if (UserPN->getIncomingBlock(UI) == BB)
   1419           continue;
   1420       } else if (User->getParent() == BB)
   1421         continue;
   1422 
   1423       UsesToRename.push_back(&UI.getUse());
   1424     }
   1425 
   1426     // If there are no uses outside the block, we're done with this instruction.
   1427     if (UsesToRename.empty())
   1428       continue;
   1429 
   1430     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
   1431 
   1432     // We found a use of I outside of BB.  Rename all uses of I that are outside
   1433     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
   1434     // with the two values we know.
   1435     SSAUpdate.Initialize(I->getType(), I->getName());
   1436     SSAUpdate.AddAvailableValue(BB, I);
   1437     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
   1438 
   1439     while (!UsesToRename.empty())
   1440       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
   1441     DEBUG(dbgs() << "\n");
   1442   }
   1443 
   1444 
   1445   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
   1446   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
   1447   // us to simplify any PHI nodes in BB.
   1448   TerminatorInst *PredTerm = PredBB->getTerminator();
   1449   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
   1450     if (PredTerm->getSuccessor(i) == BB) {
   1451       BB->removePredecessor(PredBB, true);
   1452       PredTerm->setSuccessor(i, NewBB);
   1453     }
   1454 
   1455   // At this point, the IR is fully up to date and consistent.  Do a quick scan
   1456   // over the new instructions and zap any that are constants or dead.  This
   1457   // frequently happens because of phi translation.
   1458   SimplifyInstructionsInBlock(NewBB, TD, TLI);
   1459 
   1460   // Threaded an edge!
   1461   ++NumThreads;
   1462   return true;
   1463 }
   1464 
   1465 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
   1466 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
   1467 /// If we can duplicate the contents of BB up into PredBB do so now, this
   1468 /// improves the odds that the branch will be on an analyzable instruction like
   1469 /// a compare.
   1470 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   1471                                  const SmallVectorImpl<BasicBlock *> &PredBBs) {
   1472   assert(!PredBBs.empty() && "Can't handle an empty set");
   1473 
   1474   // If BB is a loop header, then duplicating this block outside the loop would
   1475   // cause us to transform this into an irreducible loop, don't do this.
   1476   // See the comments above FindLoopHeaders for justifications and caveats.
   1477   if (LoopHeaders.count(BB)) {
   1478     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
   1479           << "' into predecessor block '" << PredBBs[0]->getName()
   1480           << "' - it might create an irreducible loop!\n");
   1481     return false;
   1482   }
   1483 
   1484   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
   1485   if (DuplicationCost > Threshold) {
   1486     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
   1487           << "' - Cost is too high: " << DuplicationCost << "\n");
   1488     return false;
   1489   }
   1490 
   1491   // And finally, do it!  Start by factoring the predecessors is needed.
   1492   BasicBlock *PredBB;
   1493   if (PredBBs.size() == 1)
   1494     PredBB = PredBBs[0];
   1495   else {
   1496     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
   1497           << " common predecessors.\n");
   1498     PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
   1499   }
   1500 
   1501   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
   1502   // of PredBB.
   1503   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
   1504         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
   1505         << DuplicationCost << " block is:" << *BB << "\n");
   1506 
   1507   // Unless PredBB ends with an unconditional branch, split the edge so that we
   1508   // can just clone the bits from BB into the end of the new PredBB.
   1509   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
   1510 
   1511   if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
   1512     PredBB = SplitEdge(PredBB, BB, this);
   1513     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
   1514   }
   1515 
   1516   // We are going to have to map operands from the original BB block into the
   1517   // PredBB block.  Evaluate PHI nodes in BB.
   1518   DenseMap<Instruction*, Value*> ValueMapping;
   1519 
   1520   BasicBlock::iterator BI = BB->begin();
   1521   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
   1522     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
   1523 
   1524   // Clone the non-phi instructions of BB into PredBB, keeping track of the
   1525   // mapping and using it to remap operands in the cloned instructions.
   1526   for (; BI != BB->end(); ++BI) {
   1527     Instruction *New = BI->clone();
   1528 
   1529     // Remap operands to patch up intra-block references.
   1530     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
   1531       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
   1532         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
   1533         if (I != ValueMapping.end())
   1534           New->setOperand(i, I->second);
   1535       }
   1536 
   1537     // If this instruction can be simplified after the operands are updated,
   1538     // just use the simplified value instead.  This frequently happens due to
   1539     // phi translation.
   1540     if (Value *IV = SimplifyInstruction(New, TD)) {
   1541       delete New;
   1542       ValueMapping[BI] = IV;
   1543     } else {
   1544       // Otherwise, insert the new instruction into the block.
   1545       New->setName(BI->getName());
   1546       PredBB->getInstList().insert(OldPredBranch, New);
   1547       ValueMapping[BI] = New;
   1548     }
   1549   }
   1550 
   1551   // Check to see if the targets of the branch had PHI nodes. If so, we need to
   1552   // add entries to the PHI nodes for branch from PredBB now.
   1553   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
   1554   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
   1555                                   ValueMapping);
   1556   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
   1557                                   ValueMapping);
   1558 
   1559   // If there were values defined in BB that are used outside the block, then we
   1560   // now have to update all uses of the value to use either the original value,
   1561   // the cloned value, or some PHI derived value.  This can require arbitrary
   1562   // PHI insertion, of which we are prepared to do, clean these up now.
   1563   SSAUpdater SSAUpdate;
   1564   SmallVector<Use*, 16> UsesToRename;
   1565   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
   1566     // Scan all uses of this instruction to see if it is used outside of its
   1567     // block, and if so, record them in UsesToRename.
   1568     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
   1569          ++UI) {
   1570       Instruction *User = cast<Instruction>(*UI);
   1571       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
   1572         if (UserPN->getIncomingBlock(UI) == BB)
   1573           continue;
   1574       } else if (User->getParent() == BB)
   1575         continue;
   1576 
   1577       UsesToRename.push_back(&UI.getUse());
   1578     }
   1579 
   1580     // If there are no uses outside the block, we're done with this instruction.
   1581     if (UsesToRename.empty())
   1582       continue;
   1583 
   1584     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
   1585 
   1586     // We found a use of I outside of BB.  Rename all uses of I that are outside
   1587     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
   1588     // with the two values we know.
   1589     SSAUpdate.Initialize(I->getType(), I->getName());
   1590     SSAUpdate.AddAvailableValue(BB, I);
   1591     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
   1592 
   1593     while (!UsesToRename.empty())
   1594       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
   1595     DEBUG(dbgs() << "\n");
   1596   }
   1597 
   1598   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
   1599   // that we nuked.
   1600   BB->removePredecessor(PredBB, true);
   1601 
   1602   // Remove the unconditional branch at the end of the PredBB block.
   1603   OldPredBranch->eraseFromParent();
   1604 
   1605   ++NumDupes;
   1606   return true;
   1607 }
   1608 
   1609 
   1610