1 /* -*- Mode: C; tab-width: 4 -*- 2 * 3 * Copyright (c) 2002-2003 Apple Computer, Inc. All rights reserved. 4 * 5 * Licensed under the Apache License, Version 2.0 (the "License"); 6 * you may not use this file except in compliance with the License. 7 * You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 19 #ifdef __cplusplus 20 extern "C" { 21 #endif 22 23 #include "mDNSEmbeddedAPI.h" 24 #include "DNSCommon.h" 25 26 // Disable certain benign warnings with Microsoft compilers 27 #if(defined(_MSC_VER)) 28 // Disable "conditional expression is constant" warning for debug macros. 29 // Otherwise, this generates warnings for the perfectly natural construct "while(1)" 30 // If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know 31 #pragma warning(disable:4127) 32 #endif 33 34 35 // *************************************************************************** 36 #if COMPILER_LIKES_PRAGMA_MARK 37 #pragma mark - Byte Swapping Functions 38 #endif 39 40 mDNSlocal mDNSu16 NToH16(mDNSu8 * bytes) 41 { 42 return (mDNSu16)((mDNSu16)bytes[0] << 8 | (mDNSu16)bytes[1]); 43 } 44 45 mDNSlocal mDNSu32 NToH32(mDNSu8 * bytes) 46 { 47 return (mDNSu32)((mDNSu32) bytes[0] << 24 | (mDNSu32) bytes[1] << 16 | (mDNSu32) bytes[2] << 8 | (mDNSu32)bytes[3]); 48 } 49 50 // *************************************************************************** 51 #if COMPILER_LIKES_PRAGMA_MARK 52 #pragma mark - MD5 Hash Functions 53 #endif 54 55 56 /* The source for the has is derived CommonCrypto files CommonDigest.h, md32_common.h, md5_locl.h, md5_locl.h, and openssl/md5.h. 57 * The following changes have been made to the original sources: 58 * replaced CC_LONG w/ mDNSu32 59 * replaced CC_MD5* with MD5* 60 * replaced CC_LONG w/ mDNSu32, removed conditional #defines from md5.h 61 * removed extern decls for MD5_Init/Update/Final from CommonDigest.h 62 * removed APPLE_COMMON_DIGEST specific #defines from md5_locl.h 63 * 64 * Note: machine archetecure specific conditionals from the original sources are turned off, but are left in the code 65 * to aid in platform-specific optimizations and debugging. 66 * Sources originally distributed under the following license headers: 67 * CommonDigest.h - APSL 68 * 69 * md32_Common.h 70 * ==================================================================== 71 * Copyright (c) 1999-2002 The OpenSSL Project. All rights reserved. 72 * 73 * Redistribution and use in source and binary forms, with or without 74 * modification, are permitted provided that the following conditions 75 * are met: 76 * 77 * 1. Redistributions of source code must retain the above copyright 78 * notice, this list of conditions and the following disclaimer. 79 * 80 * 2. Redistributions in binary form must reproduce the above copyright 81 * notice, this list of conditions and the following disclaimer in 82 * the documentation and/or other materials provided with the 83 * distribution. 84 * 85 * 3. All advertising materials mentioning features or use of this 86 * software must display the following acknowledgment: 87 * "This product includes software developed by the OpenSSL Project 88 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" 89 * 90 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 91 * endorse or promote products derived from this software without 92 * prior written permission. For written permission, please contact 93 * licensing (at) OpenSSL.org. 94 * 95 * 5. Products derived from this software may not be called "OpenSSL" 96 * nor may "OpenSSL" appear in their names without prior written 97 * permission of the OpenSSL Project. 98 * 99 * 6. Redistributions of any form whatsoever must retain the following 100 * acknowledgment: 101 * "This product includes software developed by the OpenSSL Project 102 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" 103 * 104 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 105 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 106 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 107 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 108 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 109 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 110 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 111 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 112 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 113 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 114 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 115 * OF THE POSSIBILITY OF SUCH DAMAGE. 116 * 117 * 118 * md5_dgst.c, md5_locl.h 119 * ==================================================================== 120 * 121 * This product includes cryptographic software written by Eric Young 122 * (eay (at) cryptsoft.com). This product includes software written by Tim 123 * Hudson (tjh (at) cryptsoft.com). 124 * 125 * Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com) 126 * All rights reserved. 127 * 128 * This package is an SSL implementation written 129 * by Eric Young (eay (at) cryptsoft.com). 130 * The implementation was written so as to conform with Netscapes SSL. 131 * 132 * This library is free for commercial and non-commercial use as long as 133 * the following conditions are aheared to. The following conditions 134 * apply to all code found in this distribution, be it the RC4, RSA, 135 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 136 * included with this distribution is covered by the same copyright terms 137 * except that the holder is Tim Hudson (tjh (at) cryptsoft.com). 138 * 139 * Copyright remains Eric Young's, and as such any Copyright notices in 140 * the code are not to be removed. 141 * If this package is used in a product, Eric Young should be given attribution 142 * as the author of the parts of the library used. 143 * This can be in the form of a textual message at program startup or 144 * in documentation (online or textual) provided with the package. 145 * 146 * Redistribution and use in source and binary forms, with or without 147 * modification, are permitted provided that the following conditions 148 * are met: 149 * 1. Redistributions of source code must retain the copyright 150 * notice, this list of conditions and the following disclaimer. 151 * 2. Redistributions in binary form must reproduce the above copyright 152 * notice, this list of conditions and the following disclaimer in the 153 * documentation and/or other materials provided with the distribution. 154 * 3. All advertising materials mentioning features or use of this software 155 * must display the following acknowledgement: 156 * "This product includes cryptographic software written by 157 * Eric Young (eay (at) cryptsoft.com)" 158 * The word 'cryptographic' can be left out if the rouines from the library 159 * being used are not cryptographic related :-). 160 * 4. If you include any Windows specific code (or a derivative thereof) from 161 * the apps directory (application code) you must include an acknowledgement: 162 * "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)" 163 * 164 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 165 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 166 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 167 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 168 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 169 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 170 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 171 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 172 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 173 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 174 * SUCH DAMAGE. 175 * 176 * The licence and distribution terms for any publically available version or 177 * derivative of this code cannot be changed. i.e. this code cannot simply be 178 * copied and put under another distribution licence 179 * [including the GNU Public Licence.] 180 * 181 */ 182 183 //from CommonDigest.h 184 185 #define MD5_DIGEST_LENGTH 16 /* digest length in bytes */ 186 #define MD5_BLOCK_BYTES 64 /* block size in bytes */ 187 #define MD5_BLOCK_LONG (MD5_BLOCK_BYTES / sizeof(mDNSu32)) 188 189 typedef struct MD5state_st 190 { 191 mDNSu32 A,B,C,D; 192 mDNSu32 Nl,Nh; 193 mDNSu32 data[MD5_BLOCK_LONG]; 194 int num; 195 } MD5_CTX; 196 197 198 // from openssl/md5.h 199 200 #define MD5_CBLOCK 64 201 #define MD5_LBLOCK (MD5_CBLOCK/4) 202 #define MD5_DIGEST_LENGTH 16 203 204 int MD5_Init(MD5_CTX *c); 205 int MD5_Update(MD5_CTX *c, const void *data, unsigned long len); 206 int MD5_Final(unsigned char *md, MD5_CTX *c); 207 void MD5_Transform(MD5_CTX *c, const unsigned char *b); 208 209 // From md5_locl.h 210 211 #ifndef MD5_LONG_LOG2 212 #define MD5_LONG_LOG2 2 /* default to 32 bits */ 213 #endif 214 215 #ifdef MD5_ASM 216 # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__) 217 # define md5_block_host_order md5_block_asm_host_order 218 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC) 219 void md5_block_asm_data_order_aligned (MD5_CTX *c, const mDNSu32 *p,int num); 220 # define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned 221 # endif 222 #endif 223 224 void md5_block_host_order (MD5_CTX *c, const void *p,int num); 225 void md5_block_data_order (MD5_CTX *c, const void *p,int num); 226 227 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__) 228 /* 229 * *_block_host_order is expected to handle aligned data while 230 * *_block_data_order - unaligned. As algorithm and host (x86) 231 * are in this case of the same "endianness" these two are 232 * otherwise indistinguishable. But normally you don't want to 233 * call the same function because unaligned access in places 234 * where alignment is expected is usually a "Bad Thing". Indeed, 235 * on RISCs you get punished with BUS ERROR signal or *severe* 236 * performance degradation. Intel CPUs are in turn perfectly 237 * capable of loading unaligned data without such drastic side 238 * effect. Yes, they say it's slower than aligned load, but no 239 * exception is generated and therefore performance degradation 240 * is *incomparable* with RISCs. What we should weight here is 241 * costs of unaligned access against costs of aligning data. 242 * According to my measurements allowing unaligned access results 243 * in ~9% performance improvement on Pentium II operating at 244 * 266MHz. I won't be surprised if the difference will be higher 245 * on faster systems:-) 246 * 247 * <appro (at) fy.chalmers.se> 248 */ 249 #define md5_block_data_order md5_block_host_order 250 #endif 251 252 #define DATA_ORDER_IS_LITTLE_ENDIAN 253 254 #define HASH_LONG mDNSu32 255 #define HASH_LONG_LOG2 MD5_LONG_LOG2 256 #define HASH_CTX MD5_CTX 257 #define HASH_CBLOCK MD5_CBLOCK 258 #define HASH_LBLOCK MD5_LBLOCK 259 260 #define HASH_UPDATE MD5_Update 261 #define HASH_TRANSFORM MD5_Transform 262 #define HASH_FINAL MD5_Final 263 264 #define HASH_MAKE_STRING(c,s) do { \ 265 unsigned long ll; \ 266 ll=(c)->A; HOST_l2c(ll,(s)); \ 267 ll=(c)->B; HOST_l2c(ll,(s)); \ 268 ll=(c)->C; HOST_l2c(ll,(s)); \ 269 ll=(c)->D; HOST_l2c(ll,(s)); \ 270 } while (0) 271 #define HASH_BLOCK_HOST_ORDER md5_block_host_order 272 #if !defined(L_ENDIAN) || defined(md5_block_data_order) 273 #define HASH_BLOCK_DATA_ORDER md5_block_data_order 274 /* 275 * Little-endians (Intel and Alpha) feel better without this. 276 * It looks like memcpy does better job than generic 277 * md5_block_data_order on copying-n-aligning input data. 278 * But frankly speaking I didn't expect such result on Alpha. 279 * On the other hand I've got this with egcs-1.0.2 and if 280 * program is compiled with another (better?) compiler it 281 * might turn out other way around. 282 * 283 * <appro (at) fy.chalmers.se> 284 */ 285 #endif 286 287 288 // from md32_common.h 289 290 /* 291 * This is a generic 32 bit "collector" for message digest algorithms. 292 * Whenever needed it collects input character stream into chunks of 293 * 32 bit values and invokes a block function that performs actual hash 294 * calculations. 295 * 296 * Porting guide. 297 * 298 * Obligatory macros: 299 * 300 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN 301 * this macro defines byte order of input stream. 302 * HASH_CBLOCK 303 * size of a unit chunk HASH_BLOCK operates on. 304 * HASH_LONG 305 * has to be at lest 32 bit wide, if it's wider, then 306 * HASH_LONG_LOG2 *has to* be defined along 307 * HASH_CTX 308 * context structure that at least contains following 309 * members: 310 * typedef struct { 311 * ... 312 * HASH_LONG Nl,Nh; 313 * HASH_LONG data[HASH_LBLOCK]; 314 * int num; 315 * ... 316 * } HASH_CTX; 317 * HASH_UPDATE 318 * name of "Update" function, implemented here. 319 * HASH_TRANSFORM 320 * name of "Transform" function, implemented here. 321 * HASH_FINAL 322 * name of "Final" function, implemented here. 323 * HASH_BLOCK_HOST_ORDER 324 * name of "block" function treating *aligned* input message 325 * in host byte order, implemented externally. 326 * HASH_BLOCK_DATA_ORDER 327 * name of "block" function treating *unaligned* input message 328 * in original (data) byte order, implemented externally (it 329 * actually is optional if data and host are of the same 330 * "endianess"). 331 * HASH_MAKE_STRING 332 * macro convering context variables to an ASCII hash string. 333 * 334 * Optional macros: 335 * 336 * B_ENDIAN or L_ENDIAN 337 * defines host byte-order. 338 * HASH_LONG_LOG2 339 * defaults to 2 if not states otherwise. 340 * HASH_LBLOCK 341 * assumed to be HASH_CBLOCK/4 if not stated otherwise. 342 * HASH_BLOCK_DATA_ORDER_ALIGNED 343 * alternative "block" function capable of treating 344 * aligned input message in original (data) order, 345 * implemented externally. 346 * 347 * MD5 example: 348 * 349 * #define DATA_ORDER_IS_LITTLE_ENDIAN 350 * 351 * #define HASH_LONG mDNSu32 352 * #define HASH_LONG_LOG2 mDNSu32_LOG2 353 * #define HASH_CTX MD5_CTX 354 * #define HASH_CBLOCK MD5_CBLOCK 355 * #define HASH_LBLOCK MD5_LBLOCK 356 * #define HASH_UPDATE MD5_Update 357 * #define HASH_TRANSFORM MD5_Transform 358 * #define HASH_FINAL MD5_Final 359 * #define HASH_BLOCK_HOST_ORDER md5_block_host_order 360 * #define HASH_BLOCK_DATA_ORDER md5_block_data_order 361 * 362 * <appro (at) fy.chalmers.se> 363 */ 364 365 #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN) 366 #error "DATA_ORDER must be defined!" 367 #endif 368 369 #ifndef HASH_CBLOCK 370 #error "HASH_CBLOCK must be defined!" 371 #endif 372 #ifndef HASH_LONG 373 #error "HASH_LONG must be defined!" 374 #endif 375 #ifndef HASH_CTX 376 #error "HASH_CTX must be defined!" 377 #endif 378 379 #ifndef HASH_UPDATE 380 #error "HASH_UPDATE must be defined!" 381 #endif 382 #ifndef HASH_TRANSFORM 383 #error "HASH_TRANSFORM must be defined!" 384 #endif 385 #ifndef HASH_FINAL 386 #error "HASH_FINAL must be defined!" 387 #endif 388 389 #ifndef HASH_BLOCK_HOST_ORDER 390 #error "HASH_BLOCK_HOST_ORDER must be defined!" 391 #endif 392 393 #if 0 394 /* 395 * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED 396 * isn't defined. 397 */ 398 #ifndef HASH_BLOCK_DATA_ORDER 399 #error "HASH_BLOCK_DATA_ORDER must be defined!" 400 #endif 401 #endif 402 403 #ifndef HASH_LBLOCK 404 #define HASH_LBLOCK (HASH_CBLOCK/4) 405 #endif 406 407 #ifndef HASH_LONG_LOG2 408 #define HASH_LONG_LOG2 2 409 #endif 410 411 /* 412 * Engage compiler specific rotate intrinsic function if available. 413 */ 414 #undef ROTATE 415 #ifndef PEDANTIC 416 # if 0 /* defined(_MSC_VER) */ 417 # define ROTATE(a,n) _lrotl(a,n) 418 # elif defined(__MWERKS__) 419 # if defined(__POWERPC__) 420 # define ROTATE(a,n) (unsigned MD32_REG_T)__rlwinm((int)a,n,0,31) 421 # elif defined(__MC68K__) 422 /* Motorola specific tweak. <appro (at) fy.chalmers.se> */ 423 # define ROTATE(a,n) (n<24 ? __rol(a,n) : __ror(a,32-n)) 424 # else 425 # define ROTATE(a,n) __rol(a,n) 426 # endif 427 # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) 428 /* 429 * Some GNU C inline assembler templates. Note that these are 430 * rotates by *constant* number of bits! But that's exactly 431 * what we need here... 432 * 433 * <appro (at) fy.chalmers.se> 434 */ 435 /* 436 * LLVM is more strict about compatibility of types between input & output constraints, 437 * but we want these to be rotations of 32 bits, not 64, so we explicitly drop the 438 * most significant bytes by casting to an unsigned int. 439 */ 440 # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__) 441 # define ROTATE(a,n) ({ register unsigned int ret; \ 442 asm ( \ 443 "roll %1,%0" \ 444 : "=r"(ret) \ 445 : "I"(n), "0"((unsigned int)a) \ 446 : "cc"); \ 447 ret; \ 448 }) 449 # elif defined(__powerpc) || defined(__ppc) 450 # define ROTATE(a,n) ({ register unsigned int ret; \ 451 asm ( \ 452 "rlwinm %0,%1,%2,0,31" \ 453 : "=r"(ret) \ 454 : "r"(a), "I"(n)); \ 455 ret; \ 456 }) 457 # endif 458 # endif 459 460 /* 461 * Engage compiler specific "fetch in reverse byte order" 462 * intrinsic function if available. 463 */ 464 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) 465 /* some GNU C inline assembler templates by <appro (at) fy.chalmers.se> */ 466 # if (defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)) && !defined(I386_ONLY) 467 # define BE_FETCH32(a) ({ register unsigned int l=(a);\ 468 asm ( \ 469 "bswapl %0" \ 470 : "=r"(l) : "0"(l)); \ 471 l; \ 472 }) 473 # elif defined(__powerpc) 474 # define LE_FETCH32(a) ({ register unsigned int l; \ 475 asm ( \ 476 "lwbrx %0,0,%1" \ 477 : "=r"(l) \ 478 : "r"(a)); \ 479 l; \ 480 }) 481 482 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC) 483 # define LE_FETCH32(a) ({ register unsigned int l; \ 484 asm ( \ 485 "lda [%1]#ASI_PRIMARY_LITTLE,%0"\ 486 : "=r"(l) \ 487 : "r"(a)); \ 488 l; \ 489 }) 490 # endif 491 # endif 492 #endif /* PEDANTIC */ 493 494 #if HASH_LONG_LOG2==2 /* Engage only if sizeof(HASH_LONG)== 4 */ 495 /* A nice byte order reversal from Wei Dai <weidai (at) eskimo.com> */ 496 #ifdef ROTATE 497 /* 5 instructions with rotate instruction, else 9 */ 498 #define REVERSE_FETCH32(a,l) ( \ 499 l=*(const HASH_LONG *)(a), \ 500 ((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24))) \ 501 ) 502 #else 503 /* 6 instructions with rotate instruction, else 8 */ 504 #define REVERSE_FETCH32(a,l) ( \ 505 l=*(const HASH_LONG *)(a), \ 506 l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)), \ 507 ROTATE(l,16) \ 508 ) 509 /* 510 * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|... 511 * It's rewritten as above for two reasons: 512 * - RISCs aren't good at long constants and have to explicitely 513 * compose 'em with several (well, usually 2) instructions in a 514 * register before performing the actual operation and (as you 515 * already realized:-) having same constant should inspire the 516 * compiler to permanently allocate the only register for it; 517 * - most modern CPUs have two ALUs, but usually only one has 518 * circuitry for shifts:-( this minor tweak inspires compiler 519 * to schedule shift instructions in a better way... 520 * 521 * <appro (at) fy.chalmers.se> 522 */ 523 #endif 524 #endif 525 526 #ifndef ROTATE 527 #define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n)))) 528 #endif 529 530 /* 531 * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED 532 * and HASH_BLOCK_HOST_ORDER ought to be the same if input data 533 * and host are of the same "endianess". It's possible to mask 534 * this with blank #define HASH_BLOCK_DATA_ORDER though... 535 * 536 * <appro (at) fy.chalmers.se> 537 */ 538 #if defined(B_ENDIAN) 539 # if defined(DATA_ORDER_IS_BIG_ENDIAN) 540 # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2 541 # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER 542 # endif 543 # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) 544 # ifndef HOST_FETCH32 545 # ifdef LE_FETCH32 546 # define HOST_FETCH32(p,l) LE_FETCH32(p) 547 # elif defined(REVERSE_FETCH32) 548 # define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l) 549 # endif 550 # endif 551 # endif 552 #elif defined(L_ENDIAN) 553 # if defined(DATA_ORDER_IS_LITTLE_ENDIAN) 554 # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2 555 # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER 556 # endif 557 # elif defined(DATA_ORDER_IS_BIG_ENDIAN) 558 # ifndef HOST_FETCH32 559 # ifdef BE_FETCH32 560 # define HOST_FETCH32(p,l) BE_FETCH32(p) 561 # elif defined(REVERSE_FETCH32) 562 # define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l) 563 # endif 564 # endif 565 # endif 566 #endif 567 568 #if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) 569 #ifndef HASH_BLOCK_DATA_ORDER 570 #error "HASH_BLOCK_DATA_ORDER must be defined!" 571 #endif 572 #endif 573 574 #if defined(DATA_ORDER_IS_BIG_ENDIAN) 575 576 #define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \ 577 l|=(((unsigned long)(*((c)++)))<<16), \ 578 l|=(((unsigned long)(*((c)++)))<< 8), \ 579 l|=(((unsigned long)(*((c)++))) ), \ 580 l) 581 #define HOST_p_c2l(c,l,n) { \ 582 switch (n) { \ 583 case 0: l =((unsigned long)(*((c)++)))<<24; \ 584 case 1: l|=((unsigned long)(*((c)++)))<<16; \ 585 case 2: l|=((unsigned long)(*((c)++)))<< 8; \ 586 case 3: l|=((unsigned long)(*((c)++))); \ 587 } } 588 #define HOST_p_c2l_p(c,l,sc,len) { \ 589 switch (sc) { \ 590 case 0: l =((unsigned long)(*((c)++)))<<24; \ 591 if (--len == 0) break; \ 592 case 1: l|=((unsigned long)(*((c)++)))<<16; \ 593 if (--len == 0) break; \ 594 case 2: l|=((unsigned long)(*((c)++)))<< 8; \ 595 } } 596 /* NOTE the pointer is not incremented at the end of this */ 597 #define HOST_c2l_p(c,l,n) { \ 598 l=0; (c)+=n; \ 599 switch (n) { \ 600 case 3: l =((unsigned long)(*(--(c))))<< 8; \ 601 case 2: l|=((unsigned long)(*(--(c))))<<16; \ 602 case 1: l|=((unsigned long)(*(--(c))))<<24; \ 603 } } 604 #define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \ 605 *((c)++)=(unsigned char)(((l)>>16)&0xff), \ 606 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ 607 *((c)++)=(unsigned char)(((l) )&0xff), \ 608 l) 609 610 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) 611 612 #define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++))) ), \ 613 l|=(((unsigned long)(*((c)++)))<< 8), \ 614 l|=(((unsigned long)(*((c)++)))<<16), \ 615 l|=(((unsigned long)(*((c)++)))<<24), \ 616 l) 617 #define HOST_p_c2l(c,l,n) { \ 618 switch (n) { \ 619 case 0: l =((unsigned long)(*((c)++))); \ 620 case 1: l|=((unsigned long)(*((c)++)))<< 8; \ 621 case 2: l|=((unsigned long)(*((c)++)))<<16; \ 622 case 3: l|=((unsigned long)(*((c)++)))<<24; \ 623 } } 624 #define HOST_p_c2l_p(c,l,sc,len) { \ 625 switch (sc) { \ 626 case 0: l =((unsigned long)(*((c)++))); \ 627 if (--len == 0) break; \ 628 case 1: l|=((unsigned long)(*((c)++)))<< 8; \ 629 if (--len == 0) break; \ 630 case 2: l|=((unsigned long)(*((c)++)))<<16; \ 631 } } 632 /* NOTE the pointer is not incremented at the end of this */ 633 #define HOST_c2l_p(c,l,n) { \ 634 l=0; (c)+=n; \ 635 switch (n) { \ 636 case 3: l =((unsigned long)(*(--(c))))<<16; \ 637 case 2: l|=((unsigned long)(*(--(c))))<< 8; \ 638 case 1: l|=((unsigned long)(*(--(c)))); \ 639 } } 640 #define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ 641 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ 642 *((c)++)=(unsigned char)(((l)>>16)&0xff), \ 643 *((c)++)=(unsigned char)(((l)>>24)&0xff), \ 644 l) 645 646 #endif 647 648 /* 649 * Time for some action:-) 650 */ 651 652 int HASH_UPDATE (HASH_CTX *c, const void *data_, unsigned long len) 653 { 654 const unsigned char *data=(const unsigned char *)data_; 655 register HASH_LONG * p; 656 register unsigned long l; 657 int sw,sc,ew,ec; 658 659 if (len==0) return 1; 660 661 l=(c->Nl+(len<<3))&0xffffffffL; 662 /* 95-05-24 eay Fixed a bug with the overflow handling, thanks to 663 * Wei Dai <weidai (at) eskimo.com> for pointing it out. */ 664 if (l < c->Nl) /* overflow */ 665 c->Nh++; 666 c->Nh+=(len>>29); 667 c->Nl=l; 668 669 if (c->num != 0) 670 { 671 p=c->data; 672 sw=c->num>>2; 673 sc=c->num&0x03; 674 675 if ((c->num+len) >= HASH_CBLOCK) 676 { 677 l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l; 678 for (; sw<HASH_LBLOCK; sw++) 679 { 680 HOST_c2l(data,l); p[sw]=l; 681 } 682 HASH_BLOCK_HOST_ORDER (c,p,1); 683 len-=(HASH_CBLOCK-c->num); 684 c->num=0; 685 /* drop through and do the rest */ 686 } 687 else 688 { 689 c->num+=len; 690 if ((sc+len) < 4) /* ugly, add char's to a word */ 691 { 692 l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l; 693 } 694 else 695 { 696 ew=(c->num>>2); 697 ec=(c->num&0x03); 698 if (sc) 699 l=p[sw]; 700 HOST_p_c2l(data,l,sc); 701 p[sw++]=l; 702 for (; sw < ew; sw++) 703 { 704 HOST_c2l(data,l); p[sw]=l; 705 } 706 if (ec) 707 { 708 HOST_c2l_p(data,l,ec); p[sw]=l; 709 } 710 } 711 return 1; 712 } 713 } 714 715 sw=(int)(len/HASH_CBLOCK); 716 if (sw > 0) 717 { 718 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED) 719 /* 720 * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined 721 * only if sizeof(HASH_LONG)==4. 722 */ 723 if ((((unsigned long)data)%4) == 0) 724 { 725 /* data is properly aligned so that we can cast it: */ 726 HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,sw); 727 sw*=HASH_CBLOCK; 728 data+=sw; 729 len-=sw; 730 } 731 else 732 #if !defined(HASH_BLOCK_DATA_ORDER) 733 while (sw--) 734 { 735 mDNSPlatformMemCopy(p=c->data,data,HASH_CBLOCK); 736 HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1); 737 data+=HASH_CBLOCK; 738 len-=HASH_CBLOCK; 739 } 740 #endif 741 #endif 742 #if defined(HASH_BLOCK_DATA_ORDER) 743 { 744 HASH_BLOCK_DATA_ORDER(c,data,sw); 745 sw*=HASH_CBLOCK; 746 data+=sw; 747 len-=sw; 748 } 749 #endif 750 } 751 752 if (len!=0) 753 { 754 p = c->data; 755 c->num = (int)len; 756 ew=(int)(len>>2); /* words to copy */ 757 ec=(int)(len&0x03); 758 for (; ew; ew--,p++) 759 { 760 HOST_c2l(data,l); *p=l; 761 } 762 HOST_c2l_p(data,l,ec); 763 *p=l; 764 } 765 return 1; 766 } 767 768 769 void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data) 770 { 771 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED) 772 if ((((unsigned long)data)%4) == 0) 773 /* data is properly aligned so that we can cast it: */ 774 HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,1); 775 else 776 #if !defined(HASH_BLOCK_DATA_ORDER) 777 { 778 mDNSPlatformMemCopy(c->data,data,HASH_CBLOCK); 779 HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1); 780 } 781 #endif 782 #endif 783 #if defined(HASH_BLOCK_DATA_ORDER) 784 HASH_BLOCK_DATA_ORDER (c,data,1); 785 #endif 786 } 787 788 789 int HASH_FINAL (unsigned char *md, HASH_CTX *c) 790 { 791 register HASH_LONG *p; 792 register unsigned long l; 793 register int i,j; 794 static const unsigned char end[4]={0x80,0x00,0x00,0x00}; 795 const unsigned char *cp=end; 796 797 /* c->num should definitly have room for at least one more byte. */ 798 p=c->data; 799 i=c->num>>2; 800 j=c->num&0x03; 801 802 #if 0 803 /* purify often complains about the following line as an 804 * Uninitialized Memory Read. While this can be true, the 805 * following p_c2l macro will reset l when that case is true. 806 * This is because j&0x03 contains the number of 'valid' bytes 807 * already in p[i]. If and only if j&0x03 == 0, the UMR will 808 * occur but this is also the only time p_c2l will do 809 * l= *(cp++) instead of l|= *(cp++) 810 * Many thanks to Alex Tang <altitude (at) cic.net> for pickup this 811 * 'potential bug' */ 812 #ifdef PURIFY 813 if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */ 814 #endif 815 l=p[i]; 816 #else 817 l = (j==0) ? 0 : p[i]; 818 #endif 819 HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */ 820 821 if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */ 822 { 823 if (i<HASH_LBLOCK) p[i]=0; 824 HASH_BLOCK_HOST_ORDER (c,p,1); 825 i=0; 826 } 827 for (; i<(HASH_LBLOCK-2); i++) 828 p[i]=0; 829 830 #if defined(DATA_ORDER_IS_BIG_ENDIAN) 831 p[HASH_LBLOCK-2]=c->Nh; 832 p[HASH_LBLOCK-1]=c->Nl; 833 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) 834 p[HASH_LBLOCK-2]=c->Nl; 835 p[HASH_LBLOCK-1]=c->Nh; 836 #endif 837 HASH_BLOCK_HOST_ORDER (c,p,1); 838 839 #ifndef HASH_MAKE_STRING 840 #error "HASH_MAKE_STRING must be defined!" 841 #else 842 HASH_MAKE_STRING(c,md); 843 #endif 844 845 c->num=0; 846 /* clear stuff, HASH_BLOCK may be leaving some stuff on the stack 847 * but I'm not worried :-) 848 OPENSSL_cleanse((void *)c,sizeof(HASH_CTX)); 849 */ 850 return 1; 851 } 852 853 #ifndef MD32_REG_T 854 #define MD32_REG_T long 855 /* 856 * This comment was originaly written for MD5, which is why it 857 * discusses A-D. But it basically applies to all 32-bit digests, 858 * which is why it was moved to common header file. 859 * 860 * In case you wonder why A-D are declared as long and not 861 * as mDNSu32. Doing so results in slight performance 862 * boost on LP64 architectures. The catch is we don't 863 * really care if 32 MSBs of a 64-bit register get polluted 864 * with eventual overflows as we *save* only 32 LSBs in 865 * *either* case. Now declaring 'em long excuses the compiler 866 * from keeping 32 MSBs zeroed resulting in 13% performance 867 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux. 868 * Well, to be honest it should say that this *prevents* 869 * performance degradation. 870 * <appro (at) fy.chalmers.se> 871 * Apparently there're LP64 compilers that generate better 872 * code if A-D are declared int. Most notably GCC-x86_64 873 * generates better code. 874 * <appro (at) fy.chalmers.se> 875 */ 876 #endif 877 878 879 // from md5_locl.h (continued) 880 881 /* 882 #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) 883 #define G(x,y,z) (((x) & (z)) | ((y) & (~(z)))) 884 */ 885 886 /* As pointed out by Wei Dai <weidai (at) eskimo.com>, the above can be 887 * simplified to the code below. Wei attributes these optimizations 888 * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel. 889 */ 890 #define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d)) 891 #define G(b,c,d) ((((b) ^ (c)) & (d)) ^ (c)) 892 #define H(b,c,d) ((b) ^ (c) ^ (d)) 893 #define I(b,c,d) (((~(d)) | (b)) ^ (c)) 894 895 #define R0(a,b,c,d,k,s,t) { \ 896 a+=((k)+(t)+F((b),(c),(d))); \ 897 a=ROTATE(a,s); \ 898 a+=b; };\ 899 900 #define R1(a,b,c,d,k,s,t) { \ 901 a+=((k)+(t)+G((b),(c),(d))); \ 902 a=ROTATE(a,s); \ 903 a+=b; }; 904 905 #define R2(a,b,c,d,k,s,t) { \ 906 a+=((k)+(t)+H((b),(c),(d))); \ 907 a=ROTATE(a,s); \ 908 a+=b; }; 909 910 #define R3(a,b,c,d,k,s,t) { \ 911 a+=((k)+(t)+I((b),(c),(d))); \ 912 a=ROTATE(a,s); \ 913 a+=b; }; 914 915 // from md5_dgst.c 916 917 918 /* Implemented from RFC1321 The MD5 Message-Digest Algorithm 919 */ 920 921 #define INIT_DATA_A (unsigned long)0x67452301L 922 #define INIT_DATA_B (unsigned long)0xefcdab89L 923 #define INIT_DATA_C (unsigned long)0x98badcfeL 924 #define INIT_DATA_D (unsigned long)0x10325476L 925 926 int MD5_Init(MD5_CTX *c) 927 { 928 c->A=INIT_DATA_A; 929 c->B=INIT_DATA_B; 930 c->C=INIT_DATA_C; 931 c->D=INIT_DATA_D; 932 c->Nl=0; 933 c->Nh=0; 934 c->num=0; 935 return 1; 936 } 937 938 #ifndef md5_block_host_order 939 void md5_block_host_order (MD5_CTX *c, const void *data, int num) 940 { 941 const mDNSu32 *X=(const mDNSu32 *)data; 942 register unsigned MD32_REG_T A,B,C,D; 943 944 A=c->A; 945 B=c->B; 946 C=c->C; 947 D=c->D; 948 949 for (;num--;X+=HASH_LBLOCK) 950 { 951 /* Round 0 */ 952 R0(A,B,C,D,X[ 0], 7,0xd76aa478L); 953 R0(D,A,B,C,X[ 1],12,0xe8c7b756L); 954 R0(C,D,A,B,X[ 2],17,0x242070dbL); 955 R0(B,C,D,A,X[ 3],22,0xc1bdceeeL); 956 R0(A,B,C,D,X[ 4], 7,0xf57c0fafL); 957 R0(D,A,B,C,X[ 5],12,0x4787c62aL); 958 R0(C,D,A,B,X[ 6],17,0xa8304613L); 959 R0(B,C,D,A,X[ 7],22,0xfd469501L); 960 R0(A,B,C,D,X[ 8], 7,0x698098d8L); 961 R0(D,A,B,C,X[ 9],12,0x8b44f7afL); 962 R0(C,D,A,B,X[10],17,0xffff5bb1L); 963 R0(B,C,D,A,X[11],22,0x895cd7beL); 964 R0(A,B,C,D,X[12], 7,0x6b901122L); 965 R0(D,A,B,C,X[13],12,0xfd987193L); 966 R0(C,D,A,B,X[14],17,0xa679438eL); 967 R0(B,C,D,A,X[15],22,0x49b40821L); 968 /* Round 1 */ 969 R1(A,B,C,D,X[ 1], 5,0xf61e2562L); 970 R1(D,A,B,C,X[ 6], 9,0xc040b340L); 971 R1(C,D,A,B,X[11],14,0x265e5a51L); 972 R1(B,C,D,A,X[ 0],20,0xe9b6c7aaL); 973 R1(A,B,C,D,X[ 5], 5,0xd62f105dL); 974 R1(D,A,B,C,X[10], 9,0x02441453L); 975 R1(C,D,A,B,X[15],14,0xd8a1e681L); 976 R1(B,C,D,A,X[ 4],20,0xe7d3fbc8L); 977 R1(A,B,C,D,X[ 9], 5,0x21e1cde6L); 978 R1(D,A,B,C,X[14], 9,0xc33707d6L); 979 R1(C,D,A,B,X[ 3],14,0xf4d50d87L); 980 R1(B,C,D,A,X[ 8],20,0x455a14edL); 981 R1(A,B,C,D,X[13], 5,0xa9e3e905L); 982 R1(D,A,B,C,X[ 2], 9,0xfcefa3f8L); 983 R1(C,D,A,B,X[ 7],14,0x676f02d9L); 984 R1(B,C,D,A,X[12],20,0x8d2a4c8aL); 985 /* Round 2 */ 986 R2(A,B,C,D,X[ 5], 4,0xfffa3942L); 987 R2(D,A,B,C,X[ 8],11,0x8771f681L); 988 R2(C,D,A,B,X[11],16,0x6d9d6122L); 989 R2(B,C,D,A,X[14],23,0xfde5380cL); 990 R2(A,B,C,D,X[ 1], 4,0xa4beea44L); 991 R2(D,A,B,C,X[ 4],11,0x4bdecfa9L); 992 R2(C,D,A,B,X[ 7],16,0xf6bb4b60L); 993 R2(B,C,D,A,X[10],23,0xbebfbc70L); 994 R2(A,B,C,D,X[13], 4,0x289b7ec6L); 995 R2(D,A,B,C,X[ 0],11,0xeaa127faL); 996 R2(C,D,A,B,X[ 3],16,0xd4ef3085L); 997 R2(B,C,D,A,X[ 6],23,0x04881d05L); 998 R2(A,B,C,D,X[ 9], 4,0xd9d4d039L); 999 R2(D,A,B,C,X[12],11,0xe6db99e5L); 1000 R2(C,D,A,B,X[15],16,0x1fa27cf8L); 1001 R2(B,C,D,A,X[ 2],23,0xc4ac5665L); 1002 /* Round 3 */ 1003 R3(A,B,C,D,X[ 0], 6,0xf4292244L); 1004 R3(D,A,B,C,X[ 7],10,0x432aff97L); 1005 R3(C,D,A,B,X[14],15,0xab9423a7L); 1006 R3(B,C,D,A,X[ 5],21,0xfc93a039L); 1007 R3(A,B,C,D,X[12], 6,0x655b59c3L); 1008 R3(D,A,B,C,X[ 3],10,0x8f0ccc92L); 1009 R3(C,D,A,B,X[10],15,0xffeff47dL); 1010 R3(B,C,D,A,X[ 1],21,0x85845dd1L); 1011 R3(A,B,C,D,X[ 8], 6,0x6fa87e4fL); 1012 R3(D,A,B,C,X[15],10,0xfe2ce6e0L); 1013 R3(C,D,A,B,X[ 6],15,0xa3014314L); 1014 R3(B,C,D,A,X[13],21,0x4e0811a1L); 1015 R3(A,B,C,D,X[ 4], 6,0xf7537e82L); 1016 R3(D,A,B,C,X[11],10,0xbd3af235L); 1017 R3(C,D,A,B,X[ 2],15,0x2ad7d2bbL); 1018 R3(B,C,D,A,X[ 9],21,0xeb86d391L); 1019 1020 A = c->A += A; 1021 B = c->B += B; 1022 C = c->C += C; 1023 D = c->D += D; 1024 } 1025 } 1026 #endif 1027 1028 #ifndef md5_block_data_order 1029 #ifdef X 1030 #undef X 1031 #endif 1032 void md5_block_data_order (MD5_CTX *c, const void *data_, int num) 1033 { 1034 const unsigned char *data=data_; 1035 register unsigned MD32_REG_T A,B,C,D,l; 1036 #ifndef MD32_XARRAY 1037 /* See comment in crypto/sha/sha_locl.h for details. */ 1038 unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, 1039 XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15; 1040 # define X(i) XX##i 1041 #else 1042 mDNSu32 XX[MD5_LBLOCK]; 1043 # define X(i) XX[i] 1044 #endif 1045 1046 A=c->A; 1047 B=c->B; 1048 C=c->C; 1049 D=c->D; 1050 1051 for (;num--;) 1052 { 1053 HOST_c2l(data,l); X( 0)=l; HOST_c2l(data,l); X( 1)=l; 1054 /* Round 0 */ 1055 R0(A,B,C,D,X( 0), 7,0xd76aa478L); HOST_c2l(data,l); X( 2)=l; 1056 R0(D,A,B,C,X( 1),12,0xe8c7b756L); HOST_c2l(data,l); X( 3)=l; 1057 R0(C,D,A,B,X( 2),17,0x242070dbL); HOST_c2l(data,l); X( 4)=l; 1058 R0(B,C,D,A,X( 3),22,0xc1bdceeeL); HOST_c2l(data,l); X( 5)=l; 1059 R0(A,B,C,D,X( 4), 7,0xf57c0fafL); HOST_c2l(data,l); X( 6)=l; 1060 R0(D,A,B,C,X( 5),12,0x4787c62aL); HOST_c2l(data,l); X( 7)=l; 1061 R0(C,D,A,B,X( 6),17,0xa8304613L); HOST_c2l(data,l); X( 8)=l; 1062 R0(B,C,D,A,X( 7),22,0xfd469501L); HOST_c2l(data,l); X( 9)=l; 1063 R0(A,B,C,D,X( 8), 7,0x698098d8L); HOST_c2l(data,l); X(10)=l; 1064 R0(D,A,B,C,X( 9),12,0x8b44f7afL); HOST_c2l(data,l); X(11)=l; 1065 R0(C,D,A,B,X(10),17,0xffff5bb1L); HOST_c2l(data,l); X(12)=l; 1066 R0(B,C,D,A,X(11),22,0x895cd7beL); HOST_c2l(data,l); X(13)=l; 1067 R0(A,B,C,D,X(12), 7,0x6b901122L); HOST_c2l(data,l); X(14)=l; 1068 R0(D,A,B,C,X(13),12,0xfd987193L); HOST_c2l(data,l); X(15)=l; 1069 R0(C,D,A,B,X(14),17,0xa679438eL); 1070 R0(B,C,D,A,X(15),22,0x49b40821L); 1071 /* Round 1 */ 1072 R1(A,B,C,D,X( 1), 5,0xf61e2562L); 1073 R1(D,A,B,C,X( 6), 9,0xc040b340L); 1074 R1(C,D,A,B,X(11),14,0x265e5a51L); 1075 R1(B,C,D,A,X( 0),20,0xe9b6c7aaL); 1076 R1(A,B,C,D,X( 5), 5,0xd62f105dL); 1077 R1(D,A,B,C,X(10), 9,0x02441453L); 1078 R1(C,D,A,B,X(15),14,0xd8a1e681L); 1079 R1(B,C,D,A,X( 4),20,0xe7d3fbc8L); 1080 R1(A,B,C,D,X( 9), 5,0x21e1cde6L); 1081 R1(D,A,B,C,X(14), 9,0xc33707d6L); 1082 R1(C,D,A,B,X( 3),14,0xf4d50d87L); 1083 R1(B,C,D,A,X( 8),20,0x455a14edL); 1084 R1(A,B,C,D,X(13), 5,0xa9e3e905L); 1085 R1(D,A,B,C,X( 2), 9,0xfcefa3f8L); 1086 R1(C,D,A,B,X( 7),14,0x676f02d9L); 1087 R1(B,C,D,A,X(12),20,0x8d2a4c8aL); 1088 /* Round 2 */ 1089 R2(A,B,C,D,X( 5), 4,0xfffa3942L); 1090 R2(D,A,B,C,X( 8),11,0x8771f681L); 1091 R2(C,D,A,B,X(11),16,0x6d9d6122L); 1092 R2(B,C,D,A,X(14),23,0xfde5380cL); 1093 R2(A,B,C,D,X( 1), 4,0xa4beea44L); 1094 R2(D,A,B,C,X( 4),11,0x4bdecfa9L); 1095 R2(C,D,A,B,X( 7),16,0xf6bb4b60L); 1096 R2(B,C,D,A,X(10),23,0xbebfbc70L); 1097 R2(A,B,C,D,X(13), 4,0x289b7ec6L); 1098 R2(D,A,B,C,X( 0),11,0xeaa127faL); 1099 R2(C,D,A,B,X( 3),16,0xd4ef3085L); 1100 R2(B,C,D,A,X( 6),23,0x04881d05L); 1101 R2(A,B,C,D,X( 9), 4,0xd9d4d039L); 1102 R2(D,A,B,C,X(12),11,0xe6db99e5L); 1103 R2(C,D,A,B,X(15),16,0x1fa27cf8L); 1104 R2(B,C,D,A,X( 2),23,0xc4ac5665L); 1105 /* Round 3 */ 1106 R3(A,B,C,D,X( 0), 6,0xf4292244L); 1107 R3(D,A,B,C,X( 7),10,0x432aff97L); 1108 R3(C,D,A,B,X(14),15,0xab9423a7L); 1109 R3(B,C,D,A,X( 5),21,0xfc93a039L); 1110 R3(A,B,C,D,X(12), 6,0x655b59c3L); 1111 R3(D,A,B,C,X( 3),10,0x8f0ccc92L); 1112 R3(C,D,A,B,X(10),15,0xffeff47dL); 1113 R3(B,C,D,A,X( 1),21,0x85845dd1L); 1114 R3(A,B,C,D,X( 8), 6,0x6fa87e4fL); 1115 R3(D,A,B,C,X(15),10,0xfe2ce6e0L); 1116 R3(C,D,A,B,X( 6),15,0xa3014314L); 1117 R3(B,C,D,A,X(13),21,0x4e0811a1L); 1118 R3(A,B,C,D,X( 4), 6,0xf7537e82L); 1119 R3(D,A,B,C,X(11),10,0xbd3af235L); 1120 R3(C,D,A,B,X( 2),15,0x2ad7d2bbL); 1121 R3(B,C,D,A,X( 9),21,0xeb86d391L); 1122 1123 A = c->A += A; 1124 B = c->B += B; 1125 C = c->C += C; 1126 D = c->D += D; 1127 } 1128 } 1129 #endif 1130 1131 1132 // *************************************************************************** 1133 #if COMPILER_LIKES_PRAGMA_MARK 1134 #pragma mark - base64 -> binary conversion 1135 #endif 1136 1137 static const char Base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; 1138 static const char Pad64 = '='; 1139 1140 1141 #define mDNSisspace(x) (x == '\t' || x == '\n' || x == '\v' || x == '\f' || x == '\r' || x == ' ') 1142 1143 mDNSlocal const char *mDNSstrchr(const char *s, int c) 1144 { 1145 while (1) 1146 { 1147 if (c == *s) return s; 1148 if (!*s) return mDNSNULL; 1149 s++; 1150 } 1151 } 1152 1153 // skips all whitespace anywhere. 1154 // converts characters, four at a time, starting at (or after) 1155 // src from base - 64 numbers into three 8 bit bytes in the target area. 1156 // it returns the number of data bytes stored at the target, or -1 on error. 1157 // adapted from BIND sources 1158 1159 mDNSlocal mDNSs32 DNSDigest_Base64ToBin(const char *src, mDNSu8 *target, mDNSu32 targsize) 1160 { 1161 int tarindex, state, ch; 1162 const char *pos; 1163 1164 state = 0; 1165 tarindex = 0; 1166 1167 while ((ch = *src++) != '\0') { 1168 if (mDNSisspace(ch)) /* Skip whitespace anywhere. */ 1169 continue; 1170 1171 if (ch == Pad64) 1172 break; 1173 1174 pos = mDNSstrchr(Base64, ch); 1175 if (pos == 0) /* A non-base64 character. */ 1176 return (-1); 1177 1178 switch (state) { 1179 case 0: 1180 if (target) { 1181 if ((mDNSu32)tarindex >= targsize) 1182 return (-1); 1183 target[tarindex] = (mDNSu8)((pos - Base64) << 2); 1184 } 1185 state = 1; 1186 break; 1187 case 1: 1188 if (target) { 1189 if ((mDNSu32)tarindex + 1 >= targsize) 1190 return (-1); 1191 target[tarindex] |= (pos - Base64) >> 4; 1192 target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x0f) << 4); 1193 } 1194 tarindex++; 1195 state = 2; 1196 break; 1197 case 2: 1198 if (target) { 1199 if ((mDNSu32)tarindex + 1 >= targsize) 1200 return (-1); 1201 target[tarindex] |= (pos - Base64) >> 2; 1202 target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x03) << 6); 1203 } 1204 tarindex++; 1205 state = 3; 1206 break; 1207 case 3: 1208 if (target) { 1209 if ((mDNSu32)tarindex >= targsize) 1210 return (-1); 1211 target[tarindex] |= (pos - Base64); 1212 } 1213 tarindex++; 1214 state = 0; 1215 break; 1216 default: 1217 return -1; 1218 } 1219 } 1220 1221 /* 1222 * We are done decoding Base-64 chars. Let's see if we ended 1223 * on a byte boundary, and/or with erroneous trailing characters. 1224 */ 1225 1226 if (ch == Pad64) { /* We got a pad char. */ 1227 ch = *src++; /* Skip it, get next. */ 1228 switch (state) { 1229 case 0: /* Invalid = in first position */ 1230 case 1: /* Invalid = in second position */ 1231 return (-1); 1232 1233 case 2: /* Valid, means one byte of info */ 1234 /* Skip any number of spaces. */ 1235 for ((void)mDNSNULL; ch != '\0'; ch = *src++) 1236 if (!mDNSisspace(ch)) 1237 break; 1238 /* Make sure there is another trailing = sign. */ 1239 if (ch != Pad64) 1240 return (-1); 1241 ch = *src++; /* Skip the = */ 1242 /* Fall through to "single trailing =" case. */ 1243 /* FALLTHROUGH */ 1244 1245 case 3: /* Valid, means two bytes of info */ 1246 /* 1247 * We know this char is an =. Is there anything but 1248 * whitespace after it? 1249 */ 1250 for ((void)mDNSNULL; ch != '\0'; ch = *src++) 1251 if (!mDNSisspace(ch)) 1252 return (-1); 1253 1254 /* 1255 * Now make sure for cases 2 and 3 that the "extra" 1256 * bits that slopped past the last full byte were 1257 * zeros. If we don't check them, they become a 1258 * subliminal channel. 1259 */ 1260 if (target && target[tarindex] != 0) 1261 return (-1); 1262 } 1263 } else { 1264 /* 1265 * We ended by seeing the end of the string. Make sure we 1266 * have no partial bytes lying around. 1267 */ 1268 if (state != 0) 1269 return (-1); 1270 } 1271 1272 return (tarindex); 1273 } 1274 1275 1276 // *************************************************************************** 1277 #if COMPILER_LIKES_PRAGMA_MARK 1278 #pragma mark - API exported to mDNS Core 1279 #endif 1280 1281 // Constants 1282 #define HMAC_IPAD 0x36 1283 #define HMAC_OPAD 0x5c 1284 #define MD5_LEN 16 1285 1286 #define HMAC_MD5_AlgName (*(const domainname*) "\010" "hmac-md5" "\007" "sig-alg" "\003" "reg" "\003" "int") 1287 1288 // Adapted from Appendix, RFC 2104 1289 mDNSlocal void DNSDigest_ConstructHMACKey(DomainAuthInfo *info, const mDNSu8 *key, mDNSu32 len) 1290 { 1291 MD5_CTX k; 1292 mDNSu8 buf[MD5_LEN]; 1293 int i; 1294 1295 // If key is longer than HMAC_LEN reset it to MD5(key) 1296 if (len > HMAC_LEN) 1297 { 1298 MD5_Init(&k); 1299 MD5_Update(&k, key, len); 1300 MD5_Final(buf, &k); 1301 key = buf; 1302 len = MD5_LEN; 1303 } 1304 1305 // store key in pads 1306 mDNSPlatformMemZero(info->keydata_ipad, HMAC_LEN); 1307 mDNSPlatformMemZero(info->keydata_opad, HMAC_LEN); 1308 mDNSPlatformMemCopy(info->keydata_ipad, key, len); 1309 mDNSPlatformMemCopy(info->keydata_opad, key, len); 1310 1311 // XOR key with ipad and opad values 1312 for (i = 0; i < HMAC_LEN; i++) 1313 { 1314 info->keydata_ipad[i] ^= HMAC_IPAD; 1315 info->keydata_opad[i] ^= HMAC_OPAD; 1316 } 1317 1318 } 1319 1320 mDNSexport mDNSs32 DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo *info, const char *b64key) 1321 { 1322 mDNSu8 keybuf[1024]; 1323 mDNSs32 keylen = DNSDigest_Base64ToBin(b64key, keybuf, sizeof(keybuf)); 1324 if (keylen < 0) return(keylen); 1325 DNSDigest_ConstructHMACKey(info, keybuf, (mDNSu32)keylen); 1326 return(keylen); 1327 } 1328 1329 mDNSexport void DNSDigest_SignMessage(DNSMessage *msg, mDNSu8 **end, DomainAuthInfo *info, mDNSu16 tcode) 1330 { 1331 AuthRecord tsig; 1332 mDNSu8 *rdata, *const countPtr = (mDNSu8 *)&msg->h.numAdditionals; // Get existing numAdditionals value 1333 mDNSu32 utc32; 1334 mDNSu8 utc48[6]; 1335 mDNSu8 digest[MD5_LEN]; 1336 mDNSu8 *ptr = *end; 1337 mDNSu32 len; 1338 mDNSOpaque16 buf; 1339 MD5_CTX c; 1340 mDNSu16 numAdditionals = (mDNSu16)((mDNSu16)countPtr[0] << 8 | countPtr[1]); 1341 1342 // Init MD5 context, digest inner key pad and message 1343 MD5_Init(&c); 1344 MD5_Update(&c, info->keydata_ipad, HMAC_LEN); 1345 MD5_Update(&c, (mDNSu8 *)msg, (unsigned long)(*end - (mDNSu8 *)msg)); 1346 1347 // Construct TSIG RR, digesting variables as apporpriate 1348 mDNS_SetupResourceRecord(&tsig, mDNSNULL, 0, kDNSType_TSIG, 0, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL); 1349 1350 // key name 1351 AssignDomainName(&tsig.namestorage, &info->keyname); 1352 MD5_Update(&c, info->keyname.c, DomainNameLength(&info->keyname)); 1353 1354 // class 1355 tsig.resrec.rrclass = kDNSQClass_ANY; 1356 buf = mDNSOpaque16fromIntVal(kDNSQClass_ANY); 1357 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); 1358 1359 // ttl 1360 tsig.resrec.rroriginalttl = 0; 1361 MD5_Update(&c, (mDNSu8 *)&tsig.resrec.rroriginalttl, sizeof(tsig.resrec.rroriginalttl)); 1362 1363 // alg name 1364 AssignDomainName(&tsig.resrec.rdata->u.name, &HMAC_MD5_AlgName); 1365 len = DomainNameLength(&HMAC_MD5_AlgName); 1366 rdata = tsig.resrec.rdata->u.data + len; 1367 MD5_Update(&c, HMAC_MD5_AlgName.c, len); 1368 1369 // time 1370 // get UTC (universal time), convert to 48-bit unsigned in network byte order 1371 utc32 = (mDNSu32)mDNSPlatformUTC(); 1372 if (utc32 == (unsigned)-1) { LogMsg("ERROR: DNSDigest_SignMessage - mDNSPlatformUTC returned bad time -1"); *end = mDNSNULL; } 1373 utc48[0] = 0; 1374 utc48[1] = 0; 1375 utc48[2] = (mDNSu8)((utc32 >> 24) & 0xff); 1376 utc48[3] = (mDNSu8)((utc32 >> 16) & 0xff); 1377 utc48[4] = (mDNSu8)((utc32 >> 8) & 0xff); 1378 utc48[5] = (mDNSu8)( utc32 & 0xff); 1379 1380 mDNSPlatformMemCopy(rdata, utc48, 6); 1381 rdata += 6; 1382 MD5_Update(&c, utc48, 6); 1383 1384 // 300 sec is fudge recommended in RFC 2485 1385 rdata[0] = (mDNSu8)((300 >> 8) & 0xff); 1386 rdata[1] = (mDNSu8)( 300 & 0xff); 1387 MD5_Update(&c, rdata, sizeof(mDNSOpaque16)); 1388 rdata += sizeof(mDNSOpaque16); 1389 1390 // digest error (tcode) and other data len (zero) - we'll add them to the rdata later 1391 buf.b[0] = (mDNSu8)((tcode >> 8) & 0xff); 1392 buf.b[1] = (mDNSu8)( tcode & 0xff); 1393 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // error 1394 buf.NotAnInteger = 0; 1395 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // other data len 1396 1397 // finish the message & tsig var hash 1398 MD5_Final(digest, &c); 1399 1400 // perform outer MD5 (outer key pad, inner digest) 1401 MD5_Init(&c); 1402 MD5_Update(&c, info->keydata_opad, HMAC_LEN); 1403 MD5_Update(&c, digest, MD5_LEN); 1404 MD5_Final(digest, &c); 1405 1406 // set remaining rdata fields 1407 rdata[0] = (mDNSu8)((MD5_LEN >> 8) & 0xff); 1408 rdata[1] = (mDNSu8)( MD5_LEN & 0xff); 1409 rdata += sizeof(mDNSOpaque16); 1410 mDNSPlatformMemCopy(rdata, digest, MD5_LEN); // MAC 1411 rdata += MD5_LEN; 1412 rdata[0] = msg->h.id.b[0]; // original ID 1413 rdata[1] = msg->h.id.b[1]; 1414 rdata[2] = (mDNSu8)((tcode >> 8) & 0xff); 1415 rdata[3] = (mDNSu8)( tcode & 0xff); 1416 rdata[4] = 0; // other data len 1417 rdata[5] = 0; 1418 rdata += 6; 1419 1420 tsig.resrec.rdlength = (mDNSu16)(rdata - tsig.resrec.rdata->u.data); 1421 *end = PutResourceRecordTTLJumbo(msg, ptr, &numAdditionals, &tsig.resrec, 0); 1422 if (!*end) { LogMsg("ERROR: DNSDigest_SignMessage - could not put TSIG"); *end = mDNSNULL; return; } 1423 1424 // Write back updated numAdditionals value 1425 countPtr[0] = (mDNSu8)(numAdditionals >> 8); 1426 countPtr[1] = (mDNSu8)(numAdditionals & 0xFF); 1427 } 1428 1429 mDNSexport mDNSBool DNSDigest_VerifyMessage(DNSMessage *msg, mDNSu8 *end, LargeCacheRecord * lcr, DomainAuthInfo *info, mDNSu16 * rcode, mDNSu16 * tcode) 1430 { 1431 mDNSu8 * ptr = (mDNSu8*) &lcr->r.resrec.rdata->u.data; 1432 mDNSs32 now; 1433 mDNSs32 then; 1434 mDNSu8 thisDigest[MD5_LEN]; 1435 mDNSu8 thatDigest[MD5_LEN]; 1436 mDNSu32 macsize; 1437 mDNSOpaque16 buf; 1438 mDNSu8 utc48[6]; 1439 mDNSs32 delta; 1440 mDNSu16 fudge; 1441 domainname * algo; 1442 MD5_CTX c; 1443 mDNSBool ok = mDNSfalse; 1444 1445 // We only support HMAC-MD5 for now 1446 1447 algo = (domainname*) ptr; 1448 1449 if (!SameDomainName(algo, &HMAC_MD5_AlgName)) 1450 { 1451 LogMsg("ERROR: DNSDigest_VerifyMessage - TSIG algorithm not supported: %##s", algo->c); 1452 *rcode = kDNSFlag1_RC_NotAuth; 1453 *tcode = TSIG_ErrBadKey; 1454 ok = mDNSfalse; 1455 goto exit; 1456 } 1457 1458 ptr += DomainNameLength(algo); 1459 1460 // Check the times 1461 1462 now = mDNSPlatformUTC(); 1463 if (now == -1) 1464 { 1465 LogMsg("ERROR: DNSDigest_VerifyMessage - mDNSPlatformUTC returned bad time -1"); 1466 *rcode = kDNSFlag1_RC_NotAuth; 1467 *tcode = TSIG_ErrBadTime; 1468 ok = mDNSfalse; 1469 goto exit; 1470 } 1471 1472 // Get the 48 bit time field, skipping over the first word 1473 1474 utc48[0] = *ptr++; 1475 utc48[1] = *ptr++; 1476 utc48[2] = *ptr++; 1477 utc48[3] = *ptr++; 1478 utc48[4] = *ptr++; 1479 utc48[5] = *ptr++; 1480 1481 then = (mDNSs32)NToH32(utc48 + sizeof(mDNSu16)); 1482 1483 fudge = NToH16(ptr); 1484 1485 ptr += sizeof(mDNSu16); 1486 1487 delta = (now > then) ? now - then : then - now; 1488 1489 if (delta > fudge) 1490 { 1491 LogMsg("ERROR: DNSDigest_VerifyMessage - time skew > %d", fudge); 1492 *rcode = kDNSFlag1_RC_NotAuth; 1493 *tcode = TSIG_ErrBadTime; 1494 ok = mDNSfalse; 1495 goto exit; 1496 } 1497 1498 // MAC size 1499 1500 macsize = (mDNSu32) NToH16(ptr); 1501 1502 ptr += sizeof(mDNSu16); 1503 1504 // MAC 1505 1506 mDNSPlatformMemCopy(thatDigest, ptr, MD5_LEN); 1507 1508 // Init MD5 context, digest inner key pad and message 1509 1510 MD5_Init(&c); 1511 MD5_Update(&c, info->keydata_ipad, HMAC_LEN); 1512 MD5_Update(&c, (mDNSu8*) msg, (unsigned long)(end - (mDNSu8*) msg)); 1513 1514 // Key name 1515 1516 MD5_Update(&c, lcr->r.resrec.name->c, DomainNameLength(lcr->r.resrec.name)); 1517 1518 // Class name 1519 1520 buf = mDNSOpaque16fromIntVal(lcr->r.resrec.rrclass); 1521 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); 1522 1523 // TTL 1524 1525 MD5_Update(&c, (mDNSu8*) &lcr->r.resrec.rroriginalttl, sizeof(lcr->r.resrec.rroriginalttl)); 1526 1527 // Algorithm 1528 1529 MD5_Update(&c, algo->c, DomainNameLength(algo)); 1530 1531 // Time 1532 1533 MD5_Update(&c, utc48, 6); 1534 1535 // Fudge 1536 1537 buf = mDNSOpaque16fromIntVal(fudge); 1538 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); 1539 1540 // Digest error and other data len (both zero) - we'll add them to the rdata later 1541 1542 buf.NotAnInteger = 0; 1543 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // error 1544 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // other data len 1545 1546 // Finish the message & tsig var hash 1547 1548 MD5_Final(thisDigest, &c); 1549 1550 // perform outer MD5 (outer key pad, inner digest) 1551 1552 MD5_Init(&c); 1553 MD5_Update(&c, info->keydata_opad, HMAC_LEN); 1554 MD5_Update(&c, thisDigest, MD5_LEN); 1555 MD5_Final(thisDigest, &c); 1556 1557 if (!mDNSPlatformMemSame(thisDigest, thatDigest, MD5_LEN)) 1558 { 1559 LogMsg("ERROR: DNSDigest_VerifyMessage - bad signature"); 1560 *rcode = kDNSFlag1_RC_NotAuth; 1561 *tcode = TSIG_ErrBadSig; 1562 ok = mDNSfalse; 1563 goto exit; 1564 } 1565 1566 // set remaining rdata fields 1567 ok = mDNStrue; 1568 1569 exit: 1570 1571 return ok; 1572 } 1573 1574 1575 #ifdef __cplusplus 1576 } 1577 #endif 1578