Home | History | Annotate | Download | only in wtf
      1 /*
      2  * Copyright (C) 2006, 2010 Apple Inc. All rights reserved.
      3  * Copyright (C) 2008 Google Inc. All rights reserved.
      4  * Copyright (C) 2007-2009 Torch Mobile, Inc.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions are
      8  * met:
      9  *
     10  *     * Redistributions of source code must retain the above copyright
     11  * notice, this list of conditions and the following disclaimer.
     12  *     * Redistributions in binary form must reproduce the above
     13  * copyright notice, this list of conditions and the following disclaimer
     14  * in the documentation and/or other materials provided with the
     15  * distribution.
     16  *     * Neither the name of Google Inc. nor the names of its
     17  * contributors may be used to endorse or promote products derived from
     18  * this software without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     23  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     24  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     25  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     26  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     30  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include "config.h"
     34 #include "CurrentTime.h"
     35 
     36 #if OS(WINDOWS)
     37 
     38 // Windows is first since we want to use hires timers, despite USE(CF)
     39 // being defined.
     40 // If defined, WIN32_LEAN_AND_MEAN disables timeBeginPeriod/timeEndPeriod.
     41 #undef WIN32_LEAN_AND_MEAN
     42 #include <windows.h>
     43 #include <math.h>
     44 #include <stdint.h>
     45 #include <time.h>
     46 
     47 #if USE(QUERY_PERFORMANCE_COUNTER)
     48 #if OS(WINCE)
     49 extern "C" time_t mktime(struct tm *t);
     50 #else
     51 #include <sys/timeb.h>
     52 #include <sys/types.h>
     53 #endif
     54 #endif
     55 
     56 #elif PLATFORM(GTK)
     57 #include <glib.h>
     58 #elif PLATFORM(WX)
     59 #include <wx/datetime.h>
     60 #elif PLATFORM(BREWMP)
     61 #include <AEEStdLib.h>
     62 #else
     63 #include <sys/time.h>
     64 #endif
     65 
     66 #if PLATFORM(CHROMIUM)
     67 #error Chromium uses a different timer implementation
     68 #endif
     69 
     70 namespace WTF {
     71 
     72 const double msPerSecond = 1000.0;
     73 
     74 #if OS(WINDOWS)
     75 
     76 #if USE(QUERY_PERFORMANCE_COUNTER)
     77 
     78 static LARGE_INTEGER qpcFrequency;
     79 static bool syncedTime;
     80 
     81 static double highResUpTime()
     82 {
     83     // We use QPC, but only after sanity checking its result, due to bugs:
     84     // http://support.microsoft.com/kb/274323
     85     // http://support.microsoft.com/kb/895980
     86     // http://msdn.microsoft.com/en-us/library/ms644904.aspx ("...you can get different results on different processors due to bugs in the basic input/output system (BIOS) or the hardware abstraction layer (HAL)."
     87 
     88     static LARGE_INTEGER qpcLast;
     89     static DWORD tickCountLast;
     90     static bool inited;
     91 
     92     LARGE_INTEGER qpc;
     93     QueryPerformanceCounter(&qpc);
     94     DWORD tickCount = GetTickCount();
     95 
     96     if (inited) {
     97         __int64 qpcElapsed = ((qpc.QuadPart - qpcLast.QuadPart) * 1000) / qpcFrequency.QuadPart;
     98         __int64 tickCountElapsed;
     99         if (tickCount >= tickCountLast)
    100             tickCountElapsed = (tickCount - tickCountLast);
    101         else {
    102 #if COMPILER(MINGW)
    103             __int64 tickCountLarge = tickCount + 0x100000000ULL;
    104 #else
    105             __int64 tickCountLarge = tickCount + 0x100000000I64;
    106 #endif
    107             tickCountElapsed = tickCountLarge - tickCountLast;
    108         }
    109 
    110         // force a re-sync if QueryPerformanceCounter differs from GetTickCount by more than 500ms.
    111         // (500ms value is from http://support.microsoft.com/kb/274323)
    112         __int64 diff = tickCountElapsed - qpcElapsed;
    113         if (diff > 500 || diff < -500)
    114             syncedTime = false;
    115     } else
    116         inited = true;
    117 
    118     qpcLast = qpc;
    119     tickCountLast = tickCount;
    120 
    121     return (1000.0 * qpc.QuadPart) / static_cast<double>(qpcFrequency.QuadPart);
    122 }
    123 
    124 static double lowResUTCTime()
    125 {
    126 #if OS(WINCE)
    127     SYSTEMTIME systemTime;
    128     GetSystemTime(&systemTime);
    129     struct tm tmtime;
    130     tmtime.tm_year = systemTime.wYear - 1900;
    131     tmtime.tm_mon = systemTime.wMonth - 1;
    132     tmtime.tm_mday = systemTime.wDay;
    133     tmtime.tm_wday = systemTime.wDayOfWeek;
    134     tmtime.tm_hour = systemTime.wHour;
    135     tmtime.tm_min = systemTime.wMinute;
    136     tmtime.tm_sec = systemTime.wSecond;
    137     time_t timet = mktime(&tmtime);
    138     return timet * msPerSecond + systemTime.wMilliseconds;
    139 #else
    140     struct _timeb timebuffer;
    141     _ftime(&timebuffer);
    142     return timebuffer.time * msPerSecond + timebuffer.millitm;
    143 #endif
    144 }
    145 
    146 static bool qpcAvailable()
    147 {
    148     static bool available;
    149     static bool checked;
    150 
    151     if (checked)
    152         return available;
    153 
    154     available = QueryPerformanceFrequency(&qpcFrequency);
    155     checked = true;
    156     return available;
    157 }
    158 
    159 double currentTime()
    160 {
    161     // Use a combination of ftime and QueryPerformanceCounter.
    162     // ftime returns the information we want, but doesn't have sufficient resolution.
    163     // QueryPerformanceCounter has high resolution, but is only usable to measure time intervals.
    164     // To combine them, we call ftime and QueryPerformanceCounter initially. Later calls will use QueryPerformanceCounter
    165     // by itself, adding the delta to the saved ftime.  We periodically re-sync to correct for drift.
    166     static double syncLowResUTCTime;
    167     static double syncHighResUpTime;
    168     static double lastUTCTime;
    169 
    170     double lowResTime = lowResUTCTime();
    171 
    172     if (!qpcAvailable())
    173         return lowResTime / 1000.0;
    174 
    175     double highResTime = highResUpTime();
    176 
    177     if (!syncedTime) {
    178         timeBeginPeriod(1); // increase time resolution around low-res time getter
    179         syncLowResUTCTime = lowResTime = lowResUTCTime();
    180         timeEndPeriod(1); // restore time resolution
    181         syncHighResUpTime = highResTime;
    182         syncedTime = true;
    183     }
    184 
    185     double highResElapsed = highResTime - syncHighResUpTime;
    186     double utc = syncLowResUTCTime + highResElapsed;
    187 
    188     // force a clock re-sync if we've drifted
    189     double lowResElapsed = lowResTime - syncLowResUTCTime;
    190     const double maximumAllowedDriftMsec = 15.625 * 2.0; // 2x the typical low-res accuracy
    191     if (fabs(highResElapsed - lowResElapsed) > maximumAllowedDriftMsec)
    192         syncedTime = false;
    193 
    194     // make sure time doesn't run backwards (only correct if difference is < 2 seconds, since DST or clock changes could occur)
    195     const double backwardTimeLimit = 2000.0;
    196     if (utc < lastUTCTime && (lastUTCTime - utc) < backwardTimeLimit)
    197         return lastUTCTime / 1000.0;
    198     lastUTCTime = utc;
    199     return utc / 1000.0;
    200 }
    201 
    202 #else
    203 
    204 static double currentSystemTime()
    205 {
    206     FILETIME ft;
    207     GetCurrentFT(&ft);
    208 
    209     // As per Windows documentation for FILETIME, copy the resulting FILETIME structure to a
    210     // ULARGE_INTEGER structure using memcpy (using memcpy instead of direct assignment can
    211     // prevent alignment faults on 64-bit Windows).
    212 
    213     ULARGE_INTEGER t;
    214     memcpy(&t, &ft, sizeof(t));
    215 
    216     // Windows file times are in 100s of nanoseconds.
    217     // To convert to seconds, we have to divide by 10,000,000, which is more quickly
    218     // done by multiplying by 0.0000001.
    219 
    220     // Between January 1, 1601 and January 1, 1970, there were 369 complete years,
    221     // of which 89 were leap years (1700, 1800, and 1900 were not leap years).
    222     // That is a total of 134774 days, which is 11644473600 seconds.
    223 
    224     return t.QuadPart * 0.0000001 - 11644473600.0;
    225 }
    226 
    227 double currentTime()
    228 {
    229     static bool init = false;
    230     static double lastTime;
    231     static DWORD lastTickCount;
    232     if (!init) {
    233         lastTime = currentSystemTime();
    234         lastTickCount = GetTickCount();
    235         init = true;
    236         return lastTime;
    237     }
    238 
    239     DWORD tickCountNow = GetTickCount();
    240     DWORD elapsed = tickCountNow - lastTickCount;
    241     double timeNow = lastTime + (double)elapsed / 1000.;
    242     if (elapsed >= 0x7FFFFFFF) {
    243         lastTime = timeNow;
    244         lastTickCount = tickCountNow;
    245     }
    246     return timeNow;
    247 }
    248 
    249 #endif // USE(QUERY_PERFORMANCE_COUNTER)
    250 
    251 #elif PLATFORM(GTK)
    252 
    253 // Note: GTK on Windows will pick up the PLATFORM(WIN) implementation above which provides
    254 // better accuracy compared with Windows implementation of g_get_current_time:
    255 // (http://www.google.com/codesearch/p?hl=en#HHnNRjks1t0/glib-2.5.2/glib/gmain.c&q=g_get_current_time).
    256 // Non-Windows GTK builds could use gettimeofday() directly but for the sake of consistency lets use GTK function.
    257 double currentTime()
    258 {
    259     GTimeVal now;
    260     g_get_current_time(&now);
    261     return static_cast<double>(now.tv_sec) + static_cast<double>(now.tv_usec / 1000000.0);
    262 }
    263 
    264 #elif PLATFORM(WX)
    265 
    266 double currentTime()
    267 {
    268     wxDateTime now = wxDateTime::UNow();
    269     return (double)now.GetTicks() + (double)(now.GetMillisecond() / 1000.0);
    270 }
    271 
    272 #elif PLATFORM(BREWMP)
    273 
    274 // GETUTCSECONDS returns the number of seconds since 1980/01/06 00:00:00 UTC,
    275 // and GETTIMEMS returns the number of milliseconds that have elapsed since the last
    276 // occurrence of 00:00:00 local time.
    277 // We can combine GETUTCSECONDS and GETTIMEMS to calculate the number of milliseconds
    278 // since 1970/01/01 00:00:00 UTC.
    279 double currentTime()
    280 {
    281     // diffSeconds is the number of seconds from 1970/01/01 to 1980/01/06
    282     const unsigned diffSeconds = 315964800;
    283     return static_cast<double>(diffSeconds + GETUTCSECONDS() + ((GETTIMEMS() % 1000) / msPerSecond));
    284 }
    285 
    286 #else
    287 
    288 double currentTime()
    289 {
    290     struct timeval now;
    291     gettimeofday(&now, 0);
    292     return now.tv_sec + now.tv_usec / 1000000.0;
    293 }
    294 
    295 #endif
    296 
    297 } // namespace WTF
    298