Home | History | Annotate | Download | only in wtf
      1 // Copyright (c) 2007, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 
     30 // ---
     31 // Author: Geoff Pike
     32 //
     33 // This file provides a minimal cache that can hold a <key, value> pair
     34 // with little if any wasted space.  The types of the key and value
     35 // must be unsigned integral types or at least have unsigned semantics
     36 // for >>, casting, and similar operations.
     37 //
     38 // Synchronization is not provided.  However, the cache is implemented
     39 // as an array of cache entries whose type is chosen at compile time.
     40 // If a[i] is atomic on your hardware for the chosen array type then
     41 // raciness will not necessarily lead to bugginess.  The cache entries
     42 // must be large enough to hold a partial key and a value packed
     43 // together.  The partial keys are bit strings of length
     44 // kKeybits - kHashbits, and the values are bit strings of length kValuebits.
     45 //
     46 // In an effort to use minimal space, every cache entry represents
     47 // some <key, value> pair; the class provides no way to mark a cache
     48 // entry as empty or uninitialized.  In practice, you may want to have
     49 // reserved keys or values to get around this limitation.  For example, in
     50 // tcmalloc's PageID-to-sizeclass cache, a value of 0 is used as
     51 // "unknown sizeclass."
     52 //
     53 // Usage Considerations
     54 // --------------------
     55 //
     56 // kHashbits controls the size of the cache.  The best value for
     57 // kHashbits will of course depend on the application.  Perhaps try
     58 // tuning the value of kHashbits by measuring different values on your
     59 // favorite benchmark.  Also remember not to be a pig; other
     60 // programs that need resources may suffer if you are.
     61 //
     62 // The main uses for this class will be when performance is
     63 // critical and there's a convenient type to hold the cache's
     64 // entries.  As described above, the number of bits required
     65 // for a cache entry is (kKeybits - kHashbits) + kValuebits.  Suppose
     66 // kKeybits + kValuebits is 43.  Then it probably makes sense to
     67 // chose kHashbits >= 11 so that cache entries fit in a uint32.
     68 //
     69 // On the other hand, suppose kKeybits = kValuebits = 64.  Then
     70 // using this class may be less worthwhile.  You'll probably
     71 // be using 128 bits for each entry anyway, so maybe just pick
     72 // a hash function, H, and use an array indexed by H(key):
     73 //    void Put(K key, V value) { a_[H(key)] = pair<K, V>(key, value); }
     74 //    V GetOrDefault(K key, V default) { const pair<K, V> &p = a_[H(key)]; ... }
     75 //    etc.
     76 //
     77 // Further Details
     78 // ---------------
     79 //
     80 // For caches used only by one thread, the following is true:
     81 // 1. For a cache c,
     82 //      (c.Put(key, value), c.GetOrDefault(key, 0)) == value
     83 //    and
     84 //      (c.Put(key, value), <...>, c.GetOrDefault(key, 0)) == value
     85 //    if the elided code contains no c.Put calls.
     86 //
     87 // 2. Has(key) will return false if no <key, value> pair with that key
     88 //    has ever been Put.  However, a newly initialized cache will have
     89 //    some <key, value> pairs already present.  When you create a new
     90 //    cache, you must specify an "initial value."  The initialization
     91 //    procedure is equivalent to Clear(initial_value), which is
     92 //    equivalent to Put(k, initial_value) for all keys k from 0 to
     93 //    2^kHashbits - 1.
     94 //
     95 // 3. If key and key' differ then the only way Put(key, value) may
     96 //    cause Has(key') to change is that Has(key') may change from true to
     97 //    false. Furthermore, a Put() call that doesn't change Has(key')
     98 //    doesn't change GetOrDefault(key', ...) either.
     99 //
    100 // Implementation details:
    101 //
    102 // This is a direct-mapped cache with 2^kHashbits entries;
    103 // the hash function simply takes the low bits of the key.
    104 // So, we don't have to store the low bits of the key in the entries.
    105 // Instead, an entry is the high bits of a key and a value, packed
    106 // together.  E.g., a 20 bit key and a 7 bit value only require
    107 // a uint16 for each entry if kHashbits >= 11.
    108 //
    109 // Alternatives to this scheme will be added as needed.
    110 
    111 #ifndef TCMALLOC_PACKED_CACHE_INL_H__
    112 #define TCMALLOC_PACKED_CACHE_INL_H__
    113 
    114 #ifndef WTF_CHANGES
    115 #include "base/basictypes.h"  // for COMPILE_ASSERT
    116 #include "base/logging.h"     // for DCHECK
    117 #endif
    118 
    119 #ifndef DCHECK_EQ
    120 #define DCHECK_EQ(val1, val2) ASSERT((val1) == (val2))
    121 #endif
    122 
    123 // A safe way of doing "(1 << n) - 1" -- without worrying about overflow
    124 // Note this will all be resolved to a constant expression at compile-time
    125 #define N_ONES_(IntType, N)                                     \
    126   ( (N) == 0 ? 0 : ((static_cast<IntType>(1) << ((N)-1))-1 +    \
    127                     (static_cast<IntType>(1) << ((N)-1))) )
    128 
    129 // The types K and V provide upper bounds on the number of valid keys
    130 // and values, but we explicitly require the keys to be less than
    131 // 2^kKeybits and the values to be less than 2^kValuebits.  The size of
    132 // the table is controlled by kHashbits, and the type of each entry in
    133 // the cache is T.  See also the big comment at the top of the file.
    134 template <int kKeybits, typename T>
    135 class PackedCache {
    136  public:
    137   typedef uintptr_t K;
    138   typedef size_t V;
    139   static const size_t kHashbits = 12;
    140   static const size_t kValuebits = 8;
    141 
    142   explicit PackedCache(V initial_value) {
    143     COMPILE_ASSERT(kKeybits <= sizeof(K) * 8, key_size);
    144     COMPILE_ASSERT(kValuebits <= sizeof(V) * 8, value_size);
    145     COMPILE_ASSERT(kHashbits <= kKeybits, hash_function);
    146     COMPILE_ASSERT(kKeybits - kHashbits + kValuebits <= kTbits,
    147                    entry_size_must_be_big_enough);
    148     Clear(initial_value);
    149   }
    150 
    151   void Put(K key, V value) {
    152     DCHECK_EQ(key, key & kKeyMask);
    153     DCHECK_EQ(value, value & kValueMask);
    154     array_[Hash(key)] = static_cast<T>(KeyToUpper(key) | value);
    155   }
    156 
    157   bool Has(K key) const {
    158     DCHECK_EQ(key, key & kKeyMask);
    159     return KeyMatch(array_[Hash(key)], key);
    160   }
    161 
    162   V GetOrDefault(K key, V default_value) const {
    163     // As with other code in this class, we touch array_ as few times
    164     // as we can.  Assuming entries are read atomically (e.g., their
    165     // type is uintptr_t on most hardware) then certain races are
    166     // harmless.
    167     DCHECK_EQ(key, key & kKeyMask);
    168     T entry = array_[Hash(key)];
    169     return KeyMatch(entry, key) ? EntryToValue(entry) : default_value;
    170   }
    171 
    172   void Clear(V value) {
    173     DCHECK_EQ(value, value & kValueMask);
    174     for (int i = 0; i < 1 << kHashbits; i++) {
    175       array_[i] = static_cast<T>(value);
    176     }
    177   }
    178 
    179  private:
    180   // We are going to pack a value and the upper part of a key into
    181   // an entry of type T.  The UPPER type is for the upper part of a key,
    182   // after the key has been masked and shifted for inclusion in an entry.
    183   typedef T UPPER;
    184 
    185   static V EntryToValue(T t) { return t & kValueMask; }
    186 
    187   static UPPER EntryToUpper(T t) { return t & kUpperMask; }
    188 
    189   // If v is a V and u is an UPPER then you can create an entry by
    190   // doing u | v.  kHashbits determines where in a K to find the upper
    191   // part of the key, and kValuebits determines where in the entry to put
    192   // it.
    193   static UPPER KeyToUpper(K k) {
    194     const int shift = kHashbits - kValuebits;
    195     // Assume kHashbits >= kValuebits. It would be easy to lift this assumption.
    196     return static_cast<T>(k >> shift) & kUpperMask;
    197   }
    198 
    199   // This is roughly the inverse of KeyToUpper().  Some of the key has been
    200   // thrown away, since KeyToUpper() masks off the low bits of the key.
    201   static K UpperToPartialKey(UPPER u) {
    202     DCHECK_EQ(u, u & kUpperMask);
    203     const int shift = kHashbits - kValuebits;
    204     // Assume kHashbits >= kValuebits. It would be easy to lift this assumption.
    205     return static_cast<K>(u) << shift;
    206   }
    207 
    208   static size_t Hash(K key) {
    209     return static_cast<size_t>(key) & N_ONES_(size_t, kHashbits);
    210   }
    211 
    212   // Does the entry's partial key match the relevant part of the given key?
    213   static bool KeyMatch(T entry, K key) {
    214     return ((KeyToUpper(key) ^ entry) & kUpperMask) == 0;
    215   }
    216 
    217   static const size_t kTbits = 8 * sizeof(T);
    218   static const int kUpperbits = kKeybits - kHashbits;
    219 
    220   // For masking a K.
    221   static const K kKeyMask = N_ONES_(K, kKeybits);
    222 
    223   // For masking a T.
    224   static const T kUpperMask = N_ONES_(T, kUpperbits) << kValuebits;
    225 
    226   // For masking a V or a T.
    227   static const V kValueMask = N_ONES_(V, kValuebits);
    228 
    229   T array_[1 << kHashbits];
    230 };
    231 
    232 #undef N_ONES_
    233 
    234 #endif  // TCMALLOC_PACKED_CACHE_INL_H__
    235