Home | History | Annotate | Download | only in qt
      1 /*
      2  * Copyright (C) 2006 Zack Rusin   <zack (at) kde.org>
      3  *               2006 Rob Buis     <buis (at) kde.org>
      4  *               2009, 2010 Dirk Schulze <krit (at) webkit.org>
      5  *
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
     18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
     21  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     23  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     24  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
     25  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     27  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  */
     29 
     30 #include "config.h"
     31 #include "Path.h"
     32 
     33 #include "AffineTransform.h"
     34 #include "FloatRect.h"
     35 #include "GraphicsContext.h"
     36 #include "ImageBuffer.h"
     37 #include "PlatformString.h"
     38 #include "StrokeStyleApplier.h"
     39 #include <QPainterPath>
     40 #include <QTransform>
     41 #include <QString>
     42 #include <wtf/MathExtras.h>
     43 #include <wtf/OwnPtr.h>
     44 
     45 namespace WebCore {
     46 
     47 Path::Path()
     48 {
     49 }
     50 
     51 Path::~Path()
     52 {
     53 }
     54 
     55 Path::Path(const Path& other)
     56     : m_path(other.m_path)
     57 {
     58 }
     59 
     60 Path& Path::operator=(const Path& other)
     61 {
     62     m_path = other.m_path;
     63     return *this;
     64 }
     65 
     66 static inline bool areCollinear(const QPointF& a, const QPointF& b, const QPointF& c)
     67 {
     68     // Solved from comparing the slopes of a to b and b to c: (ay-by)/(ax-bx) == (cy-by)/(cx-bx)
     69     return qFuzzyCompare((c.y() - b.y()) * (a.x() - b.x()), (a.y() - b.y()) * (c.x() - b.x()));
     70 }
     71 
     72 static inline bool withinRange(qreal p, qreal a, qreal b)
     73 {
     74     return (p >= a && p <= b) || (p >= b && p <= a);
     75 }
     76 
     77 // Check whether a point is on the border
     78 static bool isPointOnPathBorder(const QPolygonF& border, const QPointF& p)
     79 {
     80     // null border doesn't contain points
     81     if (border.isEmpty())
     82         return false;
     83 
     84     QPointF p1 = border.at(0);
     85     QPointF p2;
     86 
     87     for (int i = 1; i < border.size(); ++i) {
     88         p2 = border.at(i);
     89         if (areCollinear(p, p1, p2)
     90                 // Once we know that the points are collinear we
     91                 // only need to check one of the coordinates
     92                 && (qAbs(p2.x() - p1.x()) > qAbs(p2.y() - p1.y()) ?
     93                         withinRange(p.x(), p1.x(), p2.x()) :
     94                         withinRange(p.y(), p1.y(), p2.y()))) {
     95             return true;
     96         }
     97         p1 = p2;
     98     }
     99     return false;
    100 }
    101 
    102 bool Path::contains(const FloatPoint& point, WindRule rule) const
    103 {
    104     Qt::FillRule savedRule = m_path.fillRule();
    105     const_cast<QPainterPath*>(&m_path)->setFillRule(rule == RULE_EVENODD ? Qt::OddEvenFill : Qt::WindingFill);
    106 
    107     bool contains = m_path.contains(point);
    108 
    109     if (!contains) {
    110         // check whether the point is on the border
    111         contains = isPointOnPathBorder(m_path.toFillPolygon(), point);
    112     }
    113 
    114     const_cast<QPainterPath*>(&m_path)->setFillRule(savedRule);
    115     return contains;
    116 }
    117 
    118 static GraphicsContext* scratchContext()
    119 {
    120     static QImage image(1, 1, QImage::Format_ARGB32_Premultiplied);
    121     static QPainter painter(&image);
    122     static GraphicsContext* context = new GraphicsContext(&painter);
    123     return context;
    124 }
    125 
    126 bool Path::strokeContains(StrokeStyleApplier* applier, const FloatPoint& point) const
    127 {
    128     ASSERT(applier);
    129 
    130     QPainterPathStroker stroke;
    131     GraphicsContext* context = scratchContext();
    132     applier->strokeStyle(context);
    133 
    134     QPen pen = context->platformContext()->pen();
    135     stroke.setWidth(pen.widthF());
    136     stroke.setCapStyle(pen.capStyle());
    137     stroke.setJoinStyle(pen.joinStyle());
    138     stroke.setMiterLimit(pen.miterLimit());
    139     stroke.setDashPattern(pen.dashPattern());
    140     stroke.setDashOffset(pen.dashOffset());
    141 
    142     return stroke.createStroke(m_path).contains(point);
    143 }
    144 
    145 void Path::translate(const FloatSize& size)
    146 {
    147     QTransform matrix;
    148     matrix.translate(size.width(), size.height());
    149     m_path = m_path * matrix;
    150 }
    151 
    152 FloatRect Path::boundingRect() const
    153 {
    154     return m_path.boundingRect();
    155 }
    156 
    157 FloatRect Path::strokeBoundingRect(StrokeStyleApplier* applier) const
    158 {
    159     GraphicsContext* context = scratchContext();
    160     QPainterPathStroker stroke;
    161     if (applier) {
    162         applier->strokeStyle(context);
    163 
    164         QPen pen = context->platformContext()->pen();
    165         stroke.setWidth(pen.widthF());
    166         stroke.setCapStyle(pen.capStyle());
    167         stroke.setJoinStyle(pen.joinStyle());
    168         stroke.setMiterLimit(pen.miterLimit());
    169         stroke.setDashPattern(pen.dashPattern());
    170         stroke.setDashOffset(pen.dashOffset());
    171     }
    172     return stroke.createStroke(m_path).boundingRect();
    173 }
    174 
    175 void Path::moveTo(const FloatPoint& point)
    176 {
    177     m_path.moveTo(point);
    178 }
    179 
    180 void Path::addLineTo(const FloatPoint& p)
    181 {
    182     m_path.lineTo(p);
    183 }
    184 
    185 void Path::addQuadCurveTo(const FloatPoint& cp, const FloatPoint& p)
    186 {
    187     m_path.quadTo(cp, p);
    188 }
    189 
    190 void Path::addBezierCurveTo(const FloatPoint& cp1, const FloatPoint& cp2, const FloatPoint& p)
    191 {
    192     m_path.cubicTo(cp1, cp2, p);
    193 }
    194 
    195 void Path::addArcTo(const FloatPoint& p1, const FloatPoint& p2, float radius)
    196 {
    197     FloatPoint p0(m_path.currentPosition());
    198 
    199     FloatPoint p1p0((p0.x() - p1.x()), (p0.y() - p1.y()));
    200     FloatPoint p1p2((p2.x() - p1.x()), (p2.y() - p1.y()));
    201     float p1p0_length = sqrtf(p1p0.x() * p1p0.x() + p1p0.y() * p1p0.y());
    202     float p1p2_length = sqrtf(p1p2.x() * p1p2.x() + p1p2.y() * p1p2.y());
    203 
    204     double cos_phi = (p1p0.x() * p1p2.x() + p1p0.y() * p1p2.y()) / (p1p0_length * p1p2_length);
    205 
    206     // The points p0, p1, and p2 are on the same straight line (HTML5, 4.8.11.1.8)
    207     // We could have used areCollinear() here, but since we're reusing
    208     // the variables computed above later on we keep this logic.
    209     if (qFuzzyCompare(qAbs(cos_phi), 1.0)) {
    210         m_path.lineTo(p1);
    211         return;
    212     }
    213 
    214     float tangent = radius / tan(acos(cos_phi) / 2);
    215     float factor_p1p0 = tangent / p1p0_length;
    216     FloatPoint t_p1p0((p1.x() + factor_p1p0 * p1p0.x()), (p1.y() + factor_p1p0 * p1p0.y()));
    217 
    218     FloatPoint orth_p1p0(p1p0.y(), -p1p0.x());
    219     float orth_p1p0_length = sqrt(orth_p1p0.x() * orth_p1p0.x() + orth_p1p0.y() * orth_p1p0.y());
    220     float factor_ra = radius / orth_p1p0_length;
    221 
    222     // angle between orth_p1p0 and p1p2 to get the right vector orthographic to p1p0
    223     double cos_alpha = (orth_p1p0.x() * p1p2.x() + orth_p1p0.y() * p1p2.y()) / (orth_p1p0_length * p1p2_length);
    224     if (cos_alpha < 0.f)
    225         orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y());
    226 
    227     FloatPoint p((t_p1p0.x() + factor_ra * orth_p1p0.x()), (t_p1p0.y() + factor_ra * orth_p1p0.y()));
    228 
    229     // calculate angles for addArc
    230     orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y());
    231     float sa = acos(orth_p1p0.x() / orth_p1p0_length);
    232     if (orth_p1p0.y() < 0.f)
    233         sa = 2 * piDouble - sa;
    234 
    235     // anticlockwise logic
    236     bool anticlockwise = false;
    237 
    238     float factor_p1p2 = tangent / p1p2_length;
    239     FloatPoint t_p1p2((p1.x() + factor_p1p2 * p1p2.x()), (p1.y() + factor_p1p2 * p1p2.y()));
    240     FloatPoint orth_p1p2((t_p1p2.x() - p.x()), (t_p1p2.y() - p.y()));
    241     float orth_p1p2_length = sqrtf(orth_p1p2.x() * orth_p1p2.x() + orth_p1p2.y() * orth_p1p2.y());
    242     float ea = acos(orth_p1p2.x() / orth_p1p2_length);
    243     if (orth_p1p2.y() < 0)
    244         ea = 2 * piDouble - ea;
    245     if ((sa > ea) && ((sa - ea) < piDouble))
    246         anticlockwise = true;
    247     if ((sa < ea) && ((ea - sa) > piDouble))
    248         anticlockwise = true;
    249 
    250     m_path.lineTo(t_p1p0);
    251 
    252     addArc(p, radius, sa, ea, anticlockwise);
    253 }
    254 
    255 void Path::closeSubpath()
    256 {
    257     m_path.closeSubpath();
    258 }
    259 
    260 void Path::addArc(const FloatPoint& p, float r, float sar, float ear, bool anticlockwise)
    261 {
    262     qreal xc = p.x();
    263     qreal yc = p.y();
    264     qreal radius = r;
    265 
    266 
    267     //### HACK
    268     // In Qt we don't switch the coordinate system for degrees
    269     // and still use the 0,0 as bottom left for degrees so we need
    270     // to switch
    271     sar = -sar;
    272     ear = -ear;
    273     anticlockwise = !anticlockwise;
    274     //end hack
    275 
    276     float sa = rad2deg(sar);
    277     float ea = rad2deg(ear);
    278 
    279     double span = 0;
    280 
    281     double xs = xc - radius;
    282     double ys = yc - radius;
    283     double width  = radius*2;
    284     double height = radius*2;
    285 
    286     if ((!anticlockwise && (ea - sa >= 360)) || (anticlockwise && (sa - ea >= 360))) {
    287         // If the anticlockwise argument is false and endAngle-startAngle is equal to or greater than 2*PI, or, if the
    288         // anticlockwise argument is true and startAngle-endAngle is equal to or greater than 2*PI, then the arc is the whole
    289         // circumference of this circle.
    290         span = 360;
    291 
    292         if (anticlockwise)
    293             span = -span;
    294     } else {
    295         if (!anticlockwise && (ea < sa))
    296             span += 360;
    297         else if (anticlockwise && (sa < ea))
    298             span -= 360;
    299 
    300         // this is also due to switched coordinate system
    301         // we would end up with a 0 span instead of 360
    302         if (!(qFuzzyCompare(span + (ea - sa) + 1, 1.0)
    303             && qFuzzyCompare(qAbs(span), 360.0))) {
    304             // mod 360
    305             span += (ea - sa) - (static_cast<int>((ea - sa) / 360)) * 360;
    306         }
    307     }
    308 
    309     // If the path is empty, move to where the arc will start to avoid painting a line from (0,0)
    310     // NOTE: QPainterPath::isEmpty() won't work here since it ignores a lone MoveToElement
    311     if (!m_path.elementCount())
    312         m_path.arcMoveTo(xs, ys, width, height, sa);
    313     else if (!radius) {
    314         m_path.lineTo(xc, yc);
    315         return;
    316     }
    317 
    318     m_path.arcTo(xs, ys, width, height, sa, span);
    319 
    320 }
    321 
    322 void Path::addRect(const FloatRect& r)
    323 {
    324     m_path.addRect(r.x(), r.y(), r.width(), r.height());
    325 }
    326 
    327 void Path::addEllipse(const FloatRect& r)
    328 {
    329     m_path.addEllipse(r.x(), r.y(), r.width(), r.height());
    330 }
    331 
    332 void Path::clear()
    333 {
    334     if (!m_path.elementCount())
    335         return;
    336     m_path = QPainterPath();
    337 }
    338 
    339 bool Path::isEmpty() const
    340 {
    341     // Don't use QPainterPath::isEmpty(), as that also returns true if there's only
    342     // one initial MoveTo element in the path.
    343     return !m_path.elementCount();
    344 }
    345 
    346 bool Path::hasCurrentPoint() const
    347 {
    348     return !isEmpty();
    349 }
    350 
    351 FloatPoint Path::currentPoint() const
    352 {
    353     return m_path.currentPosition();
    354 }
    355 
    356 void Path::apply(void* info, PathApplierFunction function) const
    357 {
    358     PathElement pelement;
    359     FloatPoint points[3];
    360     pelement.points = points;
    361     for (int i = 0; i < m_path.elementCount(); ++i) {
    362         const QPainterPath::Element& cur = m_path.elementAt(i);
    363 
    364         switch (cur.type) {
    365             case QPainterPath::MoveToElement:
    366                 pelement.type = PathElementMoveToPoint;
    367                 pelement.points[0] = QPointF(cur);
    368                 function(info, &pelement);
    369                 break;
    370             case QPainterPath::LineToElement:
    371                 pelement.type = PathElementAddLineToPoint;
    372                 pelement.points[0] = QPointF(cur);
    373                 function(info, &pelement);
    374                 break;
    375             case QPainterPath::CurveToElement:
    376             {
    377                 const QPainterPath::Element& c1 = m_path.elementAt(i + 1);
    378                 const QPainterPath::Element& c2 = m_path.elementAt(i + 2);
    379 
    380                 Q_ASSERT(c1.type == QPainterPath::CurveToDataElement);
    381                 Q_ASSERT(c2.type == QPainterPath::CurveToDataElement);
    382 
    383                 pelement.type = PathElementAddCurveToPoint;
    384                 pelement.points[0] = QPointF(cur);
    385                 pelement.points[1] = QPointF(c1);
    386                 pelement.points[2] = QPointF(c2);
    387                 function(info, &pelement);
    388 
    389                 i += 2;
    390                 break;
    391             }
    392             case QPainterPath::CurveToDataElement:
    393                 Q_ASSERT(false);
    394         }
    395     }
    396 }
    397 
    398 void Path::transform(const AffineTransform& transform)
    399 {
    400     QTransform qTransform(transform);
    401     m_path = qTransform.map(m_path);
    402 }
    403 
    404 float Path::length() const
    405 {
    406     return m_path.length();
    407 }
    408 
    409 FloatPoint Path::pointAtLength(float length, bool& ok) const
    410 {
    411     ok = (length >= 0 && length <= m_path.length());
    412 
    413     qreal percent = m_path.percentAtLength(length);
    414     QPointF point = m_path.pointAtPercent(percent);
    415 
    416     return point;
    417 }
    418 
    419 float Path::normalAngleAtLength(float length, bool& ok) const
    420 {
    421     ok = (length >= 0 && length <= m_path.length());
    422 
    423     qreal percent = m_path.percentAtLength(length);
    424     qreal angle = m_path.angleAtPercent(percent);
    425 
    426     // Normalize angle value.
    427     // QPainterPath returns angle values with the origo being at the top left corner.
    428     // In case of moveTo(0, 0) and addLineTo(0, 10) the angle is 270,
    429     // while the caller expects it to be 90.
    430     // Normalize the value by mirroring it to the x-axis.
    431     // For more info look at pathLengthApplierFunction().
    432     if (angle > 0)
    433         angle = 360 - angle;
    434     return angle;
    435 }
    436 
    437 }
    438 
    439 // vim: ts=4 sw=4 et
    440