Home | History | Annotate | Download | only in crypto
      1 /*
      2  * WPA Supplicant / Crypto wrapper for internal crypto implementation
      3  * Copyright (c) 2006-2007, Jouni Malinen <j (at) w1.fi>
      4  *
      5  * This program is free software; you can redistribute it and/or modify
      6  * it under the terms of the GNU General Public License version 2 as
      7  * published by the Free Software Foundation.
      8  *
      9  * Alternatively, this software may be distributed under the terms of BSD
     10  * license.
     11  *
     12  * See README and COPYING for more details.
     13  */
     14 
     15 #include "includes.h"
     16 
     17 #include "common.h"
     18 #include "crypto.h"
     19 #include "md5.h"
     20 #include "sha1.h"
     21 #include "rc4.h"
     22 #include "aes.h"
     23 #include "tls/rsa.h"
     24 #include "tls/bignum.h"
     25 #include "tls/asn1.h"
     26 
     27 
     28 #ifdef CONFIG_CRYPTO_INTERNAL
     29 
     30 #ifdef CONFIG_TLS_INTERNAL
     31 
     32 /* from des.c */
     33 struct des3_key_s {
     34 	u32 ek[3][32];
     35 	u32 dk[3][32];
     36 };
     37 
     38 void des3_key_setup(const u8 *key, struct des3_key_s *dkey);
     39 void des3_encrypt(const u8 *plain, const struct des3_key_s *key, u8 *crypt);
     40 void des3_decrypt(const u8 *crypt, const struct des3_key_s *key, u8 *plain);
     41 
     42 
     43 struct MD5Context {
     44 	u32 buf[4];
     45 	u32 bits[2];
     46 	u8 in[64];
     47 };
     48 
     49 struct SHA1Context {
     50 	u32 state[5];
     51 	u32 count[2];
     52 	unsigned char buffer[64];
     53 };
     54 
     55 
     56 struct crypto_hash {
     57 	enum crypto_hash_alg alg;
     58 	union {
     59 		struct MD5Context md5;
     60 		struct SHA1Context sha1;
     61 	} u;
     62 	u8 key[64];
     63 	size_t key_len;
     64 };
     65 
     66 
     67 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
     68 				      size_t key_len)
     69 {
     70 	struct crypto_hash *ctx;
     71 	u8 k_pad[64];
     72 	u8 tk[20];
     73 	size_t i;
     74 
     75 	ctx = os_zalloc(sizeof(*ctx));
     76 	if (ctx == NULL)
     77 		return NULL;
     78 
     79 	ctx->alg = alg;
     80 
     81 	switch (alg) {
     82 	case CRYPTO_HASH_ALG_MD5:
     83 		MD5Init(&ctx->u.md5);
     84 		break;
     85 	case CRYPTO_HASH_ALG_SHA1:
     86 		SHA1Init(&ctx->u.sha1);
     87 		break;
     88 	case CRYPTO_HASH_ALG_HMAC_MD5:
     89 		if (key_len > sizeof(k_pad)) {
     90 			MD5Init(&ctx->u.md5);
     91 			MD5Update(&ctx->u.md5, key, key_len);
     92 			MD5Final(tk, &ctx->u.md5);
     93 			key = tk;
     94 			key_len = 16;
     95 		}
     96 		os_memcpy(ctx->key, key, key_len);
     97 		ctx->key_len = key_len;
     98 
     99 		os_memcpy(k_pad, key, key_len);
    100 		os_memset(k_pad + key_len, 0, sizeof(k_pad) - key_len);
    101 		for (i = 0; i < sizeof(k_pad); i++)
    102 			k_pad[i] ^= 0x36;
    103 		MD5Init(&ctx->u.md5);
    104 		MD5Update(&ctx->u.md5, k_pad, sizeof(k_pad));
    105 		break;
    106 	case CRYPTO_HASH_ALG_HMAC_SHA1:
    107 		if (key_len > sizeof(k_pad)) {
    108 			SHA1Init(&ctx->u.sha1);
    109 			SHA1Update(&ctx->u.sha1, key, key_len);
    110 			SHA1Final(tk, &ctx->u.sha1);
    111 			key = tk;
    112 			key_len = 20;
    113 		}
    114 		os_memcpy(ctx->key, key, key_len);
    115 		ctx->key_len = key_len;
    116 
    117 		os_memcpy(k_pad, key, key_len);
    118 		os_memset(k_pad + key_len, 0, sizeof(k_pad) - key_len);
    119 		for (i = 0; i < sizeof(k_pad); i++)
    120 			k_pad[i] ^= 0x36;
    121 		SHA1Init(&ctx->u.sha1);
    122 		SHA1Update(&ctx->u.sha1, k_pad, sizeof(k_pad));
    123 		break;
    124 	default:
    125 		os_free(ctx);
    126 		return NULL;
    127 	}
    128 
    129 	return ctx;
    130 }
    131 
    132 
    133 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
    134 {
    135 	if (ctx == NULL)
    136 		return;
    137 
    138 	switch (ctx->alg) {
    139 	case CRYPTO_HASH_ALG_MD5:
    140 	case CRYPTO_HASH_ALG_HMAC_MD5:
    141 		MD5Update(&ctx->u.md5, data, len);
    142 		break;
    143 	case CRYPTO_HASH_ALG_SHA1:
    144 	case CRYPTO_HASH_ALG_HMAC_SHA1:
    145 		SHA1Update(&ctx->u.sha1, data, len);
    146 		break;
    147 	}
    148 }
    149 
    150 
    151 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
    152 {
    153 	u8 k_pad[64];
    154 	size_t i;
    155 
    156 	if (ctx == NULL)
    157 		return -2;
    158 
    159 	if (mac == NULL || len == NULL) {
    160 		os_free(ctx);
    161 		return 0;
    162 	}
    163 
    164 	switch (ctx->alg) {
    165 	case CRYPTO_HASH_ALG_MD5:
    166 		if (*len < 16) {
    167 			*len = 16;
    168 			os_free(ctx);
    169 			return -1;
    170 		}
    171 		*len = 16;
    172 		MD5Final(mac, &ctx->u.md5);
    173 		break;
    174 	case CRYPTO_HASH_ALG_SHA1:
    175 		if (*len < 20) {
    176 			*len = 20;
    177 			os_free(ctx);
    178 			return -1;
    179 		}
    180 		*len = 20;
    181 		SHA1Final(mac, &ctx->u.sha1);
    182 		break;
    183 	case CRYPTO_HASH_ALG_HMAC_MD5:
    184 		if (*len < 16) {
    185 			*len = 16;
    186 			os_free(ctx);
    187 			return -1;
    188 		}
    189 		*len = 16;
    190 
    191 		MD5Final(mac, &ctx->u.md5);
    192 
    193 		os_memcpy(k_pad, ctx->key, ctx->key_len);
    194 		os_memset(k_pad + ctx->key_len, 0,
    195 			  sizeof(k_pad) - ctx->key_len);
    196 		for (i = 0; i < sizeof(k_pad); i++)
    197 			k_pad[i] ^= 0x5c;
    198 		MD5Init(&ctx->u.md5);
    199 		MD5Update(&ctx->u.md5, k_pad, sizeof(k_pad));
    200 		MD5Update(&ctx->u.md5, mac, 16);
    201 		MD5Final(mac, &ctx->u.md5);
    202 		break;
    203 	case CRYPTO_HASH_ALG_HMAC_SHA1:
    204 		if (*len < 20) {
    205 			*len = 20;
    206 			os_free(ctx);
    207 			return -1;
    208 		}
    209 		*len = 20;
    210 
    211 		SHA1Final(mac, &ctx->u.sha1);
    212 
    213 		os_memcpy(k_pad, ctx->key, ctx->key_len);
    214 		os_memset(k_pad + ctx->key_len, 0,
    215 			  sizeof(k_pad) - ctx->key_len);
    216 		for (i = 0; i < sizeof(k_pad); i++)
    217 			k_pad[i] ^= 0x5c;
    218 		SHA1Init(&ctx->u.sha1);
    219 		SHA1Update(&ctx->u.sha1, k_pad, sizeof(k_pad));
    220 		SHA1Update(&ctx->u.sha1, mac, 20);
    221 		SHA1Final(mac, &ctx->u.sha1);
    222 		break;
    223 	}
    224 
    225 	os_free(ctx);
    226 
    227 	return 0;
    228 }
    229 
    230 
    231 struct crypto_cipher {
    232 	enum crypto_cipher_alg alg;
    233 	union {
    234 		struct {
    235 			size_t used_bytes;
    236 			u8 key[16];
    237 			size_t keylen;
    238 		} rc4;
    239 		struct {
    240 			u8 cbc[32];
    241 			size_t block_size;
    242 			void *ctx_enc;
    243 			void *ctx_dec;
    244 		} aes;
    245 		struct {
    246 			struct des3_key_s key;
    247 			u8 cbc[8];
    248 		} des3;
    249 	} u;
    250 };
    251 
    252 
    253 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
    254 					  const u8 *iv, const u8 *key,
    255 					  size_t key_len)
    256 {
    257 	struct crypto_cipher *ctx;
    258 
    259 	ctx = os_zalloc(sizeof(*ctx));
    260 	if (ctx == NULL)
    261 		return NULL;
    262 
    263 	ctx->alg = alg;
    264 
    265 	switch (alg) {
    266 	case CRYPTO_CIPHER_ALG_RC4:
    267 		if (key_len > sizeof(ctx->u.rc4.key)) {
    268 			os_free(ctx);
    269 			return NULL;
    270 		}
    271 		ctx->u.rc4.keylen = key_len;
    272 		os_memcpy(ctx->u.rc4.key, key, key_len);
    273 		break;
    274 	case CRYPTO_CIPHER_ALG_AES:
    275 		if (key_len > sizeof(ctx->u.aes.cbc)) {
    276 			os_free(ctx);
    277 			return NULL;
    278 		}
    279 		ctx->u.aes.ctx_enc = aes_encrypt_init(key, key_len);
    280 		if (ctx->u.aes.ctx_enc == NULL) {
    281 			os_free(ctx);
    282 			return NULL;
    283 		}
    284 		ctx->u.aes.ctx_dec = aes_decrypt_init(key, key_len);
    285 		if (ctx->u.aes.ctx_dec == NULL) {
    286 			aes_encrypt_deinit(ctx->u.aes.ctx_enc);
    287 			os_free(ctx);
    288 			return NULL;
    289 		}
    290 		ctx->u.aes.block_size = key_len;
    291 		os_memcpy(ctx->u.aes.cbc, iv, ctx->u.aes.block_size);
    292 		break;
    293 	case CRYPTO_CIPHER_ALG_3DES:
    294 		if (key_len != 24) {
    295 			os_free(ctx);
    296 			return NULL;
    297 		}
    298 		des3_key_setup(key, &ctx->u.des3.key);
    299 		os_memcpy(ctx->u.des3.cbc, iv, 8);
    300 		break;
    301 	default:
    302 		os_free(ctx);
    303 		return NULL;
    304 	}
    305 
    306 	return ctx;
    307 }
    308 
    309 
    310 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
    311 			  u8 *crypt, size_t len)
    312 {
    313 	size_t i, j, blocks;
    314 
    315 	switch (ctx->alg) {
    316 	case CRYPTO_CIPHER_ALG_RC4:
    317 		if (plain != crypt)
    318 			os_memcpy(crypt, plain, len);
    319 		rc4_skip(ctx->u.rc4.key, ctx->u.rc4.keylen,
    320 			 ctx->u.rc4.used_bytes, crypt, len);
    321 		ctx->u.rc4.used_bytes += len;
    322 		break;
    323 	case CRYPTO_CIPHER_ALG_AES:
    324 		if (len % ctx->u.aes.block_size)
    325 			return -1;
    326 		blocks = len / ctx->u.aes.block_size;
    327 		for (i = 0; i < blocks; i++) {
    328 			for (j = 0; j < ctx->u.aes.block_size; j++)
    329 				ctx->u.aes.cbc[j] ^= plain[j];
    330 			aes_encrypt(ctx->u.aes.ctx_enc, ctx->u.aes.cbc,
    331 				    ctx->u.aes.cbc);
    332 			os_memcpy(crypt, ctx->u.aes.cbc,
    333 				  ctx->u.aes.block_size);
    334 			plain += ctx->u.aes.block_size;
    335 			crypt += ctx->u.aes.block_size;
    336 		}
    337 		break;
    338 	case CRYPTO_CIPHER_ALG_3DES:
    339 		if (len % 8)
    340 			return -1;
    341 		blocks = len / 8;
    342 		for (i = 0; i < blocks; i++) {
    343 			for (j = 0; j < 8; j++)
    344 				ctx->u.des3.cbc[j] ^= plain[j];
    345 			des3_encrypt(ctx->u.des3.cbc, &ctx->u.des3.key,
    346 				     ctx->u.des3.cbc);
    347 			os_memcpy(crypt, ctx->u.des3.cbc, 8);
    348 			plain += 8;
    349 			crypt += 8;
    350 		}
    351 		break;
    352 	default:
    353 		return -1;
    354 	}
    355 
    356 	return 0;
    357 }
    358 
    359 
    360 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
    361 			  u8 *plain, size_t len)
    362 {
    363 	size_t i, j, blocks;
    364 	u8 tmp[32];
    365 
    366 	switch (ctx->alg) {
    367 	case CRYPTO_CIPHER_ALG_RC4:
    368 		if (plain != crypt)
    369 			os_memcpy(plain, crypt, len);
    370 		rc4_skip(ctx->u.rc4.key, ctx->u.rc4.keylen,
    371 			 ctx->u.rc4.used_bytes, plain, len);
    372 		ctx->u.rc4.used_bytes += len;
    373 		break;
    374 	case CRYPTO_CIPHER_ALG_AES:
    375 		if (len % ctx->u.aes.block_size)
    376 			return -1;
    377 		blocks = len / ctx->u.aes.block_size;
    378 		for (i = 0; i < blocks; i++) {
    379 			os_memcpy(tmp, crypt, ctx->u.aes.block_size);
    380 			aes_decrypt(ctx->u.aes.ctx_dec, crypt, plain);
    381 			for (j = 0; j < ctx->u.aes.block_size; j++)
    382 				plain[j] ^= ctx->u.aes.cbc[j];
    383 			os_memcpy(ctx->u.aes.cbc, tmp, ctx->u.aes.block_size);
    384 			plain += ctx->u.aes.block_size;
    385 			crypt += ctx->u.aes.block_size;
    386 		}
    387 		break;
    388 	case CRYPTO_CIPHER_ALG_3DES:
    389 		if (len % 8)
    390 			return -1;
    391 		blocks = len / 8;
    392 		for (i = 0; i < blocks; i++) {
    393 			os_memcpy(tmp, crypt, 8);
    394 			des3_decrypt(crypt, &ctx->u.des3.key, plain);
    395 			for (j = 0; j < 8; j++)
    396 				plain[j] ^= ctx->u.des3.cbc[j];
    397 			os_memcpy(ctx->u.des3.cbc, tmp, 8);
    398 			plain += 8;
    399 			crypt += 8;
    400 		}
    401 		break;
    402 	default:
    403 		return -1;
    404 	}
    405 
    406 	return 0;
    407 }
    408 
    409 
    410 void crypto_cipher_deinit(struct crypto_cipher *ctx)
    411 {
    412 	switch (ctx->alg) {
    413 	case CRYPTO_CIPHER_ALG_AES:
    414 		aes_encrypt_deinit(ctx->u.aes.ctx_enc);
    415 		aes_decrypt_deinit(ctx->u.aes.ctx_dec);
    416 		break;
    417 	case CRYPTO_CIPHER_ALG_3DES:
    418 		break;
    419 	default:
    420 		break;
    421 	}
    422 	os_free(ctx);
    423 }
    424 
    425 
    426 /* Dummy structures; these are just typecast to struct crypto_rsa_key */
    427 struct crypto_public_key;
    428 struct crypto_private_key;
    429 
    430 
    431 struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len)
    432 {
    433 	return (struct crypto_public_key *)
    434 		crypto_rsa_import_public_key(key, len);
    435 }
    436 
    437 
    438 #ifdef EAP_TLS_FUNCS
    439 static struct crypto_private_key *
    440 crypto_pkcs8_key_import(const u8 *buf, size_t len)
    441 {
    442 	struct asn1_hdr hdr;
    443 	const u8 *pos, *end;
    444 	struct bignum *zero;
    445 	struct asn1_oid oid;
    446 	char obuf[80];
    447 
    448 	/* PKCS #8, Chapter 6 */
    449 
    450 	/* PrivateKeyInfo ::= SEQUENCE */
    451 	if (asn1_get_next(buf, len, &hdr) < 0 ||
    452 	    hdr.class != ASN1_CLASS_UNIVERSAL ||
    453 	    hdr.tag != ASN1_TAG_SEQUENCE) {
    454 		wpa_printf(MSG_DEBUG, "PKCS #8: Does not start with PKCS #8 "
    455 			   "header (SEQUENCE); assume PKCS #8 not used");
    456 		return NULL;
    457 	}
    458 	pos = hdr.payload;
    459 	end = pos + hdr.length;
    460 
    461 	/* version Version (Version ::= INTEGER) */
    462 	if (asn1_get_next(pos, end - pos, &hdr) < 0 ||
    463 	    hdr.class != ASN1_CLASS_UNIVERSAL || hdr.tag != ASN1_TAG_INTEGER) {
    464 		wpa_printf(MSG_DEBUG, "PKCS #8: Expected INTEGER - found "
    465 			   "class %d tag 0x%x; assume PKCS #8 not used",
    466 			   hdr.class, hdr.tag);
    467 		return NULL;
    468 	}
    469 
    470 	zero = bignum_init();
    471 	if (zero == NULL)
    472 		return NULL;
    473 
    474 	if (bignum_set_unsigned_bin(zero, hdr.payload, hdr.length) < 0) {
    475 		wpa_printf(MSG_DEBUG, "PKCS #8: Failed to parse INTEGER");
    476 		bignum_deinit(zero);
    477 		return NULL;
    478 	}
    479 	pos = hdr.payload + hdr.length;
    480 
    481 	if (bignum_cmp_d(zero, 0) != 0) {
    482 		wpa_printf(MSG_DEBUG, "PKCS #8: Expected zero INTEGER in the "
    483 			   "beginning of private key; not found; assume "
    484 			   "PKCS #8 not used");
    485 		bignum_deinit(zero);
    486 		return NULL;
    487 	}
    488 	bignum_deinit(zero);
    489 
    490 	/* privateKeyAlgorithm PrivateKeyAlgorithmIdentifier
    491 	 * (PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier) */
    492 	if (asn1_get_next(pos, len, &hdr) < 0 ||
    493 	    hdr.class != ASN1_CLASS_UNIVERSAL ||
    494 	    hdr.tag != ASN1_TAG_SEQUENCE) {
    495 		wpa_printf(MSG_DEBUG, "PKCS #8: Expected SEQUENCE "
    496 			   "(AlgorithmIdentifier) - found class %d tag 0x%x; "
    497 			   "assume PKCS #8 not used",
    498 			   hdr.class, hdr.tag);
    499 		return NULL;
    500 	}
    501 
    502 	if (asn1_get_oid(hdr.payload, hdr.length, &oid, &pos)) {
    503 		wpa_printf(MSG_DEBUG, "PKCS #8: Failed to parse OID "
    504 			   "(algorithm); assume PKCS #8 not used");
    505 		return NULL;
    506 	}
    507 
    508 	asn1_oid_to_str(&oid, obuf, sizeof(obuf));
    509 	wpa_printf(MSG_DEBUG, "PKCS #8: algorithm=%s", obuf);
    510 
    511 	if (oid.len != 7 ||
    512 	    oid.oid[0] != 1 /* iso */ ||
    513 	    oid.oid[1] != 2 /* member-body */ ||
    514 	    oid.oid[2] != 840 /* us */ ||
    515 	    oid.oid[3] != 113549 /* rsadsi */ ||
    516 	    oid.oid[4] != 1 /* pkcs */ ||
    517 	    oid.oid[5] != 1 /* pkcs-1 */ ||
    518 	    oid.oid[6] != 1 /* rsaEncryption */) {
    519 		wpa_printf(MSG_DEBUG, "PKCS #8: Unsupported private key "
    520 			   "algorithm %s", obuf);
    521 		return NULL;
    522 	}
    523 
    524 	pos = hdr.payload + hdr.length;
    525 
    526 	/* privateKey PrivateKey (PrivateKey ::= OCTET STRING) */
    527 	if (asn1_get_next(pos, end - pos, &hdr) < 0 ||
    528 	    hdr.class != ASN1_CLASS_UNIVERSAL ||
    529 	    hdr.tag != ASN1_TAG_OCTETSTRING) {
    530 		wpa_printf(MSG_DEBUG, "PKCS #8: Expected OCTETSTRING "
    531 			   "(privateKey) - found class %d tag 0x%x",
    532 			   hdr.class, hdr.tag);
    533 		return NULL;
    534 	}
    535 	wpa_printf(MSG_DEBUG, "PKCS #8: Try to parse RSAPrivateKey");
    536 
    537 	return (struct crypto_private_key *)
    538 		crypto_rsa_import_private_key(hdr.payload, hdr.length);
    539 }
    540 #endif /* EAP_TLS_FUNCS */
    541 
    542 
    543 struct crypto_private_key * crypto_private_key_import(const u8 *key,
    544 						      size_t len)
    545 {
    546 	struct crypto_private_key *res;
    547 
    548 	/* First, check for possible PKCS #8 encoding */
    549 	res = crypto_pkcs8_key_import(key, len);
    550 	if (res)
    551 		return res;
    552 
    553 	/* Not PKCS#8, so try to import PKCS #1 encoded RSA private key */
    554 	wpa_printf(MSG_DEBUG, "Trying to parse PKCS #1 encoded RSA private "
    555 		   "key");
    556 	return (struct crypto_private_key *)
    557 		crypto_rsa_import_private_key(key, len);
    558 }
    559 
    560 
    561 struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
    562 						       size_t len)
    563 {
    564 	/* No X.509 support in crypto_internal.c */
    565 	return NULL;
    566 }
    567 
    568 
    569 static int pkcs1_generate_encryption_block(u8 block_type, size_t modlen,
    570 					   const u8 *in, size_t inlen,
    571 					   u8 *out, size_t *outlen)
    572 {
    573 	size_t ps_len;
    574 	u8 *pos;
    575 
    576 	/*
    577 	 * PKCS #1 v1.5, 8.1:
    578 	 *
    579 	 * EB = 00 || BT || PS || 00 || D
    580 	 * BT = 00 or 01 for private-key operation; 02 for public-key operation
    581 	 * PS = k-3-||D||; at least eight octets
    582 	 * (BT=0: PS=0x00, BT=1: PS=0xff, BT=2: PS=pseudorandom non-zero)
    583 	 * k = length of modulus in octets (modlen)
    584 	 */
    585 
    586 	if (modlen < 12 || modlen > *outlen || inlen > modlen - 11) {
    587 		wpa_printf(MSG_DEBUG, "PKCS #1: %s - Invalid buffer "
    588 			   "lengths (modlen=%lu outlen=%lu inlen=%lu)",
    589 			   __func__, (unsigned long) modlen,
    590 			   (unsigned long) *outlen,
    591 			   (unsigned long) inlen);
    592 		return -1;
    593 	}
    594 
    595 	pos = out;
    596 	*pos++ = 0x00;
    597 	*pos++ = block_type; /* BT */
    598 	ps_len = modlen - inlen - 3;
    599 	switch (block_type) {
    600 	case 0:
    601 		os_memset(pos, 0x00, ps_len);
    602 		pos += ps_len;
    603 		break;
    604 	case 1:
    605 		os_memset(pos, 0xff, ps_len);
    606 		pos += ps_len;
    607 		break;
    608 	case 2:
    609 		if (os_get_random(pos, ps_len) < 0) {
    610 			wpa_printf(MSG_DEBUG, "PKCS #1: %s - Failed to get "
    611 				   "random data for PS", __func__);
    612 			return -1;
    613 		}
    614 		while (ps_len--) {
    615 			if (*pos == 0x00)
    616 				*pos = 0x01;
    617 			pos++;
    618 		}
    619 		break;
    620 	default:
    621 		wpa_printf(MSG_DEBUG, "PKCS #1: %s - Unsupported block type "
    622 			   "%d", __func__, block_type);
    623 		return -1;
    624 	}
    625 	*pos++ = 0x00;
    626 	os_memcpy(pos, in, inlen); /* D */
    627 
    628 	return 0;
    629 }
    630 
    631 
    632 static int crypto_rsa_encrypt_pkcs1(int block_type, struct crypto_rsa_key *key,
    633 				    int use_private,
    634 				    const u8 *in, size_t inlen,
    635 				    u8 *out, size_t *outlen)
    636 {
    637 	size_t modlen;
    638 
    639 	modlen = crypto_rsa_get_modulus_len(key);
    640 
    641 	if (pkcs1_generate_encryption_block(block_type, modlen, in, inlen,
    642 					    out, outlen) < 0)
    643 		return -1;
    644 
    645 	return crypto_rsa_exptmod(out, modlen, out, outlen, key, use_private);
    646 }
    647 
    648 
    649 int crypto_public_key_encrypt_pkcs1_v15(struct crypto_public_key *key,
    650 					const u8 *in, size_t inlen,
    651 					u8 *out, size_t *outlen)
    652 {
    653 	return crypto_rsa_encrypt_pkcs1(2, (struct crypto_rsa_key *) key,
    654 					0, in, inlen, out, outlen);
    655 }
    656 
    657 
    658 int crypto_private_key_decrypt_pkcs1_v15(struct crypto_private_key *key,
    659 					 const u8 *in, size_t inlen,
    660 					 u8 *out, size_t *outlen)
    661 {
    662 	struct crypto_rsa_key *rkey = (struct crypto_rsa_key *) key;
    663 	int res;
    664 	u8 *pos, *end;
    665 
    666 	res = crypto_rsa_exptmod(in, inlen, out, outlen, rkey, 1);
    667 	if (res)
    668 		return res;
    669 
    670 	if (*outlen < 2 || out[0] != 0 || out[1] != 2)
    671 		return -1;
    672 
    673 	/* Skip PS (pseudorandom non-zero octets) */
    674 	pos = out + 2;
    675 	end = out + *outlen;
    676 	while (*pos && pos < end)
    677 		pos++;
    678 	if (pos == end)
    679 		return -1;
    680 	pos++;
    681 
    682 	*outlen -= pos - out;
    683 
    684 	/* Strip PKCS #1 header */
    685 	os_memmove(out, pos, *outlen);
    686 
    687 	return 0;
    688 }
    689 
    690 
    691 int crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
    692 				  const u8 *in, size_t inlen,
    693 				  u8 *out, size_t *outlen)
    694 {
    695 	return crypto_rsa_encrypt_pkcs1(1, (struct crypto_rsa_key *) key,
    696 					1, in, inlen, out, outlen);
    697 }
    698 
    699 
    700 void crypto_public_key_free(struct crypto_public_key *key)
    701 {
    702 	crypto_rsa_free((struct crypto_rsa_key *) key);
    703 }
    704 
    705 
    706 void crypto_private_key_free(struct crypto_private_key *key)
    707 {
    708 	crypto_rsa_free((struct crypto_rsa_key *) key);
    709 }
    710 
    711 
    712 int crypto_public_key_decrypt_pkcs1(struct crypto_public_key *key,
    713 				    const u8 *crypt, size_t crypt_len,
    714 				    u8 *plain, size_t *plain_len)
    715 {
    716 	size_t len;
    717 	u8 *pos;
    718 
    719 	len = *plain_len;
    720 	if (crypto_rsa_exptmod(crypt, crypt_len, plain, &len,
    721 			       (struct crypto_rsa_key *) key, 0) < 0)
    722 		return -1;
    723 
    724 	/*
    725 	 * PKCS #1 v1.5, 8.1:
    726 	 *
    727 	 * EB = 00 || BT || PS || 00 || D
    728 	 * BT = 00 or 01
    729 	 * PS = k-3-||D|| times (00 if BT=00) or (FF if BT=01)
    730 	 * k = length of modulus in octets
    731 	 */
    732 
    733 	if (len < 3 + 8 + 16 /* min hash len */ ||
    734 	    plain[0] != 0x00 || (plain[1] != 0x00 && plain[1] != 0x01)) {
    735 		wpa_printf(MSG_INFO, "LibTomCrypt: Invalid signature EB "
    736 			   "structure");
    737 		return -1;
    738 	}
    739 
    740 	pos = plain + 3;
    741 	if (plain[1] == 0x00) {
    742 		/* BT = 00 */
    743 		if (plain[2] != 0x00) {
    744 			wpa_printf(MSG_INFO, "LibTomCrypt: Invalid signature "
    745 				   "PS (BT=00)");
    746 			return -1;
    747 		}
    748 		while (pos + 1 < plain + len && *pos == 0x00 && pos[1] == 0x00)
    749 			pos++;
    750 	} else {
    751 		/* BT = 01 */
    752 		if (plain[2] != 0xff) {
    753 			wpa_printf(MSG_INFO, "LibTomCrypt: Invalid signature "
    754 				   "PS (BT=01)");
    755 			return -1;
    756 		}
    757 		while (pos < plain + len && *pos == 0xff)
    758 			pos++;
    759 	}
    760 
    761 	if (pos - plain - 2 < 8) {
    762 		/* PKCS #1 v1.5, 8.1: At least eight octets long PS */
    763 		wpa_printf(MSG_INFO, "LibTomCrypt: Too short signature "
    764 			   "padding");
    765 		return -1;
    766 	}
    767 
    768 	if (pos + 16 /* min hash len */ >= plain + len || *pos != 0x00) {
    769 		wpa_printf(MSG_INFO, "LibTomCrypt: Invalid signature EB "
    770 			   "structure (2)");
    771 		return -1;
    772 	}
    773 	pos++;
    774 	len -= pos - plain;
    775 
    776 	/* Strip PKCS #1 header */
    777 	os_memmove(plain, pos, len);
    778 	*plain_len = len;
    779 
    780 	return 0;
    781 }
    782 
    783 
    784 int crypto_global_init(void)
    785 {
    786 	return 0;
    787 }
    788 
    789 
    790 void crypto_global_deinit(void)
    791 {
    792 }
    793 #endif /* CONFIG_TLS_INTERNAL */
    794 
    795 
    796 #if defined(EAP_FAST) || defined(CONFIG_WPS)
    797 
    798 int crypto_mod_exp(const u8 *base, size_t base_len,
    799 		   const u8 *power, size_t power_len,
    800 		   const u8 *modulus, size_t modulus_len,
    801 		   u8 *result, size_t *result_len)
    802 {
    803 	struct bignum *bn_base, *bn_exp, *bn_modulus, *bn_result;
    804 	int ret = -1;
    805 
    806 	bn_base = bignum_init();
    807 	bn_exp = bignum_init();
    808 	bn_modulus = bignum_init();
    809 	bn_result = bignum_init();
    810 
    811 	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
    812 	    bn_result == NULL)
    813 		goto error;
    814 
    815 	if (bignum_set_unsigned_bin(bn_base, base, base_len) < 0 ||
    816 	    bignum_set_unsigned_bin(bn_exp, power, power_len) < 0 ||
    817 	    bignum_set_unsigned_bin(bn_modulus, modulus, modulus_len) < 0)
    818 		goto error;
    819 
    820 	if (bignum_exptmod(bn_base, bn_exp, bn_modulus, bn_result) < 0)
    821 		goto error;
    822 
    823 	ret = bignum_get_unsigned_bin(bn_result, result, result_len);
    824 
    825 error:
    826 	bignum_deinit(bn_base);
    827 	bignum_deinit(bn_exp);
    828 	bignum_deinit(bn_modulus);
    829 	bignum_deinit(bn_result);
    830 	return ret;
    831 }
    832 
    833 #endif /* EAP_FAST || CONFIG_WPS */
    834 
    835 
    836 #endif /* CONFIG_CRYPTO_INTERNAL */
    837