Home | History | Annotate | Download | only in crypto
      1 /*
      2  * WPA Supplicant / wrapper functions for libcrypto
      3  * Copyright (c) 2004-2012, Jouni Malinen <j (at) w1.fi>
      4  *
      5  * This software may be distributed under the terms of the BSD license.
      6  * See README for more details.
      7  */
      8 
      9 #include "includes.h"
     10 #include <openssl/opensslv.h>
     11 #include <openssl/err.h>
     12 #include <openssl/des.h>
     13 #include <openssl/aes.h>
     14 #include <openssl/bn.h>
     15 #include <openssl/evp.h>
     16 #include <openssl/dh.h>
     17 #include <openssl/hmac.h>
     18 #include <openssl/rand.h>
     19 #ifdef CONFIG_OPENSSL_CMAC
     20 #include <openssl/cmac.h>
     21 #endif /* CONFIG_OPENSSL_CMAC */
     22 
     23 #include "common.h"
     24 #include "wpabuf.h"
     25 #include "dh_group5.h"
     26 #include "crypto.h"
     27 
     28 #if OPENSSL_VERSION_NUMBER < 0x00907000
     29 #define DES_key_schedule des_key_schedule
     30 #define DES_cblock des_cblock
     31 #define DES_set_key(key, schedule) des_set_key((key), *(schedule))
     32 #define DES_ecb_encrypt(input, output, ks, enc) \
     33 	des_ecb_encrypt((input), (output), *(ks), (enc))
     34 #endif /* openssl < 0.9.7 */
     35 
     36 static BIGNUM * get_group5_prime(void)
     37 {
     38 #if OPENSSL_VERSION_NUMBER < 0x00908000
     39 	static const unsigned char RFC3526_PRIME_1536[] = {
     40 		0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
     41 		0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
     42 		0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
     43 		0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
     44 		0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
     45 		0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
     46 		0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
     47 		0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
     48 		0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
     49 		0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
     50 		0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
     51 		0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
     52 		0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
     53 		0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
     54 		0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
     55 		0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
     56 	};
     57         return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
     58 #else /* openssl < 0.9.8 */
     59 	return get_rfc3526_prime_1536(NULL);
     60 #endif /* openssl < 0.9.8 */
     61 }
     62 
     63 #if OPENSSL_VERSION_NUMBER < 0x00908000
     64 #ifndef OPENSSL_NO_SHA256
     65 #ifndef OPENSSL_FIPS
     66 #define NO_SHA256_WRAPPER
     67 #endif
     68 #endif
     69 
     70 #endif /* openssl < 0.9.8 */
     71 
     72 #ifdef OPENSSL_NO_SHA256
     73 #define NO_SHA256_WRAPPER
     74 #endif
     75 
     76 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
     77 				 const u8 *addr[], const size_t *len, u8 *mac)
     78 {
     79 	EVP_MD_CTX ctx;
     80 	size_t i;
     81 	unsigned int mac_len;
     82 
     83 	EVP_MD_CTX_init(&ctx);
     84 	if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
     85 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
     86 			   ERR_error_string(ERR_get_error(), NULL));
     87 		return -1;
     88 	}
     89 	for (i = 0; i < num_elem; i++) {
     90 		if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
     91 			wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
     92 				   "failed: %s",
     93 				   ERR_error_string(ERR_get_error(), NULL));
     94 			return -1;
     95 		}
     96 	}
     97 	if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
     98 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
     99 			   ERR_error_string(ERR_get_error(), NULL));
    100 		return -1;
    101 	}
    102 
    103 	return 0;
    104 }
    105 
    106 
    107 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
    108 {
    109 	return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
    110 }
    111 
    112 
    113 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
    114 {
    115 	u8 pkey[8], next, tmp;
    116 	int i;
    117 	DES_key_schedule ks;
    118 
    119 	/* Add parity bits to the key */
    120 	next = 0;
    121 	for (i = 0; i < 7; i++) {
    122 		tmp = key[i];
    123 		pkey[i] = (tmp >> i) | next | 1;
    124 		next = tmp << (7 - i);
    125 	}
    126 	pkey[i] = next | 1;
    127 
    128 	DES_set_key(&pkey, &ks);
    129 	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
    130 			DES_ENCRYPT);
    131 }
    132 
    133 
    134 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
    135 	     u8 *data, size_t data_len)
    136 {
    137 #ifdef OPENSSL_NO_RC4
    138 	return -1;
    139 #else /* OPENSSL_NO_RC4 */
    140 	EVP_CIPHER_CTX ctx;
    141 	int outl;
    142 	int res = -1;
    143 	unsigned char skip_buf[16];
    144 
    145 	EVP_CIPHER_CTX_init(&ctx);
    146 	if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
    147 	    !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
    148 	    !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
    149 	    !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
    150 		goto out;
    151 
    152 	while (skip >= sizeof(skip_buf)) {
    153 		size_t len = skip;
    154 		if (len > sizeof(skip_buf))
    155 			len = sizeof(skip_buf);
    156 		if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
    157 			goto out;
    158 		skip -= len;
    159 	}
    160 
    161 	if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
    162 		res = 0;
    163 
    164 out:
    165 	EVP_CIPHER_CTX_cleanup(&ctx);
    166 	return res;
    167 #endif /* OPENSSL_NO_RC4 */
    168 }
    169 
    170 
    171 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
    172 {
    173 	return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
    174 }
    175 
    176 
    177 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
    178 {
    179 	return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
    180 }
    181 
    182 
    183 #ifndef NO_SHA256_WRAPPER
    184 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
    185 		  u8 *mac)
    186 {
    187 	return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
    188 }
    189 #endif /* NO_SHA256_WRAPPER */
    190 
    191 
    192 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
    193 {
    194 	switch (keylen) {
    195 	case 16:
    196 		return EVP_aes_128_ecb();
    197 	case 24:
    198 		return EVP_aes_192_ecb();
    199 	case 32:
    200 		return EVP_aes_256_ecb();
    201 	}
    202 
    203 	return NULL;
    204 }
    205 
    206 
    207 void * aes_encrypt_init(const u8 *key, size_t len)
    208 {
    209 	EVP_CIPHER_CTX *ctx;
    210 	const EVP_CIPHER *type;
    211 
    212 	type = aes_get_evp_cipher(len);
    213 	if (type == NULL)
    214 		return NULL;
    215 
    216 	ctx = os_malloc(sizeof(*ctx));
    217 	if (ctx == NULL)
    218 		return NULL;
    219 	EVP_CIPHER_CTX_init(ctx);
    220 	if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
    221 		os_free(ctx);
    222 		return NULL;
    223 	}
    224 	EVP_CIPHER_CTX_set_padding(ctx, 0);
    225 	return ctx;
    226 }
    227 
    228 
    229 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
    230 {
    231 	EVP_CIPHER_CTX *c = ctx;
    232 	int clen = 16;
    233 	if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
    234 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
    235 			   ERR_error_string(ERR_get_error(), NULL));
    236 	}
    237 }
    238 
    239 
    240 void aes_encrypt_deinit(void *ctx)
    241 {
    242 	EVP_CIPHER_CTX *c = ctx;
    243 	u8 buf[16];
    244 	int len = sizeof(buf);
    245 	if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
    246 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
    247 			   "%s", ERR_error_string(ERR_get_error(), NULL));
    248 	}
    249 	if (len != 0) {
    250 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
    251 			   "in AES encrypt", len);
    252 	}
    253 	EVP_CIPHER_CTX_cleanup(c);
    254 	os_free(c);
    255 }
    256 
    257 
    258 void * aes_decrypt_init(const u8 *key, size_t len)
    259 {
    260 	EVP_CIPHER_CTX *ctx;
    261 	const EVP_CIPHER *type;
    262 
    263 	type = aes_get_evp_cipher(len);
    264 	if (type == NULL)
    265 		return NULL;
    266 
    267 	ctx = os_malloc(sizeof(*ctx));
    268 	if (ctx == NULL)
    269 		return NULL;
    270 	EVP_CIPHER_CTX_init(ctx);
    271 	if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
    272 		os_free(ctx);
    273 		return NULL;
    274 	}
    275 	EVP_CIPHER_CTX_set_padding(ctx, 0);
    276 	return ctx;
    277 }
    278 
    279 
    280 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
    281 {
    282 	EVP_CIPHER_CTX *c = ctx;
    283 	int plen = 16;
    284 	if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
    285 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
    286 			   ERR_error_string(ERR_get_error(), NULL));
    287 	}
    288 }
    289 
    290 
    291 void aes_decrypt_deinit(void *ctx)
    292 {
    293 	EVP_CIPHER_CTX *c = ctx;
    294 	u8 buf[16];
    295 	int len = sizeof(buf);
    296 	if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
    297 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
    298 			   "%s", ERR_error_string(ERR_get_error(), NULL));
    299 	}
    300 	if (len != 0) {
    301 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
    302 			   "in AES decrypt", len);
    303 	}
    304 	EVP_CIPHER_CTX_cleanup(c);
    305 	os_free(ctx);
    306 }
    307 
    308 
    309 int crypto_mod_exp(const u8 *base, size_t base_len,
    310 		   const u8 *power, size_t power_len,
    311 		   const u8 *modulus, size_t modulus_len,
    312 		   u8 *result, size_t *result_len)
    313 {
    314 	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
    315 	int ret = -1;
    316 	BN_CTX *ctx;
    317 
    318 	ctx = BN_CTX_new();
    319 	if (ctx == NULL)
    320 		return -1;
    321 
    322 	bn_base = BN_bin2bn(base, base_len, NULL);
    323 	bn_exp = BN_bin2bn(power, power_len, NULL);
    324 	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
    325 	bn_result = BN_new();
    326 
    327 	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
    328 	    bn_result == NULL)
    329 		goto error;
    330 
    331 	if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
    332 		goto error;
    333 
    334 	*result_len = BN_bn2bin(bn_result, result);
    335 	ret = 0;
    336 
    337 error:
    338 	BN_free(bn_base);
    339 	BN_free(bn_exp);
    340 	BN_free(bn_modulus);
    341 	BN_free(bn_result);
    342 	BN_CTX_free(ctx);
    343 	return ret;
    344 }
    345 
    346 
    347 struct crypto_cipher {
    348 	EVP_CIPHER_CTX enc;
    349 	EVP_CIPHER_CTX dec;
    350 };
    351 
    352 
    353 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
    354 					  const u8 *iv, const u8 *key,
    355 					  size_t key_len)
    356 {
    357 	struct crypto_cipher *ctx;
    358 	const EVP_CIPHER *cipher;
    359 
    360 	ctx = os_zalloc(sizeof(*ctx));
    361 	if (ctx == NULL)
    362 		return NULL;
    363 
    364 	switch (alg) {
    365 #ifndef OPENSSL_NO_RC4
    366 	case CRYPTO_CIPHER_ALG_RC4:
    367 		cipher = EVP_rc4();
    368 		break;
    369 #endif /* OPENSSL_NO_RC4 */
    370 #ifndef OPENSSL_NO_AES
    371 	case CRYPTO_CIPHER_ALG_AES:
    372 		switch (key_len) {
    373 		case 16:
    374 			cipher = EVP_aes_128_cbc();
    375 			break;
    376 		case 24:
    377 			cipher = EVP_aes_192_cbc();
    378 			break;
    379 		case 32:
    380 			cipher = EVP_aes_256_cbc();
    381 			break;
    382 		default:
    383 			os_free(ctx);
    384 			return NULL;
    385 		}
    386 		break;
    387 #endif /* OPENSSL_NO_AES */
    388 #ifndef OPENSSL_NO_DES
    389 	case CRYPTO_CIPHER_ALG_3DES:
    390 		cipher = EVP_des_ede3_cbc();
    391 		break;
    392 	case CRYPTO_CIPHER_ALG_DES:
    393 		cipher = EVP_des_cbc();
    394 		break;
    395 #endif /* OPENSSL_NO_DES */
    396 #ifndef OPENSSL_NO_RC2
    397 	case CRYPTO_CIPHER_ALG_RC2:
    398 		cipher = EVP_rc2_ecb();
    399 		break;
    400 #endif /* OPENSSL_NO_RC2 */
    401 	default:
    402 		os_free(ctx);
    403 		return NULL;
    404 	}
    405 
    406 	EVP_CIPHER_CTX_init(&ctx->enc);
    407 	EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
    408 	if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
    409 	    !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
    410 	    !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
    411 		EVP_CIPHER_CTX_cleanup(&ctx->enc);
    412 		os_free(ctx);
    413 		return NULL;
    414 	}
    415 
    416 	EVP_CIPHER_CTX_init(&ctx->dec);
    417 	EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
    418 	if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
    419 	    !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
    420 	    !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
    421 		EVP_CIPHER_CTX_cleanup(&ctx->enc);
    422 		EVP_CIPHER_CTX_cleanup(&ctx->dec);
    423 		os_free(ctx);
    424 		return NULL;
    425 	}
    426 
    427 	return ctx;
    428 }
    429 
    430 
    431 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
    432 			  u8 *crypt, size_t len)
    433 {
    434 	int outl;
    435 	if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
    436 		return -1;
    437 	return 0;
    438 }
    439 
    440 
    441 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
    442 			  u8 *plain, size_t len)
    443 {
    444 	int outl;
    445 	outl = len;
    446 	if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
    447 		return -1;
    448 	return 0;
    449 }
    450 
    451 
    452 void crypto_cipher_deinit(struct crypto_cipher *ctx)
    453 {
    454 	EVP_CIPHER_CTX_cleanup(&ctx->enc);
    455 	EVP_CIPHER_CTX_cleanup(&ctx->dec);
    456 	os_free(ctx);
    457 }
    458 
    459 
    460 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
    461 {
    462 	DH *dh;
    463 	struct wpabuf *pubkey = NULL, *privkey = NULL;
    464 	size_t publen, privlen;
    465 
    466 	*priv = NULL;
    467 	*publ = NULL;
    468 
    469 	dh = DH_new();
    470 	if (dh == NULL)
    471 		return NULL;
    472 
    473 	dh->g = BN_new();
    474 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
    475 		goto err;
    476 
    477 	dh->p = get_group5_prime();
    478 	if (dh->p == NULL)
    479 		goto err;
    480 
    481 	if (DH_generate_key(dh) != 1)
    482 		goto err;
    483 
    484 	publen = BN_num_bytes(dh->pub_key);
    485 	pubkey = wpabuf_alloc(publen);
    486 	if (pubkey == NULL)
    487 		goto err;
    488 	privlen = BN_num_bytes(dh->priv_key);
    489 	privkey = wpabuf_alloc(privlen);
    490 	if (privkey == NULL)
    491 		goto err;
    492 
    493 	BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
    494 	BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
    495 
    496 	*priv = privkey;
    497 	*publ = pubkey;
    498 	return dh;
    499 
    500 err:
    501 	wpabuf_free(pubkey);
    502 	wpabuf_free(privkey);
    503 	DH_free(dh);
    504 	return NULL;
    505 }
    506 
    507 
    508 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
    509 {
    510 	DH *dh;
    511 
    512 	dh = DH_new();
    513 	if (dh == NULL)
    514 		return NULL;
    515 
    516 	dh->g = BN_new();
    517 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
    518 		goto err;
    519 
    520 	dh->p = get_group5_prime();
    521 	if (dh->p == NULL)
    522 		goto err;
    523 
    524 	dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
    525 	if (dh->priv_key == NULL)
    526 		goto err;
    527 
    528 	dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
    529 	if (dh->pub_key == NULL)
    530 		goto err;
    531 
    532 	if (DH_generate_key(dh) != 1)
    533 		goto err;
    534 
    535 	return dh;
    536 
    537 err:
    538 	DH_free(dh);
    539 	return NULL;
    540 }
    541 
    542 
    543 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
    544 				  const struct wpabuf *own_private)
    545 {
    546 	BIGNUM *pub_key;
    547 	struct wpabuf *res = NULL;
    548 	size_t rlen;
    549 	DH *dh = ctx;
    550 	int keylen;
    551 
    552 	if (ctx == NULL)
    553 		return NULL;
    554 
    555 	pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
    556 			    NULL);
    557 	if (pub_key == NULL)
    558 		return NULL;
    559 
    560 	rlen = DH_size(dh);
    561 	res = wpabuf_alloc(rlen);
    562 	if (res == NULL)
    563 		goto err;
    564 
    565 	keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
    566 	if (keylen < 0)
    567 		goto err;
    568 	wpabuf_put(res, keylen);
    569 	BN_free(pub_key);
    570 
    571 	return res;
    572 
    573 err:
    574 	BN_free(pub_key);
    575 	wpabuf_free(res);
    576 	return NULL;
    577 }
    578 
    579 
    580 void dh5_free(void *ctx)
    581 {
    582 	DH *dh;
    583 	if (ctx == NULL)
    584 		return;
    585 	dh = ctx;
    586 	DH_free(dh);
    587 }
    588 
    589 
    590 struct crypto_hash {
    591 	HMAC_CTX ctx;
    592 };
    593 
    594 
    595 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
    596 				      size_t key_len)
    597 {
    598 	struct crypto_hash *ctx;
    599 	const EVP_MD *md;
    600 
    601 	switch (alg) {
    602 #ifndef OPENSSL_NO_MD5
    603 	case CRYPTO_HASH_ALG_HMAC_MD5:
    604 		md = EVP_md5();
    605 		break;
    606 #endif /* OPENSSL_NO_MD5 */
    607 #ifndef OPENSSL_NO_SHA
    608 	case CRYPTO_HASH_ALG_HMAC_SHA1:
    609 		md = EVP_sha1();
    610 		break;
    611 #endif /* OPENSSL_NO_SHA */
    612 #ifndef OPENSSL_NO_SHA256
    613 #ifdef CONFIG_SHA256
    614 	case CRYPTO_HASH_ALG_HMAC_SHA256:
    615 		md = EVP_sha256();
    616 		break;
    617 #endif /* CONFIG_SHA256 */
    618 #endif /* OPENSSL_NO_SHA256 */
    619 	default:
    620 		return NULL;
    621 	}
    622 
    623 	ctx = os_zalloc(sizeof(*ctx));
    624 	if (ctx == NULL)
    625 		return NULL;
    626 	HMAC_CTX_init(&ctx->ctx);
    627 
    628 #if OPENSSL_VERSION_NUMBER < 0x00909000
    629 	HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
    630 #else /* openssl < 0.9.9 */
    631 	if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
    632 		os_free(ctx);
    633 		return NULL;
    634 	}
    635 #endif /* openssl < 0.9.9 */
    636 
    637 	return ctx;
    638 }
    639 
    640 
    641 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
    642 {
    643 	if (ctx == NULL)
    644 		return;
    645 	HMAC_Update(&ctx->ctx, data, len);
    646 }
    647 
    648 
    649 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
    650 {
    651 	unsigned int mdlen;
    652 	int res;
    653 
    654 	if (ctx == NULL)
    655 		return -2;
    656 
    657 	if (mac == NULL || len == NULL) {
    658 		os_free(ctx);
    659 		return 0;
    660 	}
    661 
    662 	mdlen = *len;
    663 #if OPENSSL_VERSION_NUMBER < 0x00909000
    664 	HMAC_Final(&ctx->ctx, mac, &mdlen);
    665 	res = 1;
    666 #else /* openssl < 0.9.9 */
    667 	res = HMAC_Final(&ctx->ctx, mac, &mdlen);
    668 #endif /* openssl < 0.9.9 */
    669 	HMAC_CTX_cleanup(&ctx->ctx);
    670 	os_free(ctx);
    671 
    672 	if (res == 1) {
    673 		*len = mdlen;
    674 		return 0;
    675 	}
    676 
    677 	return -1;
    678 }
    679 
    680 
    681 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
    682 		int iterations, u8 *buf, size_t buflen)
    683 {
    684 #if OPENSSL_VERSION_NUMBER < 0x00908000
    685 	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase),
    686 				   (unsigned char *) ssid,
    687 				   ssid_len, 4096, buflen, buf) != 1)
    688 		return -1;
    689 #else /* openssl < 0.9.8 */
    690 	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
    691 				   ssid_len, 4096, buflen, buf) != 1)
    692 		return -1;
    693 #endif /* openssl < 0.9.8 */
    694 	return 0;
    695 }
    696 
    697 
    698 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
    699 		     const u8 *addr[], const size_t *len, u8 *mac)
    700 {
    701 	HMAC_CTX ctx;
    702 	size_t i;
    703 	unsigned int mdlen;
    704 	int res;
    705 
    706 	HMAC_CTX_init(&ctx);
    707 #if OPENSSL_VERSION_NUMBER < 0x00909000
    708 	HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL);
    709 #else /* openssl < 0.9.9 */
    710 	if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL) != 1)
    711 		return -1;
    712 #endif /* openssl < 0.9.9 */
    713 
    714 	for (i = 0; i < num_elem; i++)
    715 		HMAC_Update(&ctx, addr[i], len[i]);
    716 
    717 	mdlen = 20;
    718 #if OPENSSL_VERSION_NUMBER < 0x00909000
    719 	HMAC_Final(&ctx, mac, &mdlen);
    720 	res = 1;
    721 #else /* openssl < 0.9.9 */
    722 	res = HMAC_Final(&ctx, mac, &mdlen);
    723 #endif /* openssl < 0.9.9 */
    724 	HMAC_CTX_cleanup(&ctx);
    725 
    726 	return res == 1 ? 0 : -1;
    727 }
    728 
    729 
    730 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
    731 	       u8 *mac)
    732 {
    733 	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
    734 }
    735 
    736 
    737 #ifdef CONFIG_SHA256
    738 
    739 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
    740 		       const u8 *addr[], const size_t *len, u8 *mac)
    741 {
    742 	HMAC_CTX ctx;
    743 	size_t i;
    744 	unsigned int mdlen;
    745 	int res;
    746 
    747 	HMAC_CTX_init(&ctx);
    748 #if OPENSSL_VERSION_NUMBER < 0x00909000
    749 	HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL);
    750 #else /* openssl < 0.9.9 */
    751 	if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL) != 1)
    752 		return -1;
    753 #endif /* openssl < 0.9.9 */
    754 
    755 	for (i = 0; i < num_elem; i++)
    756 		HMAC_Update(&ctx, addr[i], len[i]);
    757 
    758 	mdlen = 32;
    759 #if OPENSSL_VERSION_NUMBER < 0x00909000
    760 	HMAC_Final(&ctx, mac, &mdlen);
    761 	res = 1;
    762 #else /* openssl < 0.9.9 */
    763 	res = HMAC_Final(&ctx, mac, &mdlen);
    764 #endif /* openssl < 0.9.9 */
    765 	HMAC_CTX_cleanup(&ctx);
    766 
    767 	return res == 1 ? 0 : -1;
    768 }
    769 
    770 
    771 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
    772 		size_t data_len, u8 *mac)
    773 {
    774 	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
    775 }
    776 
    777 #endif /* CONFIG_SHA256 */
    778 
    779 
    780 int crypto_get_random(void *buf, size_t len)
    781 {
    782 	if (RAND_bytes(buf, len) != 1)
    783 		return -1;
    784 	return 0;
    785 }
    786 
    787 
    788 #ifdef CONFIG_OPENSSL_CMAC
    789 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
    790 			 const u8 *addr[], const size_t *len, u8 *mac)
    791 {
    792 	CMAC_CTX *ctx;
    793 	int ret = -1;
    794 	size_t outlen, i;
    795 
    796 	ctx = CMAC_CTX_new();
    797 	if (ctx == NULL)
    798 		return -1;
    799 
    800 	if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
    801 		goto fail;
    802 	for (i = 0; i < num_elem; i++) {
    803 		if (!CMAC_Update(ctx, addr[i], len[i]))
    804 			goto fail;
    805 	}
    806 	if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
    807 		goto fail;
    808 
    809 	ret = 0;
    810 fail:
    811 	CMAC_CTX_free(ctx);
    812 	return ret;
    813 }
    814 
    815 
    816 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
    817 {
    818 	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
    819 }
    820 #endif /* CONFIG_OPENSSL_CMAC */
    821