Home | History | Annotate | Download | only in bits
      1 // Map implementation -*- C++ -*-
      2 
      3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
      4 // Free Software Foundation, Inc.
      5 //
      6 // This file is part of the GNU ISO C++ Library.  This library is free
      7 // software; you can redistribute it and/or modify it under the
      8 // terms of the GNU General Public License as published by the
      9 // Free Software Foundation; either version 3, or (at your option)
     10 // any later version.
     11 
     12 // This library is distributed in the hope that it will be useful,
     13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 // GNU General Public License for more details.
     16 
     17 // Under Section 7 of GPL version 3, you are granted additional
     18 // permissions described in the GCC Runtime Library Exception, version
     19 // 3.1, as published by the Free Software Foundation.
     20 
     21 // You should have received a copy of the GNU General Public License and
     22 // a copy of the GCC Runtime Library Exception along with this program;
     23 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     24 // <http://www.gnu.org/licenses/>.
     25 
     26 /*
     27  *
     28  * Copyright (c) 1994
     29  * Hewlett-Packard Company
     30  *
     31  * Permission to use, copy, modify, distribute and sell this software
     32  * and its documentation for any purpose is hereby granted without fee,
     33  * provided that the above copyright notice appear in all copies and
     34  * that both that copyright notice and this permission notice appear
     35  * in supporting documentation.  Hewlett-Packard Company makes no
     36  * representations about the suitability of this software for any
     37  * purpose.  It is provided "as is" without express or implied warranty.
     38  *
     39  *
     40  * Copyright (c) 1996,1997
     41  * Silicon Graphics Computer Systems, Inc.
     42  *
     43  * Permission to use, copy, modify, distribute and sell this software
     44  * and its documentation for any purpose is hereby granted without fee,
     45  * provided that the above copyright notice appear in all copies and
     46  * that both that copyright notice and this permission notice appear
     47  * in supporting documentation.  Silicon Graphics makes no
     48  * representations about the suitability of this software for any
     49  * purpose.  It is provided "as is" without express or implied warranty.
     50  */
     51 
     52 /** @file stl_map.h
     53  *  This is an internal header file, included by other library headers.
     54  *  You should not attempt to use it directly.
     55  */
     56 
     57 #ifndef _STL_MAP_H
     58 #define _STL_MAP_H 1
     59 
     60 #include <bits/functexcept.h>
     61 #include <bits/concept_check.h>
     62 #include <initializer_list>
     63 
     64 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
     65 
     66   /**
     67    *  @brief A standard container made up of (key,value) pairs, which can be
     68    *  retrieved based on a key, in logarithmic time.
     69    *
     70    *  @ingroup associative_containers
     71    *
     72    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
     73    *  <a href="tables.html#66">reversible container</a>, and an
     74    *  <a href="tables.html#69">associative container</a> (using unique keys).
     75    *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
     76    *  value_type is std::pair<const Key,T>.
     77    *
     78    *  Maps support bidirectional iterators.
     79    *
     80    *  The private tree data is declared exactly the same way for map and
     81    *  multimap; the distinction is made entirely in how the tree functions are
     82    *  called (*_unique versus *_equal, same as the standard).
     83   */
     84   template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
     85             typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
     86     class map
     87     {
     88     public:
     89       typedef _Key                                          key_type;
     90       typedef _Tp                                           mapped_type;
     91       typedef std::pair<const _Key, _Tp>                    value_type;
     92       typedef _Compare                                      key_compare;
     93       typedef _Alloc                                        allocator_type;
     94 
     95     private:
     96       // concept requirements
     97       typedef typename _Alloc::value_type                   _Alloc_value_type;
     98       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
     99       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
    100 				_BinaryFunctionConcept)
    101       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
    102 
    103     public:
    104       class value_compare
    105       : public std::binary_function<value_type, value_type, bool>
    106       {
    107 	friend class map<_Key, _Tp, _Compare, _Alloc>;
    108       protected:
    109 	_Compare comp;
    110 
    111 	value_compare(_Compare __c)
    112 	: comp(__c) { }
    113 
    114       public:
    115 	bool operator()(const value_type& __x, const value_type& __y) const
    116 	{ return comp(__x.first, __y.first); }
    117       };
    118 
    119     private:
    120       /// This turns a red-black tree into a [multi]map.
    121       typedef typename _Alloc::template rebind<value_type>::other
    122         _Pair_alloc_type;
    123 
    124       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
    125 		       key_compare, _Pair_alloc_type> _Rep_type;
    126 
    127       /// The actual tree structure.
    128       _Rep_type _M_t;
    129 
    130     public:
    131       // many of these are specified differently in ISO, but the following are
    132       // "functionally equivalent"
    133       typedef typename _Pair_alloc_type::pointer         pointer;
    134       typedef typename _Pair_alloc_type::const_pointer   const_pointer;
    135       typedef typename _Pair_alloc_type::reference       reference;
    136       typedef typename _Pair_alloc_type::const_reference const_reference;
    137       typedef typename _Rep_type::iterator               iterator;
    138       typedef typename _Rep_type::const_iterator         const_iterator;
    139       typedef typename _Rep_type::size_type              size_type;
    140       typedef typename _Rep_type::difference_type        difference_type;
    141       typedef typename _Rep_type::reverse_iterator       reverse_iterator;
    142       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
    143 
    144       // [23.3.1.1] construct/copy/destroy
    145       // (get_allocator() is normally listed in this section, but seems to have
    146       // been accidentally omitted in the printed standard)
    147       /**
    148        *  @brief  Default constructor creates no elements.
    149        */
    150       map()
    151       : _M_t() { }
    152 
    153       /**
    154        *  @brief  Creates a %map with no elements.
    155        *  @param  comp  A comparison object.
    156        *  @param  a  An allocator object.
    157        */
    158       explicit
    159       map(const _Compare& __comp,
    160 	  const allocator_type& __a = allocator_type())
    161       : _M_t(__comp, __a) { }
    162 
    163       /**
    164        *  @brief  %Map copy constructor.
    165        *  @param  x  A %map of identical element and allocator types.
    166        *
    167        *  The newly-created %map uses a copy of the allocation object
    168        *  used by @a x.
    169        */
    170       map(const map& __x)
    171       : _M_t(__x._M_t) { }
    172 
    173 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    174       /**
    175        *  @brief  %Map move constructor.
    176        *  @param  x  A %map of identical element and allocator types.
    177        *
    178        *  The newly-created %map contains the exact contents of @a x.
    179        *  The contents of @a x are a valid, but unspecified %map.
    180        */
    181       map(map&& __x)
    182       : _M_t(std::forward<_Rep_type>(__x._M_t)) { }
    183 
    184       /**
    185        *  @brief  Builds a %map from an initializer_list.
    186        *  @param  l  An initializer_list.
    187        *  @param  comp  A comparison object.
    188        *  @param  a  An allocator object.
    189        *
    190        *  Create a %map consisting of copies of the elements in the
    191        *  initializer_list @a l.
    192        *  This is linear in N if the range is already sorted, and NlogN
    193        *  otherwise (where N is @a l.size()).
    194        */
    195       map(initializer_list<value_type> __l,
    196 	  const _Compare& __c = _Compare(),
    197 	  const allocator_type& __a = allocator_type())
    198       : _M_t(__c, __a)
    199       { _M_t._M_insert_unique(__l.begin(), __l.end()); }
    200 #endif
    201 
    202       /**
    203        *  @brief  Builds a %map from a range.
    204        *  @param  first  An input iterator.
    205        *  @param  last  An input iterator.
    206        *
    207        *  Create a %map consisting of copies of the elements from [first,last).
    208        *  This is linear in N if the range is already sorted, and NlogN
    209        *  otherwise (where N is distance(first,last)).
    210        */
    211       template<typename _InputIterator>
    212         map(_InputIterator __first, _InputIterator __last)
    213 	: _M_t()
    214         { _M_t._M_insert_unique(__first, __last); }
    215 
    216       /**
    217        *  @brief  Builds a %map from a range.
    218        *  @param  first  An input iterator.
    219        *  @param  last  An input iterator.
    220        *  @param  comp  A comparison functor.
    221        *  @param  a  An allocator object.
    222        *
    223        *  Create a %map consisting of copies of the elements from [first,last).
    224        *  This is linear in N if the range is already sorted, and NlogN
    225        *  otherwise (where N is distance(first,last)).
    226        */
    227       template<typename _InputIterator>
    228         map(_InputIterator __first, _InputIterator __last,
    229 	    const _Compare& __comp,
    230 	    const allocator_type& __a = allocator_type())
    231 	: _M_t(__comp, __a)
    232         { _M_t._M_insert_unique(__first, __last); }
    233 
    234       // FIXME There is no dtor declared, but we should have something
    235       // generated by Doxygen.  I don't know what tags to add to this
    236       // paragraph to make that happen:
    237       /**
    238        *  The dtor only erases the elements, and note that if the elements
    239        *  themselves are pointers, the pointed-to memory is not touched in any
    240        *  way.  Managing the pointer is the user's responsibility.
    241        */
    242 
    243       /**
    244        *  @brief  %Map assignment operator.
    245        *  @param  x  A %map of identical element and allocator types.
    246        *
    247        *  All the elements of @a x are copied, but unlike the copy constructor,
    248        *  the allocator object is not copied.
    249        */
    250       map&
    251       operator=(const map& __x)
    252       {
    253 	_M_t = __x._M_t;
    254 	return *this;
    255       }
    256 
    257 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    258       /**
    259        *  @brief  %Map move assignment operator.
    260        *  @param  x  A %map of identical element and allocator types.
    261        *
    262        *  The contents of @a x are moved into this map (without copying).
    263        *  @a x is a valid, but unspecified %map.
    264        */
    265       map&
    266       operator=(map&& __x)
    267       {
    268 	// NB: DR 675.
    269 	this->clear();
    270 	this->swap(__x);
    271 	return *this;
    272       }
    273 
    274       /**
    275        *  @brief  %Map list assignment operator.
    276        *  @param  l  An initializer_list.
    277        *
    278        *  This function fills a %map with copies of the elements in the
    279        *  initializer list @a l.
    280        *
    281        *  Note that the assignment completely changes the %map and
    282        *  that the resulting %map's size is the same as the number
    283        *  of elements assigned.  Old data may be lost.
    284        */
    285       map&
    286       operator=(initializer_list<value_type> __l)
    287       {
    288 	this->clear();
    289 	this->insert(__l.begin(), __l.end());
    290 	return *this;
    291       }
    292 #endif
    293 
    294       /// Get a copy of the memory allocation object.
    295       allocator_type
    296       get_allocator() const
    297       { return _M_t.get_allocator(); }
    298 
    299       // iterators
    300       /**
    301        *  Returns a read/write iterator that points to the first pair in the
    302        *  %map.
    303        *  Iteration is done in ascending order according to the keys.
    304        */
    305       iterator
    306       begin()
    307       { return _M_t.begin(); }
    308 
    309       /**
    310        *  Returns a read-only (constant) iterator that points to the first pair
    311        *  in the %map.  Iteration is done in ascending order according to the
    312        *  keys.
    313        */
    314       const_iterator
    315       begin() const
    316       { return _M_t.begin(); }
    317 
    318       /**
    319        *  Returns a read/write iterator that points one past the last
    320        *  pair in the %map.  Iteration is done in ascending order
    321        *  according to the keys.
    322        */
    323       iterator
    324       end()
    325       { return _M_t.end(); }
    326 
    327       /**
    328        *  Returns a read-only (constant) iterator that points one past the last
    329        *  pair in the %map.  Iteration is done in ascending order according to
    330        *  the keys.
    331        */
    332       const_iterator
    333       end() const
    334       { return _M_t.end(); }
    335 
    336       /**
    337        *  Returns a read/write reverse iterator that points to the last pair in
    338        *  the %map.  Iteration is done in descending order according to the
    339        *  keys.
    340        */
    341       reverse_iterator
    342       rbegin()
    343       { return _M_t.rbegin(); }
    344 
    345       /**
    346        *  Returns a read-only (constant) reverse iterator that points to the
    347        *  last pair in the %map.  Iteration is done in descending order
    348        *  according to the keys.
    349        */
    350       const_reverse_iterator
    351       rbegin() const
    352       { return _M_t.rbegin(); }
    353 
    354       /**
    355        *  Returns a read/write reverse iterator that points to one before the
    356        *  first pair in the %map.  Iteration is done in descending order
    357        *  according to the keys.
    358        */
    359       reverse_iterator
    360       rend()
    361       { return _M_t.rend(); }
    362 
    363       /**
    364        *  Returns a read-only (constant) reverse iterator that points to one
    365        *  before the first pair in the %map.  Iteration is done in descending
    366        *  order according to the keys.
    367        */
    368       const_reverse_iterator
    369       rend() const
    370       { return _M_t.rend(); }
    371 
    372 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    373       /**
    374        *  Returns a read-only (constant) iterator that points to the first pair
    375        *  in the %map.  Iteration is done in ascending order according to the
    376        *  keys.
    377        */
    378       const_iterator
    379       cbegin() const
    380       { return _M_t.begin(); }
    381 
    382       /**
    383        *  Returns a read-only (constant) iterator that points one past the last
    384        *  pair in the %map.  Iteration is done in ascending order according to
    385        *  the keys.
    386        */
    387       const_iterator
    388       cend() const
    389       { return _M_t.end(); }
    390 
    391       /**
    392        *  Returns a read-only (constant) reverse iterator that points to the
    393        *  last pair in the %map.  Iteration is done in descending order
    394        *  according to the keys.
    395        */
    396       const_reverse_iterator
    397       crbegin() const
    398       { return _M_t.rbegin(); }
    399 
    400       /**
    401        *  Returns a read-only (constant) reverse iterator that points to one
    402        *  before the first pair in the %map.  Iteration is done in descending
    403        *  order according to the keys.
    404        */
    405       const_reverse_iterator
    406       crend() const
    407       { return _M_t.rend(); }
    408 #endif
    409 
    410       // capacity
    411       /** Returns true if the %map is empty.  (Thus begin() would equal
    412        *  end().)
    413       */
    414       bool
    415       empty() const
    416       { return _M_t.empty(); }
    417 
    418       /** Returns the size of the %map.  */
    419       size_type
    420       size() const
    421       { return _M_t.size(); }
    422 
    423       /** Returns the maximum size of the %map.  */
    424       size_type
    425       max_size() const
    426       { return _M_t.max_size(); }
    427 
    428       // [23.3.1.2] element access
    429       /**
    430        *  @brief  Subscript ( @c [] ) access to %map data.
    431        *  @param  k  The key for which data should be retrieved.
    432        *  @return  A reference to the data of the (key,data) %pair.
    433        *
    434        *  Allows for easy lookup with the subscript ( @c [] )
    435        *  operator.  Returns data associated with the key specified in
    436        *  subscript.  If the key does not exist, a pair with that key
    437        *  is created using default values, which is then returned.
    438        *
    439        *  Lookup requires logarithmic time.
    440        */
    441       mapped_type&
    442       operator[](const key_type& __k)
    443       {
    444 	// concept requirements
    445 	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
    446 
    447 	iterator __i = lower_bound(__k);
    448 	// __i->first is greater than or equivalent to __k.
    449 	if (__i == end() || key_comp()(__k, (*__i).first))
    450           __i = insert(__i, value_type(__k, mapped_type()));
    451 	return (*__i).second;
    452       }
    453 
    454       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    455       // DR 464. Suggestion for new member functions in standard containers.
    456       /**
    457        *  @brief  Access to %map data.
    458        *  @param  k  The key for which data should be retrieved.
    459        *  @return  A reference to the data whose key is equivalent to @a k, if
    460        *           such a data is present in the %map.
    461        *  @throw  std::out_of_range  If no such data is present.
    462        */
    463       mapped_type&
    464       at(const key_type& __k)
    465       {
    466 	iterator __i = lower_bound(__k);
    467 	if (__i == end() || key_comp()(__k, (*__i).first))
    468 	  __throw_out_of_range(__N("map::at"));
    469 	return (*__i).second;
    470       }
    471 
    472       const mapped_type&
    473       at(const key_type& __k) const
    474       {
    475 	const_iterator __i = lower_bound(__k);
    476 	if (__i == end() || key_comp()(__k, (*__i).first))
    477 	  __throw_out_of_range(__N("map::at"));
    478 	return (*__i).second;
    479       }
    480 
    481       // modifiers
    482       /**
    483        *  @brief Attempts to insert a std::pair into the %map.
    484 
    485        *  @param  x  Pair to be inserted (see std::make_pair for easy creation
    486        *	     of pairs).
    487 
    488        *  @return  A pair, of which the first element is an iterator that
    489        *           points to the possibly inserted pair, and the second is
    490        *           a bool that is true if the pair was actually inserted.
    491        *
    492        *  This function attempts to insert a (key, value) %pair into the %map.
    493        *  A %map relies on unique keys and thus a %pair is only inserted if its
    494        *  first element (the key) is not already present in the %map.
    495        *
    496        *  Insertion requires logarithmic time.
    497        */
    498       std::pair<iterator, bool>
    499       insert(const value_type& __x)
    500       { return _M_t._M_insert_unique(__x); }
    501 
    502 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    503       /**
    504        *  @brief Attempts to insert a list of std::pairs into the %map.
    505        *  @param  list  A std::initializer_list<value_type> of pairs to be
    506        *                inserted.
    507        *
    508        *  Complexity similar to that of the range constructor.
    509        */
    510       void
    511       insert(std::initializer_list<value_type> __list)
    512       { insert (__list.begin(), __list.end()); }
    513 #endif
    514 
    515       /**
    516        *  @brief Attempts to insert a std::pair into the %map.
    517        *  @param  position  An iterator that serves as a hint as to where the
    518        *                    pair should be inserted.
    519        *  @param  x  Pair to be inserted (see std::make_pair for easy creation
    520        *             of pairs).
    521        *  @return  An iterator that points to the element with key of @a x (may
    522        *           or may not be the %pair passed in).
    523        *
    524 
    525        *  This function is not concerned about whether the insertion
    526        *  took place, and thus does not return a boolean like the
    527        *  single-argument insert() does.  Note that the first
    528        *  parameter is only a hint and can potentially improve the
    529        *  performance of the insertion process.  A bad hint would
    530        *  cause no gains in efficiency.
    531        *
    532        *  See
    533        *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
    534        *  for more on "hinting".
    535        *
    536        *  Insertion requires logarithmic time (if the hint is not taken).
    537        */
    538       iterator
    539       insert(iterator __position, const value_type& __x)
    540       { return _M_t._M_insert_unique_(__position, __x); }
    541 
    542       /**
    543        *  @brief Template function that attempts to insert a range of elements.
    544        *  @param  first  Iterator pointing to the start of the range to be
    545        *                 inserted.
    546        *  @param  last  Iterator pointing to the end of the range.
    547        *
    548        *  Complexity similar to that of the range constructor.
    549        */
    550       template<typename _InputIterator>
    551         void
    552         insert(_InputIterator __first, _InputIterator __last)
    553         { _M_t._M_insert_unique(__first, __last); }
    554 
    555       /**
    556        *  @brief Erases an element from a %map.
    557        *  @param  position  An iterator pointing to the element to be erased.
    558        *
    559        *  This function erases an element, pointed to by the given
    560        *  iterator, from a %map.  Note that this function only erases
    561        *  the element, and that if the element is itself a pointer,
    562        *  the pointed-to memory is not touched in any way.  Managing
    563        *  the pointer is the user's responsibility.
    564        */
    565       void
    566       erase(iterator __position)
    567       { _M_t.erase(__position); }
    568 
    569       /**
    570        *  @brief Erases elements according to the provided key.
    571        *  @param  x  Key of element to be erased.
    572        *  @return  The number of elements erased.
    573        *
    574        *  This function erases all the elements located by the given key from
    575        *  a %map.
    576        *  Note that this function only erases the element, and that if
    577        *  the element is itself a pointer, the pointed-to memory is not touched
    578        *  in any way.  Managing the pointer is the user's responsibility.
    579        */
    580       size_type
    581       erase(const key_type& __x)
    582       { return _M_t.erase(__x); }
    583 
    584       /**
    585        *  @brief Erases a [first,last) range of elements from a %map.
    586        *  @param  first  Iterator pointing to the start of the range to be
    587        *                 erased.
    588        *  @param  last  Iterator pointing to the end of the range to be erased.
    589        *
    590        *  This function erases a sequence of elements from a %map.
    591        *  Note that this function only erases the element, and that if
    592        *  the element is itself a pointer, the pointed-to memory is not touched
    593        *  in any way.  Managing the pointer is the user's responsibility.
    594        */
    595       void
    596       erase(iterator __first, iterator __last)
    597       { _M_t.erase(__first, __last); }
    598 
    599       /**
    600        *  @brief  Swaps data with another %map.
    601        *  @param  x  A %map of the same element and allocator types.
    602        *
    603        *  This exchanges the elements between two maps in constant
    604        *  time.  (It is only swapping a pointer, an integer, and an
    605        *  instance of the @c Compare type (which itself is often
    606        *  stateless and empty), so it should be quite fast.)  Note
    607        *  that the global std::swap() function is specialized such
    608        *  that std::swap(m1,m2) will feed to this function.
    609        */
    610       void
    611 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    612       swap(map&& __x)
    613 #else
    614       swap(map& __x)
    615 #endif
    616       { _M_t.swap(__x._M_t); }
    617 
    618       /**
    619        *  Erases all elements in a %map.  Note that this function only
    620        *  erases the elements, and that if the elements themselves are
    621        *  pointers, the pointed-to memory is not touched in any way.
    622        *  Managing the pointer is the user's responsibility.
    623        */
    624       void
    625       clear()
    626       { _M_t.clear(); }
    627 
    628       // observers
    629       /**
    630        *  Returns the key comparison object out of which the %map was
    631        *  constructed.
    632        */
    633       key_compare
    634       key_comp() const
    635       { return _M_t.key_comp(); }
    636 
    637       /**
    638        *  Returns a value comparison object, built from the key comparison
    639        *  object out of which the %map was constructed.
    640        */
    641       value_compare
    642       value_comp() const
    643       { return value_compare(_M_t.key_comp()); }
    644 
    645       // [23.3.1.3] map operations
    646       /**
    647        *  @brief Tries to locate an element in a %map.
    648        *  @param  x  Key of (key, value) %pair to be located.
    649        *  @return  Iterator pointing to sought-after element, or end() if not
    650        *           found.
    651        *
    652        *  This function takes a key and tries to locate the element with which
    653        *  the key matches.  If successful the function returns an iterator
    654        *  pointing to the sought after %pair.  If unsuccessful it returns the
    655        *  past-the-end ( @c end() ) iterator.
    656        */
    657       iterator
    658       find(const key_type& __x)
    659       { return _M_t.find(__x); }
    660 
    661       /**
    662        *  @brief Tries to locate an element in a %map.
    663        *  @param  x  Key of (key, value) %pair to be located.
    664        *  @return  Read-only (constant) iterator pointing to sought-after
    665        *           element, or end() if not found.
    666        *
    667        *  This function takes a key and tries to locate the element with which
    668        *  the key matches.  If successful the function returns a constant
    669        *  iterator pointing to the sought after %pair. If unsuccessful it
    670        *  returns the past-the-end ( @c end() ) iterator.
    671        */
    672       const_iterator
    673       find(const key_type& __x) const
    674       { return _M_t.find(__x); }
    675 
    676       /**
    677        *  @brief  Finds the number of elements with given key.
    678        *  @param  x  Key of (key, value) pairs to be located.
    679        *  @return  Number of elements with specified key.
    680        *
    681        *  This function only makes sense for multimaps; for map the result will
    682        *  either be 0 (not present) or 1 (present).
    683        */
    684       size_type
    685       count(const key_type& __x) const
    686       { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
    687 
    688       /**
    689        *  @brief Finds the beginning of a subsequence matching given key.
    690        *  @param  x  Key of (key, value) pair to be located.
    691        *  @return  Iterator pointing to first element equal to or greater
    692        *           than key, or end().
    693        *
    694        *  This function returns the first element of a subsequence of elements
    695        *  that matches the given key.  If unsuccessful it returns an iterator
    696        *  pointing to the first element that has a greater value than given key
    697        *  or end() if no such element exists.
    698        */
    699       iterator
    700       lower_bound(const key_type& __x)
    701       { return _M_t.lower_bound(__x); }
    702 
    703       /**
    704        *  @brief Finds the beginning of a subsequence matching given key.
    705        *  @param  x  Key of (key, value) pair to be located.
    706        *  @return  Read-only (constant) iterator pointing to first element
    707        *           equal to or greater than key, or end().
    708        *
    709        *  This function returns the first element of a subsequence of elements
    710        *  that matches the given key.  If unsuccessful it returns an iterator
    711        *  pointing to the first element that has a greater value than given key
    712        *  or end() if no such element exists.
    713        */
    714       const_iterator
    715       lower_bound(const key_type& __x) const
    716       { return _M_t.lower_bound(__x); }
    717 
    718       /**
    719        *  @brief Finds the end of a subsequence matching given key.
    720        *  @param  x  Key of (key, value) pair to be located.
    721        *  @return Iterator pointing to the first element
    722        *          greater than key, or end().
    723        */
    724       iterator
    725       upper_bound(const key_type& __x)
    726       { return _M_t.upper_bound(__x); }
    727 
    728       /**
    729        *  @brief Finds the end of a subsequence matching given key.
    730        *  @param  x  Key of (key, value) pair to be located.
    731        *  @return  Read-only (constant) iterator pointing to first iterator
    732        *           greater than key, or end().
    733        */
    734       const_iterator
    735       upper_bound(const key_type& __x) const
    736       { return _M_t.upper_bound(__x); }
    737 
    738       /**
    739        *  @brief Finds a subsequence matching given key.
    740        *  @param  x  Key of (key, value) pairs to be located.
    741        *  @return  Pair of iterators that possibly points to the subsequence
    742        *           matching given key.
    743        *
    744        *  This function is equivalent to
    745        *  @code
    746        *    std::make_pair(c.lower_bound(val),
    747        *                   c.upper_bound(val))
    748        *  @endcode
    749        *  (but is faster than making the calls separately).
    750        *
    751        *  This function probably only makes sense for multimaps.
    752        */
    753       std::pair<iterator, iterator>
    754       equal_range(const key_type& __x)
    755       { return _M_t.equal_range(__x); }
    756 
    757       /**
    758        *  @brief Finds a subsequence matching given key.
    759        *  @param  x  Key of (key, value) pairs to be located.
    760        *  @return  Pair of read-only (constant) iterators that possibly points
    761        *           to the subsequence matching given key.
    762        *
    763        *  This function is equivalent to
    764        *  @code
    765        *    std::make_pair(c.lower_bound(val),
    766        *                   c.upper_bound(val))
    767        *  @endcode
    768        *  (but is faster than making the calls separately).
    769        *
    770        *  This function probably only makes sense for multimaps.
    771        */
    772       std::pair<const_iterator, const_iterator>
    773       equal_range(const key_type& __x) const
    774       { return _M_t.equal_range(__x); }
    775 
    776       template<typename _K1, typename _T1, typename _C1, typename _A1>
    777         friend bool
    778         operator==(const map<_K1, _T1, _C1, _A1>&,
    779 		   const map<_K1, _T1, _C1, _A1>&);
    780 
    781       template<typename _K1, typename _T1, typename _C1, typename _A1>
    782         friend bool
    783         operator<(const map<_K1, _T1, _C1, _A1>&,
    784 		  const map<_K1, _T1, _C1, _A1>&);
    785     };
    786 
    787   /**
    788    *  @brief  Map equality comparison.
    789    *  @param  x  A %map.
    790    *  @param  y  A %map of the same type as @a x.
    791    *  @return  True iff the size and elements of the maps are equal.
    792    *
    793    *  This is an equivalence relation.  It is linear in the size of the
    794    *  maps.  Maps are considered equivalent if their sizes are equal,
    795    *  and if corresponding elements compare equal.
    796   */
    797   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    798     inline bool
    799     operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
    800                const map<_Key, _Tp, _Compare, _Alloc>& __y)
    801     { return __x._M_t == __y._M_t; }
    802 
    803   /**
    804    *  @brief  Map ordering relation.
    805    *  @param  x  A %map.
    806    *  @param  y  A %map of the same type as @a x.
    807    *  @return  True iff @a x is lexicographically less than @a y.
    808    *
    809    *  This is a total ordering relation.  It is linear in the size of the
    810    *  maps.  The elements must be comparable with @c <.
    811    *
    812    *  See std::lexicographical_compare() for how the determination is made.
    813   */
    814   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    815     inline bool
    816     operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
    817               const map<_Key, _Tp, _Compare, _Alloc>& __y)
    818     { return __x._M_t < __y._M_t; }
    819 
    820   /// Based on operator==
    821   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    822     inline bool
    823     operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
    824                const map<_Key, _Tp, _Compare, _Alloc>& __y)
    825     { return !(__x == __y); }
    826 
    827   /// Based on operator<
    828   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    829     inline bool
    830     operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
    831               const map<_Key, _Tp, _Compare, _Alloc>& __y)
    832     { return __y < __x; }
    833 
    834   /// Based on operator<
    835   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    836     inline bool
    837     operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
    838                const map<_Key, _Tp, _Compare, _Alloc>& __y)
    839     { return !(__y < __x); }
    840 
    841   /// Based on operator<
    842   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    843     inline bool
    844     operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
    845                const map<_Key, _Tp, _Compare, _Alloc>& __y)
    846     { return !(__x < __y); }
    847 
    848   /// See std::map::swap().
    849   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    850     inline void
    851     swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
    852 	 map<_Key, _Tp, _Compare, _Alloc>& __y)
    853     { __x.swap(__y); }
    854 
    855 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    856   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    857     inline void
    858     swap(map<_Key, _Tp, _Compare, _Alloc>&& __x,
    859 	 map<_Key, _Tp, _Compare, _Alloc>& __y)
    860     { __x.swap(__y); }
    861 
    862   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    863     inline void
    864     swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
    865 	 map<_Key, _Tp, _Compare, _Alloc>&& __y)
    866     { __x.swap(__y); }
    867 #endif
    868 
    869 _GLIBCXX_END_NESTED_NAMESPACE
    870 
    871 #endif /* _STL_MAP_H */
    872