Home | History | Annotate | Download | only in lib
__exp__D __fpclassifyd __fpclassifyf __fpclassifyl __ieee754_rem_pio2 __ieee754_rem_pio2f __isfinite __isfinitef __isfinitel __isinf __isinff __isinfl __isnanl __isnormal __isnormalf __isnormall __kernel_cos __kernel_cosdf __kernel_rem_pio2 __kernel_sin __kernel_sindf __kernel_tan __kernel_tandf __log__D __signbit __signbitf __signbitl acos acosf acosh acoshf asin asinf asinh asinhf atan atan2 atan2f atanf atanh atanhf cbrt cbrtf ceil ceilf ceill copysign copysignf copysignl drem dremf erfc erfcf erff exp2 exp2f expm1 expm1f fabs fabsf fabsl fdim fdimf fdiml floor floorf floorl fma fmaf fmax fmaxf fmaxl fmin fminf fminl fmod fmodf frexp frexpf hypot hypotf ilogb ilogbf ilogbl isnan isnanf j0 j0f j1 j1f jn jnf ldexp ldexpf ldexpl lgamma lgamma_r lgammaf lgammaf_r llrint llrintf llround llroundf llroundl log log10 log10f log1p log1pf logf modff nearbyint nearbyintf nextafter nextafterf nexttowardf pow powf remainder remainderf remquo remquof scalb scalbf scalbln scalblnf scalblnl scalbn scalbnf scalbnl significand significandf sqrt sqrtf tgamma trunc truncf truncl y0 y0f y1 y1f yn ynf __fe_dfl_env signgam _edata __bss_start __bss_start__ __bss_end__ __end__ _end 
GCC: (GNU) 4.6.x-google 20120106 (prerelease) 
.symtab .strtab .shstrtab .hash .dynsym .dynstr .text .dynamic .got .bss .ARM.attributes .comment 
test-3882.c $a $d _DYNAMIC _GLOBAL_OFFSET_TABLE_ __isnanl expm1 fmodf fabs log sqrt cosh asinh lroundf exp2f ldexpf logb round atanhf remquof gammaf_r nextafterf powf lround __isnormal modff __ieee754_rem_pio2f tanhf truncl ceil logf _bss_end__ fminl floor j1 sqrtf __fpclassifyl y0 __ieee754_rem_pio2 fdimf lgamma __kernel_sindf __fpclassifyd __isinf __log__D truncf roundf scalbf __kernel_cos ldexp lroundl yn __fpclassifyf __bss_start__ erf finitef scalbln fabsf drem significandf __kernel_sin isnanf gamma acoshf llrint nearbyint remainderf cosf __signbit fabsl __kernel_rem_pio2 __exp__D rint __kernel_cosdf lgammaf lrintf fmaxl floorl lrint __fe_dfl_env roundl fdiml hypotf scalbnl __isfinite j1f asinhf __isnormalf modf log10f y1f __isfinitel fmod cos tanh exp2 __bss_end__ significand tgamma coshf sin copysignl fma atan2 gammaf gamma_r pow sinh cbrtf atanh log10 fmin fdim cbrt lgamma_r erff scalbnf llroundf __bss_start fminf __isfinitef fmaxf ilogbf jnf scalb jn nextafter dremf __signbitl __end__ exp finite ilogbl lgammaf_r tan copysign acosf copysignf atan remainder __isnormall asin scalbn atan2f __isinff log1pf isnan nexttowardf y0f j0 acosh sinf signgam scalblnf tanf ceilf fmaf _edata _end fmax ilogb __isinfl llround frexpf atanf log1p __signbitf ceill expf scalblnl rintf llrintf j0f sinhf __kernel_tandf floorf nearbyintf asinf llroundl acos hypot trunc ldexpl expm1f __kernel_tan y1 logbf frexp erfc ynf erfcf remquo