Home | History | Annotate | Download | only in Reader
      1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/Bitcode/ReaderWriter.h"
     11 #include "BitcodeReader.h"
     12 #include "llvm/ADT/SmallString.h"
     13 #include "llvm/ADT/SmallVector.h"
     14 #include "llvm/AutoUpgrade.h"
     15 #include "llvm/IR/Constants.h"
     16 #include "llvm/IR/DerivedTypes.h"
     17 #include "llvm/IR/InlineAsm.h"
     18 #include "llvm/IR/IntrinsicInst.h"
     19 #include "llvm/IR/Module.h"
     20 #include "llvm/IR/OperandTraits.h"
     21 #include "llvm/IR/Operator.h"
     22 #include "llvm/Support/DataStream.h"
     23 #include "llvm/Support/MathExtras.h"
     24 #include "llvm/Support/MemoryBuffer.h"
     25 using namespace llvm;
     26 
     27 enum {
     28   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
     29 };
     30 
     31 void BitcodeReader::materializeForwardReferencedFunctions() {
     32   while (!BlockAddrFwdRefs.empty()) {
     33     Function *F = BlockAddrFwdRefs.begin()->first;
     34     F->Materialize();
     35   }
     36 }
     37 
     38 void BitcodeReader::FreeState() {
     39   if (BufferOwned)
     40     delete Buffer;
     41   Buffer = 0;
     42   std::vector<Type*>().swap(TypeList);
     43   ValueList.clear();
     44   MDValueList.clear();
     45 
     46   std::vector<AttributeSet>().swap(MAttributes);
     47   std::vector<BasicBlock*>().swap(FunctionBBs);
     48   std::vector<Function*>().swap(FunctionsWithBodies);
     49   DeferredFunctionInfo.clear();
     50   MDKindMap.clear();
     51 
     52   assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references");
     53 }
     54 
     55 //===----------------------------------------------------------------------===//
     56 //  Helper functions to implement forward reference resolution, etc.
     57 //===----------------------------------------------------------------------===//
     58 
     59 /// ConvertToString - Convert a string from a record into an std::string, return
     60 /// true on failure.
     61 template<typename StrTy>
     62 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
     63                             StrTy &Result) {
     64   if (Idx > Record.size())
     65     return true;
     66 
     67   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
     68     Result += (char)Record[i];
     69   return false;
     70 }
     71 
     72 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
     73   switch (Val) {
     74   default: // Map unknown/new linkages to external
     75   case 0:  return GlobalValue::ExternalLinkage;
     76   case 1:  return GlobalValue::WeakAnyLinkage;
     77   case 2:  return GlobalValue::AppendingLinkage;
     78   case 3:  return GlobalValue::InternalLinkage;
     79   case 4:  return GlobalValue::LinkOnceAnyLinkage;
     80   case 5:  return GlobalValue::DLLImportLinkage;
     81   case 6:  return GlobalValue::DLLExportLinkage;
     82   case 7:  return GlobalValue::ExternalWeakLinkage;
     83   case 8:  return GlobalValue::CommonLinkage;
     84   case 9:  return GlobalValue::PrivateLinkage;
     85   case 10: return GlobalValue::WeakODRLinkage;
     86   case 11: return GlobalValue::LinkOnceODRLinkage;
     87   case 12: return GlobalValue::AvailableExternallyLinkage;
     88   case 13: return GlobalValue::LinkerPrivateLinkage;
     89   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
     90   case 15: return GlobalValue::LinkOnceODRAutoHideLinkage;
     91   }
     92 }
     93 
     94 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
     95   switch (Val) {
     96   default: // Map unknown visibilities to default.
     97   case 0: return GlobalValue::DefaultVisibility;
     98   case 1: return GlobalValue::HiddenVisibility;
     99   case 2: return GlobalValue::ProtectedVisibility;
    100   }
    101 }
    102 
    103 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
    104   switch (Val) {
    105     case 0: return GlobalVariable::NotThreadLocal;
    106     default: // Map unknown non-zero value to general dynamic.
    107     case 1: return GlobalVariable::GeneralDynamicTLSModel;
    108     case 2: return GlobalVariable::LocalDynamicTLSModel;
    109     case 3: return GlobalVariable::InitialExecTLSModel;
    110     case 4: return GlobalVariable::LocalExecTLSModel;
    111   }
    112 }
    113 
    114 static int GetDecodedCastOpcode(unsigned Val) {
    115   switch (Val) {
    116   default: return -1;
    117   case bitc::CAST_TRUNC   : return Instruction::Trunc;
    118   case bitc::CAST_ZEXT    : return Instruction::ZExt;
    119   case bitc::CAST_SEXT    : return Instruction::SExt;
    120   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
    121   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
    122   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
    123   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
    124   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
    125   case bitc::CAST_FPEXT   : return Instruction::FPExt;
    126   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
    127   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
    128   case bitc::CAST_BITCAST : return Instruction::BitCast;
    129   }
    130 }
    131 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
    132   switch (Val) {
    133   default: return -1;
    134   case bitc::BINOP_ADD:
    135     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
    136   case bitc::BINOP_SUB:
    137     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
    138   case bitc::BINOP_MUL:
    139     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
    140   case bitc::BINOP_UDIV: return Instruction::UDiv;
    141   case bitc::BINOP_SDIV:
    142     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
    143   case bitc::BINOP_UREM: return Instruction::URem;
    144   case bitc::BINOP_SREM:
    145     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
    146   case bitc::BINOP_SHL:  return Instruction::Shl;
    147   case bitc::BINOP_LSHR: return Instruction::LShr;
    148   case bitc::BINOP_ASHR: return Instruction::AShr;
    149   case bitc::BINOP_AND:  return Instruction::And;
    150   case bitc::BINOP_OR:   return Instruction::Or;
    151   case bitc::BINOP_XOR:  return Instruction::Xor;
    152   }
    153 }
    154 
    155 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
    156   switch (Val) {
    157   default: return AtomicRMWInst::BAD_BINOP;
    158   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
    159   case bitc::RMW_ADD: return AtomicRMWInst::Add;
    160   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
    161   case bitc::RMW_AND: return AtomicRMWInst::And;
    162   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
    163   case bitc::RMW_OR: return AtomicRMWInst::Or;
    164   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
    165   case bitc::RMW_MAX: return AtomicRMWInst::Max;
    166   case bitc::RMW_MIN: return AtomicRMWInst::Min;
    167   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
    168   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
    169   }
    170 }
    171 
    172 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
    173   switch (Val) {
    174   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
    175   case bitc::ORDERING_UNORDERED: return Unordered;
    176   case bitc::ORDERING_MONOTONIC: return Monotonic;
    177   case bitc::ORDERING_ACQUIRE: return Acquire;
    178   case bitc::ORDERING_RELEASE: return Release;
    179   case bitc::ORDERING_ACQREL: return AcquireRelease;
    180   default: // Map unknown orderings to sequentially-consistent.
    181   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
    182   }
    183 }
    184 
    185 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
    186   switch (Val) {
    187   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
    188   default: // Map unknown scopes to cross-thread.
    189   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
    190   }
    191 }
    192 
    193 namespace llvm {
    194 namespace {
    195   /// @brief A class for maintaining the slot number definition
    196   /// as a placeholder for the actual definition for forward constants defs.
    197   class ConstantPlaceHolder : public ConstantExpr {
    198     void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
    199   public:
    200     // allocate space for exactly one operand
    201     void *operator new(size_t s) {
    202       return User::operator new(s, 1);
    203     }
    204     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
    205       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
    206       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
    207     }
    208 
    209     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
    210     static bool classof(const Value *V) {
    211       return isa<ConstantExpr>(V) &&
    212              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
    213     }
    214 
    215 
    216     /// Provide fast operand accessors
    217     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    218   };
    219 }
    220 
    221 // FIXME: can we inherit this from ConstantExpr?
    222 template <>
    223 struct OperandTraits<ConstantPlaceHolder> :
    224   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
    225 };
    226 }
    227 
    228 
    229 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
    230   if (Idx == size()) {
    231     push_back(V);
    232     return;
    233   }
    234 
    235   if (Idx >= size())
    236     resize(Idx+1);
    237 
    238   WeakVH &OldV = ValuePtrs[Idx];
    239   if (OldV == 0) {
    240     OldV = V;
    241     return;
    242   }
    243 
    244   // Handle constants and non-constants (e.g. instrs) differently for
    245   // efficiency.
    246   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
    247     ResolveConstants.push_back(std::make_pair(PHC, Idx));
    248     OldV = V;
    249   } else {
    250     // If there was a forward reference to this value, replace it.
    251     Value *PrevVal = OldV;
    252     OldV->replaceAllUsesWith(V);
    253     delete PrevVal;
    254   }
    255 }
    256 
    257 
    258 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
    259                                                     Type *Ty) {
    260   if (Idx >= size())
    261     resize(Idx + 1);
    262 
    263   if (Value *V = ValuePtrs[Idx]) {
    264     assert(Ty == V->getType() && "Type mismatch in constant table!");
    265     return cast<Constant>(V);
    266   }
    267 
    268   // Create and return a placeholder, which will later be RAUW'd.
    269   Constant *C = new ConstantPlaceHolder(Ty, Context);
    270   ValuePtrs[Idx] = C;
    271   return C;
    272 }
    273 
    274 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
    275   if (Idx >= size())
    276     resize(Idx + 1);
    277 
    278   if (Value *V = ValuePtrs[Idx]) {
    279     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
    280     return V;
    281   }
    282 
    283   // No type specified, must be invalid reference.
    284   if (Ty == 0) return 0;
    285 
    286   // Create and return a placeholder, which will later be RAUW'd.
    287   Value *V = new Argument(Ty);
    288   ValuePtrs[Idx] = V;
    289   return V;
    290 }
    291 
    292 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
    293 /// resolves any forward references.  The idea behind this is that we sometimes
    294 /// get constants (such as large arrays) which reference *many* forward ref
    295 /// constants.  Replacing each of these causes a lot of thrashing when
    296 /// building/reuniquing the constant.  Instead of doing this, we look at all the
    297 /// uses and rewrite all the place holders at once for any constant that uses
    298 /// a placeholder.
    299 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
    300   // Sort the values by-pointer so that they are efficient to look up with a
    301   // binary search.
    302   std::sort(ResolveConstants.begin(), ResolveConstants.end());
    303 
    304   SmallVector<Constant*, 64> NewOps;
    305 
    306   while (!ResolveConstants.empty()) {
    307     Value *RealVal = operator[](ResolveConstants.back().second);
    308     Constant *Placeholder = ResolveConstants.back().first;
    309     ResolveConstants.pop_back();
    310 
    311     // Loop over all users of the placeholder, updating them to reference the
    312     // new value.  If they reference more than one placeholder, update them all
    313     // at once.
    314     while (!Placeholder->use_empty()) {
    315       Value::use_iterator UI = Placeholder->use_begin();
    316       User *U = *UI;
    317 
    318       // If the using object isn't uniqued, just update the operands.  This
    319       // handles instructions and initializers for global variables.
    320       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
    321         UI.getUse().set(RealVal);
    322         continue;
    323       }
    324 
    325       // Otherwise, we have a constant that uses the placeholder.  Replace that
    326       // constant with a new constant that has *all* placeholder uses updated.
    327       Constant *UserC = cast<Constant>(U);
    328       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
    329            I != E; ++I) {
    330         Value *NewOp;
    331         if (!isa<ConstantPlaceHolder>(*I)) {
    332           // Not a placeholder reference.
    333           NewOp = *I;
    334         } else if (*I == Placeholder) {
    335           // Common case is that it just references this one placeholder.
    336           NewOp = RealVal;
    337         } else {
    338           // Otherwise, look up the placeholder in ResolveConstants.
    339           ResolveConstantsTy::iterator It =
    340             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
    341                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
    342                                                             0));
    343           assert(It != ResolveConstants.end() && It->first == *I);
    344           NewOp = operator[](It->second);
    345         }
    346 
    347         NewOps.push_back(cast<Constant>(NewOp));
    348       }
    349 
    350       // Make the new constant.
    351       Constant *NewC;
    352       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
    353         NewC = ConstantArray::get(UserCA->getType(), NewOps);
    354       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
    355         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
    356       } else if (isa<ConstantVector>(UserC)) {
    357         NewC = ConstantVector::get(NewOps);
    358       } else {
    359         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
    360         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
    361       }
    362 
    363       UserC->replaceAllUsesWith(NewC);
    364       UserC->destroyConstant();
    365       NewOps.clear();
    366     }
    367 
    368     // Update all ValueHandles, they should be the only users at this point.
    369     Placeholder->replaceAllUsesWith(RealVal);
    370     delete Placeholder;
    371   }
    372 }
    373 
    374 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
    375   if (Idx == size()) {
    376     push_back(V);
    377     return;
    378   }
    379 
    380   if (Idx >= size())
    381     resize(Idx+1);
    382 
    383   WeakVH &OldV = MDValuePtrs[Idx];
    384   if (OldV == 0) {
    385     OldV = V;
    386     return;
    387   }
    388 
    389   // If there was a forward reference to this value, replace it.
    390   MDNode *PrevVal = cast<MDNode>(OldV);
    391   OldV->replaceAllUsesWith(V);
    392   MDNode::deleteTemporary(PrevVal);
    393   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
    394   // value for Idx.
    395   MDValuePtrs[Idx] = V;
    396 }
    397 
    398 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
    399   if (Idx >= size())
    400     resize(Idx + 1);
    401 
    402   if (Value *V = MDValuePtrs[Idx]) {
    403     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
    404     return V;
    405   }
    406 
    407   // Create and return a placeholder, which will later be RAUW'd.
    408   Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
    409   MDValuePtrs[Idx] = V;
    410   return V;
    411 }
    412 
    413 Type *BitcodeReader::getTypeByID(unsigned ID) {
    414   // The type table size is always specified correctly.
    415   if (ID >= TypeList.size())
    416     return 0;
    417 
    418   if (Type *Ty = TypeList[ID])
    419     return Ty;
    420 
    421   // If we have a forward reference, the only possible case is when it is to a
    422   // named struct.  Just create a placeholder for now.
    423   return TypeList[ID] = StructType::create(Context);
    424 }
    425 
    426 
    427 //===----------------------------------------------------------------------===//
    428 //  Functions for parsing blocks from the bitcode file
    429 //===----------------------------------------------------------------------===//
    430 
    431 
    432 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
    433 /// been decoded from the given integer. This function must stay in sync with
    434 /// 'encodeLLVMAttributesForBitcode'.
    435 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
    436                                            uint64_t EncodedAttrs) {
    437   // FIXME: Remove in 4.0.
    438 
    439   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
    440   // the bits above 31 down by 11 bits.
    441   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
    442   assert((!Alignment || isPowerOf2_32(Alignment)) &&
    443          "Alignment must be a power of two.");
    444 
    445   if (Alignment)
    446     B.addAlignmentAttr(Alignment);
    447   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
    448                 (EncodedAttrs & 0xffff));
    449 }
    450 
    451 bool BitcodeReader::ParseAttributeBlock() {
    452   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
    453     return Error("Malformed block record");
    454 
    455   if (!MAttributes.empty())
    456     return Error("Multiple PARAMATTR blocks found!");
    457 
    458   SmallVector<uint64_t, 64> Record;
    459 
    460   SmallVector<AttributeSet, 8> Attrs;
    461 
    462   // Read all the records.
    463   while (1) {
    464     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
    465 
    466     switch (Entry.Kind) {
    467     case BitstreamEntry::SubBlock: // Handled for us already.
    468     case BitstreamEntry::Error:
    469       return Error("Error at end of PARAMATTR block");
    470     case BitstreamEntry::EndBlock:
    471       return false;
    472     case BitstreamEntry::Record:
    473       // The interesting case.
    474       break;
    475     }
    476 
    477     // Read a record.
    478     Record.clear();
    479     switch (Stream.readRecord(Entry.ID, Record)) {
    480     default:  // Default behavior: ignore.
    481       break;
    482     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
    483       // FIXME: Remove in 4.0.
    484       if (Record.size() & 1)
    485         return Error("Invalid ENTRY record");
    486 
    487       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
    488         AttrBuilder B;
    489         decodeLLVMAttributesForBitcode(B, Record[i+1]);
    490         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
    491       }
    492 
    493       MAttributes.push_back(AttributeSet::get(Context, Attrs));
    494       Attrs.clear();
    495       break;
    496     }
    497     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
    498       for (unsigned i = 0, e = Record.size(); i != e; ++i)
    499         Attrs.push_back(MAttributeGroups[Record[i]]);
    500 
    501       MAttributes.push_back(AttributeSet::get(Context, Attrs));
    502       Attrs.clear();
    503       break;
    504     }
    505     }
    506   }
    507 }
    508 
    509 bool BitcodeReader::ParseAttributeGroupBlock() {
    510   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
    511     return Error("Malformed block record");
    512 
    513   if (!MAttributeGroups.empty())
    514     return Error("Multiple PARAMATTR_GROUP blocks found!");
    515 
    516   SmallVector<uint64_t, 64> Record;
    517 
    518   // Read all the records.
    519   while (1) {
    520     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
    521 
    522     switch (Entry.Kind) {
    523     case BitstreamEntry::SubBlock: // Handled for us already.
    524     case BitstreamEntry::Error:
    525       return Error("Error at end of PARAMATTR_GROUP block");
    526     case BitstreamEntry::EndBlock:
    527       return false;
    528     case BitstreamEntry::Record:
    529       // The interesting case.
    530       break;
    531     }
    532 
    533     // Read a record.
    534     Record.clear();
    535     switch (Stream.readRecord(Entry.ID, Record)) {
    536     default:  // Default behavior: ignore.
    537       break;
    538     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
    539       if (Record.size() < 3)
    540         return Error("Invalid ENTRY record");
    541 
    542       uint64_t GrpID = Record[0];
    543       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
    544 
    545       AttrBuilder B;
    546       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
    547         if (Record[i] == 0) {        // Enum attribute
    548           B.addAttribute(Attribute::AttrKind(Record[++i]));
    549         } else if (Record[i] == 1) { // Align attribute
    550           if (Attribute::AttrKind(Record[++i]) == Attribute::Alignment)
    551             B.addAlignmentAttr(Record[++i]);
    552           else
    553             B.addStackAlignmentAttr(Record[++i]);
    554         } else {                     // String attribute
    555           assert((Record[i] == 3 || Record[i] == 4) &&
    556                  "Invalid attribute group entry");
    557           bool HasValue = (Record[i++] == 4);
    558           SmallString<64> KindStr;
    559           SmallString<64> ValStr;
    560 
    561           while (Record[i] != 0 && i != e)
    562             KindStr += Record[i++];
    563           assert(Record[i] == 0 && "Kind string not null terminated");
    564 
    565           if (HasValue) {
    566             // Has a value associated with it.
    567             ++i; // Skip the '0' that terminates the "kind" string.
    568             while (Record[i] != 0 && i != e)
    569               ValStr += Record[i++];
    570             assert(Record[i] == 0 && "Value string not null terminated");
    571           }
    572 
    573           B.addAttribute(KindStr.str(), ValStr.str());
    574         }
    575       }
    576 
    577       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
    578       break;
    579     }
    580     }
    581   }
    582 }
    583 
    584 bool BitcodeReader::ParseTypeTable() {
    585   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
    586     return Error("Malformed block record");
    587 
    588   return ParseTypeTableBody();
    589 }
    590 
    591 bool BitcodeReader::ParseTypeTableBody() {
    592   if (!TypeList.empty())
    593     return Error("Multiple TYPE_BLOCKs found!");
    594 
    595   SmallVector<uint64_t, 64> Record;
    596   unsigned NumRecords = 0;
    597 
    598   SmallString<64> TypeName;
    599 
    600   // Read all the records for this type table.
    601   while (1) {
    602     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
    603 
    604     switch (Entry.Kind) {
    605     case BitstreamEntry::SubBlock: // Handled for us already.
    606     case BitstreamEntry::Error:
    607       Error("Error in the type table block");
    608       return true;
    609     case BitstreamEntry::EndBlock:
    610       if (NumRecords != TypeList.size())
    611         return Error("Invalid type forward reference in TYPE_BLOCK");
    612       return false;
    613     case BitstreamEntry::Record:
    614       // The interesting case.
    615       break;
    616     }
    617 
    618     // Read a record.
    619     Record.clear();
    620     Type *ResultTy = 0;
    621     switch (Stream.readRecord(Entry.ID, Record)) {
    622     default: return Error("unknown type in type table");
    623     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
    624       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
    625       // type list.  This allows us to reserve space.
    626       if (Record.size() < 1)
    627         return Error("Invalid TYPE_CODE_NUMENTRY record");
    628       TypeList.resize(Record[0]);
    629       continue;
    630     case bitc::TYPE_CODE_VOID:      // VOID
    631       ResultTy = Type::getVoidTy(Context);
    632       break;
    633     case bitc::TYPE_CODE_HALF:     // HALF
    634       ResultTy = Type::getHalfTy(Context);
    635       break;
    636     case bitc::TYPE_CODE_FLOAT:     // FLOAT
    637       ResultTy = Type::getFloatTy(Context);
    638       break;
    639     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
    640       ResultTy = Type::getDoubleTy(Context);
    641       break;
    642     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
    643       ResultTy = Type::getX86_FP80Ty(Context);
    644       break;
    645     case bitc::TYPE_CODE_FP128:     // FP128
    646       ResultTy = Type::getFP128Ty(Context);
    647       break;
    648     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
    649       ResultTy = Type::getPPC_FP128Ty(Context);
    650       break;
    651     case bitc::TYPE_CODE_LABEL:     // LABEL
    652       ResultTy = Type::getLabelTy(Context);
    653       break;
    654     case bitc::TYPE_CODE_METADATA:  // METADATA
    655       ResultTy = Type::getMetadataTy(Context);
    656       break;
    657     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
    658       ResultTy = Type::getX86_MMXTy(Context);
    659       break;
    660     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
    661       if (Record.size() < 1)
    662         return Error("Invalid Integer type record");
    663 
    664       ResultTy = IntegerType::get(Context, Record[0]);
    665       break;
    666     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
    667                                     //          [pointee type, address space]
    668       if (Record.size() < 1)
    669         return Error("Invalid POINTER type record");
    670       unsigned AddressSpace = 0;
    671       if (Record.size() == 2)
    672         AddressSpace = Record[1];
    673       ResultTy = getTypeByID(Record[0]);
    674       if (ResultTy == 0) return Error("invalid element type in pointer type");
    675       ResultTy = PointerType::get(ResultTy, AddressSpace);
    676       break;
    677     }
    678     case bitc::TYPE_CODE_FUNCTION_OLD: {
    679       // FIXME: attrid is dead, remove it in LLVM 4.0
    680       // FUNCTION: [vararg, attrid, retty, paramty x N]
    681       if (Record.size() < 3)
    682         return Error("Invalid FUNCTION type record");
    683       SmallVector<Type*, 8> ArgTys;
    684       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
    685         if (Type *T = getTypeByID(Record[i]))
    686           ArgTys.push_back(T);
    687         else
    688           break;
    689       }
    690 
    691       ResultTy = getTypeByID(Record[2]);
    692       if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
    693         return Error("invalid type in function type");
    694 
    695       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
    696       break;
    697     }
    698     case bitc::TYPE_CODE_FUNCTION: {
    699       // FUNCTION: [vararg, retty, paramty x N]
    700       if (Record.size() < 2)
    701         return Error("Invalid FUNCTION type record");
    702       SmallVector<Type*, 8> ArgTys;
    703       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
    704         if (Type *T = getTypeByID(Record[i]))
    705           ArgTys.push_back(T);
    706         else
    707           break;
    708       }
    709 
    710       ResultTy = getTypeByID(Record[1]);
    711       if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
    712         return Error("invalid type in function type");
    713 
    714       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
    715       break;
    716     }
    717     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
    718       if (Record.size() < 1)
    719         return Error("Invalid STRUCT type record");
    720       SmallVector<Type*, 8> EltTys;
    721       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
    722         if (Type *T = getTypeByID(Record[i]))
    723           EltTys.push_back(T);
    724         else
    725           break;
    726       }
    727       if (EltTys.size() != Record.size()-1)
    728         return Error("invalid type in struct type");
    729       ResultTy = StructType::get(Context, EltTys, Record[0]);
    730       break;
    731     }
    732     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
    733       if (ConvertToString(Record, 0, TypeName))
    734         return Error("Invalid STRUCT_NAME record");
    735       continue;
    736 
    737     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
    738       if (Record.size() < 1)
    739         return Error("Invalid STRUCT type record");
    740 
    741       if (NumRecords >= TypeList.size())
    742         return Error("invalid TYPE table");
    743 
    744       // Check to see if this was forward referenced, if so fill in the temp.
    745       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
    746       if (Res) {
    747         Res->setName(TypeName);
    748         TypeList[NumRecords] = 0;
    749       } else  // Otherwise, create a new struct.
    750         Res = StructType::create(Context, TypeName);
    751       TypeName.clear();
    752 
    753       SmallVector<Type*, 8> EltTys;
    754       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
    755         if (Type *T = getTypeByID(Record[i]))
    756           EltTys.push_back(T);
    757         else
    758           break;
    759       }
    760       if (EltTys.size() != Record.size()-1)
    761         return Error("invalid STRUCT type record");
    762       Res->setBody(EltTys, Record[0]);
    763       ResultTy = Res;
    764       break;
    765     }
    766     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
    767       if (Record.size() != 1)
    768         return Error("Invalid OPAQUE type record");
    769 
    770       if (NumRecords >= TypeList.size())
    771         return Error("invalid TYPE table");
    772 
    773       // Check to see if this was forward referenced, if so fill in the temp.
    774       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
    775       if (Res) {
    776         Res->setName(TypeName);
    777         TypeList[NumRecords] = 0;
    778       } else  // Otherwise, create a new struct with no body.
    779         Res = StructType::create(Context, TypeName);
    780       TypeName.clear();
    781       ResultTy = Res;
    782       break;
    783     }
    784     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
    785       if (Record.size() < 2)
    786         return Error("Invalid ARRAY type record");
    787       if ((ResultTy = getTypeByID(Record[1])))
    788         ResultTy = ArrayType::get(ResultTy, Record[0]);
    789       else
    790         return Error("Invalid ARRAY type element");
    791       break;
    792     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
    793       if (Record.size() < 2)
    794         return Error("Invalid VECTOR type record");
    795       if ((ResultTy = getTypeByID(Record[1])))
    796         ResultTy = VectorType::get(ResultTy, Record[0]);
    797       else
    798         return Error("Invalid ARRAY type element");
    799       break;
    800     }
    801 
    802     if (NumRecords >= TypeList.size())
    803       return Error("invalid TYPE table");
    804     assert(ResultTy && "Didn't read a type?");
    805     assert(TypeList[NumRecords] == 0 && "Already read type?");
    806     TypeList[NumRecords++] = ResultTy;
    807   }
    808 }
    809 
    810 bool BitcodeReader::ParseValueSymbolTable() {
    811   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
    812     return Error("Malformed block record");
    813 
    814   SmallVector<uint64_t, 64> Record;
    815 
    816   // Read all the records for this value table.
    817   SmallString<128> ValueName;
    818   while (1) {
    819     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
    820 
    821     switch (Entry.Kind) {
    822     case BitstreamEntry::SubBlock: // Handled for us already.
    823     case BitstreamEntry::Error:
    824       return Error("malformed value symbol table block");
    825     case BitstreamEntry::EndBlock:
    826       return false;
    827     case BitstreamEntry::Record:
    828       // The interesting case.
    829       break;
    830     }
    831 
    832     // Read a record.
    833     Record.clear();
    834     switch (Stream.readRecord(Entry.ID, Record)) {
    835     default:  // Default behavior: unknown type.
    836       break;
    837     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
    838       if (ConvertToString(Record, 1, ValueName))
    839         return Error("Invalid VST_ENTRY record");
    840       unsigned ValueID = Record[0];
    841       if (ValueID >= ValueList.size())
    842         return Error("Invalid Value ID in VST_ENTRY record");
    843       Value *V = ValueList[ValueID];
    844 
    845       V->setName(StringRef(ValueName.data(), ValueName.size()));
    846       ValueName.clear();
    847       break;
    848     }
    849     case bitc::VST_CODE_BBENTRY: {
    850       if (ConvertToString(Record, 1, ValueName))
    851         return Error("Invalid VST_BBENTRY record");
    852       BasicBlock *BB = getBasicBlock(Record[0]);
    853       if (BB == 0)
    854         return Error("Invalid BB ID in VST_BBENTRY record");
    855 
    856       BB->setName(StringRef(ValueName.data(), ValueName.size()));
    857       ValueName.clear();
    858       break;
    859     }
    860     }
    861   }
    862 }
    863 
    864 bool BitcodeReader::ParseMetadata() {
    865   unsigned NextMDValueNo = MDValueList.size();
    866 
    867   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
    868     return Error("Malformed block record");
    869 
    870   SmallVector<uint64_t, 64> Record;
    871 
    872   // Read all the records.
    873   while (1) {
    874     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
    875 
    876     switch (Entry.Kind) {
    877     case BitstreamEntry::SubBlock: // Handled for us already.
    878     case BitstreamEntry::Error:
    879       Error("malformed metadata block");
    880       return true;
    881     case BitstreamEntry::EndBlock:
    882       return false;
    883     case BitstreamEntry::Record:
    884       // The interesting case.
    885       break;
    886     }
    887 
    888     bool IsFunctionLocal = false;
    889     // Read a record.
    890     Record.clear();
    891     unsigned Code = Stream.readRecord(Entry.ID, Record);
    892     switch (Code) {
    893     default:  // Default behavior: ignore.
    894       break;
    895     case bitc::METADATA_NAME: {
    896       // Read name of the named metadata.
    897       SmallString<8> Name(Record.begin(), Record.end());
    898       Record.clear();
    899       Code = Stream.ReadCode();
    900 
    901       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
    902       unsigned NextBitCode = Stream.readRecord(Code, Record);
    903       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
    904 
    905       // Read named metadata elements.
    906       unsigned Size = Record.size();
    907       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
    908       for (unsigned i = 0; i != Size; ++i) {
    909         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
    910         if (MD == 0)
    911           return Error("Malformed metadata record");
    912         NMD->addOperand(MD);
    913       }
    914       break;
    915     }
    916     case bitc::METADATA_FN_NODE:
    917       IsFunctionLocal = true;
    918       // fall-through
    919     case bitc::METADATA_NODE: {
    920       if (Record.size() % 2 == 1)
    921         return Error("Invalid METADATA_NODE record");
    922 
    923       unsigned Size = Record.size();
    924       SmallVector<Value*, 8> Elts;
    925       for (unsigned i = 0; i != Size; i += 2) {
    926         Type *Ty = getTypeByID(Record[i]);
    927         if (!Ty) return Error("Invalid METADATA_NODE record");
    928         if (Ty->isMetadataTy())
    929           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
    930         else if (!Ty->isVoidTy())
    931           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
    932         else
    933           Elts.push_back(NULL);
    934       }
    935       Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
    936       IsFunctionLocal = false;
    937       MDValueList.AssignValue(V, NextMDValueNo++);
    938       break;
    939     }
    940     case bitc::METADATA_STRING: {
    941       SmallString<8> String(Record.begin(), Record.end());
    942       Value *V = MDString::get(Context, String);
    943       MDValueList.AssignValue(V, NextMDValueNo++);
    944       break;
    945     }
    946     case bitc::METADATA_KIND: {
    947       if (Record.size() < 2)
    948         return Error("Invalid METADATA_KIND record");
    949 
    950       unsigned Kind = Record[0];
    951       SmallString<8> Name(Record.begin()+1, Record.end());
    952 
    953       unsigned NewKind = TheModule->getMDKindID(Name.str());
    954       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
    955         return Error("Conflicting METADATA_KIND records");
    956       break;
    957     }
    958     }
    959   }
    960 }
    961 
    962 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
    963 /// the LSB for dense VBR encoding.
    964 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
    965   if ((V & 1) == 0)
    966     return V >> 1;
    967   if (V != 1)
    968     return -(V >> 1);
    969   // There is no such thing as -0 with integers.  "-0" really means MININT.
    970   return 1ULL << 63;
    971 }
    972 
    973 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
    974 /// values and aliases that we can.
    975 bool BitcodeReader::ResolveGlobalAndAliasInits() {
    976   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
    977   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
    978 
    979   GlobalInitWorklist.swap(GlobalInits);
    980   AliasInitWorklist.swap(AliasInits);
    981 
    982   while (!GlobalInitWorklist.empty()) {
    983     unsigned ValID = GlobalInitWorklist.back().second;
    984     if (ValID >= ValueList.size()) {
    985       // Not ready to resolve this yet, it requires something later in the file.
    986       GlobalInits.push_back(GlobalInitWorklist.back());
    987     } else {
    988       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
    989         GlobalInitWorklist.back().first->setInitializer(C);
    990       else
    991         return Error("Global variable initializer is not a constant!");
    992     }
    993     GlobalInitWorklist.pop_back();
    994   }
    995 
    996   while (!AliasInitWorklist.empty()) {
    997     unsigned ValID = AliasInitWorklist.back().second;
    998     if (ValID >= ValueList.size()) {
    999       AliasInits.push_back(AliasInitWorklist.back());
   1000     } else {
   1001       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
   1002         AliasInitWorklist.back().first->setAliasee(C);
   1003       else
   1004         return Error("Alias initializer is not a constant!");
   1005     }
   1006     AliasInitWorklist.pop_back();
   1007   }
   1008   return false;
   1009 }
   1010 
   1011 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
   1012   SmallVector<uint64_t, 8> Words(Vals.size());
   1013   std::transform(Vals.begin(), Vals.end(), Words.begin(),
   1014                  BitcodeReader::decodeSignRotatedValue);
   1015 
   1016   return APInt(TypeBits, Words);
   1017 }
   1018 
   1019 bool BitcodeReader::ParseConstants() {
   1020   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
   1021     return Error("Malformed block record");
   1022 
   1023   SmallVector<uint64_t, 64> Record;
   1024 
   1025   // Read all the records for this value table.
   1026   Type *CurTy = Type::getInt32Ty(Context);
   1027   unsigned NextCstNo = ValueList.size();
   1028   while (1) {
   1029     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1030 
   1031     switch (Entry.Kind) {
   1032     case BitstreamEntry::SubBlock: // Handled for us already.
   1033     case BitstreamEntry::Error:
   1034       return Error("malformed block record in AST file");
   1035     case BitstreamEntry::EndBlock:
   1036       if (NextCstNo != ValueList.size())
   1037         return Error("Invalid constant reference!");
   1038 
   1039       // Once all the constants have been read, go through and resolve forward
   1040       // references.
   1041       ValueList.ResolveConstantForwardRefs();
   1042       return false;
   1043     case BitstreamEntry::Record:
   1044       // The interesting case.
   1045       break;
   1046     }
   1047 
   1048     // Read a record.
   1049     Record.clear();
   1050     Value *V = 0;
   1051     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
   1052     switch (BitCode) {
   1053     default:  // Default behavior: unknown constant
   1054     case bitc::CST_CODE_UNDEF:     // UNDEF
   1055       V = UndefValue::get(CurTy);
   1056       break;
   1057     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
   1058       if (Record.empty())
   1059         return Error("Malformed CST_SETTYPE record");
   1060       if (Record[0] >= TypeList.size())
   1061         return Error("Invalid Type ID in CST_SETTYPE record");
   1062       CurTy = TypeList[Record[0]];
   1063       continue;  // Skip the ValueList manipulation.
   1064     case bitc::CST_CODE_NULL:      // NULL
   1065       V = Constant::getNullValue(CurTy);
   1066       break;
   1067     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
   1068       if (!CurTy->isIntegerTy() || Record.empty())
   1069         return Error("Invalid CST_INTEGER record");
   1070       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
   1071       break;
   1072     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
   1073       if (!CurTy->isIntegerTy() || Record.empty())
   1074         return Error("Invalid WIDE_INTEGER record");
   1075 
   1076       APInt VInt = ReadWideAPInt(Record,
   1077                                  cast<IntegerType>(CurTy)->getBitWidth());
   1078       V = ConstantInt::get(Context, VInt);
   1079 
   1080       break;
   1081     }
   1082     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
   1083       if (Record.empty())
   1084         return Error("Invalid FLOAT record");
   1085       if (CurTy->isHalfTy())
   1086         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
   1087                                              APInt(16, (uint16_t)Record[0])));
   1088       else if (CurTy->isFloatTy())
   1089         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
   1090                                              APInt(32, (uint32_t)Record[0])));
   1091       else if (CurTy->isDoubleTy())
   1092         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
   1093                                              APInt(64, Record[0])));
   1094       else if (CurTy->isX86_FP80Ty()) {
   1095         // Bits are not stored the same way as a normal i80 APInt, compensate.
   1096         uint64_t Rearrange[2];
   1097         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
   1098         Rearrange[1] = Record[0] >> 48;
   1099         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
   1100                                              APInt(80, Rearrange)));
   1101       } else if (CurTy->isFP128Ty())
   1102         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
   1103                                              APInt(128, Record)));
   1104       else if (CurTy->isPPC_FP128Ty())
   1105         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
   1106                                              APInt(128, Record)));
   1107       else
   1108         V = UndefValue::get(CurTy);
   1109       break;
   1110     }
   1111 
   1112     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
   1113       if (Record.empty())
   1114         return Error("Invalid CST_AGGREGATE record");
   1115 
   1116       unsigned Size = Record.size();
   1117       SmallVector<Constant*, 16> Elts;
   1118 
   1119       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
   1120         for (unsigned i = 0; i != Size; ++i)
   1121           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
   1122                                                      STy->getElementType(i)));
   1123         V = ConstantStruct::get(STy, Elts);
   1124       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
   1125         Type *EltTy = ATy->getElementType();
   1126         for (unsigned i = 0; i != Size; ++i)
   1127           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   1128         V = ConstantArray::get(ATy, Elts);
   1129       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
   1130         Type *EltTy = VTy->getElementType();
   1131         for (unsigned i = 0; i != Size; ++i)
   1132           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   1133         V = ConstantVector::get(Elts);
   1134       } else {
   1135         V = UndefValue::get(CurTy);
   1136       }
   1137       break;
   1138     }
   1139     case bitc::CST_CODE_STRING:    // STRING: [values]
   1140     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
   1141       if (Record.empty())
   1142         return Error("Invalid CST_STRING record");
   1143 
   1144       SmallString<16> Elts(Record.begin(), Record.end());
   1145       V = ConstantDataArray::getString(Context, Elts,
   1146                                        BitCode == bitc::CST_CODE_CSTRING);
   1147       break;
   1148     }
   1149     case bitc::CST_CODE_DATA: {// DATA: [n x value]
   1150       if (Record.empty())
   1151         return Error("Invalid CST_DATA record");
   1152 
   1153       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
   1154       unsigned Size = Record.size();
   1155 
   1156       if (EltTy->isIntegerTy(8)) {
   1157         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
   1158         if (isa<VectorType>(CurTy))
   1159           V = ConstantDataVector::get(Context, Elts);
   1160         else
   1161           V = ConstantDataArray::get(Context, Elts);
   1162       } else if (EltTy->isIntegerTy(16)) {
   1163         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
   1164         if (isa<VectorType>(CurTy))
   1165           V = ConstantDataVector::get(Context, Elts);
   1166         else
   1167           V = ConstantDataArray::get(Context, Elts);
   1168       } else if (EltTy->isIntegerTy(32)) {
   1169         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
   1170         if (isa<VectorType>(CurTy))
   1171           V = ConstantDataVector::get(Context, Elts);
   1172         else
   1173           V = ConstantDataArray::get(Context, Elts);
   1174       } else if (EltTy->isIntegerTy(64)) {
   1175         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
   1176         if (isa<VectorType>(CurTy))
   1177           V = ConstantDataVector::get(Context, Elts);
   1178         else
   1179           V = ConstantDataArray::get(Context, Elts);
   1180       } else if (EltTy->isFloatTy()) {
   1181         SmallVector<float, 16> Elts(Size);
   1182         std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
   1183         if (isa<VectorType>(CurTy))
   1184           V = ConstantDataVector::get(Context, Elts);
   1185         else
   1186           V = ConstantDataArray::get(Context, Elts);
   1187       } else if (EltTy->isDoubleTy()) {
   1188         SmallVector<double, 16> Elts(Size);
   1189         std::transform(Record.begin(), Record.end(), Elts.begin(),
   1190                        BitsToDouble);
   1191         if (isa<VectorType>(CurTy))
   1192           V = ConstantDataVector::get(Context, Elts);
   1193         else
   1194           V = ConstantDataArray::get(Context, Elts);
   1195       } else {
   1196         return Error("Unknown element type in CE_DATA");
   1197       }
   1198       break;
   1199     }
   1200 
   1201     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
   1202       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
   1203       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
   1204       if (Opc < 0) {
   1205         V = UndefValue::get(CurTy);  // Unknown binop.
   1206       } else {
   1207         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
   1208         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
   1209         unsigned Flags = 0;
   1210         if (Record.size() >= 4) {
   1211           if (Opc == Instruction::Add ||
   1212               Opc == Instruction::Sub ||
   1213               Opc == Instruction::Mul ||
   1214               Opc == Instruction::Shl) {
   1215             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   1216               Flags |= OverflowingBinaryOperator::NoSignedWrap;
   1217             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   1218               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
   1219           } else if (Opc == Instruction::SDiv ||
   1220                      Opc == Instruction::UDiv ||
   1221                      Opc == Instruction::LShr ||
   1222                      Opc == Instruction::AShr) {
   1223             if (Record[3] & (1 << bitc::PEO_EXACT))
   1224               Flags |= SDivOperator::IsExact;
   1225           }
   1226         }
   1227         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
   1228       }
   1229       break;
   1230     }
   1231     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
   1232       if (Record.size() < 3) return Error("Invalid CE_CAST record");
   1233       int Opc = GetDecodedCastOpcode(Record[0]);
   1234       if (Opc < 0) {
   1235         V = UndefValue::get(CurTy);  // Unknown cast.
   1236       } else {
   1237         Type *OpTy = getTypeByID(Record[1]);
   1238         if (!OpTy) return Error("Invalid CE_CAST record");
   1239         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
   1240         V = ConstantExpr::getCast(Opc, Op, CurTy);
   1241       }
   1242       break;
   1243     }
   1244     case bitc::CST_CODE_CE_INBOUNDS_GEP:
   1245     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
   1246       if (Record.size() & 1) return Error("Invalid CE_GEP record");
   1247       SmallVector<Constant*, 16> Elts;
   1248       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
   1249         Type *ElTy = getTypeByID(Record[i]);
   1250         if (!ElTy) return Error("Invalid CE_GEP record");
   1251         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
   1252       }
   1253       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
   1254       V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
   1255                                          BitCode ==
   1256                                            bitc::CST_CODE_CE_INBOUNDS_GEP);
   1257       break;
   1258     }
   1259     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
   1260       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
   1261       V = ConstantExpr::getSelect(
   1262                           ValueList.getConstantFwdRef(Record[0],
   1263                                                       Type::getInt1Ty(Context)),
   1264                           ValueList.getConstantFwdRef(Record[1],CurTy),
   1265                           ValueList.getConstantFwdRef(Record[2],CurTy));
   1266       break;
   1267     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
   1268       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
   1269       VectorType *OpTy =
   1270         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   1271       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
   1272       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1273       Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
   1274                                                   Type::getInt32Ty(Context));
   1275       V = ConstantExpr::getExtractElement(Op0, Op1);
   1276       break;
   1277     }
   1278     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
   1279       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   1280       if (Record.size() < 3 || OpTy == 0)
   1281         return Error("Invalid CE_INSERTELT record");
   1282       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   1283       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
   1284                                                   OpTy->getElementType());
   1285       Constant *Op2 = ValueList.getConstantFwdRef(Record[2],
   1286                                                   Type::getInt32Ty(Context));
   1287       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
   1288       break;
   1289     }
   1290     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
   1291       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   1292       if (Record.size() < 3 || OpTy == 0)
   1293         return Error("Invalid CE_SHUFFLEVEC record");
   1294       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   1295       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1296       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   1297                                                  OpTy->getNumElements());
   1298       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
   1299       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   1300       break;
   1301     }
   1302     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
   1303       VectorType *RTy = dyn_cast<VectorType>(CurTy);
   1304       VectorType *OpTy =
   1305         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   1306       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
   1307         return Error("Invalid CE_SHUFVEC_EX record");
   1308       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1309       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   1310       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   1311                                                  RTy->getNumElements());
   1312       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
   1313       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   1314       break;
   1315     }
   1316     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
   1317       if (Record.size() < 4) return Error("Invalid CE_CMP record");
   1318       Type *OpTy = getTypeByID(Record[0]);
   1319       if (OpTy == 0) return Error("Invalid CE_CMP record");
   1320       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1321       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   1322 
   1323       if (OpTy->isFPOrFPVectorTy())
   1324         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
   1325       else
   1326         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
   1327       break;
   1328     }
   1329     // This maintains backward compatibility, pre-asm dialect keywords.
   1330     // FIXME: Remove with the 4.0 release.
   1331     case bitc::CST_CODE_INLINEASM_OLD: {
   1332       if (Record.size() < 2) return Error("Invalid INLINEASM record");
   1333       std::string AsmStr, ConstrStr;
   1334       bool HasSideEffects = Record[0] & 1;
   1335       bool IsAlignStack = Record[0] >> 1;
   1336       unsigned AsmStrSize = Record[1];
   1337       if (2+AsmStrSize >= Record.size())
   1338         return Error("Invalid INLINEASM record");
   1339       unsigned ConstStrSize = Record[2+AsmStrSize];
   1340       if (3+AsmStrSize+ConstStrSize > Record.size())
   1341         return Error("Invalid INLINEASM record");
   1342 
   1343       for (unsigned i = 0; i != AsmStrSize; ++i)
   1344         AsmStr += (char)Record[2+i];
   1345       for (unsigned i = 0; i != ConstStrSize; ++i)
   1346         ConstrStr += (char)Record[3+AsmStrSize+i];
   1347       PointerType *PTy = cast<PointerType>(CurTy);
   1348       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
   1349                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
   1350       break;
   1351     }
   1352     // This version adds support for the asm dialect keywords (e.g.,
   1353     // inteldialect).
   1354     case bitc::CST_CODE_INLINEASM: {
   1355       if (Record.size() < 2) return Error("Invalid INLINEASM record");
   1356       std::string AsmStr, ConstrStr;
   1357       bool HasSideEffects = Record[0] & 1;
   1358       bool IsAlignStack = (Record[0] >> 1) & 1;
   1359       unsigned AsmDialect = Record[0] >> 2;
   1360       unsigned AsmStrSize = Record[1];
   1361       if (2+AsmStrSize >= Record.size())
   1362         return Error("Invalid INLINEASM record");
   1363       unsigned ConstStrSize = Record[2+AsmStrSize];
   1364       if (3+AsmStrSize+ConstStrSize > Record.size())
   1365         return Error("Invalid INLINEASM record");
   1366 
   1367       for (unsigned i = 0; i != AsmStrSize; ++i)
   1368         AsmStr += (char)Record[2+i];
   1369       for (unsigned i = 0; i != ConstStrSize; ++i)
   1370         ConstrStr += (char)Record[3+AsmStrSize+i];
   1371       PointerType *PTy = cast<PointerType>(CurTy);
   1372       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
   1373                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
   1374                          InlineAsm::AsmDialect(AsmDialect));
   1375       break;
   1376     }
   1377     case bitc::CST_CODE_BLOCKADDRESS:{
   1378       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
   1379       Type *FnTy = getTypeByID(Record[0]);
   1380       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
   1381       Function *Fn =
   1382         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
   1383       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
   1384 
   1385       // If the function is already parsed we can insert the block address right
   1386       // away.
   1387       if (!Fn->empty()) {
   1388         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
   1389         for (size_t I = 0, E = Record[2]; I != E; ++I) {
   1390           if (BBI == BBE)
   1391             return Error("Invalid blockaddress block #");
   1392           ++BBI;
   1393         }
   1394         V = BlockAddress::get(Fn, BBI);
   1395       } else {
   1396         // Otherwise insert a placeholder and remember it so it can be inserted
   1397         // when the function is parsed.
   1398         GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
   1399                                                     Type::getInt8Ty(Context),
   1400                                             false, GlobalValue::InternalLinkage,
   1401                                                     0, "");
   1402         BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
   1403         V = FwdRef;
   1404       }
   1405       break;
   1406     }
   1407     }
   1408 
   1409     ValueList.AssignValue(V, NextCstNo);
   1410     ++NextCstNo;
   1411   }
   1412 }
   1413 
   1414 bool BitcodeReader::ParseUseLists() {
   1415   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
   1416     return Error("Malformed block record");
   1417 
   1418   SmallVector<uint64_t, 64> Record;
   1419 
   1420   // Read all the records.
   1421   while (1) {
   1422     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1423 
   1424     switch (Entry.Kind) {
   1425     case BitstreamEntry::SubBlock: // Handled for us already.
   1426     case BitstreamEntry::Error:
   1427       return Error("malformed use list block");
   1428     case BitstreamEntry::EndBlock:
   1429       return false;
   1430     case BitstreamEntry::Record:
   1431       // The interesting case.
   1432       break;
   1433     }
   1434 
   1435     // Read a use list record.
   1436     Record.clear();
   1437     switch (Stream.readRecord(Entry.ID, Record)) {
   1438     default:  // Default behavior: unknown type.
   1439       break;
   1440     case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
   1441       unsigned RecordLength = Record.size();
   1442       if (RecordLength < 1)
   1443         return Error ("Invalid UseList reader!");
   1444       UseListRecords.push_back(Record);
   1445       break;
   1446     }
   1447     }
   1448   }
   1449 }
   1450 
   1451 /// RememberAndSkipFunctionBody - When we see the block for a function body,
   1452 /// remember where it is and then skip it.  This lets us lazily deserialize the
   1453 /// functions.
   1454 bool BitcodeReader::RememberAndSkipFunctionBody() {
   1455   // Get the function we are talking about.
   1456   if (FunctionsWithBodies.empty())
   1457     return Error("Insufficient function protos");
   1458 
   1459   Function *Fn = FunctionsWithBodies.back();
   1460   FunctionsWithBodies.pop_back();
   1461 
   1462   // Save the current stream state.
   1463   uint64_t CurBit = Stream.GetCurrentBitNo();
   1464   DeferredFunctionInfo[Fn] = CurBit;
   1465 
   1466   // Skip over the function block for now.
   1467   if (Stream.SkipBlock())
   1468     return Error("Malformed block record");
   1469   return false;
   1470 }
   1471 
   1472 bool BitcodeReader::GlobalCleanup() {
   1473   // Patch the initializers for globals and aliases up.
   1474   ResolveGlobalAndAliasInits();
   1475   if (!GlobalInits.empty() || !AliasInits.empty())
   1476     return Error("Malformed global initializer set");
   1477 
   1478   // Look for intrinsic functions which need to be upgraded at some point
   1479   for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
   1480        FI != FE; ++FI) {
   1481     Function *NewFn;
   1482     if (UpgradeIntrinsicFunction(FI, NewFn))
   1483       UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
   1484   }
   1485 
   1486   // Look for global variables which need to be renamed.
   1487   for (Module::global_iterator
   1488          GI = TheModule->global_begin(), GE = TheModule->global_end();
   1489        GI != GE; ++GI)
   1490     UpgradeGlobalVariable(GI);
   1491   // Force deallocation of memory for these vectors to favor the client that
   1492   // want lazy deserialization.
   1493   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
   1494   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
   1495   return false;
   1496 }
   1497 
   1498 bool BitcodeReader::ParseModule(bool Resume) {
   1499   if (Resume)
   1500     Stream.JumpToBit(NextUnreadBit);
   1501   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   1502     return Error("Malformed block record");
   1503 
   1504   SmallVector<uint64_t, 64> Record;
   1505   std::vector<std::string> SectionTable;
   1506   std::vector<std::string> GCTable;
   1507 
   1508   // Read all the records for this module.
   1509   while (1) {
   1510     BitstreamEntry Entry = Stream.advance();
   1511 
   1512     switch (Entry.Kind) {
   1513     case BitstreamEntry::Error:
   1514       Error("malformed module block");
   1515       return true;
   1516     case BitstreamEntry::EndBlock:
   1517       return GlobalCleanup();
   1518 
   1519     case BitstreamEntry::SubBlock:
   1520       switch (Entry.ID) {
   1521       default:  // Skip unknown content.
   1522         if (Stream.SkipBlock())
   1523           return Error("Malformed block record");
   1524         break;
   1525       case bitc::BLOCKINFO_BLOCK_ID:
   1526         if (Stream.ReadBlockInfoBlock())
   1527           return Error("Malformed BlockInfoBlock");
   1528         break;
   1529       case bitc::PARAMATTR_BLOCK_ID:
   1530         if (ParseAttributeBlock())
   1531           return true;
   1532         break;
   1533       case bitc::PARAMATTR_GROUP_BLOCK_ID:
   1534         if (ParseAttributeGroupBlock())
   1535           return true;
   1536         break;
   1537       case bitc::TYPE_BLOCK_ID_NEW:
   1538         if (ParseTypeTable())
   1539           return true;
   1540         break;
   1541       case bitc::VALUE_SYMTAB_BLOCK_ID:
   1542         if (ParseValueSymbolTable())
   1543           return true;
   1544         SeenValueSymbolTable = true;
   1545         break;
   1546       case bitc::CONSTANTS_BLOCK_ID:
   1547         if (ParseConstants() || ResolveGlobalAndAliasInits())
   1548           return true;
   1549         break;
   1550       case bitc::METADATA_BLOCK_ID:
   1551         if (ParseMetadata())
   1552           return true;
   1553         break;
   1554       case bitc::FUNCTION_BLOCK_ID:
   1555         // If this is the first function body we've seen, reverse the
   1556         // FunctionsWithBodies list.
   1557         if (!SeenFirstFunctionBody) {
   1558           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
   1559           if (GlobalCleanup())
   1560             return true;
   1561           SeenFirstFunctionBody = true;
   1562         }
   1563 
   1564         if (RememberAndSkipFunctionBody())
   1565           return true;
   1566         // For streaming bitcode, suspend parsing when we reach the function
   1567         // bodies. Subsequent materialization calls will resume it when
   1568         // necessary. For streaming, the function bodies must be at the end of
   1569         // the bitcode. If the bitcode file is old, the symbol table will be
   1570         // at the end instead and will not have been seen yet. In this case,
   1571         // just finish the parse now.
   1572         if (LazyStreamer && SeenValueSymbolTable) {
   1573           NextUnreadBit = Stream.GetCurrentBitNo();
   1574           return false;
   1575         }
   1576         break;
   1577       case bitc::USELIST_BLOCK_ID:
   1578         if (ParseUseLists())
   1579           return true;
   1580         break;
   1581       }
   1582       continue;
   1583 
   1584     case BitstreamEntry::Record:
   1585       // The interesting case.
   1586       break;
   1587     }
   1588 
   1589 
   1590     // Read a record.
   1591     switch (Stream.readRecord(Entry.ID, Record)) {
   1592     default: break;  // Default behavior, ignore unknown content.
   1593     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
   1594       if (Record.size() < 1)
   1595         return Error("Malformed MODULE_CODE_VERSION");
   1596       // Only version #0 and #1 are supported so far.
   1597       unsigned module_version = Record[0];
   1598       switch (module_version) {
   1599         default: return Error("Unknown bitstream version!");
   1600         case 0:
   1601           UseRelativeIDs = false;
   1602           break;
   1603         case 1:
   1604           UseRelativeIDs = true;
   1605           break;
   1606       }
   1607       break;
   1608     }
   1609     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   1610       std::string S;
   1611       if (ConvertToString(Record, 0, S))
   1612         return Error("Invalid MODULE_CODE_TRIPLE record");
   1613       TheModule->setTargetTriple(S);
   1614       break;
   1615     }
   1616     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
   1617       std::string S;
   1618       if (ConvertToString(Record, 0, S))
   1619         return Error("Invalid MODULE_CODE_DATALAYOUT record");
   1620       TheModule->setDataLayout(S);
   1621       break;
   1622     }
   1623     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
   1624       std::string S;
   1625       if (ConvertToString(Record, 0, S))
   1626         return Error("Invalid MODULE_CODE_ASM record");
   1627       TheModule->setModuleInlineAsm(S);
   1628       break;
   1629     }
   1630     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
   1631       // FIXME: Remove in 4.0.
   1632       std::string S;
   1633       if (ConvertToString(Record, 0, S))
   1634         return Error("Invalid MODULE_CODE_DEPLIB record");
   1635       // Ignore value.
   1636       break;
   1637     }
   1638     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
   1639       std::string S;
   1640       if (ConvertToString(Record, 0, S))
   1641         return Error("Invalid MODULE_CODE_SECTIONNAME record");
   1642       SectionTable.push_back(S);
   1643       break;
   1644     }
   1645     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
   1646       std::string S;
   1647       if (ConvertToString(Record, 0, S))
   1648         return Error("Invalid MODULE_CODE_GCNAME record");
   1649       GCTable.push_back(S);
   1650       break;
   1651     }
   1652     // GLOBALVAR: [pointer type, isconst, initid,
   1653     //             linkage, alignment, section, visibility, threadlocal,
   1654     //             unnamed_addr]
   1655     case bitc::MODULE_CODE_GLOBALVAR: {
   1656       if (Record.size() < 6)
   1657         return Error("Invalid MODULE_CODE_GLOBALVAR record");
   1658       Type *Ty = getTypeByID(Record[0]);
   1659       if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
   1660       if (!Ty->isPointerTy())
   1661         return Error("Global not a pointer type!");
   1662       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
   1663       Ty = cast<PointerType>(Ty)->getElementType();
   1664 
   1665       bool isConstant = Record[1];
   1666       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
   1667       unsigned Alignment = (1 << Record[4]) >> 1;
   1668       std::string Section;
   1669       if (Record[5]) {
   1670         if (Record[5]-1 >= SectionTable.size())
   1671           return Error("Invalid section ID");
   1672         Section = SectionTable[Record[5]-1];
   1673       }
   1674       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
   1675       if (Record.size() > 6)
   1676         Visibility = GetDecodedVisibility(Record[6]);
   1677 
   1678       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
   1679       if (Record.size() > 7)
   1680         TLM = GetDecodedThreadLocalMode(Record[7]);
   1681 
   1682       bool UnnamedAddr = false;
   1683       if (Record.size() > 8)
   1684         UnnamedAddr = Record[8];
   1685 
   1686       bool ExternallyInitialized = false;
   1687       if (Record.size() > 9)
   1688         ExternallyInitialized = Record[9];
   1689 
   1690       GlobalVariable *NewGV =
   1691         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
   1692                            TLM, AddressSpace, ExternallyInitialized);
   1693       NewGV->setAlignment(Alignment);
   1694       if (!Section.empty())
   1695         NewGV->setSection(Section);
   1696       NewGV->setVisibility(Visibility);
   1697       NewGV->setUnnamedAddr(UnnamedAddr);
   1698 
   1699       ValueList.push_back(NewGV);
   1700 
   1701       // Remember which value to use for the global initializer.
   1702       if (unsigned InitID = Record[2])
   1703         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
   1704       break;
   1705     }
   1706     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
   1707     //             alignment, section, visibility, gc, unnamed_addr]
   1708     case bitc::MODULE_CODE_FUNCTION: {
   1709       if (Record.size() < 8)
   1710         return Error("Invalid MODULE_CODE_FUNCTION record");
   1711       Type *Ty = getTypeByID(Record[0]);
   1712       if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
   1713       if (!Ty->isPointerTy())
   1714         return Error("Function not a pointer type!");
   1715       FunctionType *FTy =
   1716         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
   1717       if (!FTy)
   1718         return Error("Function not a pointer to function type!");
   1719 
   1720       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
   1721                                         "", TheModule);
   1722 
   1723       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
   1724       bool isProto = Record[2];
   1725       Func->setLinkage(GetDecodedLinkage(Record[3]));
   1726       Func->setAttributes(getAttributes(Record[4]));
   1727 
   1728       Func->setAlignment((1 << Record[5]) >> 1);
   1729       if (Record[6]) {
   1730         if (Record[6]-1 >= SectionTable.size())
   1731           return Error("Invalid section ID");
   1732         Func->setSection(SectionTable[Record[6]-1]);
   1733       }
   1734       Func->setVisibility(GetDecodedVisibility(Record[7]));
   1735       if (Record.size() > 8 && Record[8]) {
   1736         if (Record[8]-1 > GCTable.size())
   1737           return Error("Invalid GC ID");
   1738         Func->setGC(GCTable[Record[8]-1].c_str());
   1739       }
   1740       bool UnnamedAddr = false;
   1741       if (Record.size() > 9)
   1742         UnnamedAddr = Record[9];
   1743       Func->setUnnamedAddr(UnnamedAddr);
   1744       ValueList.push_back(Func);
   1745 
   1746       // If this is a function with a body, remember the prototype we are
   1747       // creating now, so that we can match up the body with them later.
   1748       if (!isProto) {
   1749         FunctionsWithBodies.push_back(Func);
   1750         if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
   1751       }
   1752       break;
   1753     }
   1754     // ALIAS: [alias type, aliasee val#, linkage]
   1755     // ALIAS: [alias type, aliasee val#, linkage, visibility]
   1756     case bitc::MODULE_CODE_ALIAS: {
   1757       if (Record.size() < 3)
   1758         return Error("Invalid MODULE_ALIAS record");
   1759       Type *Ty = getTypeByID(Record[0]);
   1760       if (!Ty) return Error("Invalid MODULE_ALIAS record");
   1761       if (!Ty->isPointerTy())
   1762         return Error("Function not a pointer type!");
   1763 
   1764       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
   1765                                            "", 0, TheModule);
   1766       // Old bitcode files didn't have visibility field.
   1767       if (Record.size() > 3)
   1768         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
   1769       ValueList.push_back(NewGA);
   1770       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
   1771       break;
   1772     }
   1773     /// MODULE_CODE_PURGEVALS: [numvals]
   1774     case bitc::MODULE_CODE_PURGEVALS:
   1775       // Trim down the value list to the specified size.
   1776       if (Record.size() < 1 || Record[0] > ValueList.size())
   1777         return Error("Invalid MODULE_PURGEVALS record");
   1778       ValueList.shrinkTo(Record[0]);
   1779       break;
   1780     }
   1781     Record.clear();
   1782   }
   1783 }
   1784 
   1785 bool BitcodeReader::ParseBitcodeInto(Module *M) {
   1786   TheModule = 0;
   1787 
   1788   if (InitStream()) return true;
   1789 
   1790   // Sniff for the signature.
   1791   if (Stream.Read(8) != 'B' ||
   1792       Stream.Read(8) != 'C' ||
   1793       Stream.Read(4) != 0x0 ||
   1794       Stream.Read(4) != 0xC ||
   1795       Stream.Read(4) != 0xE ||
   1796       Stream.Read(4) != 0xD)
   1797     return Error("Invalid bitcode signature");
   1798 
   1799   // We expect a number of well-defined blocks, though we don't necessarily
   1800   // need to understand them all.
   1801   while (1) {
   1802     if (Stream.AtEndOfStream())
   1803       return false;
   1804 
   1805     BitstreamEntry Entry =
   1806       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
   1807 
   1808     switch (Entry.Kind) {
   1809     case BitstreamEntry::Error:
   1810       Error("malformed module file");
   1811       return true;
   1812     case BitstreamEntry::EndBlock:
   1813       return false;
   1814 
   1815     case BitstreamEntry::SubBlock:
   1816       switch (Entry.ID) {
   1817       case bitc::BLOCKINFO_BLOCK_ID:
   1818         if (Stream.ReadBlockInfoBlock())
   1819           return Error("Malformed BlockInfoBlock");
   1820         break;
   1821       case bitc::MODULE_BLOCK_ID:
   1822         // Reject multiple MODULE_BLOCK's in a single bitstream.
   1823         if (TheModule)
   1824           return Error("Multiple MODULE_BLOCKs in same stream");
   1825         TheModule = M;
   1826         if (ParseModule(false))
   1827           return true;
   1828         if (LazyStreamer) return false;
   1829         break;
   1830       default:
   1831         if (Stream.SkipBlock())
   1832           return Error("Malformed block record");
   1833         break;
   1834       }
   1835       continue;
   1836     case BitstreamEntry::Record:
   1837       // There should be no records in the top-level of blocks.
   1838 
   1839       // The ranlib in Xcode 4 will align archive members by appending newlines
   1840       // to the end of them. If this file size is a multiple of 4 but not 8, we
   1841       // have to read and ignore these final 4 bytes :-(
   1842       if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
   1843           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
   1844           Stream.AtEndOfStream())
   1845         return false;
   1846 
   1847       return Error("Invalid record at top-level");
   1848     }
   1849   }
   1850 }
   1851 
   1852 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
   1853   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   1854     return Error("Malformed block record");
   1855 
   1856   SmallVector<uint64_t, 64> Record;
   1857 
   1858   // Read all the records for this module.
   1859   while (1) {
   1860     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1861 
   1862     switch (Entry.Kind) {
   1863     case BitstreamEntry::SubBlock: // Handled for us already.
   1864     case BitstreamEntry::Error:
   1865       return Error("malformed module block");
   1866     case BitstreamEntry::EndBlock:
   1867       return false;
   1868     case BitstreamEntry::Record:
   1869       // The interesting case.
   1870       break;
   1871     }
   1872 
   1873     // Read a record.
   1874     switch (Stream.readRecord(Entry.ID, Record)) {
   1875     default: break;  // Default behavior, ignore unknown content.
   1876     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   1877       std::string S;
   1878       if (ConvertToString(Record, 0, S))
   1879         return Error("Invalid MODULE_CODE_TRIPLE record");
   1880       Triple = S;
   1881       break;
   1882     }
   1883     }
   1884     Record.clear();
   1885   }
   1886 }
   1887 
   1888 bool BitcodeReader::ParseTriple(std::string &Triple) {
   1889   if (InitStream()) return true;
   1890 
   1891   // Sniff for the signature.
   1892   if (Stream.Read(8) != 'B' ||
   1893       Stream.Read(8) != 'C' ||
   1894       Stream.Read(4) != 0x0 ||
   1895       Stream.Read(4) != 0xC ||
   1896       Stream.Read(4) != 0xE ||
   1897       Stream.Read(4) != 0xD)
   1898     return Error("Invalid bitcode signature");
   1899 
   1900   // We expect a number of well-defined blocks, though we don't necessarily
   1901   // need to understand them all.
   1902   while (1) {
   1903     BitstreamEntry Entry = Stream.advance();
   1904 
   1905     switch (Entry.Kind) {
   1906     case BitstreamEntry::Error:
   1907       Error("malformed module file");
   1908       return true;
   1909     case BitstreamEntry::EndBlock:
   1910       return false;
   1911 
   1912     case BitstreamEntry::SubBlock:
   1913       if (Entry.ID == bitc::MODULE_BLOCK_ID)
   1914         return ParseModuleTriple(Triple);
   1915 
   1916       // Ignore other sub-blocks.
   1917       if (Stream.SkipBlock()) {
   1918         Error("malformed block record in AST file");
   1919         return true;
   1920       }
   1921       continue;
   1922 
   1923     case BitstreamEntry::Record:
   1924       Stream.skipRecord(Entry.ID);
   1925       continue;
   1926     }
   1927   }
   1928 }
   1929 
   1930 /// ParseMetadataAttachment - Parse metadata attachments.
   1931 bool BitcodeReader::ParseMetadataAttachment() {
   1932   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
   1933     return Error("Malformed block record");
   1934 
   1935   SmallVector<uint64_t, 64> Record;
   1936   while (1) {
   1937     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1938 
   1939     switch (Entry.Kind) {
   1940     case BitstreamEntry::SubBlock: // Handled for us already.
   1941     case BitstreamEntry::Error:
   1942       return Error("malformed metadata block");
   1943     case BitstreamEntry::EndBlock:
   1944       return false;
   1945     case BitstreamEntry::Record:
   1946       // The interesting case.
   1947       break;
   1948     }
   1949 
   1950     // Read a metadata attachment record.
   1951     Record.clear();
   1952     switch (Stream.readRecord(Entry.ID, Record)) {
   1953     default:  // Default behavior: ignore.
   1954       break;
   1955     case bitc::METADATA_ATTACHMENT: {
   1956       unsigned RecordLength = Record.size();
   1957       if (Record.empty() || (RecordLength - 1) % 2 == 1)
   1958         return Error ("Invalid METADATA_ATTACHMENT reader!");
   1959       Instruction *Inst = InstructionList[Record[0]];
   1960       for (unsigned i = 1; i != RecordLength; i = i+2) {
   1961         unsigned Kind = Record[i];
   1962         DenseMap<unsigned, unsigned>::iterator I =
   1963           MDKindMap.find(Kind);
   1964         if (I == MDKindMap.end())
   1965           return Error("Invalid metadata kind ID");
   1966         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
   1967         Inst->setMetadata(I->second, cast<MDNode>(Node));
   1968       }
   1969       break;
   1970     }
   1971     }
   1972   }
   1973 }
   1974 
   1975 /// ParseFunctionBody - Lazily parse the specified function body block.
   1976 bool BitcodeReader::ParseFunctionBody(Function *F) {
   1977   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
   1978     return Error("Malformed block record");
   1979 
   1980   InstructionList.clear();
   1981   unsigned ModuleValueListSize = ValueList.size();
   1982   unsigned ModuleMDValueListSize = MDValueList.size();
   1983 
   1984   // Add all the function arguments to the value table.
   1985   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
   1986     ValueList.push_back(I);
   1987 
   1988   unsigned NextValueNo = ValueList.size();
   1989   BasicBlock *CurBB = 0;
   1990   unsigned CurBBNo = 0;
   1991 
   1992   DebugLoc LastLoc;
   1993 
   1994   // Read all the records.
   1995   SmallVector<uint64_t, 64> Record;
   1996   while (1) {
   1997     BitstreamEntry Entry = Stream.advance();
   1998 
   1999     switch (Entry.Kind) {
   2000     case BitstreamEntry::Error:
   2001       return Error("Bitcode error in function block");
   2002     case BitstreamEntry::EndBlock:
   2003       goto OutOfRecordLoop;
   2004 
   2005     case BitstreamEntry::SubBlock:
   2006       switch (Entry.ID) {
   2007       default:  // Skip unknown content.
   2008         if (Stream.SkipBlock())
   2009           return Error("Malformed block record");
   2010         break;
   2011       case bitc::CONSTANTS_BLOCK_ID:
   2012         if (ParseConstants()) return true;
   2013         NextValueNo = ValueList.size();
   2014         break;
   2015       case bitc::VALUE_SYMTAB_BLOCK_ID:
   2016         if (ParseValueSymbolTable()) return true;
   2017         break;
   2018       case bitc::METADATA_ATTACHMENT_ID:
   2019         if (ParseMetadataAttachment()) return true;
   2020         break;
   2021       case bitc::METADATA_BLOCK_ID:
   2022         if (ParseMetadata()) return true;
   2023         break;
   2024       }
   2025       continue;
   2026 
   2027     case BitstreamEntry::Record:
   2028       // The interesting case.
   2029       break;
   2030     }
   2031 
   2032     // Read a record.
   2033     Record.clear();
   2034     Instruction *I = 0;
   2035     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
   2036     switch (BitCode) {
   2037     default: // Default behavior: reject
   2038       return Error("Unknown instruction");
   2039     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
   2040       if (Record.size() < 1 || Record[0] == 0)
   2041         return Error("Invalid DECLAREBLOCKS record");
   2042       // Create all the basic blocks for the function.
   2043       FunctionBBs.resize(Record[0]);
   2044       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
   2045         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
   2046       CurBB = FunctionBBs[0];
   2047       continue;
   2048 
   2049     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
   2050       // This record indicates that the last instruction is at the same
   2051       // location as the previous instruction with a location.
   2052       I = 0;
   2053 
   2054       // Get the last instruction emitted.
   2055       if (CurBB && !CurBB->empty())
   2056         I = &CurBB->back();
   2057       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
   2058                !FunctionBBs[CurBBNo-1]->empty())
   2059         I = &FunctionBBs[CurBBNo-1]->back();
   2060 
   2061       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
   2062       I->setDebugLoc(LastLoc);
   2063       I = 0;
   2064       continue;
   2065 
   2066     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
   2067       I = 0;     // Get the last instruction emitted.
   2068       if (CurBB && !CurBB->empty())
   2069         I = &CurBB->back();
   2070       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
   2071                !FunctionBBs[CurBBNo-1]->empty())
   2072         I = &FunctionBBs[CurBBNo-1]->back();
   2073       if (I == 0 || Record.size() < 4)
   2074         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
   2075 
   2076       unsigned Line = Record[0], Col = Record[1];
   2077       unsigned ScopeID = Record[2], IAID = Record[3];
   2078 
   2079       MDNode *Scope = 0, *IA = 0;
   2080       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
   2081       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
   2082       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
   2083       I->setDebugLoc(LastLoc);
   2084       I = 0;
   2085       continue;
   2086     }
   2087 
   2088     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
   2089       unsigned OpNum = 0;
   2090       Value *LHS, *RHS;
   2091       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   2092           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
   2093           OpNum+1 > Record.size())
   2094         return Error("Invalid BINOP record");
   2095 
   2096       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
   2097       if (Opc == -1) return Error("Invalid BINOP record");
   2098       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   2099       InstructionList.push_back(I);
   2100       if (OpNum < Record.size()) {
   2101         if (Opc == Instruction::Add ||
   2102             Opc == Instruction::Sub ||
   2103             Opc == Instruction::Mul ||
   2104             Opc == Instruction::Shl) {
   2105           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   2106             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
   2107           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   2108             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
   2109         } else if (Opc == Instruction::SDiv ||
   2110                    Opc == Instruction::UDiv ||
   2111                    Opc == Instruction::LShr ||
   2112                    Opc == Instruction::AShr) {
   2113           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
   2114             cast<BinaryOperator>(I)->setIsExact(true);
   2115         } else if (isa<FPMathOperator>(I)) {
   2116           FastMathFlags FMF;
   2117           if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
   2118             FMF.setUnsafeAlgebra();
   2119           if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
   2120             FMF.setNoNaNs();
   2121           if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
   2122             FMF.setNoInfs();
   2123           if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
   2124             FMF.setNoSignedZeros();
   2125           if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
   2126             FMF.setAllowReciprocal();
   2127           if (FMF.any())
   2128             I->setFastMathFlags(FMF);
   2129         }
   2130 
   2131       }
   2132       break;
   2133     }
   2134     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
   2135       unsigned OpNum = 0;
   2136       Value *Op;
   2137       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2138           OpNum+2 != Record.size())
   2139         return Error("Invalid CAST record");
   2140 
   2141       Type *ResTy = getTypeByID(Record[OpNum]);
   2142       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
   2143       if (Opc == -1 || ResTy == 0)
   2144         return Error("Invalid CAST record");
   2145       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
   2146       InstructionList.push_back(I);
   2147       break;
   2148     }
   2149     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
   2150     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
   2151       unsigned OpNum = 0;
   2152       Value *BasePtr;
   2153       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
   2154         return Error("Invalid GEP record");
   2155 
   2156       SmallVector<Value*, 16> GEPIdx;
   2157       while (OpNum != Record.size()) {
   2158         Value *Op;
   2159         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2160           return Error("Invalid GEP record");
   2161         GEPIdx.push_back(Op);
   2162       }
   2163 
   2164       I = GetElementPtrInst::Create(BasePtr, GEPIdx);
   2165       InstructionList.push_back(I);
   2166       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
   2167         cast<GetElementPtrInst>(I)->setIsInBounds(true);
   2168       break;
   2169     }
   2170 
   2171     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
   2172                                        // EXTRACTVAL: [opty, opval, n x indices]
   2173       unsigned OpNum = 0;
   2174       Value *Agg;
   2175       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   2176         return Error("Invalid EXTRACTVAL record");
   2177 
   2178       SmallVector<unsigned, 4> EXTRACTVALIdx;
   2179       for (unsigned RecSize = Record.size();
   2180            OpNum != RecSize; ++OpNum) {
   2181         uint64_t Index = Record[OpNum];
   2182         if ((unsigned)Index != Index)
   2183           return Error("Invalid EXTRACTVAL index");
   2184         EXTRACTVALIdx.push_back((unsigned)Index);
   2185       }
   2186 
   2187       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
   2188       InstructionList.push_back(I);
   2189       break;
   2190     }
   2191 
   2192     case bitc::FUNC_CODE_INST_INSERTVAL: {
   2193                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
   2194       unsigned OpNum = 0;
   2195       Value *Agg;
   2196       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   2197         return Error("Invalid INSERTVAL record");
   2198       Value *Val;
   2199       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
   2200         return Error("Invalid INSERTVAL record");
   2201 
   2202       SmallVector<unsigned, 4> INSERTVALIdx;
   2203       for (unsigned RecSize = Record.size();
   2204            OpNum != RecSize; ++OpNum) {
   2205         uint64_t Index = Record[OpNum];
   2206         if ((unsigned)Index != Index)
   2207           return Error("Invalid INSERTVAL index");
   2208         INSERTVALIdx.push_back((unsigned)Index);
   2209       }
   2210 
   2211       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
   2212       InstructionList.push_back(I);
   2213       break;
   2214     }
   2215 
   2216     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
   2217       // obsolete form of select
   2218       // handles select i1 ... in old bitcode
   2219       unsigned OpNum = 0;
   2220       Value *TrueVal, *FalseVal, *Cond;
   2221       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   2222           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
   2223           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
   2224         return Error("Invalid SELECT record");
   2225 
   2226       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   2227       InstructionList.push_back(I);
   2228       break;
   2229     }
   2230 
   2231     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
   2232       // new form of select
   2233       // handles select i1 or select [N x i1]
   2234       unsigned OpNum = 0;
   2235       Value *TrueVal, *FalseVal, *Cond;
   2236       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   2237           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
   2238           getValueTypePair(Record, OpNum, NextValueNo, Cond))
   2239         return Error("Invalid SELECT record");
   2240 
   2241       // select condition can be either i1 or [N x i1]
   2242       if (VectorType* vector_type =
   2243           dyn_cast<VectorType>(Cond->getType())) {
   2244         // expect <n x i1>
   2245         if (vector_type->getElementType() != Type::getInt1Ty(Context))
   2246           return Error("Invalid SELECT condition type");
   2247       } else {
   2248         // expect i1
   2249         if (Cond->getType() != Type::getInt1Ty(Context))
   2250           return Error("Invalid SELECT condition type");
   2251       }
   2252 
   2253       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   2254       InstructionList.push_back(I);
   2255       break;
   2256     }
   2257 
   2258     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
   2259       unsigned OpNum = 0;
   2260       Value *Vec, *Idx;
   2261       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   2262           popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
   2263         return Error("Invalid EXTRACTELT record");
   2264       I = ExtractElementInst::Create(Vec, Idx);
   2265       InstructionList.push_back(I);
   2266       break;
   2267     }
   2268 
   2269     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
   2270       unsigned OpNum = 0;
   2271       Value *Vec, *Elt, *Idx;
   2272       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   2273           popValue(Record, OpNum, NextValueNo,
   2274                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
   2275           popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
   2276         return Error("Invalid INSERTELT record");
   2277       I = InsertElementInst::Create(Vec, Elt, Idx);
   2278       InstructionList.push_back(I);
   2279       break;
   2280     }
   2281 
   2282     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
   2283       unsigned OpNum = 0;
   2284       Value *Vec1, *Vec2, *Mask;
   2285       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
   2286           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
   2287         return Error("Invalid SHUFFLEVEC record");
   2288 
   2289       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
   2290         return Error("Invalid SHUFFLEVEC record");
   2291       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
   2292       InstructionList.push_back(I);
   2293       break;
   2294     }
   2295 
   2296     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
   2297       // Old form of ICmp/FCmp returning bool
   2298       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
   2299       // both legal on vectors but had different behaviour.
   2300     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
   2301       // FCmp/ICmp returning bool or vector of bool
   2302 
   2303       unsigned OpNum = 0;
   2304       Value *LHS, *RHS;
   2305       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   2306           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
   2307           OpNum+1 != Record.size())
   2308         return Error("Invalid CMP record");
   2309 
   2310       if (LHS->getType()->isFPOrFPVectorTy())
   2311         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
   2312       else
   2313         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
   2314       InstructionList.push_back(I);
   2315       break;
   2316     }
   2317 
   2318     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
   2319       {
   2320         unsigned Size = Record.size();
   2321         if (Size == 0) {
   2322           I = ReturnInst::Create(Context);
   2323           InstructionList.push_back(I);
   2324           break;
   2325         }
   2326 
   2327         unsigned OpNum = 0;
   2328         Value *Op = NULL;
   2329         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2330           return Error("Invalid RET record");
   2331         if (OpNum != Record.size())
   2332           return Error("Invalid RET record");
   2333 
   2334         I = ReturnInst::Create(Context, Op);
   2335         InstructionList.push_back(I);
   2336         break;
   2337       }
   2338     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
   2339       if (Record.size() != 1 && Record.size() != 3)
   2340         return Error("Invalid BR record");
   2341       BasicBlock *TrueDest = getBasicBlock(Record[0]);
   2342       if (TrueDest == 0)
   2343         return Error("Invalid BR record");
   2344 
   2345       if (Record.size() == 1) {
   2346         I = BranchInst::Create(TrueDest);
   2347         InstructionList.push_back(I);
   2348       }
   2349       else {
   2350         BasicBlock *FalseDest = getBasicBlock(Record[1]);
   2351         Value *Cond = getValue(Record, 2, NextValueNo,
   2352                                Type::getInt1Ty(Context));
   2353         if (FalseDest == 0 || Cond == 0)
   2354           return Error("Invalid BR record");
   2355         I = BranchInst::Create(TrueDest, FalseDest, Cond);
   2356         InstructionList.push_back(I);
   2357       }
   2358       break;
   2359     }
   2360     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
   2361       // Check magic
   2362       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
   2363         // New SwitchInst format with case ranges.
   2364 
   2365         Type *OpTy = getTypeByID(Record[1]);
   2366         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
   2367 
   2368         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
   2369         BasicBlock *Default = getBasicBlock(Record[3]);
   2370         if (OpTy == 0 || Cond == 0 || Default == 0)
   2371           return Error("Invalid SWITCH record");
   2372 
   2373         unsigned NumCases = Record[4];
   2374 
   2375         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
   2376         InstructionList.push_back(SI);
   2377 
   2378         unsigned CurIdx = 5;
   2379         for (unsigned i = 0; i != NumCases; ++i) {
   2380           IntegersSubsetToBB CaseBuilder;
   2381           unsigned NumItems = Record[CurIdx++];
   2382           for (unsigned ci = 0; ci != NumItems; ++ci) {
   2383             bool isSingleNumber = Record[CurIdx++];
   2384 
   2385             APInt Low;
   2386             unsigned ActiveWords = 1;
   2387             if (ValueBitWidth > 64)
   2388               ActiveWords = Record[CurIdx++];
   2389             Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
   2390                                 ValueBitWidth);
   2391             CurIdx += ActiveWords;
   2392 
   2393             if (!isSingleNumber) {
   2394               ActiveWords = 1;
   2395               if (ValueBitWidth > 64)
   2396                 ActiveWords = Record[CurIdx++];
   2397               APInt High =
   2398                   ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
   2399                                 ValueBitWidth);
   2400 
   2401               CaseBuilder.add(IntItem::fromType(OpTy, Low),
   2402                               IntItem::fromType(OpTy, High));
   2403               CurIdx += ActiveWords;
   2404             } else
   2405               CaseBuilder.add(IntItem::fromType(OpTy, Low));
   2406           }
   2407           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
   2408           IntegersSubset Case = CaseBuilder.getCase();
   2409           SI->addCase(Case, DestBB);
   2410         }
   2411         uint16_t Hash = SI->hash();
   2412         if (Hash != (Record[0] & 0xFFFF))
   2413           return Error("Invalid SWITCH record");
   2414         I = SI;
   2415         break;
   2416       }
   2417 
   2418       // Old SwitchInst format without case ranges.
   2419 
   2420       if (Record.size() < 3 || (Record.size() & 1) == 0)
   2421         return Error("Invalid SWITCH record");
   2422       Type *OpTy = getTypeByID(Record[0]);
   2423       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
   2424       BasicBlock *Default = getBasicBlock(Record[2]);
   2425       if (OpTy == 0 || Cond == 0 || Default == 0)
   2426         return Error("Invalid SWITCH record");
   2427       unsigned NumCases = (Record.size()-3)/2;
   2428       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
   2429       InstructionList.push_back(SI);
   2430       for (unsigned i = 0, e = NumCases; i != e; ++i) {
   2431         ConstantInt *CaseVal =
   2432           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
   2433         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
   2434         if (CaseVal == 0 || DestBB == 0) {
   2435           delete SI;
   2436           return Error("Invalid SWITCH record!");
   2437         }
   2438         SI->addCase(CaseVal, DestBB);
   2439       }
   2440       I = SI;
   2441       break;
   2442     }
   2443     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
   2444       if (Record.size() < 2)
   2445         return Error("Invalid INDIRECTBR record");
   2446       Type *OpTy = getTypeByID(Record[0]);
   2447       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
   2448       if (OpTy == 0 || Address == 0)
   2449         return Error("Invalid INDIRECTBR record");
   2450       unsigned NumDests = Record.size()-2;
   2451       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
   2452       InstructionList.push_back(IBI);
   2453       for (unsigned i = 0, e = NumDests; i != e; ++i) {
   2454         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
   2455           IBI->addDestination(DestBB);
   2456         } else {
   2457           delete IBI;
   2458           return Error("Invalid INDIRECTBR record!");
   2459         }
   2460       }
   2461       I = IBI;
   2462       break;
   2463     }
   2464 
   2465     case bitc::FUNC_CODE_INST_INVOKE: {
   2466       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
   2467       if (Record.size() < 4) return Error("Invalid INVOKE record");
   2468       AttributeSet PAL = getAttributes(Record[0]);
   2469       unsigned CCInfo = Record[1];
   2470       BasicBlock *NormalBB = getBasicBlock(Record[2]);
   2471       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
   2472 
   2473       unsigned OpNum = 4;
   2474       Value *Callee;
   2475       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   2476         return Error("Invalid INVOKE record");
   2477 
   2478       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
   2479       FunctionType *FTy = !CalleeTy ? 0 :
   2480         dyn_cast<FunctionType>(CalleeTy->getElementType());
   2481 
   2482       // Check that the right number of fixed parameters are here.
   2483       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
   2484           Record.size() < OpNum+FTy->getNumParams())
   2485         return Error("Invalid INVOKE record");
   2486 
   2487       SmallVector<Value*, 16> Ops;
   2488       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   2489         Ops.push_back(getValue(Record, OpNum, NextValueNo,
   2490                                FTy->getParamType(i)));
   2491         if (Ops.back() == 0) return Error("Invalid INVOKE record");
   2492       }
   2493 
   2494       if (!FTy->isVarArg()) {
   2495         if (Record.size() != OpNum)
   2496           return Error("Invalid INVOKE record");
   2497       } else {
   2498         // Read type/value pairs for varargs params.
   2499         while (OpNum != Record.size()) {
   2500           Value *Op;
   2501           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2502             return Error("Invalid INVOKE record");
   2503           Ops.push_back(Op);
   2504         }
   2505       }
   2506 
   2507       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
   2508       InstructionList.push_back(I);
   2509       cast<InvokeInst>(I)->setCallingConv(
   2510         static_cast<CallingConv::ID>(CCInfo));
   2511       cast<InvokeInst>(I)->setAttributes(PAL);
   2512       break;
   2513     }
   2514     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
   2515       unsigned Idx = 0;
   2516       Value *Val = 0;
   2517       if (getValueTypePair(Record, Idx, NextValueNo, Val))
   2518         return Error("Invalid RESUME record");
   2519       I = ResumeInst::Create(Val);
   2520       InstructionList.push_back(I);
   2521       break;
   2522     }
   2523     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
   2524       I = new UnreachableInst(Context);
   2525       InstructionList.push_back(I);
   2526       break;
   2527     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
   2528       if (Record.size() < 1 || ((Record.size()-1)&1))
   2529         return Error("Invalid PHI record");
   2530       Type *Ty = getTypeByID(Record[0]);
   2531       if (!Ty) return Error("Invalid PHI record");
   2532 
   2533       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
   2534       InstructionList.push_back(PN);
   2535 
   2536       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
   2537         Value *V;
   2538         // With the new function encoding, it is possible that operands have
   2539         // negative IDs (for forward references).  Use a signed VBR
   2540         // representation to keep the encoding small.
   2541         if (UseRelativeIDs)
   2542           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
   2543         else
   2544           V = getValue(Record, 1+i, NextValueNo, Ty);
   2545         BasicBlock *BB = getBasicBlock(Record[2+i]);
   2546         if (!V || !BB) return Error("Invalid PHI record");
   2547         PN->addIncoming(V, BB);
   2548       }
   2549       I = PN;
   2550       break;
   2551     }
   2552 
   2553     case bitc::FUNC_CODE_INST_LANDINGPAD: {
   2554       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
   2555       unsigned Idx = 0;
   2556       if (Record.size() < 4)
   2557         return Error("Invalid LANDINGPAD record");
   2558       Type *Ty = getTypeByID(Record[Idx++]);
   2559       if (!Ty) return Error("Invalid LANDINGPAD record");
   2560       Value *PersFn = 0;
   2561       if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
   2562         return Error("Invalid LANDINGPAD record");
   2563 
   2564       bool IsCleanup = !!Record[Idx++];
   2565       unsigned NumClauses = Record[Idx++];
   2566       LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
   2567       LP->setCleanup(IsCleanup);
   2568       for (unsigned J = 0; J != NumClauses; ++J) {
   2569         LandingPadInst::ClauseType CT =
   2570           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
   2571         Value *Val;
   2572 
   2573         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
   2574           delete LP;
   2575           return Error("Invalid LANDINGPAD record");
   2576         }
   2577 
   2578         assert((CT != LandingPadInst::Catch ||
   2579                 !isa<ArrayType>(Val->getType())) &&
   2580                "Catch clause has a invalid type!");
   2581         assert((CT != LandingPadInst::Filter ||
   2582                 isa<ArrayType>(Val->getType())) &&
   2583                "Filter clause has invalid type!");
   2584         LP->addClause(Val);
   2585       }
   2586 
   2587       I = LP;
   2588       InstructionList.push_back(I);
   2589       break;
   2590     }
   2591 
   2592     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
   2593       if (Record.size() != 4)
   2594         return Error("Invalid ALLOCA record");
   2595       PointerType *Ty =
   2596         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
   2597       Type *OpTy = getTypeByID(Record[1]);
   2598       Value *Size = getFnValueByID(Record[2], OpTy);
   2599       unsigned Align = Record[3];
   2600       if (!Ty || !Size) return Error("Invalid ALLOCA record");
   2601       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
   2602       InstructionList.push_back(I);
   2603       break;
   2604     }
   2605     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
   2606       unsigned OpNum = 0;
   2607       Value *Op;
   2608       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2609           OpNum+2 != Record.size())
   2610         return Error("Invalid LOAD record");
   2611 
   2612       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
   2613       InstructionList.push_back(I);
   2614       break;
   2615     }
   2616     case bitc::FUNC_CODE_INST_LOADATOMIC: {
   2617        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
   2618       unsigned OpNum = 0;
   2619       Value *Op;
   2620       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2621           OpNum+4 != Record.size())
   2622         return Error("Invalid LOADATOMIC record");
   2623 
   2624 
   2625       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   2626       if (Ordering == NotAtomic || Ordering == Release ||
   2627           Ordering == AcquireRelease)
   2628         return Error("Invalid LOADATOMIC record");
   2629       if (Ordering != NotAtomic && Record[OpNum] == 0)
   2630         return Error("Invalid LOADATOMIC record");
   2631       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   2632 
   2633       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
   2634                        Ordering, SynchScope);
   2635       InstructionList.push_back(I);
   2636       break;
   2637     }
   2638     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
   2639       unsigned OpNum = 0;
   2640       Value *Val, *Ptr;
   2641       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   2642           popValue(Record, OpNum, NextValueNo,
   2643                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   2644           OpNum+2 != Record.size())
   2645         return Error("Invalid STORE record");
   2646 
   2647       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
   2648       InstructionList.push_back(I);
   2649       break;
   2650     }
   2651     case bitc::FUNC_CODE_INST_STOREATOMIC: {
   2652       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
   2653       unsigned OpNum = 0;
   2654       Value *Val, *Ptr;
   2655       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   2656           popValue(Record, OpNum, NextValueNo,
   2657                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   2658           OpNum+4 != Record.size())
   2659         return Error("Invalid STOREATOMIC record");
   2660 
   2661       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   2662       if (Ordering == NotAtomic || Ordering == Acquire ||
   2663           Ordering == AcquireRelease)
   2664         return Error("Invalid STOREATOMIC record");
   2665       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   2666       if (Ordering != NotAtomic && Record[OpNum] == 0)
   2667         return Error("Invalid STOREATOMIC record");
   2668 
   2669       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
   2670                         Ordering, SynchScope);
   2671       InstructionList.push_back(I);
   2672       break;
   2673     }
   2674     case bitc::FUNC_CODE_INST_CMPXCHG: {
   2675       // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
   2676       unsigned OpNum = 0;
   2677       Value *Ptr, *Cmp, *New;
   2678       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   2679           popValue(Record, OpNum, NextValueNo,
   2680                     cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
   2681           popValue(Record, OpNum, NextValueNo,
   2682                     cast<PointerType>(Ptr->getType())->getElementType(), New) ||
   2683           OpNum+3 != Record.size())
   2684         return Error("Invalid CMPXCHG record");
   2685       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
   2686       if (Ordering == NotAtomic || Ordering == Unordered)
   2687         return Error("Invalid CMPXCHG record");
   2688       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
   2689       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
   2690       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
   2691       InstructionList.push_back(I);
   2692       break;
   2693     }
   2694     case bitc::FUNC_CODE_INST_ATOMICRMW: {
   2695       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
   2696       unsigned OpNum = 0;
   2697       Value *Ptr, *Val;
   2698       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   2699           popValue(Record, OpNum, NextValueNo,
   2700                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   2701           OpNum+4 != Record.size())
   2702         return Error("Invalid ATOMICRMW record");
   2703       AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
   2704       if (Operation < AtomicRMWInst::FIRST_BINOP ||
   2705           Operation > AtomicRMWInst::LAST_BINOP)
   2706         return Error("Invalid ATOMICRMW record");
   2707       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   2708       if (Ordering == NotAtomic || Ordering == Unordered)
   2709         return Error("Invalid ATOMICRMW record");
   2710       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   2711       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
   2712       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
   2713       InstructionList.push_back(I);
   2714       break;
   2715     }
   2716     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
   2717       if (2 != Record.size())
   2718         return Error("Invalid FENCE record");
   2719       AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
   2720       if (Ordering == NotAtomic || Ordering == Unordered ||
   2721           Ordering == Monotonic)
   2722         return Error("Invalid FENCE record");
   2723       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
   2724       I = new FenceInst(Context, Ordering, SynchScope);
   2725       InstructionList.push_back(I);
   2726       break;
   2727     }
   2728     case bitc::FUNC_CODE_INST_CALL: {
   2729       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
   2730       if (Record.size() < 3)
   2731         return Error("Invalid CALL record");
   2732 
   2733       AttributeSet PAL = getAttributes(Record[0]);
   2734       unsigned CCInfo = Record[1];
   2735 
   2736       unsigned OpNum = 2;
   2737       Value *Callee;
   2738       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   2739         return Error("Invalid CALL record");
   2740 
   2741       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
   2742       FunctionType *FTy = 0;
   2743       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
   2744       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
   2745         return Error("Invalid CALL record");
   2746 
   2747       SmallVector<Value*, 16> Args;
   2748       // Read the fixed params.
   2749       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   2750         if (FTy->getParamType(i)->isLabelTy())
   2751           Args.push_back(getBasicBlock(Record[OpNum]));
   2752         else
   2753           Args.push_back(getValue(Record, OpNum, NextValueNo,
   2754                                   FTy->getParamType(i)));
   2755         if (Args.back() == 0) return Error("Invalid CALL record");
   2756       }
   2757 
   2758       // Read type/value pairs for varargs params.
   2759       if (!FTy->isVarArg()) {
   2760         if (OpNum != Record.size())
   2761           return Error("Invalid CALL record");
   2762       } else {
   2763         while (OpNum != Record.size()) {
   2764           Value *Op;
   2765           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2766             return Error("Invalid CALL record");
   2767           Args.push_back(Op);
   2768         }
   2769       }
   2770 
   2771       I = CallInst::Create(Callee, Args);
   2772       InstructionList.push_back(I);
   2773       cast<CallInst>(I)->setCallingConv(
   2774         static_cast<CallingConv::ID>(CCInfo>>1));
   2775       cast<CallInst>(I)->setTailCall(CCInfo & 1);
   2776       cast<CallInst>(I)->setAttributes(PAL);
   2777       break;
   2778     }
   2779     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
   2780       if (Record.size() < 3)
   2781         return Error("Invalid VAARG record");
   2782       Type *OpTy = getTypeByID(Record[0]);
   2783       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
   2784       Type *ResTy = getTypeByID(Record[2]);
   2785       if (!OpTy || !Op || !ResTy)
   2786         return Error("Invalid VAARG record");
   2787       I = new VAArgInst(Op, ResTy);
   2788       InstructionList.push_back(I);
   2789       break;
   2790     }
   2791     }
   2792 
   2793     // Add instruction to end of current BB.  If there is no current BB, reject
   2794     // this file.
   2795     if (CurBB == 0) {
   2796       delete I;
   2797       return Error("Invalid instruction with no BB");
   2798     }
   2799     CurBB->getInstList().push_back(I);
   2800 
   2801     // If this was a terminator instruction, move to the next block.
   2802     if (isa<TerminatorInst>(I)) {
   2803       ++CurBBNo;
   2804       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
   2805     }
   2806 
   2807     // Non-void values get registered in the value table for future use.
   2808     if (I && !I->getType()->isVoidTy())
   2809       ValueList.AssignValue(I, NextValueNo++);
   2810   }
   2811 
   2812 OutOfRecordLoop:
   2813 
   2814   // Check the function list for unresolved values.
   2815   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
   2816     if (A->getParent() == 0) {
   2817       // We found at least one unresolved value.  Nuke them all to avoid leaks.
   2818       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
   2819         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
   2820           A->replaceAllUsesWith(UndefValue::get(A->getType()));
   2821           delete A;
   2822         }
   2823       }
   2824       return Error("Never resolved value found in function!");
   2825     }
   2826   }
   2827 
   2828   // FIXME: Check for unresolved forward-declared metadata references
   2829   // and clean up leaks.
   2830 
   2831   // See if anything took the address of blocks in this function.  If so,
   2832   // resolve them now.
   2833   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
   2834     BlockAddrFwdRefs.find(F);
   2835   if (BAFRI != BlockAddrFwdRefs.end()) {
   2836     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
   2837     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
   2838       unsigned BlockIdx = RefList[i].first;
   2839       if (BlockIdx >= FunctionBBs.size())
   2840         return Error("Invalid blockaddress block #");
   2841 
   2842       GlobalVariable *FwdRef = RefList[i].second;
   2843       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
   2844       FwdRef->eraseFromParent();
   2845     }
   2846 
   2847     BlockAddrFwdRefs.erase(BAFRI);
   2848   }
   2849 
   2850   // Trim the value list down to the size it was before we parsed this function.
   2851   ValueList.shrinkTo(ModuleValueListSize);
   2852   MDValueList.shrinkTo(ModuleMDValueListSize);
   2853   std::vector<BasicBlock*>().swap(FunctionBBs);
   2854   return false;
   2855 }
   2856 
   2857 /// FindFunctionInStream - Find the function body in the bitcode stream
   2858 bool BitcodeReader::FindFunctionInStream(Function *F,
   2859        DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) {
   2860   while (DeferredFunctionInfoIterator->second == 0) {
   2861     if (Stream.AtEndOfStream())
   2862       return Error("Could not find Function in stream");
   2863     // ParseModule will parse the next body in the stream and set its
   2864     // position in the DeferredFunctionInfo map.
   2865     if (ParseModule(true)) return true;
   2866   }
   2867   return false;
   2868 }
   2869 
   2870 //===----------------------------------------------------------------------===//
   2871 // GVMaterializer implementation
   2872 //===----------------------------------------------------------------------===//
   2873 
   2874 
   2875 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
   2876   if (const Function *F = dyn_cast<Function>(GV)) {
   2877     return F->isDeclaration() &&
   2878       DeferredFunctionInfo.count(const_cast<Function*>(F));
   2879   }
   2880   return false;
   2881 }
   2882 
   2883 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
   2884   Function *F = dyn_cast<Function>(GV);
   2885   // If it's not a function or is already material, ignore the request.
   2886   if (!F || !F->isMaterializable()) return false;
   2887 
   2888   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
   2889   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
   2890   // If its position is recorded as 0, its body is somewhere in the stream
   2891   // but we haven't seen it yet.
   2892   if (DFII->second == 0)
   2893     if (LazyStreamer && FindFunctionInStream(F, DFII)) return true;
   2894 
   2895   // Move the bit stream to the saved position of the deferred function body.
   2896   Stream.JumpToBit(DFII->second);
   2897 
   2898   if (ParseFunctionBody(F)) {
   2899     if (ErrInfo) *ErrInfo = ErrorString;
   2900     return true;
   2901   }
   2902 
   2903   // Upgrade any old intrinsic calls in the function.
   2904   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
   2905        E = UpgradedIntrinsics.end(); I != E; ++I) {
   2906     if (I->first != I->second) {
   2907       for (Value::use_iterator UI = I->first->use_begin(),
   2908            UE = I->first->use_end(); UI != UE; ) {
   2909         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
   2910           UpgradeIntrinsicCall(CI, I->second);
   2911       }
   2912     }
   2913   }
   2914 
   2915   return false;
   2916 }
   2917 
   2918 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
   2919   const Function *F = dyn_cast<Function>(GV);
   2920   if (!F || F->isDeclaration())
   2921     return false;
   2922   return DeferredFunctionInfo.count(const_cast<Function*>(F));
   2923 }
   2924 
   2925 void BitcodeReader::Dematerialize(GlobalValue *GV) {
   2926   Function *F = dyn_cast<Function>(GV);
   2927   // If this function isn't dematerializable, this is a noop.
   2928   if (!F || !isDematerializable(F))
   2929     return;
   2930 
   2931   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
   2932 
   2933   // Just forget the function body, we can remat it later.
   2934   F->deleteBody();
   2935 }
   2936 
   2937 
   2938 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
   2939   assert(M == TheModule &&
   2940          "Can only Materialize the Module this BitcodeReader is attached to.");
   2941   // Iterate over the module, deserializing any functions that are still on
   2942   // disk.
   2943   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
   2944        F != E; ++F)
   2945     if (F->isMaterializable() &&
   2946         Materialize(F, ErrInfo))
   2947       return true;
   2948 
   2949   // At this point, if there are any function bodies, the current bit is
   2950   // pointing to the END_BLOCK record after them. Now make sure the rest
   2951   // of the bits in the module have been read.
   2952   if (NextUnreadBit)
   2953     ParseModule(true);
   2954 
   2955   // Upgrade any intrinsic calls that slipped through (should not happen!) and
   2956   // delete the old functions to clean up. We can't do this unless the entire
   2957   // module is materialized because there could always be another function body
   2958   // with calls to the old function.
   2959   for (std::vector<std::pair<Function*, Function*> >::iterator I =
   2960        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
   2961     if (I->first != I->second) {
   2962       for (Value::use_iterator UI = I->first->use_begin(),
   2963            UE = I->first->use_end(); UI != UE; ) {
   2964         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
   2965           UpgradeIntrinsicCall(CI, I->second);
   2966       }
   2967       if (!I->first->use_empty())
   2968         I->first->replaceAllUsesWith(I->second);
   2969       I->first->eraseFromParent();
   2970     }
   2971   }
   2972   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
   2973 
   2974   return false;
   2975 }
   2976 
   2977 bool BitcodeReader::InitStream() {
   2978   if (LazyStreamer) return InitLazyStream();
   2979   return InitStreamFromBuffer();
   2980 }
   2981 
   2982 bool BitcodeReader::InitStreamFromBuffer() {
   2983   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
   2984   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
   2985 
   2986   if (Buffer->getBufferSize() & 3) {
   2987     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
   2988       return Error("Invalid bitcode signature");
   2989     else
   2990       return Error("Bitcode stream should be a multiple of 4 bytes in length");
   2991   }
   2992 
   2993   // If we have a wrapper header, parse it and ignore the non-bc file contents.
   2994   // The magic number is 0x0B17C0DE stored in little endian.
   2995   if (isBitcodeWrapper(BufPtr, BufEnd))
   2996     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
   2997       return Error("Invalid bitcode wrapper header");
   2998 
   2999   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
   3000   Stream.init(*StreamFile);
   3001 
   3002   return false;
   3003 }
   3004 
   3005 bool BitcodeReader::InitLazyStream() {
   3006   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
   3007   // see it.
   3008   StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
   3009   StreamFile.reset(new BitstreamReader(Bytes));
   3010   Stream.init(*StreamFile);
   3011 
   3012   unsigned char buf[16];
   3013   if (Bytes->readBytes(0, 16, buf, NULL) == -1)
   3014     return Error("Bitcode stream must be at least 16 bytes in length");
   3015 
   3016   if (!isBitcode(buf, buf + 16))
   3017     return Error("Invalid bitcode signature");
   3018 
   3019   if (isBitcodeWrapper(buf, buf + 4)) {
   3020     const unsigned char *bitcodeStart = buf;
   3021     const unsigned char *bitcodeEnd = buf + 16;
   3022     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
   3023     Bytes->dropLeadingBytes(bitcodeStart - buf);
   3024     Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
   3025   }
   3026   return false;
   3027 }
   3028 
   3029 //===----------------------------------------------------------------------===//
   3030 // External interface
   3031 //===----------------------------------------------------------------------===//
   3032 
   3033 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
   3034 ///
   3035 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
   3036                                    LLVMContext& Context,
   3037                                    std::string *ErrMsg) {
   3038   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
   3039   BitcodeReader *R = new BitcodeReader(Buffer, Context);
   3040   M->setMaterializer(R);
   3041   if (R->ParseBitcodeInto(M)) {
   3042     if (ErrMsg)
   3043       *ErrMsg = R->getErrorString();
   3044 
   3045     delete M;  // Also deletes R.
   3046     return 0;
   3047   }
   3048   // Have the BitcodeReader dtor delete 'Buffer'.
   3049   R->setBufferOwned(true);
   3050 
   3051   R->materializeForwardReferencedFunctions();
   3052 
   3053   return M;
   3054 }
   3055 
   3056 
   3057 Module *llvm::getStreamedBitcodeModule(const std::string &name,
   3058                                        DataStreamer *streamer,
   3059                                        LLVMContext &Context,
   3060                                        std::string *ErrMsg) {
   3061   Module *M = new Module(name, Context);
   3062   BitcodeReader *R = new BitcodeReader(streamer, Context);
   3063   M->setMaterializer(R);
   3064   if (R->ParseBitcodeInto(M)) {
   3065     if (ErrMsg)
   3066       *ErrMsg = R->getErrorString();
   3067     delete M;  // Also deletes R.
   3068     return 0;
   3069   }
   3070   R->setBufferOwned(false); // no buffer to delete
   3071   return M;
   3072 }
   3073 
   3074 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
   3075 /// If an error occurs, return null and fill in *ErrMsg if non-null.
   3076 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
   3077                                std::string *ErrMsg){
   3078   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
   3079   if (!M) return 0;
   3080 
   3081   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
   3082   // there was an error.
   3083   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
   3084 
   3085   // Read in the entire module, and destroy the BitcodeReader.
   3086   if (M->MaterializeAllPermanently(ErrMsg)) {
   3087     delete M;
   3088     return 0;
   3089   }
   3090 
   3091   // TODO: Restore the use-lists to the in-memory state when the bitcode was
   3092   // written.  We must defer until the Module has been fully materialized.
   3093 
   3094   return M;
   3095 }
   3096 
   3097 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
   3098                                          LLVMContext& Context,
   3099                                          std::string *ErrMsg) {
   3100   BitcodeReader *R = new BitcodeReader(Buffer, Context);
   3101   // Don't let the BitcodeReader dtor delete 'Buffer'.
   3102   R->setBufferOwned(false);
   3103 
   3104   std::string Triple("");
   3105   if (R->ParseTriple(Triple))
   3106     if (ErrMsg)
   3107       *ErrMsg = R->getErrorString();
   3108 
   3109   delete R;
   3110   return Triple;
   3111 }
   3112