1 //===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/IR/Instructions.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/Analysis/ValueTracking.h" 13 #include "llvm/IR/BasicBlock.h" 14 #include "llvm/IR/Constants.h" 15 #include "llvm/IR/DataLayout.h" 16 #include "llvm/IR/DerivedTypes.h" 17 #include "llvm/IR/IRBuilder.h" 18 #include "llvm/IR/LLVMContext.h" 19 #include "llvm/IR/MDBuilder.h" 20 #include "llvm/IR/Operator.h" 21 #include "gtest/gtest.h" 22 23 namespace llvm { 24 namespace { 25 26 TEST(InstructionsTest, ReturnInst) { 27 LLVMContext &C(getGlobalContext()); 28 29 // test for PR6589 30 const ReturnInst* r0 = ReturnInst::Create(C); 31 EXPECT_EQ(r0->getNumOperands(), 0U); 32 EXPECT_EQ(r0->op_begin(), r0->op_end()); 33 34 IntegerType* Int1 = IntegerType::get(C, 1); 35 Constant* One = ConstantInt::get(Int1, 1, true); 36 const ReturnInst* r1 = ReturnInst::Create(C, One); 37 EXPECT_EQ(1U, r1->getNumOperands()); 38 User::const_op_iterator b(r1->op_begin()); 39 EXPECT_NE(r1->op_end(), b); 40 EXPECT_EQ(One, *b); 41 EXPECT_EQ(One, r1->getOperand(0)); 42 ++b; 43 EXPECT_EQ(r1->op_end(), b); 44 45 // clean up 46 delete r0; 47 delete r1; 48 } 49 50 TEST(InstructionsTest, BranchInst) { 51 LLVMContext &C(getGlobalContext()); 52 53 // Make a BasicBlocks 54 BasicBlock* bb0 = BasicBlock::Create(C); 55 BasicBlock* bb1 = BasicBlock::Create(C); 56 57 // Mandatory BranchInst 58 const BranchInst* b0 = BranchInst::Create(bb0); 59 60 EXPECT_TRUE(b0->isUnconditional()); 61 EXPECT_FALSE(b0->isConditional()); 62 EXPECT_EQ(1U, b0->getNumSuccessors()); 63 64 // check num operands 65 EXPECT_EQ(1U, b0->getNumOperands()); 66 67 EXPECT_NE(b0->op_begin(), b0->op_end()); 68 EXPECT_EQ(b0->op_end(), llvm::next(b0->op_begin())); 69 70 EXPECT_EQ(b0->op_end(), llvm::next(b0->op_begin())); 71 72 IntegerType* Int1 = IntegerType::get(C, 1); 73 Constant* One = ConstantInt::get(Int1, 1, true); 74 75 // Conditional BranchInst 76 BranchInst* b1 = BranchInst::Create(bb0, bb1, One); 77 78 EXPECT_FALSE(b1->isUnconditional()); 79 EXPECT_TRUE(b1->isConditional()); 80 EXPECT_EQ(2U, b1->getNumSuccessors()); 81 82 // check num operands 83 EXPECT_EQ(3U, b1->getNumOperands()); 84 85 User::const_op_iterator b(b1->op_begin()); 86 87 // check COND 88 EXPECT_NE(b, b1->op_end()); 89 EXPECT_EQ(One, *b); 90 EXPECT_EQ(One, b1->getOperand(0)); 91 EXPECT_EQ(One, b1->getCondition()); 92 ++b; 93 94 // check ELSE 95 EXPECT_EQ(bb1, *b); 96 EXPECT_EQ(bb1, b1->getOperand(1)); 97 EXPECT_EQ(bb1, b1->getSuccessor(1)); 98 ++b; 99 100 // check THEN 101 EXPECT_EQ(bb0, *b); 102 EXPECT_EQ(bb0, b1->getOperand(2)); 103 EXPECT_EQ(bb0, b1->getSuccessor(0)); 104 ++b; 105 106 EXPECT_EQ(b1->op_end(), b); 107 108 // clean up 109 delete b0; 110 delete b1; 111 112 delete bb0; 113 delete bb1; 114 } 115 116 TEST(InstructionsTest, CastInst) { 117 LLVMContext &C(getGlobalContext()); 118 119 Type* Int8Ty = Type::getInt8Ty(C); 120 Type* Int64Ty = Type::getInt64Ty(C); 121 Type* V8x8Ty = VectorType::get(Int8Ty, 8); 122 Type* V8x64Ty = VectorType::get(Int64Ty, 8); 123 Type* X86MMXTy = Type::getX86_MMXTy(C); 124 125 const Constant* c8 = Constant::getNullValue(V8x8Ty); 126 const Constant* c64 = Constant::getNullValue(V8x64Ty); 127 128 EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy)); 129 EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty)); 130 EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy)); 131 EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty)); 132 EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty)); 133 EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true)); 134 EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true)); 135 } 136 137 138 139 TEST(InstructionsTest, VectorGep) { 140 LLVMContext &C(getGlobalContext()); 141 142 // Type Definitions 143 PointerType *Ptri8Ty = PointerType::get(IntegerType::get(C, 8), 0); 144 PointerType *Ptri32Ty = PointerType::get(IntegerType::get(C, 8), 0); 145 146 VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2); 147 VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2); 148 149 // Test different aspects of the vector-of-pointers type 150 // and GEPs which use this type. 151 ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492)); 152 ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948)); 153 std::vector<Constant*> ConstVa(2, Ci32a); 154 std::vector<Constant*> ConstVb(2, Ci32b); 155 Constant *C2xi32a = ConstantVector::get(ConstVa); 156 Constant *C2xi32b = ConstantVector::get(ConstVb); 157 158 CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy); 159 CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy); 160 161 ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB); 162 ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB); 163 EXPECT_NE(ICmp0, ICmp1); // suppress warning. 164 165 BasicBlock* BB0 = BasicBlock::Create(C); 166 // Test InsertAtEnd ICmpInst constructor. 167 ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB); 168 EXPECT_NE(ICmp0, ICmp2); // suppress warning. 169 170 GetElementPtrInst *Gep0 = GetElementPtrInst::Create(PtrVecA, C2xi32a); 171 GetElementPtrInst *Gep1 = GetElementPtrInst::Create(PtrVecA, C2xi32b); 172 GetElementPtrInst *Gep2 = GetElementPtrInst::Create(PtrVecB, C2xi32a); 173 GetElementPtrInst *Gep3 = GetElementPtrInst::Create(PtrVecB, C2xi32b); 174 175 CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy); 176 CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy); 177 CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy); 178 CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy); 179 180 Value *S0 = BTC0->stripPointerCasts(); 181 Value *S1 = BTC1->stripPointerCasts(); 182 Value *S2 = BTC2->stripPointerCasts(); 183 Value *S3 = BTC3->stripPointerCasts(); 184 185 EXPECT_NE(S0, Gep0); 186 EXPECT_NE(S1, Gep1); 187 EXPECT_NE(S2, Gep2); 188 EXPECT_NE(S3, Gep3); 189 190 int64_t Offset; 191 DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3" 192 "2:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80" 193 ":128:128-n8:16:32:64-S128"); 194 // Make sure we don't crash 195 GetPointerBaseWithConstantOffset(Gep0, Offset, &TD); 196 GetPointerBaseWithConstantOffset(Gep1, Offset, &TD); 197 GetPointerBaseWithConstantOffset(Gep2, Offset, &TD); 198 GetPointerBaseWithConstantOffset(Gep3, Offset, &TD); 199 200 // Gep of Geps 201 GetElementPtrInst *GepII0 = GetElementPtrInst::Create(Gep0, C2xi32b); 202 GetElementPtrInst *GepII1 = GetElementPtrInst::Create(Gep1, C2xi32a); 203 GetElementPtrInst *GepII2 = GetElementPtrInst::Create(Gep2, C2xi32b); 204 GetElementPtrInst *GepII3 = GetElementPtrInst::Create(Gep3, C2xi32a); 205 206 EXPECT_EQ(GepII0->getNumIndices(), 1u); 207 EXPECT_EQ(GepII1->getNumIndices(), 1u); 208 EXPECT_EQ(GepII2->getNumIndices(), 1u); 209 EXPECT_EQ(GepII3->getNumIndices(), 1u); 210 211 EXPECT_FALSE(GepII0->hasAllZeroIndices()); 212 EXPECT_FALSE(GepII1->hasAllZeroIndices()); 213 EXPECT_FALSE(GepII2->hasAllZeroIndices()); 214 EXPECT_FALSE(GepII3->hasAllZeroIndices()); 215 216 delete GepII0; 217 delete GepII1; 218 delete GepII2; 219 delete GepII3; 220 221 delete BTC0; 222 delete BTC1; 223 delete BTC2; 224 delete BTC3; 225 226 delete Gep0; 227 delete Gep1; 228 delete Gep2; 229 delete Gep3; 230 231 ICmp2->eraseFromParent(); 232 delete BB0; 233 234 delete ICmp0; 235 delete ICmp1; 236 delete PtrVecA; 237 delete PtrVecB; 238 } 239 240 TEST(InstructionsTest, FPMathOperator) { 241 LLVMContext &Context = getGlobalContext(); 242 IRBuilder<> Builder(Context); 243 MDBuilder MDHelper(Context); 244 Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0); 245 MDNode *MD1 = MDHelper.createFPMath(1.0); 246 Value *V1 = Builder.CreateFAdd(I, I, "", MD1); 247 EXPECT_TRUE(isa<FPMathOperator>(V1)); 248 FPMathOperator *O1 = cast<FPMathOperator>(V1); 249 EXPECT_EQ(O1->getFPAccuracy(), 1.0); 250 delete V1; 251 delete I; 252 } 253 254 255 TEST(InstructionsTest, isEliminableCastPair) { 256 LLVMContext &C(getGlobalContext()); 257 258 Type* Int32Ty = Type::getInt32Ty(C); 259 Type* Int64Ty = Type::getInt64Ty(C); 260 Type* Int64PtrTy = Type::getInt64PtrTy(C); 261 262 // Source and destination pointers have same size -> bitcast. 263 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, 264 CastInst::IntToPtr, 265 Int64PtrTy, Int64Ty, Int64PtrTy, 266 Int32Ty, 0, Int32Ty), 267 CastInst::BitCast); 268 269 // Source and destination pointers have different sizes -> fail. 270 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, 271 CastInst::IntToPtr, 272 Int64PtrTy, Int64Ty, Int64PtrTy, 273 Int32Ty, 0, Int64Ty), 274 0U); 275 276 // Middle pointer big enough -> bitcast. 277 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, 278 CastInst::PtrToInt, 279 Int64Ty, Int64PtrTy, Int64Ty, 280 0, Int64Ty, 0), 281 CastInst::BitCast); 282 283 // Middle pointer too small -> fail. 284 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, 285 CastInst::PtrToInt, 286 Int64Ty, Int64PtrTy, Int64Ty, 287 0, Int32Ty, 0), 288 0U); 289 } 290 291 } // end anonymous namespace 292 } // end namespace llvm 293