Home | History | Annotate | Download | only in examples
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: strandmark (at) google.com (Petter Strandmark)
     30 //
     31 // Class for loading the data required for descibing a Fields of Experts (FoE)
     32 // model.
     33 
     34 #include "fields_of_experts.h"
     35 
     36 #include <fstream>
     37 #include <cmath>
     38 
     39 #include "pgm_image.h"
     40 
     41 namespace ceres {
     42 namespace examples {
     43 
     44 FieldsOfExpertsCost::FieldsOfExpertsCost(const std::vector<double>& filter)
     45     : filter_(filter) {
     46   set_num_residuals(1);
     47   for (int i = 0; i < filter_.size(); ++i) {
     48     mutable_parameter_block_sizes()->push_back(1);
     49   }
     50 }
     51 
     52 // This is a dot product between a the scalar parameters and a vector of filter
     53 // coefficients.
     54 bool FieldsOfExpertsCost::Evaluate(double const* const* parameters,
     55                                    double* residuals,
     56                                    double** jacobians) const {
     57   int num_variables = filter_.size();
     58   residuals[0] = 0;
     59   for (int i = 0; i < num_variables; ++i) {
     60     residuals[0] += filter_[i] * parameters[i][0];
     61   }
     62 
     63   if (jacobians != NULL) {
     64     for (int i = 0; i < num_variables; ++i) {
     65       if (jacobians[i] != NULL) {
     66         jacobians[i][0] = filter_[i];
     67       }
     68     }
     69   }
     70 
     71   return true;
     72 }
     73 
     74 // This loss function builds the FoE terms and is equal to
     75 //
     76 //   f(x) = alpha_i * log(1 + (1/2)s)
     77 //
     78 void FieldsOfExpertsLoss::Evaluate(double sq_norm, double rho[3]) const {
     79   const double c = 0.5;
     80   const double sum = 1.0 + sq_norm * c;
     81   const double inv = 1.0 / sum;
     82   // 'sum' and 'inv' are always positive, assuming that 's' is.
     83   rho[0] = alpha_ *  log(sum);
     84   rho[1] = alpha_ * c * inv;
     85   rho[2] = - alpha_ * c * c * inv * inv;
     86 }
     87 
     88 FieldsOfExperts::FieldsOfExperts()
     89     :  size_(0), num_filters_(0) {
     90 }
     91 
     92 bool FieldsOfExperts::LoadFromFile(const std::string& filename) {
     93   std::ifstream foe_file(filename.c_str());
     94   foe_file >> size_;
     95   foe_file >> num_filters_;
     96   if (size_ < 0 || num_filters_ < 0) {
     97     return false;
     98   }
     99   const int num_variables = NumVariables();
    100 
    101   x_delta_indices_.resize(num_variables);
    102   for (int i = 0; i < num_variables; ++i) {
    103     foe_file >> x_delta_indices_[i];
    104   }
    105 
    106   y_delta_indices_.resize(NumVariables());
    107   for (int i = 0; i < num_variables; ++i) {
    108     foe_file >> y_delta_indices_[i];
    109   }
    110 
    111   alpha_.resize(num_filters_);
    112   for (int i = 0; i < num_filters_; ++i) {
    113     foe_file >> alpha_[i];
    114   }
    115 
    116   filters_.resize(num_filters_);
    117   for (int i = 0; i < num_filters_; ++i) {
    118     filters_[i].resize(num_variables);
    119     for (int j = 0; j < num_variables; ++j) {
    120       foe_file >> filters_[i][j];
    121     }
    122   }
    123 
    124   // If any read failed, return failure.
    125   if (!foe_file) {
    126     size_ = 0;
    127     return false;
    128   }
    129 
    130   // There cannot be anything else in the file. Try reading another number and
    131   // return failure if that succeeded.
    132   double temp;
    133   foe_file >> temp;
    134   if (foe_file) {
    135     size_ = 0;
    136     return false;
    137   }
    138 
    139   return true;
    140 }
    141 
    142 ceres::CostFunction* FieldsOfExperts::NewCostFunction(int alpha_index) const {
    143   return new FieldsOfExpertsCost(filters_[alpha_index]);
    144 }
    145 
    146 ceres::LossFunction* FieldsOfExperts::NewLossFunction(int alpha_index) const {
    147   return new FieldsOfExpertsLoss(alpha_[alpha_index]);
    148 }
    149 
    150 
    151 }  // namespace examples
    152 }  // namespace ceres
    153