Home | History | Annotate | Download | only in Scalar
      1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass reassociates commutative expressions in an order that is designed
     11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
     12 //
     13 // For example: 4 + (x + 5) -> x + (4 + 5)
     14 //
     15 // In the implementation of this algorithm, constants are assigned rank = 0,
     16 // function arguments are rank = 1, and other values are assigned ranks
     17 // corresponding to the reverse post order traversal of current function
     18 // (starting at 2), which effectively gives values in deep loops higher rank
     19 // than values not in loops.
     20 //
     21 //===----------------------------------------------------------------------===//
     22 
     23 #define DEBUG_TYPE "reassociate"
     24 #include "llvm/Transforms/Scalar.h"
     25 #include "llvm/ADT/DenseMap.h"
     26 #include "llvm/ADT/PostOrderIterator.h"
     27 #include "llvm/ADT/STLExtras.h"
     28 #include "llvm/ADT/SetVector.h"
     29 #include "llvm/ADT/Statistic.h"
     30 #include "llvm/Assembly/Writer.h"
     31 #include "llvm/IR/Constants.h"
     32 #include "llvm/IR/DerivedTypes.h"
     33 #include "llvm/IR/Function.h"
     34 #include "llvm/IR/IRBuilder.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/IR/IntrinsicInst.h"
     37 #include "llvm/Pass.h"
     38 #include "llvm/Support/CFG.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/ValueHandle.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/Transforms/Utils/Local.h"
     43 #include <algorithm>
     44 using namespace llvm;
     45 
     46 STATISTIC(NumChanged, "Number of insts reassociated");
     47 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
     48 STATISTIC(NumFactor , "Number of multiplies factored");
     49 
     50 namespace {
     51   struct ValueEntry {
     52     unsigned Rank;
     53     Value *Op;
     54     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
     55   };
     56   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
     57     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
     58   }
     59 }
     60 
     61 #ifndef NDEBUG
     62 /// PrintOps - Print out the expression identified in the Ops list.
     63 ///
     64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
     65   Module *M = I->getParent()->getParent()->getParent();
     66   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
     67        << *Ops[0].Op->getType() << '\t';
     68   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
     69     dbgs() << "[ ";
     70     WriteAsOperand(dbgs(), Ops[i].Op, false, M);
     71     dbgs() << ", #" << Ops[i].Rank << "] ";
     72   }
     73 }
     74 #endif
     75 
     76 namespace {
     77   /// \brief Utility class representing a base and exponent pair which form one
     78   /// factor of some product.
     79   struct Factor {
     80     Value *Base;
     81     unsigned Power;
     82 
     83     Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
     84 
     85     /// \brief Sort factors by their Base.
     86     struct BaseSorter {
     87       bool operator()(const Factor &LHS, const Factor &RHS) {
     88         return LHS.Base < RHS.Base;
     89       }
     90     };
     91 
     92     /// \brief Compare factors for equal bases.
     93     struct BaseEqual {
     94       bool operator()(const Factor &LHS, const Factor &RHS) {
     95         return LHS.Base == RHS.Base;
     96       }
     97     };
     98 
     99     /// \brief Sort factors in descending order by their power.
    100     struct PowerDescendingSorter {
    101       bool operator()(const Factor &LHS, const Factor &RHS) {
    102         return LHS.Power > RHS.Power;
    103       }
    104     };
    105 
    106     /// \brief Compare factors for equal powers.
    107     struct PowerEqual {
    108       bool operator()(const Factor &LHS, const Factor &RHS) {
    109         return LHS.Power == RHS.Power;
    110       }
    111     };
    112   };
    113 }
    114 
    115 namespace {
    116   class Reassociate : public FunctionPass {
    117     DenseMap<BasicBlock*, unsigned> RankMap;
    118     DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
    119     SetVector<AssertingVH<Instruction> > RedoInsts;
    120     bool MadeChange;
    121   public:
    122     static char ID; // Pass identification, replacement for typeid
    123     Reassociate() : FunctionPass(ID) {
    124       initializeReassociatePass(*PassRegistry::getPassRegistry());
    125     }
    126 
    127     bool runOnFunction(Function &F);
    128 
    129     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    130       AU.setPreservesCFG();
    131     }
    132   private:
    133     void BuildRankMap(Function &F);
    134     unsigned getRank(Value *V);
    135     void ReassociateExpression(BinaryOperator *I);
    136     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    137     Value *OptimizeExpression(BinaryOperator *I,
    138                               SmallVectorImpl<ValueEntry> &Ops);
    139     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
    140     bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
    141                                 SmallVectorImpl<Factor> &Factors);
    142     Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
    143                                    SmallVectorImpl<Factor> &Factors);
    144     Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    145     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
    146     void EraseInst(Instruction *I);
    147     void OptimizeInst(Instruction *I);
    148   };
    149 }
    150 
    151 char Reassociate::ID = 0;
    152 INITIALIZE_PASS(Reassociate, "reassociate",
    153                 "Reassociate expressions", false, false)
    154 
    155 // Public interface to the Reassociate pass
    156 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
    157 
    158 /// isReassociableOp - Return true if V is an instruction of the specified
    159 /// opcode and if it only has one use.
    160 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
    161   if (V->hasOneUse() && isa<Instruction>(V) &&
    162       cast<Instruction>(V)->getOpcode() == Opcode)
    163     return cast<BinaryOperator>(V);
    164   return 0;
    165 }
    166 
    167 static bool isUnmovableInstruction(Instruction *I) {
    168   if (I->getOpcode() == Instruction::PHI ||
    169       I->getOpcode() == Instruction::LandingPad ||
    170       I->getOpcode() == Instruction::Alloca ||
    171       I->getOpcode() == Instruction::Load ||
    172       I->getOpcode() == Instruction::Invoke ||
    173       (I->getOpcode() == Instruction::Call &&
    174        !isa<DbgInfoIntrinsic>(I)) ||
    175       I->getOpcode() == Instruction::UDiv ||
    176       I->getOpcode() == Instruction::SDiv ||
    177       I->getOpcode() == Instruction::FDiv ||
    178       I->getOpcode() == Instruction::URem ||
    179       I->getOpcode() == Instruction::SRem ||
    180       I->getOpcode() == Instruction::FRem)
    181     return true;
    182   return false;
    183 }
    184 
    185 void Reassociate::BuildRankMap(Function &F) {
    186   unsigned i = 2;
    187 
    188   // Assign distinct ranks to function arguments
    189   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
    190     ValueRankMap[&*I] = ++i;
    191 
    192   ReversePostOrderTraversal<Function*> RPOT(&F);
    193   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
    194          E = RPOT.end(); I != E; ++I) {
    195     BasicBlock *BB = *I;
    196     unsigned BBRank = RankMap[BB] = ++i << 16;
    197 
    198     // Walk the basic block, adding precomputed ranks for any instructions that
    199     // we cannot move.  This ensures that the ranks for these instructions are
    200     // all different in the block.
    201     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    202       if (isUnmovableInstruction(I))
    203         ValueRankMap[&*I] = ++BBRank;
    204   }
    205 }
    206 
    207 unsigned Reassociate::getRank(Value *V) {
    208   Instruction *I = dyn_cast<Instruction>(V);
    209   if (I == 0) {
    210     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
    211     return 0;  // Otherwise it's a global or constant, rank 0.
    212   }
    213 
    214   if (unsigned Rank = ValueRankMap[I])
    215     return Rank;    // Rank already known?
    216 
    217   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
    218   // we can reassociate expressions for code motion!  Since we do not recurse
    219   // for PHI nodes, we cannot have infinite recursion here, because there
    220   // cannot be loops in the value graph that do not go through PHI nodes.
    221   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
    222   for (unsigned i = 0, e = I->getNumOperands();
    223        i != e && Rank != MaxRank; ++i)
    224     Rank = std::max(Rank, getRank(I->getOperand(i)));
    225 
    226   // If this is a not or neg instruction, do not count it for rank.  This
    227   // assures us that X and ~X will have the same rank.
    228   if (!I->getType()->isIntegerTy() ||
    229       (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
    230     ++Rank;
    231 
    232   //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
    233   //     << Rank << "\n");
    234 
    235   return ValueRankMap[I] = Rank;
    236 }
    237 
    238 /// LowerNegateToMultiply - Replace 0-X with X*-1.
    239 ///
    240 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
    241   Constant *Cst = Constant::getAllOnesValue(Neg->getType());
    242 
    243   BinaryOperator *Res =
    244     BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
    245   Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
    246   Res->takeName(Neg);
    247   Neg->replaceAllUsesWith(Res);
    248   Res->setDebugLoc(Neg->getDebugLoc());
    249   return Res;
    250 }
    251 
    252 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
    253 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
    254 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
    255 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
    256 /// even x in Bitwidth-bit arithmetic.
    257 static unsigned CarmichaelShift(unsigned Bitwidth) {
    258   if (Bitwidth < 3)
    259     return Bitwidth - 1;
    260   return Bitwidth - 2;
    261 }
    262 
    263 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
    264 /// reducing the combined weight using any special properties of the operation.
    265 /// The existing weight LHS represents the computation X op X op ... op X where
    266 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
    267 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
    268 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
    269 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
    270 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
    271   // If we were working with infinite precision arithmetic then the combined
    272   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
    273   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
    274   // for nilpotent operations and addition, but not for idempotent operations
    275   // and multiplication), so it is important to correctly reduce the combined
    276   // weight back into range if wrapping would be wrong.
    277 
    278   // If RHS is zero then the weight didn't change.
    279   if (RHS.isMinValue())
    280     return;
    281   // If LHS is zero then the combined weight is RHS.
    282   if (LHS.isMinValue()) {
    283     LHS = RHS;
    284     return;
    285   }
    286   // From this point on we know that neither LHS nor RHS is zero.
    287 
    288   if (Instruction::isIdempotent(Opcode)) {
    289     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
    290     // weight of 1.  Keeping weights at zero or one also means that wrapping is
    291     // not a problem.
    292     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    293     return; // Return a weight of 1.
    294   }
    295   if (Instruction::isNilpotent(Opcode)) {
    296     // Nilpotent means X op X === 0, so reduce weights modulo 2.
    297     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    298     LHS = 0; // 1 + 1 === 0 modulo 2.
    299     return;
    300   }
    301   if (Opcode == Instruction::Add) {
    302     // TODO: Reduce the weight by exploiting nsw/nuw?
    303     LHS += RHS;
    304     return;
    305   }
    306 
    307   assert(Opcode == Instruction::Mul && "Unknown associative operation!");
    308   unsigned Bitwidth = LHS.getBitWidth();
    309   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
    310   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
    311   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
    312   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
    313   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
    314   // which by a happy accident means that they can always be represented using
    315   // Bitwidth bits.
    316   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
    317   // the Carmichael number).
    318   if (Bitwidth > 3) {
    319     /// CM - The value of Carmichael's lambda function.
    320     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
    321     // Any weight W >= Threshold can be replaced with W - CM.
    322     APInt Threshold = CM + Bitwidth;
    323     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
    324     // For Bitwidth 4 or more the following sum does not overflow.
    325     LHS += RHS;
    326     while (LHS.uge(Threshold))
    327       LHS -= CM;
    328   } else {
    329     // To avoid problems with overflow do everything the same as above but using
    330     // a larger type.
    331     unsigned CM = 1U << CarmichaelShift(Bitwidth);
    332     unsigned Threshold = CM + Bitwidth;
    333     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
    334            "Weights not reduced!");
    335     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
    336     while (Total >= Threshold)
    337       Total -= CM;
    338     LHS = Total;
    339   }
    340 }
    341 
    342 typedef std::pair<Value*, APInt> RepeatedValue;
    343 
    344 /// LinearizeExprTree - Given an associative binary expression, return the leaf
    345 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
    346 /// original expression is the same as
    347 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
    348 /// op
    349 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
    350 /// op
    351 ///   ...
    352 /// op
    353 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
    354 ///
    355 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
    356 ///
    357 /// This routine may modify the function, in which case it returns 'true'.  The
    358 /// changes it makes may well be destructive, changing the value computed by 'I'
    359 /// to something completely different.  Thus if the routine returns 'true' then
    360 /// you MUST either replace I with a new expression computed from the Ops array,
    361 /// or use RewriteExprTree to put the values back in.
    362 ///
    363 /// A leaf node is either not a binary operation of the same kind as the root
    364 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
    365 /// opcode), or is the same kind of binary operator but has a use which either
    366 /// does not belong to the expression, or does belong to the expression but is
    367 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
    368 /// of the expression, while for non-leaf nodes (except for the root 'I') every
    369 /// use is a non-leaf node of the expression.
    370 ///
    371 /// For example:
    372 ///           expression graph        node names
    373 ///
    374 ///                     +        |        I
    375 ///                    / \       |
    376 ///                   +   +      |      A,  B
    377 ///                  / \ / \     |
    378 ///                 *   +   *    |    C,  D,  E
    379 ///                / \ / \ / \   |
    380 ///                   +   *      |      F,  G
    381 ///
    382 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
    383 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
    384 ///
    385 /// The expression is maximal: if some instruction is a binary operator of the
    386 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
    387 /// then the instruction also belongs to the expression, is not a leaf node of
    388 /// it, and its operands also belong to the expression (but may be leaf nodes).
    389 ///
    390 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
    391 /// order to ensure that every non-root node in the expression has *exactly one*
    392 /// use by a non-leaf node of the expression.  This destruction means that the
    393 /// caller MUST either replace 'I' with a new expression or use something like
    394 /// RewriteExprTree to put the values back in if the routine indicates that it
    395 /// made a change by returning 'true'.
    396 ///
    397 /// In the above example either the right operand of A or the left operand of B
    398 /// will be replaced by undef.  If it is B's operand then this gives:
    399 ///
    400 ///                     +        |        I
    401 ///                    / \       |
    402 ///                   +   +      |      A,  B - operand of B replaced with undef
    403 ///                  / \   \     |
    404 ///                 *   +   *    |    C,  D,  E
    405 ///                / \ / \ / \   |
    406 ///                   +   *      |      F,  G
    407 ///
    408 /// Note that such undef operands can only be reached by passing through 'I'.
    409 /// For example, if you visit operands recursively starting from a leaf node
    410 /// then you will never see such an undef operand unless you get back to 'I',
    411 /// which requires passing through a phi node.
    412 ///
    413 /// Note that this routine may also mutate binary operators of the wrong type
    414 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
    415 /// of the expression) if it can turn them into binary operators of the right
    416 /// type and thus make the expression bigger.
    417 
    418 static bool LinearizeExprTree(BinaryOperator *I,
    419                               SmallVectorImpl<RepeatedValue> &Ops) {
    420   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
    421   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
    422   unsigned Opcode = I->getOpcode();
    423   assert(Instruction::isAssociative(Opcode) &&
    424          Instruction::isCommutative(Opcode) &&
    425          "Expected an associative and commutative operation!");
    426 
    427   // Visit all operands of the expression, keeping track of their weight (the
    428   // number of paths from the expression root to the operand, or if you like
    429   // the number of times that operand occurs in the linearized expression).
    430   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
    431   // while A has weight two.
    432 
    433   // Worklist of non-leaf nodes (their operands are in the expression too) along
    434   // with their weights, representing a certain number of paths to the operator.
    435   // If an operator occurs in the worklist multiple times then we found multiple
    436   // ways to get to it.
    437   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
    438   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
    439   bool MadeChange = false;
    440 
    441   // Leaves of the expression are values that either aren't the right kind of
    442   // operation (eg: a constant, or a multiply in an add tree), or are, but have
    443   // some uses that are not inside the expression.  For example, in I = X + X,
    444   // X = A + B, the value X has two uses (by I) that are in the expression.  If
    445   // X has any other uses, for example in a return instruction, then we consider
    446   // X to be a leaf, and won't analyze it further.  When we first visit a value,
    447   // if it has more than one use then at first we conservatively consider it to
    448   // be a leaf.  Later, as the expression is explored, we may discover some more
    449   // uses of the value from inside the expression.  If all uses turn out to be
    450   // from within the expression (and the value is a binary operator of the right
    451   // kind) then the value is no longer considered to be a leaf, and its operands
    452   // are explored.
    453 
    454   // Leaves - Keeps track of the set of putative leaves as well as the number of
    455   // paths to each leaf seen so far.
    456   typedef DenseMap<Value*, APInt> LeafMap;
    457   LeafMap Leaves; // Leaf -> Total weight so far.
    458   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
    459 
    460 #ifndef NDEBUG
    461   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
    462 #endif
    463   while (!Worklist.empty()) {
    464     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
    465     I = P.first; // We examine the operands of this binary operator.
    466 
    467     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
    468       Value *Op = I->getOperand(OpIdx);
    469       APInt Weight = P.second; // Number of paths to this operand.
    470       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
    471       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
    472 
    473       // If this is a binary operation of the right kind with only one use then
    474       // add its operands to the expression.
    475       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    476         assert(Visited.insert(Op) && "Not first visit!");
    477         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
    478         Worklist.push_back(std::make_pair(BO, Weight));
    479         continue;
    480       }
    481 
    482       // Appears to be a leaf.  Is the operand already in the set of leaves?
    483       LeafMap::iterator It = Leaves.find(Op);
    484       if (It == Leaves.end()) {
    485         // Not in the leaf map.  Must be the first time we saw this operand.
    486         assert(Visited.insert(Op) && "Not first visit!");
    487         if (!Op->hasOneUse()) {
    488           // This value has uses not accounted for by the expression, so it is
    489           // not safe to modify.  Mark it as being a leaf.
    490           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
    491           LeafOrder.push_back(Op);
    492           Leaves[Op] = Weight;
    493           continue;
    494         }
    495         // No uses outside the expression, try morphing it.
    496       } else if (It != Leaves.end()) {
    497         // Already in the leaf map.
    498         assert(Visited.count(Op) && "In leaf map but not visited!");
    499 
    500         // Update the number of paths to the leaf.
    501         IncorporateWeight(It->second, Weight, Opcode);
    502 
    503 #if 0   // TODO: Re-enable once PR13021 is fixed.
    504         // The leaf already has one use from inside the expression.  As we want
    505         // exactly one such use, drop this new use of the leaf.
    506         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
    507         I->setOperand(OpIdx, UndefValue::get(I->getType()));
    508         MadeChange = true;
    509 
    510         // If the leaf is a binary operation of the right kind and we now see
    511         // that its multiple original uses were in fact all by nodes belonging
    512         // to the expression, then no longer consider it to be a leaf and add
    513         // its operands to the expression.
    514         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    515           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
    516           Worklist.push_back(std::make_pair(BO, It->second));
    517           Leaves.erase(It);
    518           continue;
    519         }
    520 #endif
    521 
    522         // If we still have uses that are not accounted for by the expression
    523         // then it is not safe to modify the value.
    524         if (!Op->hasOneUse())
    525           continue;
    526 
    527         // No uses outside the expression, try morphing it.
    528         Weight = It->second;
    529         Leaves.erase(It); // Since the value may be morphed below.
    530       }
    531 
    532       // At this point we have a value which, first of all, is not a binary
    533       // expression of the right kind, and secondly, is only used inside the
    534       // expression.  This means that it can safely be modified.  See if we
    535       // can usefully morph it into an expression of the right kind.
    536       assert((!isa<Instruction>(Op) ||
    537               cast<Instruction>(Op)->getOpcode() != Opcode) &&
    538              "Should have been handled above!");
    539       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
    540 
    541       // If this is a multiply expression, turn any internal negations into
    542       // multiplies by -1 so they can be reassociated.
    543       BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
    544       if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
    545         DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
    546         BO = LowerNegateToMultiply(BO);
    547         DEBUG(dbgs() << *BO << 'n');
    548         Worklist.push_back(std::make_pair(BO, Weight));
    549         MadeChange = true;
    550         continue;
    551       }
    552 
    553       // Failed to morph into an expression of the right type.  This really is
    554       // a leaf.
    555       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
    556       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
    557       LeafOrder.push_back(Op);
    558       Leaves[Op] = Weight;
    559     }
    560   }
    561 
    562   // The leaves, repeated according to their weights, represent the linearized
    563   // form of the expression.
    564   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
    565     Value *V = LeafOrder[i];
    566     LeafMap::iterator It = Leaves.find(V);
    567     if (It == Leaves.end())
    568       // Node initially thought to be a leaf wasn't.
    569       continue;
    570     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
    571     APInt Weight = It->second;
    572     if (Weight.isMinValue())
    573       // Leaf already output or weight reduction eliminated it.
    574       continue;
    575     // Ensure the leaf is only output once.
    576     It->second = 0;
    577     Ops.push_back(std::make_pair(V, Weight));
    578   }
    579 
    580   // For nilpotent operations or addition there may be no operands, for example
    581   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
    582   // in both cases the weight reduces to 0 causing the value to be skipped.
    583   if (Ops.empty()) {
    584     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
    585     assert(Identity && "Associative operation without identity!");
    586     Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
    587   }
    588 
    589   return MadeChange;
    590 }
    591 
    592 // RewriteExprTree - Now that the operands for this expression tree are
    593 // linearized and optimized, emit them in-order.
    594 void Reassociate::RewriteExprTree(BinaryOperator *I,
    595                                   SmallVectorImpl<ValueEntry> &Ops) {
    596   assert(Ops.size() > 1 && "Single values should be used directly!");
    597 
    598   // Since our optimizations should never increase the number of operations, the
    599   // new expression can usually be written reusing the existing binary operators
    600   // from the original expression tree, without creating any new instructions,
    601   // though the rewritten expression may have a completely different topology.
    602   // We take care to not change anything if the new expression will be the same
    603   // as the original.  If more than trivial changes (like commuting operands)
    604   // were made then we are obliged to clear out any optional subclass data like
    605   // nsw flags.
    606 
    607   /// NodesToRewrite - Nodes from the original expression available for writing
    608   /// the new expression into.
    609   SmallVector<BinaryOperator*, 8> NodesToRewrite;
    610   unsigned Opcode = I->getOpcode();
    611   BinaryOperator *Op = I;
    612 
    613   /// NotRewritable - The operands being written will be the leaves of the new
    614   /// expression and must not be used as inner nodes (via NodesToRewrite) by
    615   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
    616   /// (if they were they would have been incorporated into the expression and so
    617   /// would not be leaves), so most of the time there is no danger of this.  But
    618   /// in rare cases a leaf may become reassociable if an optimization kills uses
    619   /// of it, or it may momentarily become reassociable during rewriting (below)
    620   /// due it being removed as an operand of one of its uses.  Ensure that misuse
    621   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
    622   /// leaves and refusing to reuse any of them as inner nodes.
    623   SmallPtrSet<Value*, 8> NotRewritable;
    624   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    625     NotRewritable.insert(Ops[i].Op);
    626 
    627   // ExpressionChanged - Non-null if the rewritten expression differs from the
    628   // original in some non-trivial way, requiring the clearing of optional flags.
    629   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
    630   BinaryOperator *ExpressionChanged = 0;
    631   for (unsigned i = 0; ; ++i) {
    632     // The last operation (which comes earliest in the IR) is special as both
    633     // operands will come from Ops, rather than just one with the other being
    634     // a subexpression.
    635     if (i+2 == Ops.size()) {
    636       Value *NewLHS = Ops[i].Op;
    637       Value *NewRHS = Ops[i+1].Op;
    638       Value *OldLHS = Op->getOperand(0);
    639       Value *OldRHS = Op->getOperand(1);
    640 
    641       if (NewLHS == OldLHS && NewRHS == OldRHS)
    642         // Nothing changed, leave it alone.
    643         break;
    644 
    645       if (NewLHS == OldRHS && NewRHS == OldLHS) {
    646         // The order of the operands was reversed.  Swap them.
    647         DEBUG(dbgs() << "RA: " << *Op << '\n');
    648         Op->swapOperands();
    649         DEBUG(dbgs() << "TO: " << *Op << '\n');
    650         MadeChange = true;
    651         ++NumChanged;
    652         break;
    653       }
    654 
    655       // The new operation differs non-trivially from the original. Overwrite
    656       // the old operands with the new ones.
    657       DEBUG(dbgs() << "RA: " << *Op << '\n');
    658       if (NewLHS != OldLHS) {
    659         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
    660         if (BO && !NotRewritable.count(BO))
    661           NodesToRewrite.push_back(BO);
    662         Op->setOperand(0, NewLHS);
    663       }
    664       if (NewRHS != OldRHS) {
    665         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
    666         if (BO && !NotRewritable.count(BO))
    667           NodesToRewrite.push_back(BO);
    668         Op->setOperand(1, NewRHS);
    669       }
    670       DEBUG(dbgs() << "TO: " << *Op << '\n');
    671 
    672       ExpressionChanged = Op;
    673       MadeChange = true;
    674       ++NumChanged;
    675 
    676       break;
    677     }
    678 
    679     // Not the last operation.  The left-hand side will be a sub-expression
    680     // while the right-hand side will be the current element of Ops.
    681     Value *NewRHS = Ops[i].Op;
    682     if (NewRHS != Op->getOperand(1)) {
    683       DEBUG(dbgs() << "RA: " << *Op << '\n');
    684       if (NewRHS == Op->getOperand(0)) {
    685         // The new right-hand side was already present as the left operand.  If
    686         // we are lucky then swapping the operands will sort out both of them.
    687         Op->swapOperands();
    688       } else {
    689         // Overwrite with the new right-hand side.
    690         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
    691         if (BO && !NotRewritable.count(BO))
    692           NodesToRewrite.push_back(BO);
    693         Op->setOperand(1, NewRHS);
    694         ExpressionChanged = Op;
    695       }
    696       DEBUG(dbgs() << "TO: " << *Op << '\n');
    697       MadeChange = true;
    698       ++NumChanged;
    699     }
    700 
    701     // Now deal with the left-hand side.  If this is already an operation node
    702     // from the original expression then just rewrite the rest of the expression
    703     // into it.
    704     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
    705     if (BO && !NotRewritable.count(BO)) {
    706       Op = BO;
    707       continue;
    708     }
    709 
    710     // Otherwise, grab a spare node from the original expression and use that as
    711     // the left-hand side.  If there are no nodes left then the optimizers made
    712     // an expression with more nodes than the original!  This usually means that
    713     // they did something stupid but it might mean that the problem was just too
    714     // hard (finding the mimimal number of multiplications needed to realize a
    715     // multiplication expression is NP-complete).  Whatever the reason, smart or
    716     // stupid, create a new node if there are none left.
    717     BinaryOperator *NewOp;
    718     if (NodesToRewrite.empty()) {
    719       Constant *Undef = UndefValue::get(I->getType());
    720       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
    721                                      Undef, Undef, "", I);
    722     } else {
    723       NewOp = NodesToRewrite.pop_back_val();
    724     }
    725 
    726     DEBUG(dbgs() << "RA: " << *Op << '\n');
    727     Op->setOperand(0, NewOp);
    728     DEBUG(dbgs() << "TO: " << *Op << '\n');
    729     ExpressionChanged = Op;
    730     MadeChange = true;
    731     ++NumChanged;
    732     Op = NewOp;
    733   }
    734 
    735   // If the expression changed non-trivially then clear out all subclass data
    736   // starting from the operator specified in ExpressionChanged, and compactify
    737   // the operators to just before the expression root to guarantee that the
    738   // expression tree is dominated by all of Ops.
    739   if (ExpressionChanged)
    740     do {
    741       ExpressionChanged->clearSubclassOptionalData();
    742       if (ExpressionChanged == I)
    743         break;
    744       ExpressionChanged->moveBefore(I);
    745       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
    746     } while (1);
    747 
    748   // Throw away any left over nodes from the original expression.
    749   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
    750     RedoInsts.insert(NodesToRewrite[i]);
    751 }
    752 
    753 /// NegateValue - Insert instructions before the instruction pointed to by BI,
    754 /// that computes the negative version of the value specified.  The negative
    755 /// version of the value is returned, and BI is left pointing at the instruction
    756 /// that should be processed next by the reassociation pass.
    757 static Value *NegateValue(Value *V, Instruction *BI) {
    758   if (Constant *C = dyn_cast<Constant>(V))
    759     return ConstantExpr::getNeg(C);
    760 
    761   // We are trying to expose opportunity for reassociation.  One of the things
    762   // that we want to do to achieve this is to push a negation as deep into an
    763   // expression chain as possible, to expose the add instructions.  In practice,
    764   // this means that we turn this:
    765   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
    766   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
    767   // the constants.  We assume that instcombine will clean up the mess later if
    768   // we introduce tons of unnecessary negation instructions.
    769   //
    770   if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
    771     // Push the negates through the add.
    772     I->setOperand(0, NegateValue(I->getOperand(0), BI));
    773     I->setOperand(1, NegateValue(I->getOperand(1), BI));
    774 
    775     // We must move the add instruction here, because the neg instructions do
    776     // not dominate the old add instruction in general.  By moving it, we are
    777     // assured that the neg instructions we just inserted dominate the
    778     // instruction we are about to insert after them.
    779     //
    780     I->moveBefore(BI);
    781     I->setName(I->getName()+".neg");
    782     return I;
    783   }
    784 
    785   // Okay, we need to materialize a negated version of V with an instruction.
    786   // Scan the use lists of V to see if we have one already.
    787   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
    788     User *U = *UI;
    789     if (!BinaryOperator::isNeg(U)) continue;
    790 
    791     // We found one!  Now we have to make sure that the definition dominates
    792     // this use.  We do this by moving it to the entry block (if it is a
    793     // non-instruction value) or right after the definition.  These negates will
    794     // be zapped by reassociate later, so we don't need much finesse here.
    795     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
    796 
    797     // Verify that the negate is in this function, V might be a constant expr.
    798     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
    799       continue;
    800 
    801     BasicBlock::iterator InsertPt;
    802     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
    803       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
    804         InsertPt = II->getNormalDest()->begin();
    805       } else {
    806         InsertPt = InstInput;
    807         ++InsertPt;
    808       }
    809       while (isa<PHINode>(InsertPt)) ++InsertPt;
    810     } else {
    811       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
    812     }
    813     TheNeg->moveBefore(InsertPt);
    814     return TheNeg;
    815   }
    816 
    817   // Insert a 'neg' instruction that subtracts the value from zero to get the
    818   // negation.
    819   return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
    820 }
    821 
    822 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
    823 /// X-Y into (X + -Y).
    824 static bool ShouldBreakUpSubtract(Instruction *Sub) {
    825   // If this is a negation, we can't split it up!
    826   if (BinaryOperator::isNeg(Sub))
    827     return false;
    828 
    829   // Don't bother to break this up unless either the LHS is an associable add or
    830   // subtract or if this is only used by one.
    831   if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
    832       isReassociableOp(Sub->getOperand(0), Instruction::Sub))
    833     return true;
    834   if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
    835       isReassociableOp(Sub->getOperand(1), Instruction::Sub))
    836     return true;
    837   if (Sub->hasOneUse() &&
    838       (isReassociableOp(Sub->use_back(), Instruction::Add) ||
    839        isReassociableOp(Sub->use_back(), Instruction::Sub)))
    840     return true;
    841 
    842   return false;
    843 }
    844 
    845 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
    846 /// only used by an add, transform this into (X+(0-Y)) to promote better
    847 /// reassociation.
    848 static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
    849   // Convert a subtract into an add and a neg instruction. This allows sub
    850   // instructions to be commuted with other add instructions.
    851   //
    852   // Calculate the negative value of Operand 1 of the sub instruction,
    853   // and set it as the RHS of the add instruction we just made.
    854   //
    855   Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
    856   BinaryOperator *New =
    857     BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
    858   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
    859   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
    860   New->takeName(Sub);
    861 
    862   // Everyone now refers to the add instruction.
    863   Sub->replaceAllUsesWith(New);
    864   New->setDebugLoc(Sub->getDebugLoc());
    865 
    866   DEBUG(dbgs() << "Negated: " << *New << '\n');
    867   return New;
    868 }
    869 
    870 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
    871 /// by one, change this into a multiply by a constant to assist with further
    872 /// reassociation.
    873 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
    874   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
    875   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
    876 
    877   BinaryOperator *Mul =
    878     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
    879   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
    880   Mul->takeName(Shl);
    881   Shl->replaceAllUsesWith(Mul);
    882   Mul->setDebugLoc(Shl->getDebugLoc());
    883   return Mul;
    884 }
    885 
    886 /// FindInOperandList - Scan backwards and forwards among values with the same
    887 /// rank as element i to see if X exists.  If X does not exist, return i.  This
    888 /// is useful when scanning for 'x' when we see '-x' because they both get the
    889 /// same rank.
    890 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
    891                                   Value *X) {
    892   unsigned XRank = Ops[i].Rank;
    893   unsigned e = Ops.size();
    894   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
    895     if (Ops[j].Op == X)
    896       return j;
    897   // Scan backwards.
    898   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
    899     if (Ops[j].Op == X)
    900       return j;
    901   return i;
    902 }
    903 
    904 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
    905 /// and returning the result.  Insert the tree before I.
    906 static Value *EmitAddTreeOfValues(Instruction *I,
    907                                   SmallVectorImpl<WeakVH> &Ops){
    908   if (Ops.size() == 1) return Ops.back();
    909 
    910   Value *V1 = Ops.back();
    911   Ops.pop_back();
    912   Value *V2 = EmitAddTreeOfValues(I, Ops);
    913   return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
    914 }
    915 
    916 /// RemoveFactorFromExpression - If V is an expression tree that is a
    917 /// multiplication sequence, and if this sequence contains a multiply by Factor,
    918 /// remove Factor from the tree and return the new tree.
    919 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
    920   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
    921   if (!BO) return 0;
    922 
    923   SmallVector<RepeatedValue, 8> Tree;
    924   MadeChange |= LinearizeExprTree(BO, Tree);
    925   SmallVector<ValueEntry, 8> Factors;
    926   Factors.reserve(Tree.size());
    927   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
    928     RepeatedValue E = Tree[i];
    929     Factors.append(E.second.getZExtValue(),
    930                    ValueEntry(getRank(E.first), E.first));
    931   }
    932 
    933   bool FoundFactor = false;
    934   bool NeedsNegate = false;
    935   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
    936     if (Factors[i].Op == Factor) {
    937       FoundFactor = true;
    938       Factors.erase(Factors.begin()+i);
    939       break;
    940     }
    941 
    942     // If this is a negative version of this factor, remove it.
    943     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
    944       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
    945         if (FC1->getValue() == -FC2->getValue()) {
    946           FoundFactor = NeedsNegate = true;
    947           Factors.erase(Factors.begin()+i);
    948           break;
    949         }
    950   }
    951 
    952   if (!FoundFactor) {
    953     // Make sure to restore the operands to the expression tree.
    954     RewriteExprTree(BO, Factors);
    955     return 0;
    956   }
    957 
    958   BasicBlock::iterator InsertPt = BO; ++InsertPt;
    959 
    960   // If this was just a single multiply, remove the multiply and return the only
    961   // remaining operand.
    962   if (Factors.size() == 1) {
    963     RedoInsts.insert(BO);
    964     V = Factors[0].Op;
    965   } else {
    966     RewriteExprTree(BO, Factors);
    967     V = BO;
    968   }
    969 
    970   if (NeedsNegate)
    971     V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
    972 
    973   return V;
    974 }
    975 
    976 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
    977 /// add its operands as factors, otherwise add V to the list of factors.
    978 ///
    979 /// Ops is the top-level list of add operands we're trying to factor.
    980 static void FindSingleUseMultiplyFactors(Value *V,
    981                                          SmallVectorImpl<Value*> &Factors,
    982                                        const SmallVectorImpl<ValueEntry> &Ops) {
    983   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
    984   if (!BO) {
    985     Factors.push_back(V);
    986     return;
    987   }
    988 
    989   // Otherwise, add the LHS and RHS to the list of factors.
    990   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
    991   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
    992 }
    993 
    994 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
    995 /// instruction.  This optimizes based on identities.  If it can be reduced to
    996 /// a single Value, it is returned, otherwise the Ops list is mutated as
    997 /// necessary.
    998 static Value *OptimizeAndOrXor(unsigned Opcode,
    999                                SmallVectorImpl<ValueEntry> &Ops) {
   1000   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
   1001   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
   1002   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1003     // First, check for X and ~X in the operand list.
   1004     assert(i < Ops.size());
   1005     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
   1006       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
   1007       unsigned FoundX = FindInOperandList(Ops, i, X);
   1008       if (FoundX != i) {
   1009         if (Opcode == Instruction::And)   // ...&X&~X = 0
   1010           return Constant::getNullValue(X->getType());
   1011 
   1012         if (Opcode == Instruction::Or)    // ...|X|~X = -1
   1013           return Constant::getAllOnesValue(X->getType());
   1014       }
   1015     }
   1016 
   1017     // Next, check for duplicate pairs of values, which we assume are next to
   1018     // each other, due to our sorting criteria.
   1019     assert(i < Ops.size());
   1020     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
   1021       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
   1022         // Drop duplicate values for And and Or.
   1023         Ops.erase(Ops.begin()+i);
   1024         --i; --e;
   1025         ++NumAnnihil;
   1026         continue;
   1027       }
   1028 
   1029       // Drop pairs of values for Xor.
   1030       assert(Opcode == Instruction::Xor);
   1031       if (e == 2)
   1032         return Constant::getNullValue(Ops[0].Op->getType());
   1033 
   1034       // Y ^ X^X -> Y
   1035       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
   1036       i -= 1; e -= 2;
   1037       ++NumAnnihil;
   1038     }
   1039   }
   1040   return 0;
   1041 }
   1042 
   1043 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
   1044 /// optimizes based on identities.  If it can be reduced to a single Value, it
   1045 /// is returned, otherwise the Ops list is mutated as necessary.
   1046 Value *Reassociate::OptimizeAdd(Instruction *I,
   1047                                 SmallVectorImpl<ValueEntry> &Ops) {
   1048   // Scan the operand lists looking for X and -X pairs.  If we find any, we
   1049   // can simplify the expression. X+-X == 0.  While we're at it, scan for any
   1050   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
   1051   //
   1052   // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
   1053   //
   1054   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1055     Value *TheOp = Ops[i].Op;
   1056     // Check to see if we've seen this operand before.  If so, we factor all
   1057     // instances of the operand together.  Due to our sorting criteria, we know
   1058     // that these need to be next to each other in the vector.
   1059     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
   1060       // Rescan the list, remove all instances of this operand from the expr.
   1061       unsigned NumFound = 0;
   1062       do {
   1063         Ops.erase(Ops.begin()+i);
   1064         ++NumFound;
   1065       } while (i != Ops.size() && Ops[i].Op == TheOp);
   1066 
   1067       DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
   1068       ++NumFactor;
   1069 
   1070       // Insert a new multiply.
   1071       Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
   1072       Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
   1073 
   1074       // Now that we have inserted a multiply, optimize it. This allows us to
   1075       // handle cases that require multiple factoring steps, such as this:
   1076       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
   1077       RedoInsts.insert(cast<Instruction>(Mul));
   1078 
   1079       // If every add operand was a duplicate, return the multiply.
   1080       if (Ops.empty())
   1081         return Mul;
   1082 
   1083       // Otherwise, we had some input that didn't have the dupe, such as
   1084       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
   1085       // things being added by this operation.
   1086       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
   1087 
   1088       --i;
   1089       e = Ops.size();
   1090       continue;
   1091     }
   1092 
   1093     // Check for X and -X in the operand list.
   1094     if (!BinaryOperator::isNeg(TheOp))
   1095       continue;
   1096 
   1097     Value *X = BinaryOperator::getNegArgument(TheOp);
   1098     unsigned FoundX = FindInOperandList(Ops, i, X);
   1099     if (FoundX == i)
   1100       continue;
   1101 
   1102     // Remove X and -X from the operand list.
   1103     if (Ops.size() == 2)
   1104       return Constant::getNullValue(X->getType());
   1105 
   1106     Ops.erase(Ops.begin()+i);
   1107     if (i < FoundX)
   1108       --FoundX;
   1109     else
   1110       --i;   // Need to back up an extra one.
   1111     Ops.erase(Ops.begin()+FoundX);
   1112     ++NumAnnihil;
   1113     --i;     // Revisit element.
   1114     e -= 2;  // Removed two elements.
   1115   }
   1116 
   1117   // Scan the operand list, checking to see if there are any common factors
   1118   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
   1119   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
   1120   // To efficiently find this, we count the number of times a factor occurs
   1121   // for any ADD operands that are MULs.
   1122   DenseMap<Value*, unsigned> FactorOccurrences;
   1123 
   1124   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
   1125   // where they are actually the same multiply.
   1126   unsigned MaxOcc = 0;
   1127   Value *MaxOccVal = 0;
   1128   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1129     BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
   1130     if (!BOp)
   1131       continue;
   1132 
   1133     // Compute all of the factors of this added value.
   1134     SmallVector<Value*, 8> Factors;
   1135     FindSingleUseMultiplyFactors(BOp, Factors, Ops);
   1136     assert(Factors.size() > 1 && "Bad linearize!");
   1137 
   1138     // Add one to FactorOccurrences for each unique factor in this op.
   1139     SmallPtrSet<Value*, 8> Duplicates;
   1140     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
   1141       Value *Factor = Factors[i];
   1142       if (!Duplicates.insert(Factor)) continue;
   1143 
   1144       unsigned Occ = ++FactorOccurrences[Factor];
   1145       if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
   1146 
   1147       // If Factor is a negative constant, add the negated value as a factor
   1148       // because we can percolate the negate out.  Watch for minint, which
   1149       // cannot be positivified.
   1150       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
   1151         if (CI->isNegative() && !CI->isMinValue(true)) {
   1152           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
   1153           assert(!Duplicates.count(Factor) &&
   1154                  "Shouldn't have two constant factors, missed a canonicalize");
   1155 
   1156           unsigned Occ = ++FactorOccurrences[Factor];
   1157           if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
   1158         }
   1159     }
   1160   }
   1161 
   1162   // If any factor occurred more than one time, we can pull it out.
   1163   if (MaxOcc > 1) {
   1164     DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
   1165     ++NumFactor;
   1166 
   1167     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
   1168     // this, we could otherwise run into situations where removing a factor
   1169     // from an expression will drop a use of maxocc, and this can cause
   1170     // RemoveFactorFromExpression on successive values to behave differently.
   1171     Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
   1172     SmallVector<WeakVH, 4> NewMulOps;
   1173     for (unsigned i = 0; i != Ops.size(); ++i) {
   1174       // Only try to remove factors from expressions we're allowed to.
   1175       BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
   1176       if (!BOp)
   1177         continue;
   1178 
   1179       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
   1180         // The factorized operand may occur several times.  Convert them all in
   1181         // one fell swoop.
   1182         for (unsigned j = Ops.size(); j != i;) {
   1183           --j;
   1184           if (Ops[j].Op == Ops[i].Op) {
   1185             NewMulOps.push_back(V);
   1186             Ops.erase(Ops.begin()+j);
   1187           }
   1188         }
   1189         --i;
   1190       }
   1191     }
   1192 
   1193     // No need for extra uses anymore.
   1194     delete DummyInst;
   1195 
   1196     unsigned NumAddedValues = NewMulOps.size();
   1197     Value *V = EmitAddTreeOfValues(I, NewMulOps);
   1198 
   1199     // Now that we have inserted the add tree, optimize it. This allows us to
   1200     // handle cases that require multiple factoring steps, such as this:
   1201     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
   1202     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
   1203     (void)NumAddedValues;
   1204     if (Instruction *VI = dyn_cast<Instruction>(V))
   1205       RedoInsts.insert(VI);
   1206 
   1207     // Create the multiply.
   1208     Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
   1209 
   1210     // Rerun associate on the multiply in case the inner expression turned into
   1211     // a multiply.  We want to make sure that we keep things in canonical form.
   1212     RedoInsts.insert(V2);
   1213 
   1214     // If every add operand included the factor (e.g. "A*B + A*C"), then the
   1215     // entire result expression is just the multiply "A*(B+C)".
   1216     if (Ops.empty())
   1217       return V2;
   1218 
   1219     // Otherwise, we had some input that didn't have the factor, such as
   1220     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
   1221     // things being added by this operation.
   1222     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
   1223   }
   1224 
   1225   return 0;
   1226 }
   1227 
   1228 namespace {
   1229   /// \brief Predicate tests whether a ValueEntry's op is in a map.
   1230   struct IsValueInMap {
   1231     const DenseMap<Value *, unsigned> &Map;
   1232 
   1233     IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
   1234 
   1235     bool operator()(const ValueEntry &Entry) {
   1236       return Map.find(Entry.Op) != Map.end();
   1237     }
   1238   };
   1239 }
   1240 
   1241 /// \brief Build up a vector of value/power pairs factoring a product.
   1242 ///
   1243 /// Given a series of multiplication operands, build a vector of factors and
   1244 /// the powers each is raised to when forming the final product. Sort them in
   1245 /// the order of descending power.
   1246 ///
   1247 ///      (x*x)          -> [(x, 2)]
   1248 ///     ((x*x)*x)       -> [(x, 3)]
   1249 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
   1250 ///
   1251 /// \returns Whether any factors have a power greater than one.
   1252 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
   1253                                          SmallVectorImpl<Factor> &Factors) {
   1254   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
   1255   // Compute the sum of powers of simplifiable factors.
   1256   unsigned FactorPowerSum = 0;
   1257   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
   1258     Value *Op = Ops[Idx-1].Op;
   1259 
   1260     // Count the number of occurrences of this value.
   1261     unsigned Count = 1;
   1262     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
   1263       ++Count;
   1264     // Track for simplification all factors which occur 2 or more times.
   1265     if (Count > 1)
   1266       FactorPowerSum += Count;
   1267   }
   1268 
   1269   // We can only simplify factors if the sum of the powers of our simplifiable
   1270   // factors is 4 or higher. When that is the case, we will *always* have
   1271   // a simplification. This is an important invariant to prevent cyclicly
   1272   // trying to simplify already minimal formations.
   1273   if (FactorPowerSum < 4)
   1274     return false;
   1275 
   1276   // Now gather the simplifiable factors, removing them from Ops.
   1277   FactorPowerSum = 0;
   1278   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
   1279     Value *Op = Ops[Idx-1].Op;
   1280 
   1281     // Count the number of occurrences of this value.
   1282     unsigned Count = 1;
   1283     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
   1284       ++Count;
   1285     if (Count == 1)
   1286       continue;
   1287     // Move an even number of occurrences to Factors.
   1288     Count &= ~1U;
   1289     Idx -= Count;
   1290     FactorPowerSum += Count;
   1291     Factors.push_back(Factor(Op, Count));
   1292     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
   1293   }
   1294 
   1295   // None of the adjustments above should have reduced the sum of factor powers
   1296   // below our mininum of '4'.
   1297   assert(FactorPowerSum >= 4);
   1298 
   1299   std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
   1300   return true;
   1301 }
   1302 
   1303 /// \brief Build a tree of multiplies, computing the product of Ops.
   1304 static Value *buildMultiplyTree(IRBuilder<> &Builder,
   1305                                 SmallVectorImpl<Value*> &Ops) {
   1306   if (Ops.size() == 1)
   1307     return Ops.back();
   1308 
   1309   Value *LHS = Ops.pop_back_val();
   1310   do {
   1311     LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
   1312   } while (!Ops.empty());
   1313 
   1314   return LHS;
   1315 }
   1316 
   1317 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
   1318 ///
   1319 /// Given a vector of values raised to various powers, where no two values are
   1320 /// equal and the powers are sorted in decreasing order, compute the minimal
   1321 /// DAG of multiplies to compute the final product, and return that product
   1322 /// value.
   1323 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
   1324                                             SmallVectorImpl<Factor> &Factors) {
   1325   assert(Factors[0].Power);
   1326   SmallVector<Value *, 4> OuterProduct;
   1327   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
   1328        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
   1329     if (Factors[Idx].Power != Factors[LastIdx].Power) {
   1330       LastIdx = Idx;
   1331       continue;
   1332     }
   1333 
   1334     // We want to multiply across all the factors with the same power so that
   1335     // we can raise them to that power as a single entity. Build a mini tree
   1336     // for that.
   1337     SmallVector<Value *, 4> InnerProduct;
   1338     InnerProduct.push_back(Factors[LastIdx].Base);
   1339     do {
   1340       InnerProduct.push_back(Factors[Idx].Base);
   1341       ++Idx;
   1342     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
   1343 
   1344     // Reset the base value of the first factor to the new expression tree.
   1345     // We'll remove all the factors with the same power in a second pass.
   1346     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
   1347     if (Instruction *MI = dyn_cast<Instruction>(M))
   1348       RedoInsts.insert(MI);
   1349 
   1350     LastIdx = Idx;
   1351   }
   1352   // Unique factors with equal powers -- we've folded them into the first one's
   1353   // base.
   1354   Factors.erase(std::unique(Factors.begin(), Factors.end(),
   1355                             Factor::PowerEqual()),
   1356                 Factors.end());
   1357 
   1358   // Iteratively collect the base of each factor with an add power into the
   1359   // outer product, and halve each power in preparation for squaring the
   1360   // expression.
   1361   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
   1362     if (Factors[Idx].Power & 1)
   1363       OuterProduct.push_back(Factors[Idx].Base);
   1364     Factors[Idx].Power >>= 1;
   1365   }
   1366   if (Factors[0].Power) {
   1367     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
   1368     OuterProduct.push_back(SquareRoot);
   1369     OuterProduct.push_back(SquareRoot);
   1370   }
   1371   if (OuterProduct.size() == 1)
   1372     return OuterProduct.front();
   1373 
   1374   Value *V = buildMultiplyTree(Builder, OuterProduct);
   1375   return V;
   1376 }
   1377 
   1378 Value *Reassociate::OptimizeMul(BinaryOperator *I,
   1379                                 SmallVectorImpl<ValueEntry> &Ops) {
   1380   // We can only optimize the multiplies when there is a chain of more than
   1381   // three, such that a balanced tree might require fewer total multiplies.
   1382   if (Ops.size() < 4)
   1383     return 0;
   1384 
   1385   // Try to turn linear trees of multiplies without other uses of the
   1386   // intermediate stages into minimal multiply DAGs with perfect sub-expression
   1387   // re-use.
   1388   SmallVector<Factor, 4> Factors;
   1389   if (!collectMultiplyFactors(Ops, Factors))
   1390     return 0; // All distinct factors, so nothing left for us to do.
   1391 
   1392   IRBuilder<> Builder(I);
   1393   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
   1394   if (Ops.empty())
   1395     return V;
   1396 
   1397   ValueEntry NewEntry = ValueEntry(getRank(V), V);
   1398   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
   1399   return 0;
   1400 }
   1401 
   1402 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
   1403                                        SmallVectorImpl<ValueEntry> &Ops) {
   1404   // Now that we have the linearized expression tree, try to optimize it.
   1405   // Start by folding any constants that we found.
   1406   Constant *Cst = 0;
   1407   unsigned Opcode = I->getOpcode();
   1408   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
   1409     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
   1410     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
   1411   }
   1412   // If there was nothing but constants then we are done.
   1413   if (Ops.empty())
   1414     return Cst;
   1415 
   1416   // Put the combined constant back at the end of the operand list, except if
   1417   // there is no point.  For example, an add of 0 gets dropped here, while a
   1418   // multiplication by zero turns the whole expression into zero.
   1419   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
   1420     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
   1421       return Cst;
   1422     Ops.push_back(ValueEntry(0, Cst));
   1423   }
   1424 
   1425   if (Ops.size() == 1) return Ops[0].Op;
   1426 
   1427   // Handle destructive annihilation due to identities between elements in the
   1428   // argument list here.
   1429   unsigned NumOps = Ops.size();
   1430   switch (Opcode) {
   1431   default: break;
   1432   case Instruction::And:
   1433   case Instruction::Or:
   1434   case Instruction::Xor:
   1435     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
   1436       return Result;
   1437     break;
   1438 
   1439   case Instruction::Add:
   1440     if (Value *Result = OptimizeAdd(I, Ops))
   1441       return Result;
   1442     break;
   1443 
   1444   case Instruction::Mul:
   1445     if (Value *Result = OptimizeMul(I, Ops))
   1446       return Result;
   1447     break;
   1448   }
   1449 
   1450   if (Ops.size() != NumOps)
   1451     return OptimizeExpression(I, Ops);
   1452   return 0;
   1453 }
   1454 
   1455 /// EraseInst - Zap the given instruction, adding interesting operands to the
   1456 /// work list.
   1457 void Reassociate::EraseInst(Instruction *I) {
   1458   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
   1459   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
   1460   // Erase the dead instruction.
   1461   ValueRankMap.erase(I);
   1462   RedoInsts.remove(I);
   1463   I->eraseFromParent();
   1464   // Optimize its operands.
   1465   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
   1466   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1467     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
   1468       // If this is a node in an expression tree, climb to the expression root
   1469       // and add that since that's where optimization actually happens.
   1470       unsigned Opcode = Op->getOpcode();
   1471       while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
   1472              Visited.insert(Op))
   1473         Op = Op->use_back();
   1474       RedoInsts.insert(Op);
   1475     }
   1476 }
   1477 
   1478 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
   1479 /// instructions is not allowed.
   1480 void Reassociate::OptimizeInst(Instruction *I) {
   1481   // Only consider operations that we understand.
   1482   if (!isa<BinaryOperator>(I))
   1483     return;
   1484 
   1485   if (I->getOpcode() == Instruction::Shl &&
   1486       isa<ConstantInt>(I->getOperand(1)))
   1487     // If an operand of this shift is a reassociable multiply, or if the shift
   1488     // is used by a reassociable multiply or add, turn into a multiply.
   1489     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
   1490         (I->hasOneUse() &&
   1491          (isReassociableOp(I->use_back(), Instruction::Mul) ||
   1492           isReassociableOp(I->use_back(), Instruction::Add)))) {
   1493       Instruction *NI = ConvertShiftToMul(I);
   1494       RedoInsts.insert(I);
   1495       MadeChange = true;
   1496       I = NI;
   1497     }
   1498 
   1499   // Floating point binary operators are not associative, but we can still
   1500   // commute (some) of them, to canonicalize the order of their operands.
   1501   // This can potentially expose more CSE opportunities, and makes writing
   1502   // other transformations simpler.
   1503   if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
   1504     // FAdd and FMul can be commuted.
   1505     if (I->getOpcode() != Instruction::FMul &&
   1506         I->getOpcode() != Instruction::FAdd)
   1507       return;
   1508 
   1509     Value *LHS = I->getOperand(0);
   1510     Value *RHS = I->getOperand(1);
   1511     unsigned LHSRank = getRank(LHS);
   1512     unsigned RHSRank = getRank(RHS);
   1513 
   1514     // Sort the operands by rank.
   1515     if (RHSRank < LHSRank) {
   1516       I->setOperand(0, RHS);
   1517       I->setOperand(1, LHS);
   1518     }
   1519 
   1520     return;
   1521   }
   1522 
   1523   // Do not reassociate boolean (i1) expressions.  We want to preserve the
   1524   // original order of evaluation for short-circuited comparisons that
   1525   // SimplifyCFG has folded to AND/OR expressions.  If the expression
   1526   // is not further optimized, it is likely to be transformed back to a
   1527   // short-circuited form for code gen, and the source order may have been
   1528   // optimized for the most likely conditions.
   1529   if (I->getType()->isIntegerTy(1))
   1530     return;
   1531 
   1532   // If this is a subtract instruction which is not already in negate form,
   1533   // see if we can convert it to X+-Y.
   1534   if (I->getOpcode() == Instruction::Sub) {
   1535     if (ShouldBreakUpSubtract(I)) {
   1536       Instruction *NI = BreakUpSubtract(I);
   1537       RedoInsts.insert(I);
   1538       MadeChange = true;
   1539       I = NI;
   1540     } else if (BinaryOperator::isNeg(I)) {
   1541       // Otherwise, this is a negation.  See if the operand is a multiply tree
   1542       // and if this is not an inner node of a multiply tree.
   1543       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
   1544           (!I->hasOneUse() ||
   1545            !isReassociableOp(I->use_back(), Instruction::Mul))) {
   1546         Instruction *NI = LowerNegateToMultiply(I);
   1547         RedoInsts.insert(I);
   1548         MadeChange = true;
   1549         I = NI;
   1550       }
   1551     }
   1552   }
   1553 
   1554   // If this instruction is an associative binary operator, process it.
   1555   if (!I->isAssociative()) return;
   1556   BinaryOperator *BO = cast<BinaryOperator>(I);
   1557 
   1558   // If this is an interior node of a reassociable tree, ignore it until we
   1559   // get to the root of the tree, to avoid N^2 analysis.
   1560   unsigned Opcode = BO->getOpcode();
   1561   if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
   1562     return;
   1563 
   1564   // If this is an add tree that is used by a sub instruction, ignore it
   1565   // until we process the subtract.
   1566   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
   1567       cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
   1568     return;
   1569 
   1570   ReassociateExpression(BO);
   1571 }
   1572 
   1573 void Reassociate::ReassociateExpression(BinaryOperator *I) {
   1574 
   1575   // First, walk the expression tree, linearizing the tree, collecting the
   1576   // operand information.
   1577   SmallVector<RepeatedValue, 8> Tree;
   1578   MadeChange |= LinearizeExprTree(I, Tree);
   1579   SmallVector<ValueEntry, 8> Ops;
   1580   Ops.reserve(Tree.size());
   1581   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
   1582     RepeatedValue E = Tree[i];
   1583     Ops.append(E.second.getZExtValue(),
   1584                ValueEntry(getRank(E.first), E.first));
   1585   }
   1586 
   1587   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
   1588 
   1589   // Now that we have linearized the tree to a list and have gathered all of
   1590   // the operands and their ranks, sort the operands by their rank.  Use a
   1591   // stable_sort so that values with equal ranks will have their relative
   1592   // positions maintained (and so the compiler is deterministic).  Note that
   1593   // this sorts so that the highest ranking values end up at the beginning of
   1594   // the vector.
   1595   std::stable_sort(Ops.begin(), Ops.end());
   1596 
   1597   // OptimizeExpression - Now that we have the expression tree in a convenient
   1598   // sorted form, optimize it globally if possible.
   1599   if (Value *V = OptimizeExpression(I, Ops)) {
   1600     if (V == I)
   1601       // Self-referential expression in unreachable code.
   1602       return;
   1603     // This expression tree simplified to something that isn't a tree,
   1604     // eliminate it.
   1605     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
   1606     I->replaceAllUsesWith(V);
   1607     if (Instruction *VI = dyn_cast<Instruction>(V))
   1608       VI->setDebugLoc(I->getDebugLoc());
   1609     RedoInsts.insert(I);
   1610     ++NumAnnihil;
   1611     return;
   1612   }
   1613 
   1614   // We want to sink immediates as deeply as possible except in the case where
   1615   // this is a multiply tree used only by an add, and the immediate is a -1.
   1616   // In this case we reassociate to put the negation on the outside so that we
   1617   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
   1618   if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
   1619       cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
   1620       isa<ConstantInt>(Ops.back().Op) &&
   1621       cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
   1622     ValueEntry Tmp = Ops.pop_back_val();
   1623     Ops.insert(Ops.begin(), Tmp);
   1624   }
   1625 
   1626   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
   1627 
   1628   if (Ops.size() == 1) {
   1629     if (Ops[0].Op == I)
   1630       // Self-referential expression in unreachable code.
   1631       return;
   1632 
   1633     // This expression tree simplified to something that isn't a tree,
   1634     // eliminate it.
   1635     I->replaceAllUsesWith(Ops[0].Op);
   1636     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
   1637       OI->setDebugLoc(I->getDebugLoc());
   1638     RedoInsts.insert(I);
   1639     return;
   1640   }
   1641 
   1642   // Now that we ordered and optimized the expressions, splat them back into
   1643   // the expression tree, removing any unneeded nodes.
   1644   RewriteExprTree(I, Ops);
   1645 }
   1646 
   1647 bool Reassociate::runOnFunction(Function &F) {
   1648   // Calculate the rank map for F
   1649   BuildRankMap(F);
   1650 
   1651   MadeChange = false;
   1652   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
   1653     // Optimize every instruction in the basic block.
   1654     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
   1655       if (isInstructionTriviallyDead(II)) {
   1656         EraseInst(II++);
   1657       } else {
   1658         OptimizeInst(II);
   1659         assert(II->getParent() == BI && "Moved to a different block!");
   1660         ++II;
   1661       }
   1662 
   1663     // If this produced extra instructions to optimize, handle them now.
   1664     while (!RedoInsts.empty()) {
   1665       Instruction *I = RedoInsts.pop_back_val();
   1666       if (isInstructionTriviallyDead(I))
   1667         EraseInst(I);
   1668       else
   1669         OptimizeInst(I);
   1670     }
   1671   }
   1672 
   1673   // We are done with the rank map.
   1674   RankMap.clear();
   1675   ValueRankMap.clear();
   1676 
   1677   return MadeChange;
   1678 }
   1679