Home | History | Annotate | Download | only in Utils
      1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SSAUpdater class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "ssaupdater"
     15 #include "llvm/Transforms/Utils/SSAUpdater.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/TinyPtrVector.h"
     18 #include "llvm/Analysis/InstructionSimplify.h"
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/Instructions.h"
     21 #include "llvm/IR/IntrinsicInst.h"
     22 #include "llvm/Support/AlignOf.h"
     23 #include "llvm/Support/Allocator.h"
     24 #include "llvm/Support/CFG.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     28 #include "llvm/Transforms/Utils/Local.h"
     29 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
     30 
     31 using namespace llvm;
     32 
     33 typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
     34 static AvailableValsTy &getAvailableVals(void *AV) {
     35   return *static_cast<AvailableValsTy*>(AV);
     36 }
     37 
     38 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
     39   : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {}
     40 
     41 SSAUpdater::~SSAUpdater() {
     42   delete static_cast<AvailableValsTy*>(AV);
     43 }
     44 
     45 /// Initialize - Reset this object to get ready for a new set of SSA
     46 /// updates with type 'Ty'.  PHI nodes get a name based on 'Name'.
     47 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
     48   if (AV == 0)
     49     AV = new AvailableValsTy();
     50   else
     51     getAvailableVals(AV).clear();
     52   ProtoType = Ty;
     53   ProtoName = Name;
     54 }
     55 
     56 /// HasValueForBlock - Return true if the SSAUpdater already has a value for
     57 /// the specified block.
     58 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
     59   return getAvailableVals(AV).count(BB);
     60 }
     61 
     62 /// AddAvailableValue - Indicate that a rewritten value is available in the
     63 /// specified block with the specified value.
     64 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
     65   assert(ProtoType != 0 && "Need to initialize SSAUpdater");
     66   assert(ProtoType == V->getType() &&
     67          "All rewritten values must have the same type");
     68   getAvailableVals(AV)[BB] = V;
     69 }
     70 
     71 /// IsEquivalentPHI - Check if PHI has the same incoming value as specified
     72 /// in ValueMapping for each predecessor block.
     73 static bool IsEquivalentPHI(PHINode *PHI,
     74                             DenseMap<BasicBlock*, Value*> &ValueMapping) {
     75   unsigned PHINumValues = PHI->getNumIncomingValues();
     76   if (PHINumValues != ValueMapping.size())
     77     return false;
     78 
     79   // Scan the phi to see if it matches.
     80   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
     81     if (ValueMapping[PHI->getIncomingBlock(i)] !=
     82         PHI->getIncomingValue(i)) {
     83       return false;
     84     }
     85 
     86   return true;
     87 }
     88 
     89 /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
     90 /// live at the end of the specified block.
     91 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
     92   Value *Res = GetValueAtEndOfBlockInternal(BB);
     93   return Res;
     94 }
     95 
     96 /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
     97 /// is live in the middle of the specified block.
     98 ///
     99 /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
    100 /// important case: if there is a definition of the rewritten value after the
    101 /// 'use' in BB.  Consider code like this:
    102 ///
    103 ///      X1 = ...
    104 ///   SomeBB:
    105 ///      use(X)
    106 ///      X2 = ...
    107 ///      br Cond, SomeBB, OutBB
    108 ///
    109 /// In this case, there are two values (X1 and X2) added to the AvailableVals
    110 /// set by the client of the rewriter, and those values are both live out of
    111 /// their respective blocks.  However, the use of X happens in the *middle* of
    112 /// a block.  Because of this, we need to insert a new PHI node in SomeBB to
    113 /// merge the appropriate values, and this value isn't live out of the block.
    114 ///
    115 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
    116   // If there is no definition of the renamed variable in this block, just use
    117   // GetValueAtEndOfBlock to do our work.
    118   if (!HasValueForBlock(BB))
    119     return GetValueAtEndOfBlock(BB);
    120 
    121   // Otherwise, we have the hard case.  Get the live-in values for each
    122   // predecessor.
    123   SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
    124   Value *SingularValue = 0;
    125 
    126   // We can get our predecessor info by walking the pred_iterator list, but it
    127   // is relatively slow.  If we already have PHI nodes in this block, walk one
    128   // of them to get the predecessor list instead.
    129   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
    130     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
    131       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
    132       Value *PredVal = GetValueAtEndOfBlock(PredBB);
    133       PredValues.push_back(std::make_pair(PredBB, PredVal));
    134 
    135       // Compute SingularValue.
    136       if (i == 0)
    137         SingularValue = PredVal;
    138       else if (PredVal != SingularValue)
    139         SingularValue = 0;
    140     }
    141   } else {
    142     bool isFirstPred = true;
    143     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    144       BasicBlock *PredBB = *PI;
    145       Value *PredVal = GetValueAtEndOfBlock(PredBB);
    146       PredValues.push_back(std::make_pair(PredBB, PredVal));
    147 
    148       // Compute SingularValue.
    149       if (isFirstPred) {
    150         SingularValue = PredVal;
    151         isFirstPred = false;
    152       } else if (PredVal != SingularValue)
    153         SingularValue = 0;
    154     }
    155   }
    156 
    157   // If there are no predecessors, just return undef.
    158   if (PredValues.empty())
    159     return UndefValue::get(ProtoType);
    160 
    161   // Otherwise, if all the merged values are the same, just use it.
    162   if (SingularValue != 0)
    163     return SingularValue;
    164 
    165   // Otherwise, we do need a PHI: check to see if we already have one available
    166   // in this block that produces the right value.
    167   if (isa<PHINode>(BB->begin())) {
    168     DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
    169                                                PredValues.end());
    170     PHINode *SomePHI;
    171     for (BasicBlock::iterator It = BB->begin();
    172          (SomePHI = dyn_cast<PHINode>(It)); ++It) {
    173       if (IsEquivalentPHI(SomePHI, ValueMapping))
    174         return SomePHI;
    175     }
    176   }
    177 
    178   // Ok, we have no way out, insert a new one now.
    179   PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
    180                                          ProtoName, &BB->front());
    181 
    182   // Fill in all the predecessors of the PHI.
    183   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
    184     InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
    185 
    186   // See if the PHI node can be merged to a single value.  This can happen in
    187   // loop cases when we get a PHI of itself and one other value.
    188   if (Value *V = SimplifyInstruction(InsertedPHI)) {
    189     InsertedPHI->eraseFromParent();
    190     return V;
    191   }
    192 
    193   // Set the DebugLoc of the inserted PHI, if available.
    194   DebugLoc DL;
    195   if (const Instruction *I = BB->getFirstNonPHI())
    196       DL = I->getDebugLoc();
    197   InsertedPHI->setDebugLoc(DL);
    198 
    199   // If the client wants to know about all new instructions, tell it.
    200   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
    201 
    202   DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
    203   return InsertedPHI;
    204 }
    205 
    206 /// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
    207 /// which use their value in the corresponding predecessor.
    208 void SSAUpdater::RewriteUse(Use &U) {
    209   Instruction *User = cast<Instruction>(U.getUser());
    210 
    211   Value *V;
    212   if (PHINode *UserPN = dyn_cast<PHINode>(User))
    213     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
    214   else
    215     V = GetValueInMiddleOfBlock(User->getParent());
    216 
    217   // Notify that users of the existing value that it is being replaced.
    218   Value *OldVal = U.get();
    219   if (OldVal != V && OldVal->hasValueHandle())
    220     ValueHandleBase::ValueIsRAUWd(OldVal, V);
    221 
    222   U.set(V);
    223 }
    224 
    225 /// RewriteUseAfterInsertions - Rewrite a use, just like RewriteUse.  However,
    226 /// this version of the method can rewrite uses in the same block as a
    227 /// definition, because it assumes that all uses of a value are below any
    228 /// inserted values.
    229 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
    230   Instruction *User = cast<Instruction>(U.getUser());
    231 
    232   Value *V;
    233   if (PHINode *UserPN = dyn_cast<PHINode>(User))
    234     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
    235   else
    236     V = GetValueAtEndOfBlock(User->getParent());
    237 
    238   U.set(V);
    239 }
    240 
    241 /// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
    242 /// specialized for SSAUpdater.
    243 namespace llvm {
    244 template<>
    245 class SSAUpdaterTraits<SSAUpdater> {
    246 public:
    247   typedef BasicBlock BlkT;
    248   typedef Value *ValT;
    249   typedef PHINode PhiT;
    250 
    251   typedef succ_iterator BlkSucc_iterator;
    252   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
    253   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
    254 
    255   class PHI_iterator {
    256   private:
    257     PHINode *PHI;
    258     unsigned idx;
    259 
    260   public:
    261     explicit PHI_iterator(PHINode *P) // begin iterator
    262       : PHI(P), idx(0) {}
    263     PHI_iterator(PHINode *P, bool) // end iterator
    264       : PHI(P), idx(PHI->getNumIncomingValues()) {}
    265 
    266     PHI_iterator &operator++() { ++idx; return *this; }
    267     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
    268     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
    269     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
    270     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
    271   };
    272 
    273   static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
    274   static PHI_iterator PHI_end(PhiT *PHI) {
    275     return PHI_iterator(PHI, true);
    276   }
    277 
    278   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
    279   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
    280   static void FindPredecessorBlocks(BasicBlock *BB,
    281                                     SmallVectorImpl<BasicBlock*> *Preds) {
    282     // We can get our predecessor info by walking the pred_iterator list,
    283     // but it is relatively slow.  If we already have PHI nodes in this
    284     // block, walk one of them to get the predecessor list instead.
    285     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
    286       for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
    287         Preds->push_back(SomePhi->getIncomingBlock(PI));
    288     } else {
    289       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    290         Preds->push_back(*PI);
    291     }
    292   }
    293 
    294   /// GetUndefVal - Get an undefined value of the same type as the value
    295   /// being handled.
    296   static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
    297     return UndefValue::get(Updater->ProtoType);
    298   }
    299 
    300   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
    301   /// Reserve space for the operands but do not fill them in yet.
    302   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
    303                                SSAUpdater *Updater) {
    304     PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
    305                                    Updater->ProtoName, &BB->front());
    306     return PHI;
    307   }
    308 
    309   /// AddPHIOperand - Add the specified value as an operand of the PHI for
    310   /// the specified predecessor block.
    311   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
    312     PHI->addIncoming(Val, Pred);
    313   }
    314 
    315   /// InstrIsPHI - Check if an instruction is a PHI.
    316   ///
    317   static PHINode *InstrIsPHI(Instruction *I) {
    318     return dyn_cast<PHINode>(I);
    319   }
    320 
    321   /// ValueIsPHI - Check if a value is a PHI.
    322   ///
    323   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
    324     return dyn_cast<PHINode>(Val);
    325   }
    326 
    327   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
    328   /// operands, i.e., it was just added.
    329   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
    330     PHINode *PHI = ValueIsPHI(Val, Updater);
    331     if (PHI && PHI->getNumIncomingValues() == 0)
    332       return PHI;
    333     return 0;
    334   }
    335 
    336   /// GetPHIValue - For the specified PHI instruction, return the value
    337   /// that it defines.
    338   static Value *GetPHIValue(PHINode *PHI) {
    339     return PHI;
    340   }
    341 };
    342 
    343 } // End llvm namespace
    344 
    345 /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
    346 /// for the specified BB and if so, return it.  If not, construct SSA form by
    347 /// first calculating the required placement of PHIs and then inserting new
    348 /// PHIs where needed.
    349 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
    350   AvailableValsTy &AvailableVals = getAvailableVals(AV);
    351   if (Value *V = AvailableVals[BB])
    352     return V;
    353 
    354   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
    355   return Impl.GetValue(BB);
    356 }
    357 
    358 //===----------------------------------------------------------------------===//
    359 // LoadAndStorePromoter Implementation
    360 //===----------------------------------------------------------------------===//
    361 
    362 LoadAndStorePromoter::
    363 LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
    364                      SSAUpdater &S, StringRef BaseName) : SSA(S) {
    365   if (Insts.empty()) return;
    366 
    367   Value *SomeVal;
    368   if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
    369     SomeVal = LI;
    370   else
    371     SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
    372 
    373   if (BaseName.empty())
    374     BaseName = SomeVal->getName();
    375   SSA.Initialize(SomeVal->getType(), BaseName);
    376 }
    377 
    378 
    379 void LoadAndStorePromoter::
    380 run(const SmallVectorImpl<Instruction*> &Insts) const {
    381 
    382   // First step: bucket up uses of the alloca by the block they occur in.
    383   // This is important because we have to handle multiple defs/uses in a block
    384   // ourselves: SSAUpdater is purely for cross-block references.
    385   DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
    386 
    387   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
    388     Instruction *User = Insts[i];
    389     UsesByBlock[User->getParent()].push_back(User);
    390   }
    391 
    392   // Okay, now we can iterate over all the blocks in the function with uses,
    393   // processing them.  Keep track of which loads are loading a live-in value.
    394   // Walk the uses in the use-list order to be determinstic.
    395   SmallVector<LoadInst*, 32> LiveInLoads;
    396   DenseMap<Value*, Value*> ReplacedLoads;
    397 
    398   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
    399     Instruction *User = Insts[i];
    400     BasicBlock *BB = User->getParent();
    401     TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
    402 
    403     // If this block has already been processed, ignore this repeat use.
    404     if (BlockUses.empty()) continue;
    405 
    406     // Okay, this is the first use in the block.  If this block just has a
    407     // single user in it, we can rewrite it trivially.
    408     if (BlockUses.size() == 1) {
    409       // If it is a store, it is a trivial def of the value in the block.
    410       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    411         updateDebugInfo(SI);
    412         SSA.AddAvailableValue(BB, SI->getOperand(0));
    413       } else
    414         // Otherwise it is a load, queue it to rewrite as a live-in load.
    415         LiveInLoads.push_back(cast<LoadInst>(User));
    416       BlockUses.clear();
    417       continue;
    418     }
    419 
    420     // Otherwise, check to see if this block is all loads.
    421     bool HasStore = false;
    422     for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
    423       if (isa<StoreInst>(BlockUses[i])) {
    424         HasStore = true;
    425         break;
    426       }
    427     }
    428 
    429     // If so, we can queue them all as live in loads.  We don't have an
    430     // efficient way to tell which on is first in the block and don't want to
    431     // scan large blocks, so just add all loads as live ins.
    432     if (!HasStore) {
    433       for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
    434         LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
    435       BlockUses.clear();
    436       continue;
    437     }
    438 
    439     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
    440     // Since SSAUpdater is purely for cross-block values, we need to determine
    441     // the order of these instructions in the block.  If the first use in the
    442     // block is a load, then it uses the live in value.  The last store defines
    443     // the live out value.  We handle this by doing a linear scan of the block.
    444     Value *StoredValue = 0;
    445     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
    446       if (LoadInst *L = dyn_cast<LoadInst>(II)) {
    447         // If this is a load from an unrelated pointer, ignore it.
    448         if (!isInstInList(L, Insts)) continue;
    449 
    450         // If we haven't seen a store yet, this is a live in use, otherwise
    451         // use the stored value.
    452         if (StoredValue) {
    453           replaceLoadWithValue(L, StoredValue);
    454           L->replaceAllUsesWith(StoredValue);
    455           ReplacedLoads[L] = StoredValue;
    456         } else {
    457           LiveInLoads.push_back(L);
    458         }
    459         continue;
    460       }
    461 
    462       if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
    463         // If this is a store to an unrelated pointer, ignore it.
    464         if (!isInstInList(SI, Insts)) continue;
    465         updateDebugInfo(SI);
    466 
    467         // Remember that this is the active value in the block.
    468         StoredValue = SI->getOperand(0);
    469       }
    470     }
    471 
    472     // The last stored value that happened is the live-out for the block.
    473     assert(StoredValue && "Already checked that there is a store in block");
    474     SSA.AddAvailableValue(BB, StoredValue);
    475     BlockUses.clear();
    476   }
    477 
    478   // Okay, now we rewrite all loads that use live-in values in the loop,
    479   // inserting PHI nodes as necessary.
    480   for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
    481     LoadInst *ALoad = LiveInLoads[i];
    482     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
    483     replaceLoadWithValue(ALoad, NewVal);
    484 
    485     // Avoid assertions in unreachable code.
    486     if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
    487     ALoad->replaceAllUsesWith(NewVal);
    488     ReplacedLoads[ALoad] = NewVal;
    489   }
    490 
    491   // Allow the client to do stuff before we start nuking things.
    492   doExtraRewritesBeforeFinalDeletion();
    493 
    494   // Now that everything is rewritten, delete the old instructions from the
    495   // function.  They should all be dead now.
    496   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
    497     Instruction *User = Insts[i];
    498 
    499     // If this is a load that still has uses, then the load must have been added
    500     // as a live value in the SSAUpdate data structure for a block (e.g. because
    501     // the loaded value was stored later).  In this case, we need to recursively
    502     // propagate the updates until we get to the real value.
    503     if (!User->use_empty()) {
    504       Value *NewVal = ReplacedLoads[User];
    505       assert(NewVal && "not a replaced load?");
    506 
    507       // Propagate down to the ultimate replacee.  The intermediately loads
    508       // could theoretically already have been deleted, so we don't want to
    509       // dereference the Value*'s.
    510       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
    511       while (RLI != ReplacedLoads.end()) {
    512         NewVal = RLI->second;
    513         RLI = ReplacedLoads.find(NewVal);
    514       }
    515 
    516       replaceLoadWithValue(cast<LoadInst>(User), NewVal);
    517       User->replaceAllUsesWith(NewVal);
    518     }
    519 
    520     instructionDeleted(User);
    521     User->eraseFromParent();
    522   }
    523 }
    524 
    525 bool
    526 LoadAndStorePromoter::isInstInList(Instruction *I,
    527                                    const SmallVectorImpl<Instruction*> &Insts)
    528                                    const {
    529   return std::find(Insts.begin(), Insts.end(), I) != Insts.end();
    530 }
    531