Home | History | Annotate | Download | only in Core
      1 // SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines SValBuilder, the base class for all (complete) SValBuilder
     11 //  implementations.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
     16 #include "clang/AST/DeclCXX.h"
     17 #include "clang/AST/ExprCXX.h"
     18 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
     19 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
     20 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     21 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
     22 
     23 using namespace clang;
     24 using namespace ento;
     25 
     26 //===----------------------------------------------------------------------===//
     27 // Basic SVal creation.
     28 //===----------------------------------------------------------------------===//
     29 
     30 void SValBuilder::anchor() { }
     31 
     32 DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
     33   if (Loc::isLocType(type))
     34     return makeNull();
     35 
     36   if (type->isIntegerType())
     37     return makeIntVal(0, type);
     38 
     39   // FIXME: Handle floats.
     40   // FIXME: Handle structs.
     41   return UnknownVal();
     42 }
     43 
     44 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
     45                                 const llvm::APSInt& rhs, QualType type) {
     46   // The Environment ensures we always get a persistent APSInt in
     47   // BasicValueFactory, so we don't need to get the APSInt from
     48   // BasicValueFactory again.
     49   assert(lhs);
     50   assert(!Loc::isLocType(type));
     51   return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
     52 }
     53 
     54 NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
     55                                BinaryOperator::Opcode op, const SymExpr *rhs,
     56                                QualType type) {
     57   assert(rhs);
     58   assert(!Loc::isLocType(type));
     59   return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
     60 }
     61 
     62 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
     63                                const SymExpr *rhs, QualType type) {
     64   assert(lhs && rhs);
     65   assert(!Loc::isLocType(type));
     66   return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
     67 }
     68 
     69 NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
     70                                QualType fromTy, QualType toTy) {
     71   assert(operand);
     72   assert(!Loc::isLocType(toTy));
     73   return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
     74 }
     75 
     76 SVal SValBuilder::convertToArrayIndex(SVal val) {
     77   if (val.isUnknownOrUndef())
     78     return val;
     79 
     80   // Common case: we have an appropriately sized integer.
     81   if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
     82     const llvm::APSInt& I = CI->getValue();
     83     if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
     84       return val;
     85   }
     86 
     87   return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
     88 }
     89 
     90 nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
     91   return makeTruthVal(boolean->getValue());
     92 }
     93 
     94 DefinedOrUnknownSVal
     95 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
     96   QualType T = region->getValueType();
     97 
     98   if (!SymbolManager::canSymbolicate(T))
     99     return UnknownVal();
    100 
    101   SymbolRef sym = SymMgr.getRegionValueSymbol(region);
    102 
    103   if (Loc::isLocType(T))
    104     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
    105 
    106   return nonloc::SymbolVal(sym);
    107 }
    108 
    109 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
    110                                                    const Expr *expr,
    111                                                    const LocationContext *LCtx,
    112                                                    unsigned count) {
    113   QualType T = expr->getType();
    114   return conjureSymbolVal(symbolTag, expr, LCtx, T, count);
    115 }
    116 
    117 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
    118                                                    const Expr *expr,
    119                                                    const LocationContext *LCtx,
    120                                                    QualType type,
    121                                                    unsigned count) {
    122   if (!SymbolManager::canSymbolicate(type))
    123     return UnknownVal();
    124 
    125   SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
    126 
    127   if (Loc::isLocType(type))
    128     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
    129 
    130   return nonloc::SymbolVal(sym);
    131 }
    132 
    133 
    134 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
    135                                                    const LocationContext *LCtx,
    136                                                    QualType type,
    137                                                    unsigned visitCount) {
    138   if (!SymbolManager::canSymbolicate(type))
    139     return UnknownVal();
    140 
    141   SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
    142 
    143   if (Loc::isLocType(type))
    144     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
    145 
    146   return nonloc::SymbolVal(sym);
    147 }
    148 
    149 DefinedOrUnknownSVal
    150 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
    151                                       const LocationContext *LCtx,
    152                                       unsigned VisitCount) {
    153   QualType T = E->getType();
    154   assert(Loc::isLocType(T));
    155   assert(SymbolManager::canSymbolicate(T));
    156 
    157   SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
    158   return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
    159 }
    160 
    161 DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
    162                                               const MemRegion *region,
    163                                               const Expr *expr, QualType type,
    164                                               unsigned count) {
    165   assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
    166 
    167   SymbolRef sym =
    168       SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
    169 
    170   if (Loc::isLocType(type))
    171     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
    172 
    173   return nonloc::SymbolVal(sym);
    174 }
    175 
    176 DefinedOrUnknownSVal
    177 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
    178                                              const TypedValueRegion *region) {
    179   QualType T = region->getValueType();
    180 
    181   if (!SymbolManager::canSymbolicate(T))
    182     return UnknownVal();
    183 
    184   SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
    185 
    186   if (Loc::isLocType(T))
    187     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
    188 
    189   return nonloc::SymbolVal(sym);
    190 }
    191 
    192 DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
    193   return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
    194 }
    195 
    196 DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
    197                                          CanQualType locTy,
    198                                          const LocationContext *locContext) {
    199   const BlockTextRegion *BC =
    200     MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
    201   const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext);
    202   return loc::MemRegionVal(BD);
    203 }
    204 
    205 /// Return a memory region for the 'this' object reference.
    206 loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
    207                                           const StackFrameContext *SFC) {
    208   return loc::MemRegionVal(getRegionManager().
    209                            getCXXThisRegion(D->getThisType(getContext()), SFC));
    210 }
    211 
    212 /// Return a memory region for the 'this' object reference.
    213 loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
    214                                           const StackFrameContext *SFC) {
    215   const Type *T = D->getTypeForDecl();
    216   QualType PT = getContext().getPointerType(QualType(T, 0));
    217   return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
    218 }
    219 
    220 //===----------------------------------------------------------------------===//
    221 
    222 SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
    223                                    BinaryOperator::Opcode Op,
    224                                    NonLoc LHS, NonLoc RHS,
    225                                    QualType ResultTy) {
    226   if (!State->isTainted(RHS) && !State->isTainted(LHS))
    227     return UnknownVal();
    228 
    229   const SymExpr *symLHS = LHS.getAsSymExpr();
    230   const SymExpr *symRHS = RHS.getAsSymExpr();
    231   // TODO: When the Max Complexity is reached, we should conjure a symbol
    232   // instead of generating an Unknown value and propagate the taint info to it.
    233   const unsigned MaxComp = 10000; // 100000 28X
    234 
    235   if (symLHS && symRHS &&
    236       (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
    237     return makeNonLoc(symLHS, Op, symRHS, ResultTy);
    238 
    239   if (symLHS && symLHS->computeComplexity() < MaxComp)
    240     if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
    241       return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
    242 
    243   if (symRHS && symRHS->computeComplexity() < MaxComp)
    244     if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
    245       return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
    246 
    247   return UnknownVal();
    248 }
    249 
    250 
    251 SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
    252                             SVal lhs, SVal rhs, QualType type) {
    253 
    254   if (lhs.isUndef() || rhs.isUndef())
    255     return UndefinedVal();
    256 
    257   if (lhs.isUnknown() || rhs.isUnknown())
    258     return UnknownVal();
    259 
    260   if (Optional<Loc> LV = lhs.getAs<Loc>()) {
    261     if (Optional<Loc> RV = rhs.getAs<Loc>())
    262       return evalBinOpLL(state, op, *LV, *RV, type);
    263 
    264     return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
    265   }
    266 
    267   if (Optional<Loc> RV = rhs.getAs<Loc>()) {
    268     // Support pointer arithmetic where the addend is on the left
    269     // and the pointer on the right.
    270     assert(op == BO_Add);
    271 
    272     // Commute the operands.
    273     return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
    274   }
    275 
    276   return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
    277                      type);
    278 }
    279 
    280 DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
    281                                          DefinedOrUnknownSVal lhs,
    282                                          DefinedOrUnknownSVal rhs) {
    283   return evalBinOp(state, BO_EQ, lhs, rhs, Context.IntTy)
    284       .castAs<DefinedOrUnknownSVal>();
    285 }
    286 
    287 /// Recursively check if the pointer types are equal modulo const, volatile,
    288 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
    289 /// Assumes the input types are canonical.
    290 static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
    291                                                          QualType FromTy) {
    292   while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) {
    293     Qualifiers Quals1, Quals2;
    294     ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
    295     FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
    296 
    297     // Make sure that non cvr-qualifiers the other qualifiers (e.g., address
    298     // spaces) are identical.
    299     Quals1.removeCVRQualifiers();
    300     Quals2.removeCVRQualifiers();
    301     if (Quals1 != Quals2)
    302       return false;
    303   }
    304 
    305   // If we are casting to void, the 'From' value can be used to represent the
    306   // 'To' value.
    307   if (ToTy->isVoidType())
    308     return true;
    309 
    310   if (ToTy != FromTy)
    311     return false;
    312 
    313   return true;
    314 }
    315 
    316 // FIXME: should rewrite according to the cast kind.
    317 SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
    318   castTy = Context.getCanonicalType(castTy);
    319   originalTy = Context.getCanonicalType(originalTy);
    320   if (val.isUnknownOrUndef() || castTy == originalTy)
    321     return val;
    322 
    323   // For const casts, casts to void, just propagate the value.
    324   if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
    325     if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
    326                                          Context.getPointerType(originalTy)))
    327       return val;
    328 
    329   // Check for casts from pointers to integers.
    330   if (castTy->isIntegerType() && Loc::isLocType(originalTy))
    331     return evalCastFromLoc(val.castAs<Loc>(), castTy);
    332 
    333   // Check for casts from integers to pointers.
    334   if (Loc::isLocType(castTy) && originalTy->isIntegerType()) {
    335     if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
    336       if (const MemRegion *R = LV->getLoc().getAsRegion()) {
    337         StoreManager &storeMgr = StateMgr.getStoreManager();
    338         R = storeMgr.castRegion(R, castTy);
    339         return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
    340       }
    341       return LV->getLoc();
    342     }
    343     return dispatchCast(val, castTy);
    344   }
    345 
    346   // Just pass through function and block pointers.
    347   if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
    348     assert(Loc::isLocType(castTy));
    349     return val;
    350   }
    351 
    352   // Check for casts from array type to another type.
    353   if (originalTy->isArrayType()) {
    354     // We will always decay to a pointer.
    355     val = StateMgr.ArrayToPointer(val.castAs<Loc>());
    356 
    357     // Are we casting from an array to a pointer?  If so just pass on
    358     // the decayed value.
    359     if (castTy->isPointerType() || castTy->isReferenceType())
    360       return val;
    361 
    362     // Are we casting from an array to an integer?  If so, cast the decayed
    363     // pointer value to an integer.
    364     assert(castTy->isIntegerType());
    365 
    366     // FIXME: Keep these here for now in case we decide soon that we
    367     // need the original decayed type.
    368     //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
    369     //    QualType pointerTy = C.getPointerType(elemTy);
    370     return evalCastFromLoc(val.castAs<Loc>(), castTy);
    371   }
    372 
    373   // Check for casts from a region to a specific type.
    374   if (const MemRegion *R = val.getAsRegion()) {
    375     // Handle other casts of locations to integers.
    376     if (castTy->isIntegerType())
    377       return evalCastFromLoc(loc::MemRegionVal(R), castTy);
    378 
    379     // FIXME: We should handle the case where we strip off view layers to get
    380     //  to a desugared type.
    381     if (!Loc::isLocType(castTy)) {
    382       // FIXME: There can be gross cases where one casts the result of a function
    383       // (that returns a pointer) to some other value that happens to fit
    384       // within that pointer value.  We currently have no good way to
    385       // model such operations.  When this happens, the underlying operation
    386       // is that the caller is reasoning about bits.  Conceptually we are
    387       // layering a "view" of a location on top of those bits.  Perhaps
    388       // we need to be more lazy about mutual possible views, even on an
    389       // SVal?  This may be necessary for bit-level reasoning as well.
    390       return UnknownVal();
    391     }
    392 
    393     // We get a symbolic function pointer for a dereference of a function
    394     // pointer, but it is of function type. Example:
    395 
    396     //  struct FPRec {
    397     //    void (*my_func)(int * x);
    398     //  };
    399     //
    400     //  int bar(int x);
    401     //
    402     //  int f1_a(struct FPRec* foo) {
    403     //    int x;
    404     //    (*foo->my_func)(&x);
    405     //    return bar(x)+1; // no-warning
    406     //  }
    407 
    408     assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
    409            originalTy->isBlockPointerType() || castTy->isReferenceType());
    410 
    411     StoreManager &storeMgr = StateMgr.getStoreManager();
    412 
    413     // Delegate to store manager to get the result of casting a region to a
    414     // different type.  If the MemRegion* returned is NULL, this expression
    415     // Evaluates to UnknownVal.
    416     R = storeMgr.castRegion(R, castTy);
    417     return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
    418   }
    419 
    420   return dispatchCast(val, castTy);
    421 }
    422