Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  A natural loop
     12 // has exactly one entry-point, which is called the header. Note that natural
     13 // loops may actually be several loops that share the same header node.
     14 //
     15 // This analysis calculates the nesting structure of loops in a function.  For
     16 // each natural loop identified, this analysis identifies natural loops
     17 // contained entirely within the loop and the basic blocks the make up the loop.
     18 //
     19 // It can calculate on the fly various bits of information, for example:
     20 //
     21 //  * whether there is a preheader for the loop
     22 //  * the number of back edges to the header
     23 //  * whether or not a particular block branches out of the loop
     24 //  * the successor blocks of the loop
     25 //  * the loop depth
     26 //  * etc...
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #ifndef LLVM_ANALYSIS_LOOPINFO_H
     31 #define LLVM_ANALYSIS_LOOPINFO_H
     32 
     33 #include "llvm/ADT/DenseMap.h"
     34 #include "llvm/ADT/DenseSet.h"
     35 #include "llvm/ADT/GraphTraits.h"
     36 #include "llvm/ADT/SmallVector.h"
     37 #include "llvm/Analysis/Dominators.h"
     38 #include "llvm/Pass.h"
     39 #include <algorithm>
     40 
     41 namespace llvm {
     42 
     43 template<typename T>
     44 inline void RemoveFromVector(std::vector<T*> &V, T *N) {
     45   typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
     46   assert(I != V.end() && "N is not in this list!");
     47   V.erase(I);
     48 }
     49 
     50 class DominatorTree;
     51 class LoopInfo;
     52 class Loop;
     53 class PHINode;
     54 class raw_ostream;
     55 template<class N, class M> class LoopInfoBase;
     56 template<class N, class M> class LoopBase;
     57 
     58 //===----------------------------------------------------------------------===//
     59 /// LoopBase class - Instances of this class are used to represent loops that
     60 /// are detected in the flow graph
     61 ///
     62 template<class BlockT, class LoopT>
     63 class LoopBase {
     64   LoopT *ParentLoop;
     65   // SubLoops - Loops contained entirely within this one.
     66   std::vector<LoopT *> SubLoops;
     67 
     68   // Blocks - The list of blocks in this loop.  First entry is the header node.
     69   std::vector<BlockT*> Blocks;
     70 
     71   LoopBase(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
     72   const LoopBase<BlockT, LoopT>&
     73     operator=(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
     74 public:
     75   /// Loop ctor - This creates an empty loop.
     76   LoopBase() : ParentLoop(0) {}
     77   ~LoopBase() {
     78     for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
     79       delete SubLoops[i];
     80   }
     81 
     82   /// getLoopDepth - Return the nesting level of this loop.  An outer-most
     83   /// loop has depth 1, for consistency with loop depth values used for basic
     84   /// blocks, where depth 0 is used for blocks not inside any loops.
     85   unsigned getLoopDepth() const {
     86     unsigned D = 1;
     87     for (const LoopT *CurLoop = ParentLoop; CurLoop;
     88          CurLoop = CurLoop->ParentLoop)
     89       ++D;
     90     return D;
     91   }
     92   BlockT *getHeader() const { return Blocks.front(); }
     93   LoopT *getParentLoop() const { return ParentLoop; }
     94 
     95   /// setParentLoop is a raw interface for bypassing addChildLoop.
     96   void setParentLoop(LoopT *L) { ParentLoop = L; }
     97 
     98   /// contains - Return true if the specified loop is contained within in
     99   /// this loop.
    100   ///
    101   bool contains(const LoopT *L) const {
    102     if (L == this) return true;
    103     if (L == 0)    return false;
    104     return contains(L->getParentLoop());
    105   }
    106 
    107   /// contains - Return true if the specified basic block is in this loop.
    108   ///
    109   bool contains(const BlockT *BB) const {
    110     return std::find(block_begin(), block_end(), BB) != block_end();
    111   }
    112 
    113   /// contains - Return true if the specified instruction is in this loop.
    114   ///
    115   template<class InstT>
    116   bool contains(const InstT *Inst) const {
    117     return contains(Inst->getParent());
    118   }
    119 
    120   /// iterator/begin/end - Return the loops contained entirely within this loop.
    121   ///
    122   const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
    123   std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; }
    124   typedef typename std::vector<LoopT *>::const_iterator iterator;
    125   typedef typename std::vector<LoopT *>::const_reverse_iterator
    126     reverse_iterator;
    127   iterator begin() const { return SubLoops.begin(); }
    128   iterator end() const { return SubLoops.end(); }
    129   reverse_iterator rbegin() const { return SubLoops.rbegin(); }
    130   reverse_iterator rend() const { return SubLoops.rend(); }
    131   bool empty() const { return SubLoops.empty(); }
    132 
    133   /// getBlocks - Get a list of the basic blocks which make up this loop.
    134   ///
    135   const std::vector<BlockT*> &getBlocks() const { return Blocks; }
    136   std::vector<BlockT*> &getBlocksVector() { return Blocks; }
    137   typedef typename std::vector<BlockT*>::const_iterator block_iterator;
    138   block_iterator block_begin() const { return Blocks.begin(); }
    139   block_iterator block_end() const { return Blocks.end(); }
    140 
    141   /// getNumBlocks - Get the number of blocks in this loop in constant time.
    142   unsigned getNumBlocks() const {
    143     return Blocks.size();
    144   }
    145 
    146   /// isLoopExiting - True if terminator in the block can branch to another
    147   /// block that is outside of the current loop.
    148   ///
    149   bool isLoopExiting(const BlockT *BB) const {
    150     typedef GraphTraits<const BlockT*> BlockTraits;
    151     for (typename BlockTraits::ChildIteratorType SI =
    152          BlockTraits::child_begin(BB),
    153          SE = BlockTraits::child_end(BB); SI != SE; ++SI) {
    154       if (!contains(*SI))
    155         return true;
    156     }
    157     return false;
    158   }
    159 
    160   /// getNumBackEdges - Calculate the number of back edges to the loop header
    161   ///
    162   unsigned getNumBackEdges() const {
    163     unsigned NumBackEdges = 0;
    164     BlockT *H = getHeader();
    165 
    166     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    167     for (typename InvBlockTraits::ChildIteratorType I =
    168          InvBlockTraits::child_begin(H),
    169          E = InvBlockTraits::child_end(H); I != E; ++I)
    170       if (contains(*I))
    171         ++NumBackEdges;
    172 
    173     return NumBackEdges;
    174   }
    175 
    176   //===--------------------------------------------------------------------===//
    177   // APIs for simple analysis of the loop.
    178   //
    179   // Note that all of these methods can fail on general loops (ie, there may not
    180   // be a preheader, etc).  For best success, the loop simplification and
    181   // induction variable canonicalization pass should be used to normalize loops
    182   // for easy analysis.  These methods assume canonical loops.
    183 
    184   /// getExitingBlocks - Return all blocks inside the loop that have successors
    185   /// outside of the loop.  These are the blocks _inside of the current loop_
    186   /// which branch out.  The returned list is always unique.
    187   ///
    188   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
    189 
    190   /// getExitingBlock - If getExitingBlocks would return exactly one block,
    191   /// return that block. Otherwise return null.
    192   BlockT *getExitingBlock() const;
    193 
    194   /// getExitBlocks - Return all of the successor blocks of this loop.  These
    195   /// are the blocks _outside of the current loop_ which are branched to.
    196   ///
    197   void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
    198 
    199   /// getExitBlock - If getExitBlocks would return exactly one block,
    200   /// return that block. Otherwise return null.
    201   BlockT *getExitBlock() const;
    202 
    203   /// Edge type.
    204   typedef std::pair<const BlockT*, const BlockT*> Edge;
    205 
    206   /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
    207   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
    208 
    209   /// getLoopPreheader - If there is a preheader for this loop, return it.  A
    210   /// loop has a preheader if there is only one edge to the header of the loop
    211   /// from outside of the loop.  If this is the case, the block branching to the
    212   /// header of the loop is the preheader node.
    213   ///
    214   /// This method returns null if there is no preheader for the loop.
    215   ///
    216   BlockT *getLoopPreheader() const;
    217 
    218   /// getLoopPredecessor - If the given loop's header has exactly one unique
    219   /// predecessor outside the loop, return it. Otherwise return null.
    220   /// This is less strict that the loop "preheader" concept, which requires
    221   /// the predecessor to have exactly one successor.
    222   ///
    223   BlockT *getLoopPredecessor() const;
    224 
    225   /// getLoopLatch - If there is a single latch block for this loop, return it.
    226   /// A latch block is a block that contains a branch back to the header.
    227   BlockT *getLoopLatch() const;
    228 
    229   //===--------------------------------------------------------------------===//
    230   // APIs for updating loop information after changing the CFG
    231   //
    232 
    233   /// addBasicBlockToLoop - This method is used by other analyses to update loop
    234   /// information.  NewBB is set to be a new member of the current loop.
    235   /// Because of this, it is added as a member of all parent loops, and is added
    236   /// to the specified LoopInfo object as being in the current basic block.  It
    237   /// is not valid to replace the loop header with this method.
    238   ///
    239   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
    240 
    241   /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
    242   /// the OldChild entry in our children list with NewChild, and updates the
    243   /// parent pointer of OldChild to be null and the NewChild to be this loop.
    244   /// This updates the loop depth of the new child.
    245   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
    246 
    247   /// addChildLoop - Add the specified loop to be a child of this loop.  This
    248   /// updates the loop depth of the new child.
    249   ///
    250   void addChildLoop(LoopT *NewChild) {
    251     assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
    252     NewChild->ParentLoop = static_cast<LoopT *>(this);
    253     SubLoops.push_back(NewChild);
    254   }
    255 
    256   /// removeChildLoop - This removes the specified child from being a subloop of
    257   /// this loop.  The loop is not deleted, as it will presumably be inserted
    258   /// into another loop.
    259   LoopT *removeChildLoop(iterator I) {
    260     assert(I != SubLoops.end() && "Cannot remove end iterator!");
    261     LoopT *Child = *I;
    262     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
    263     SubLoops.erase(SubLoops.begin()+(I-begin()));
    264     Child->ParentLoop = 0;
    265     return Child;
    266   }
    267 
    268   /// addBlockEntry - This adds a basic block directly to the basic block list.
    269   /// This should only be used by transformations that create new loops.  Other
    270   /// transformations should use addBasicBlockToLoop.
    271   void addBlockEntry(BlockT *BB) {
    272     Blocks.push_back(BB);
    273   }
    274 
    275   /// moveToHeader - This method is used to move BB (which must be part of this
    276   /// loop) to be the loop header of the loop (the block that dominates all
    277   /// others).
    278   void moveToHeader(BlockT *BB) {
    279     if (Blocks[0] == BB) return;
    280     for (unsigned i = 0; ; ++i) {
    281       assert(i != Blocks.size() && "Loop does not contain BB!");
    282       if (Blocks[i] == BB) {
    283         Blocks[i] = Blocks[0];
    284         Blocks[0] = BB;
    285         return;
    286       }
    287     }
    288   }
    289 
    290   /// removeBlockFromLoop - This removes the specified basic block from the
    291   /// current loop, updating the Blocks as appropriate.  This does not update
    292   /// the mapping in the LoopInfo class.
    293   void removeBlockFromLoop(BlockT *BB) {
    294     RemoveFromVector(Blocks, BB);
    295   }
    296 
    297   /// verifyLoop - Verify loop structure
    298   void verifyLoop() const;
    299 
    300   /// verifyLoop - Verify loop structure of this loop and all nested loops.
    301   void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
    302 
    303   void print(raw_ostream &OS, unsigned Depth = 0) const;
    304 
    305 protected:
    306   friend class LoopInfoBase<BlockT, LoopT>;
    307   explicit LoopBase(BlockT *BB) : ParentLoop(0) {
    308     Blocks.push_back(BB);
    309   }
    310 };
    311 
    312 template<class BlockT, class LoopT>
    313 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
    314   Loop.print(OS);
    315   return OS;
    316 }
    317 
    318 // Implementation in LoopInfoImpl.h
    319 #ifdef __GNUC__
    320 __extension__ extern template class LoopBase<BasicBlock, Loop>;
    321 #endif
    322 
    323 class Loop : public LoopBase<BasicBlock, Loop> {
    324 public:
    325   Loop() {}
    326 
    327   /// isLoopInvariant - Return true if the specified value is loop invariant
    328   ///
    329   bool isLoopInvariant(Value *V) const;
    330 
    331   /// hasLoopInvariantOperands - Return true if all the operands of the
    332   /// specified instruction are loop invariant.
    333   bool hasLoopInvariantOperands(Instruction *I) const;
    334 
    335   /// makeLoopInvariant - If the given value is an instruction inside of the
    336   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    337   /// Return true if the value after any hoisting is loop invariant. This
    338   /// function can be used as a slightly more aggressive replacement for
    339   /// isLoopInvariant.
    340   ///
    341   /// If InsertPt is specified, it is the point to hoist instructions to.
    342   /// If null, the terminator of the loop preheader is used.
    343   ///
    344   bool makeLoopInvariant(Value *V, bool &Changed,
    345                          Instruction *InsertPt = 0) const;
    346 
    347   /// makeLoopInvariant - If the given instruction is inside of the
    348   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    349   /// Return true if the instruction after any hoisting is loop invariant. This
    350   /// function can be used as a slightly more aggressive replacement for
    351   /// isLoopInvariant.
    352   ///
    353   /// If InsertPt is specified, it is the point to hoist instructions to.
    354   /// If null, the terminator of the loop preheader is used.
    355   ///
    356   bool makeLoopInvariant(Instruction *I, bool &Changed,
    357                          Instruction *InsertPt = 0) const;
    358 
    359   /// getCanonicalInductionVariable - Check to see if the loop has a canonical
    360   /// induction variable: an integer recurrence that starts at 0 and increments
    361   /// by one each time through the loop.  If so, return the phi node that
    362   /// corresponds to it.
    363   ///
    364   /// The IndVarSimplify pass transforms loops to have a canonical induction
    365   /// variable.
    366   ///
    367   PHINode *getCanonicalInductionVariable() const;
    368 
    369   /// isLCSSAForm - Return true if the Loop is in LCSSA form
    370   bool isLCSSAForm(DominatorTree &DT) const;
    371 
    372   /// isLoopSimplifyForm - Return true if the Loop is in the form that
    373   /// the LoopSimplify form transforms loops to, which is sometimes called
    374   /// normal form.
    375   bool isLoopSimplifyForm() const;
    376 
    377   /// isSafeToClone - Return true if the loop body is safe to clone in practice.
    378   bool isSafeToClone() const;
    379 
    380   /// Returns true if the loop is annotated parallel.
    381   ///
    382   /// A parallel loop can be assumed to not contain any dependencies between
    383   /// iterations by the compiler. That is, any loop-carried dependency checking
    384   /// can be skipped completely when parallelizing the loop on the target
    385   /// machine. Thus, if the parallel loop information originates from the
    386   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
    387   /// programmer's responsibility to ensure there are no loop-carried
    388   /// dependencies. The final execution order of the instructions across
    389   /// iterations is not guaranteed, thus, the end result might or might not
    390   /// implement actual concurrent execution of instructions across multiple
    391   /// iterations.
    392   bool isAnnotatedParallel() const;
    393 
    394   /// hasDedicatedExits - Return true if no exit block for the loop
    395   /// has a predecessor that is outside the loop.
    396   bool hasDedicatedExits() const;
    397 
    398   /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
    399   /// These are the blocks _outside of the current loop_ which are branched to.
    400   /// This assumes that loop exits are in canonical form.
    401   ///
    402   void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
    403 
    404   /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
    405   /// block, return that block. Otherwise return null.
    406   BasicBlock *getUniqueExitBlock() const;
    407 
    408   void dump() const;
    409 
    410 private:
    411   friend class LoopInfoBase<BasicBlock, Loop>;
    412   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
    413 };
    414 
    415 //===----------------------------------------------------------------------===//
    416 /// LoopInfo - This class builds and contains all of the top level loop
    417 /// structures in the specified function.
    418 ///
    419 
    420 template<class BlockT, class LoopT>
    421 class LoopInfoBase {
    422   // BBMap - Mapping of basic blocks to the inner most loop they occur in
    423   DenseMap<BlockT *, LoopT *> BBMap;
    424   std::vector<LoopT *> TopLevelLoops;
    425   friend class LoopBase<BlockT, LoopT>;
    426   friend class LoopInfo;
    427 
    428   void operator=(const LoopInfoBase &) LLVM_DELETED_FUNCTION;
    429   LoopInfoBase(const LoopInfo &) LLVM_DELETED_FUNCTION;
    430 public:
    431   LoopInfoBase() { }
    432   ~LoopInfoBase() { releaseMemory(); }
    433 
    434   void releaseMemory() {
    435     for (typename std::vector<LoopT *>::iterator I =
    436          TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
    437       delete *I;   // Delete all of the loops...
    438 
    439     BBMap.clear();                           // Reset internal state of analysis
    440     TopLevelLoops.clear();
    441   }
    442 
    443   /// iterator/begin/end - The interface to the top-level loops in the current
    444   /// function.
    445   ///
    446   typedef typename std::vector<LoopT *>::const_iterator iterator;
    447   typedef typename std::vector<LoopT *>::const_reverse_iterator
    448     reverse_iterator;
    449   iterator begin() const { return TopLevelLoops.begin(); }
    450   iterator end() const { return TopLevelLoops.end(); }
    451   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
    452   reverse_iterator rend() const { return TopLevelLoops.rend(); }
    453   bool empty() const { return TopLevelLoops.empty(); }
    454 
    455   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
    456   /// block is in no loop (for example the entry node), null is returned.
    457   ///
    458   LoopT *getLoopFor(const BlockT *BB) const {
    459     return BBMap.lookup(const_cast<BlockT*>(BB));
    460   }
    461 
    462   /// operator[] - same as getLoopFor...
    463   ///
    464   const LoopT *operator[](const BlockT *BB) const {
    465     return getLoopFor(BB);
    466   }
    467 
    468   /// getLoopDepth - Return the loop nesting level of the specified block.  A
    469   /// depth of 0 means the block is not inside any loop.
    470   ///
    471   unsigned getLoopDepth(const BlockT *BB) const {
    472     const LoopT *L = getLoopFor(BB);
    473     return L ? L->getLoopDepth() : 0;
    474   }
    475 
    476   // isLoopHeader - True if the block is a loop header node
    477   bool isLoopHeader(BlockT *BB) const {
    478     const LoopT *L = getLoopFor(BB);
    479     return L && L->getHeader() == BB;
    480   }
    481 
    482   /// removeLoop - This removes the specified top-level loop from this loop info
    483   /// object.  The loop is not deleted, as it will presumably be inserted into
    484   /// another loop.
    485   LoopT *removeLoop(iterator I) {
    486     assert(I != end() && "Cannot remove end iterator!");
    487     LoopT *L = *I;
    488     assert(L->getParentLoop() == 0 && "Not a top-level loop!");
    489     TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
    490     return L;
    491   }
    492 
    493   /// changeLoopFor - Change the top-level loop that contains BB to the
    494   /// specified loop.  This should be used by transformations that restructure
    495   /// the loop hierarchy tree.
    496   void changeLoopFor(BlockT *BB, LoopT *L) {
    497     if (!L) {
    498       BBMap.erase(BB);
    499       return;
    500     }
    501     BBMap[BB] = L;
    502   }
    503 
    504   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
    505   /// list with the indicated loop.
    506   void changeTopLevelLoop(LoopT *OldLoop,
    507                           LoopT *NewLoop) {
    508     typename std::vector<LoopT *>::iterator I =
    509                  std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
    510     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
    511     *I = NewLoop;
    512     assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
    513            "Loops already embedded into a subloop!");
    514   }
    515 
    516   /// addTopLevelLoop - This adds the specified loop to the collection of
    517   /// top-level loops.
    518   void addTopLevelLoop(LoopT *New) {
    519     assert(New->getParentLoop() == 0 && "Loop already in subloop!");
    520     TopLevelLoops.push_back(New);
    521   }
    522 
    523   /// removeBlock - This method completely removes BB from all data structures,
    524   /// including all of the Loop objects it is nested in and our mapping from
    525   /// BasicBlocks to loops.
    526   void removeBlock(BlockT *BB) {
    527     typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
    528     if (I != BBMap.end()) {
    529       for (LoopT *L = I->second; L; L = L->getParentLoop())
    530         L->removeBlockFromLoop(BB);
    531 
    532       BBMap.erase(I);
    533     }
    534   }
    535 
    536   // Internals
    537 
    538   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
    539                                       const LoopT *ParentLoop) {
    540     if (SubLoop == 0) return true;
    541     if (SubLoop == ParentLoop) return false;
    542     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
    543   }
    544 
    545   /// Create the loop forest using a stable algorithm.
    546   void Analyze(DominatorTreeBase<BlockT> &DomTree);
    547 
    548   // Debugging
    549 
    550   void print(raw_ostream &OS) const;
    551 };
    552 
    553 // Implementation in LoopInfoImpl.h
    554 #ifdef __GNUC__
    555 __extension__ extern template class LoopInfoBase<BasicBlock, Loop>;
    556 #endif
    557 
    558 class LoopInfo : public FunctionPass {
    559   LoopInfoBase<BasicBlock, Loop> LI;
    560   friend class LoopBase<BasicBlock, Loop>;
    561 
    562   void operator=(const LoopInfo &) LLVM_DELETED_FUNCTION;
    563   LoopInfo(const LoopInfo &) LLVM_DELETED_FUNCTION;
    564 public:
    565   static char ID; // Pass identification, replacement for typeid
    566 
    567   LoopInfo() : FunctionPass(ID) {
    568     initializeLoopInfoPass(*PassRegistry::getPassRegistry());
    569   }
    570 
    571   LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
    572 
    573   /// iterator/begin/end - The interface to the top-level loops in the current
    574   /// function.
    575   ///
    576   typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
    577   typedef LoopInfoBase<BasicBlock, Loop>::reverse_iterator reverse_iterator;
    578   inline iterator begin() const { return LI.begin(); }
    579   inline iterator end() const { return LI.end(); }
    580   inline reverse_iterator rbegin() const { return LI.rbegin(); }
    581   inline reverse_iterator rend() const { return LI.rend(); }
    582   bool empty() const { return LI.empty(); }
    583 
    584   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
    585   /// block is in no loop (for example the entry node), null is returned.
    586   ///
    587   inline Loop *getLoopFor(const BasicBlock *BB) const {
    588     return LI.getLoopFor(BB);
    589   }
    590 
    591   /// operator[] - same as getLoopFor...
    592   ///
    593   inline const Loop *operator[](const BasicBlock *BB) const {
    594     return LI.getLoopFor(BB);
    595   }
    596 
    597   /// getLoopDepth - Return the loop nesting level of the specified block.  A
    598   /// depth of 0 means the block is not inside any loop.
    599   ///
    600   inline unsigned getLoopDepth(const BasicBlock *BB) const {
    601     return LI.getLoopDepth(BB);
    602   }
    603 
    604   // isLoopHeader - True if the block is a loop header node
    605   inline bool isLoopHeader(BasicBlock *BB) const {
    606     return LI.isLoopHeader(BB);
    607   }
    608 
    609   /// runOnFunction - Calculate the natural loop information.
    610   ///
    611   virtual bool runOnFunction(Function &F);
    612 
    613   virtual void verifyAnalysis() const;
    614 
    615   virtual void releaseMemory() { LI.releaseMemory(); }
    616 
    617   virtual void print(raw_ostream &O, const Module* M = 0) const;
    618 
    619   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    620 
    621   /// removeLoop - This removes the specified top-level loop from this loop info
    622   /// object.  The loop is not deleted, as it will presumably be inserted into
    623   /// another loop.
    624   inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
    625 
    626   /// changeLoopFor - Change the top-level loop that contains BB to the
    627   /// specified loop.  This should be used by transformations that restructure
    628   /// the loop hierarchy tree.
    629   inline void changeLoopFor(BasicBlock *BB, Loop *L) {
    630     LI.changeLoopFor(BB, L);
    631   }
    632 
    633   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
    634   /// list with the indicated loop.
    635   inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
    636     LI.changeTopLevelLoop(OldLoop, NewLoop);
    637   }
    638 
    639   /// addTopLevelLoop - This adds the specified loop to the collection of
    640   /// top-level loops.
    641   inline void addTopLevelLoop(Loop *New) {
    642     LI.addTopLevelLoop(New);
    643   }
    644 
    645   /// removeBlock - This method completely removes BB from all data structures,
    646   /// including all of the Loop objects it is nested in and our mapping from
    647   /// BasicBlocks to loops.
    648   void removeBlock(BasicBlock *BB) {
    649     LI.removeBlock(BB);
    650   }
    651 
    652   /// updateUnloop - Update LoopInfo after removing the last backedge from a
    653   /// loop--now the "unloop". This updates the loop forest and parent loops for
    654   /// each block so that Unloop is no longer referenced, but the caller must
    655   /// actually delete the Unloop object.
    656   void updateUnloop(Loop *Unloop);
    657 
    658   /// replacementPreservesLCSSAForm - Returns true if replacing From with To
    659   /// everywhere is guaranteed to preserve LCSSA form.
    660   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
    661     // Preserving LCSSA form is only problematic if the replacing value is an
    662     // instruction.
    663     Instruction *I = dyn_cast<Instruction>(To);
    664     if (!I) return true;
    665     // If both instructions are defined in the same basic block then replacement
    666     // cannot break LCSSA form.
    667     if (I->getParent() == From->getParent())
    668       return true;
    669     // If the instruction is not defined in a loop then it can safely replace
    670     // anything.
    671     Loop *ToLoop = getLoopFor(I->getParent());
    672     if (!ToLoop) return true;
    673     // If the replacing instruction is defined in the same loop as the original
    674     // instruction, or in a loop that contains it as an inner loop, then using
    675     // it as a replacement will not break LCSSA form.
    676     return ToLoop->contains(getLoopFor(From->getParent()));
    677   }
    678 };
    679 
    680 
    681 // Allow clients to walk the list of nested loops...
    682 template <> struct GraphTraits<const Loop*> {
    683   typedef const Loop NodeType;
    684   typedef LoopInfo::iterator ChildIteratorType;
    685 
    686   static NodeType *getEntryNode(const Loop *L) { return L; }
    687   static inline ChildIteratorType child_begin(NodeType *N) {
    688     return N->begin();
    689   }
    690   static inline ChildIteratorType child_end(NodeType *N) {
    691     return N->end();
    692   }
    693 };
    694 
    695 template <> struct GraphTraits<Loop*> {
    696   typedef Loop NodeType;
    697   typedef LoopInfo::iterator ChildIteratorType;
    698 
    699   static NodeType *getEntryNode(Loop *L) { return L; }
    700   static inline ChildIteratorType child_begin(NodeType *N) {
    701     return N->begin();
    702   }
    703   static inline ChildIteratorType child_end(NodeType *N) {
    704     return N->end();
    705   }
    706 };
    707 
    708 } // End llvm namespace
    709 
    710 #endif
    711